广东省揭阳市2013届高三第二次模拟数学理试题(WORD解析版)
揭阳市2013年高中毕业班高考第二次模拟考试
揭阳市2013年高中毕业班高考第二次模拟考试英语本试卷共三部分,满分135分,考试用时120分钟。
注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考生号、试室号和座位号填写在答题卷上。
2. 选择题每小题选出答案后,用2B铅笔把答题卷上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4. 考生必须保持答题卷的整洁,考试结束后,将本试题和答题卷一并交回。
I . 语言知识及应用(共两节,满分45分)第一节: 完形填空(共15小题;每小题2分,满分30分)阅读下面短文,掌握其大意,然后从1―15各题所给的A、B、C和D项中,选出最佳选项,并在答题卷上将该项涂黑。
Hidden passengers traveling in ships, trams, or even cars can be a terrible trouble —especially when they are insects. As for this, there is a great 1 between human beings and insects. The 2 take every possible effort to avoid being discovered, while the latter quickly 3 attention to themselves.We can only show mercy to the 4 man who had to stop his car soon after setting out from a country village to drive to London. Hearing a strange noise from the5 of the car, he naturally got out to examine the wheels carefully, but he found nothing wrong, so he6 his way. Again the noise began,7 and became even louder. Quickly turning his head, the man saw what appeared to be a great8 cloud following the car. When he stopped at a village further on, he was told that a queen bee must be hidden in his car as there were thousands of bees9 .On learning this, the man drove away as quickly as possible. After an hour's 10 driving, he arrived safely in London, where he parked his car outside a 11 and went in. It was not long before a customer who had seen him arrive 12 in to inform him that his car was 13 with bees. The poor driver was 14 that the best way should be to call a 15 .In a short time the man arrived. He found the unwelcome passenger hidden near the wheels at the back of the car. Very thankful to the driver for this unexpected gift, the bee-keeper took the queen and her thousands of followers home in a large box.1.A.connection B. difference C. communication D. similarity2. A. passengers B. insects C. former D. first3. A. give B. keep C. pay D. draw4. A. unfortunate B. careless C. unpleasant D. hopeless5. A. front B. back C. left D. right6. A. drove B. continued C. pushed D. forced7. A. normally B. gently C. quietly D. immediately8. A. black B. beautiful C. white D. colorful9. A. below B. ahead C. nearby D. behind10. A. boring B. careful C. exciting D. hard11. A. hotel B. museum C. hospital D. school12. A. broke B. moved C. hurried D. dropped13. A. crowded B. covered C. filled D. equipped14. A. advised B. required C. ordered D. requested15. A. bee-keeper B. policeman C. waiter D. repairman第二节: 语法填空(共10小题;每小题1.5分,满分15分)阅读下面短文,按照句子结构的语法性和上下文连贯的要求,在空格处填入一个适当的词或使用括号中词语的正确形式填空,并将答案填写在答题卷标号为16—25的相应位置上。
2013年高考理科数学全国新课标卷2试题与答案word解析版
2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅱ,理1)已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3} 2.(2013课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,则z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2013课标全国Ⅱ,理3)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ).A .13B .13-C .19D .19-4.(2013课标全国Ⅱ,理4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,lα,lβ,则( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2013课标全国Ⅱ,理5)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ).A .-4B .-3C .-2D .-16.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++D .1111+2!3!11!+++7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ).8.(2013课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,则( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c9.(2013课标全国Ⅱ,理9)已知a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩若z =2x +y 的最小值为1,则a =( ).A .14 B.12 C .1 D .210.(2013课标全国Ⅱ,理10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.(2013课标全国Ⅱ,理11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( ).A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x12.(2013课标全国Ⅱ,理12)已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( ).A.(0,1) B.11,22⎛⎫-⎪⎪⎝⎭ C.1123⎛⎤-⎥⎝⎦ D.11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。
2013年高三理科数学二模试题(惠州有答案)
2013年高三理科数学二模试题(惠州有答案)骞夸笢鐪佹儬宸炲競2013悊绉戯級2013.4 85鍒嗭紝婊″垎40€椤规槸绗﹀悎棰樼洰瑕佹眰鐨勶紟1鐨勫畾涔夊煙涓洪泦鍚圡锛岄泦鍚圢锛?锛屽垯锛?锛夛紟A锛?B锛嶯C锛?D锛嶮2銆佸凡鐭ユき鍦鍊嶏紝鍒欐き鍦嗙殑绂诲績鐜囩瓑浜庯紙锛夛紟A锛?B锛?C锛?D锛?3猴級锛岄偅涔堣緭鍑虹殑锛?锛夛紟锛★紟2450 2500 锛o紟2550 锛わ紟2652 4銆佽嫢鏇茬嚎鐨勪竴鏉″垏绾?涓庣洿绾?鍨傜洿锛屽垯鍒囩嚎鐨勬柟绋嬩负锛?锛夛紟A銆?銆€B銆?C銆?D銆?5銆佹柟绋?鏈夊疄鏍圭殑姒傜巼涓猴紙锛夛紟A銆?B銆?C銆?D銆?6銆佸凡鐭?锛夛紟A銆佽嫢鈭?锛屽垯銆€B 銆佽嫢鈭?锛屽垯鈭?C銆佽嫢锛屽垯鈭?銆€D銆佽嫢锛屽垯7銆佷竴寮犳?鈥濆浘妗堬紝?銆?锛屽壀鍘婚儴鍒嗙殑闈㈢Н涓?锛?鑻?锛屽垯鐨勫浘璞℃槸锛?锛夛紟8銆佸皢鍑芥暟鐨勫浘璞″厛鍚戝乏骞崇Щ锛岀劧鍚庡皢鎵€寰楀浘璞′笂鎵€鏈夌偣鐨勬í鍧愭爣鍙樹负鍘熸潵鐨?鍊嶏紙绾靛潗鏍囦笉鍙橈級锛屽垯鎵?锛夛紟A锛?B锛?C锛?D 锛??10鍒嗭級浜屻€佸~绌洪ч??3锝?5锛屼笁棰樺叏绛旂殑锛屽彧璁$畻鍓嶄袱棰樺緱鍒嗭紟姣忓皬棰?鍒嗭紝婊″垎30鍒嗭紟9銆佸凡鐭ュ悜閲?锛?锛岃嫢锛屽垯瀹炴暟鐨勫€肩瓑浜?锛?10銆佸凡鐭?锛屽垯= 锛?11銆??锛?12銆佸嚱鏁?鐢变笅琛ㄥ畾涔夛細鑻?锛?锛?锛屽垯锛?13銆?鍧愭爣绯讳笌鍙傛暟鏂圭▼閫夊仛棰?鏇茬嚎锛?涓婄殑鐐瑰埌鏇茬嚎锛?锛?14銆?涓嶇瓑寮忛€?宸茬煡瀹炴暟婊¤冻锛屽垯鐨勬渶澶у€间负锛?15銆?鍑犱?濡傚浘锛屽钩琛屽洓杈瑰舰锛岃嫢鐨勯潰?cm , 鍒??cm 锛?涓夈€佽Вч??0鍒嗭紟瑙g瓟椤诲啓鍑烘?16?2?鐨勫墠椤瑰拰涓?, 宸茬煡锛?锛?锛堚厾锛夋眰棣栭」鍜屽叕姣?鐨勫€硷紱锛堚叀锛夎嫢锛屾眰鐨勫€硷紟17?2鍒嗭級璁惧嚱鏁?锛?锛堚厾锛夋眰鍑芥暟鐨勬渶?锛堚叀锛夊綋鏃讹紝鐨勬渶澶у€间负2锛屾眰鐨勫€硷紝骞舵眰鍑??18樻弧鍒?4у皬鐩稿悓鐨?4粦鐞冿紟锛堚厾锛夐噰鍙栨斁鍥炴娊鏍锋柟寮忥紝浠庝腑鎽稿嚭涓や釜鐞冿紝?锛堚叀锛夐噰鍙栦笉鏀惧洖鎶芥牱屾柟宸? 锛?19?4鍒嗭級濡傚浘锛屽凡鐭ュ洓妫遍敟鐨?搴曢潰鏄骞抽潰, 锛?鐐?涓?鐨勪腑鐐癸紟锛堚厾锛夋眰璇侊細骞抽潰锛?锛堚叀锛夋眰浜岄潰瑙?20?4鍒嗭級缁欏畾鍦哖: 鍙婃姏鐗?绾縎: ,杩囧渾蹇?浣滅洿绾?,姝ょ洿绾夸笌涓婅堪涓ゆ洸绾??璁颁负,濡傛灉绾?娈??姹傜洿绾?鐨勬柟绋? 21?4欢鐨勫嚱鏁?鏋勬垚鐨勯泦鍚堬細鈥溾憼鏂圭▼鏈夊疄鏁版牴锛涒憽鍑芥暟鐨?婊¤冻鈥濓紟?礌锛屽苟璇存槑鐞嗙敱锛?鍏锋湁涓嬮潰鐨勬€ц川锛氳嫢鐨勫畾涔夊煙涓篋锛屽垯瀵逛簬浠绘剰[m锛宯] D锛岄兘瀛樺湪[m锛宯]锛屼娇寰楃瓑寮?鎴愮珛鈥濓紝璇曠敤杩欎竴鎬ц川璇佹槑锛氭柟绋?鍙??鐨勫疄鏁版牴锛屾眰璇侊細瀵逛簬瀹氫箟鍩熶腑浠绘剰鐨?锛屽綋锛屼笖鏃讹紝锛?骞夸笢鐪佹儬宸炲競2013冪瓟妗?007.11 涓€銆侀€夋嫨棰橈細棰樺彿1銆佽В鏋愶細锛孨锛?锛?鍗?锛庣瓟妗堬細锛?2銆佽В锛屽張锛??锛?3銆佽В鏋愶細绋嬪簭鐨勮繍琛岀粨鏋滄槸锛庣瓟妗堬細锛?4銆佽В鏋愶細涓庣洿绾?鍨傜洿鐨勫垏绾?鐨勬枩鐜囧繀涓?锛岃€?锛屾墍浠ワ紝鍒囩偣涓?锛庡垏绾夸负锛屽嵆锛岀瓟妗堬細锛?5銆佽В鏋愶細鐢变竴鍏冧簩娆℃柟绋嬫湁瀹炴牴鐨勬潯浠?锛岃€?锛岀敱鍑犱綍姒傜巼寰楁锛庣瓟妗堬細锛?6銆佽В鏋愶細濡傛灉涓ゆ??姝g‘锛?锛屾墍浠?锛?7銆佽В鏋愶?锛岀瓟妗堬細锛?8銆佽В鏋愶細鐨勫浘璞″厛鍚戝乏骞崇Щ锛屾í鍧愭爣鍙樹负鍘熸潵鐨?鍊?锛庣瓟妗堬細锛??棰樺彿9銆佽В鏋愶細鑻?锛屽垯锛岃В寰?锛?10銆佽В?锛?11銆佽В鏋愶細12銆佽В鏋愶細浠?锛屽垯锛屼护锛屽垯锛?浠?锛屽垯锛屼护锛屽垯锛?浠?锛屽垯锛屼护锛屽垯锛?鈥︼紝鎵€浠?锛?13銆佽В鏋愶細锛?锛涘垯鍦嗗績鍧愭爣涓?锛?锛?蹇冨埌鐩寸嚎鐨勮窛绂讳负锛?14銆佽В鏋愶細鐢辨煰瑗夸笉绛夊紡锛岀瓟妗堬細锛?15銆佽В鏋愶細鏄剧劧涓?涓虹浉浼间笁瑙掑舰锛屽張锛屾墍浠??cm 锛?涓夈€佽Вч??0鍒嗭紟瑙g瓟椤诲啓鍑烘?16銆佽В: (鈪? , 鈥︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?鈭?锛屸€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?4鍒?瑙e緱锛庘€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?6鍒?(鈪?鐢?,寰楋細, 鈥︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?鈭?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?10鍒?鈭?锛庘€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?12鍒?17銆佽В锛氾紙1锛?鈥?2鍒?鍒?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?涓斿綋鏃??鍗?涓?愬紑鍖洪棿涓嶆墸鍒嗭級锛庘€︹€︹€?鍒?锛?锛夊綋鏃?锛屽綋锛屽嵆鏃?锛?鎵€浠?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?涓?酱锛?鈥︹€︹€︹€︹€︹€︹€?2鍒?18銆佽В锛?锛堚厾锛夎В娉曚竴锛氣€滄湁鏀惧洖鎽镐袱娆★紝棰滆壊涓嶅悓鈥濇寚鈥滃厛鐧藉啀榛戔€濇垨鈥滃厛榛戝啀鐧解€濓紝蹭笉鍚屸€濅负浜嬩欢锛屸€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭碘€绉嶅彲鑳斤紝鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?瑙f硶浜岋細鈥滄湁鏀惧洖鎽稿彇?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛庘€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭粹€滄湁鏀惧洖鎽镐袱娆★紝棰滆壊涓嶅悓鈥濈殑姒傜巼涓?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛屼緷棰樻剰寰楋細锛?锛?锛庘€︹€︹€︹€?0鍒?鈭?锛屸€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?锛庘€︹€︹€︹€︹€︹€︹€︹€?4鍒?19銆?鈪?璇佹槑:杩炵粨锛?涓?浜や簬鐐?锛岃繛缁?.鈥︹€︹€︹€︹€︹€︹€︹€︹€?鍒?? 鈭?鏄?鐨勪腑鐐? 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鐐?涓?鐨勪腑鐐? 鈭?. 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?骞抽潰骞抽潰, 鈭?骞抽潰. 鈥︹€︹€︹€︹€︹€?6鍒?(鈪?瑙f硶涓€: 骞抽潰, 骞抽潰,鈭?. 锛屸埓. 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?7鍒?? 鈭?. 锛?鈭?骞抽潰. 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?浣?锛屽瀭瓒充负锛岃繛鎺?锛屽垯, 鎵€浠?. 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?10鍒?,鈭?锛?. 鍦≧t鈻?涓? = 锛屸€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?12鍒?鈭?.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?13鍒?鈭翠簩闈. 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€?14鍒?瑙f硶浜岋細濡傚浘锛屼互鐐?鐨勫瀭鐩村钩鍒嗙嚎鎵€鍦ㄧ洿绾夸负杞达紝鎵€鍦ㄧ洿绾夸负杞达紝鎵€鍦ㄧ洿绾夸负杞达紝寤?锛屸€︹€︹€︹€︹€?鍒?鍒?锛?, 锛?鈭?锛?鈥︹€︹€︹€︹€?鍒?璁惧钩闈??, 鐢?锛屽緱锛?浠?锛屽垯锛屸埓. 鈥︹€︹€︹€︹€︹€︹€?鍒?骞抽潰, 骞抽潰, 鈭?. 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?锛屸埓. ?鈭?. 锛屸埓骞抽潰.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?9鍒?鈭??, 锛庘€︹€︹€︹€︹€︹€︹€?10鍒?鈭?锛?鈭?锛?鈥︹€︹€︹€︹€︹€︹€︹€?12鍒?鈭?锛庘€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?13鍒?. 鈥︹€︹€︹€︹€︹€︹€︹€︹€?14鍒?20銆佽В:鍦?鐨勬柟绋嬩负,鍒欏叾鐩村緞闀?,鍦嗗績涓?,璁?鐨勬柟绋嬩负,鍗?,浠e叆鎶涚墿绾挎柟绋嬪緱: ,璁?锛?鏈?, 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鍒?. 鈥︹€︹€︹€︹€︹€︹€︹€?鍒?鏁?鈥?鍒?, 鈥︹€︹€︹€?7鍒?. 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?? , 鈥︹€︹€︹€︹€?10鍒?鎵€浠?锛屽嵆, 锛屸€︹€︹€︹€︹€?12鍒?鍗筹細鏂圭▼涓?鎴?. 鈥︹€︹€︹€︹€︹€︹€?4鍒?21銆佽В锛?锛?锛夊洜涓?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鎵€浠?锛屾弧瓒虫潯浠?. 鈥︹€︹€︹€︹€︹€︹€?鍒?鍙堝洜涓哄綋鏃讹紝锛屾墍浠ユ柟绋?鏈夊疄鏁版牴锛?鎵€浠ュ嚱鏁?冪礌锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛?锛夊亣璁炬柟绋?瀛樺湪涓や釜瀹炴暟鏍?锛夛紝鍒?锛屸€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?涓嶅Θ璁?浣垮緱绛夊紡鎴愮珛锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鍥犱负锛屾墍浠?锛屼笌宸茬煡鐭涚浘锛?鎵€浠ユ柟绋?︹€︹€︹€︹€︹€?0鍒?锛?锛屽洜涓?鎵€浠?锛屾墍浠?锛?鍙堝洜涓?锛屾墍浠ュ嚱鏁?涓哄噺鍑芥暟锛?鈥︹€︹€︹€︹€︹€︹€︹€?1鍒?鎵€浠?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?鎵€浠?锛屽嵆锛?鈥︹€︹€︹€?3鍒?鎵€浠?锛?鈥?4鍒?。
2013年高考理科数学全国新课标卷2试题与答案word解析版
2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅱ,理1)已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3} 2.(2013课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,则z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2013课标全国Ⅱ,理3)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ).A .13B .13-C .19D .19-4.(2013课标全国Ⅱ,理4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,lα,lβ,则( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2013课标全国Ⅱ,理5)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ).A .-4B .-3C .-2D .-16.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++D .1111+2!3!11!+++7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ).8.(2013课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,则( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c9.(2013课标全国Ⅱ,理9)已知a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩若z =2x +y 的最小值为1,则a =( ).A .14 B.12 C .1 D .210.(2013课标全国Ⅱ,理10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.(2013课标全国Ⅱ,理11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( ).A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x12.(2013课标全国Ⅱ,理12)已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( ).A.(0,1) B.11,22⎛⎫-⎪⎪⎝⎭ C.1123⎛⎤-⎥⎝⎦ D.11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。
广东揭阳2013高三第二次模拟试题-数学理(word解析版)(精)
2013年广东省揭阳市高考数学二模试卷(理科)一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•揭阳二模)已知全集U=R,,则∁U A=()A.[0,+∞)B.(﹣∞,0)C.(0,+∞)D.(﹣∞,0]考点:其他不等式的解法;补集及其运算.专题:函数的性质及应用.分析:求函数的定义域求得A,再利用补集的定义求得则∁U A.解答:解:集合A即函数y=的定义域,由2x﹣1≥0,求得x≥0,A=[0,+∞),故∁U A=(﹣∞,0),故选B.点评:本题主要考查对数不等式的解法,求集合的补集,属于基础题.2.(5分)(2013•揭阳二模)若(1+2ai)i=1﹣bi,其中a、b∈R,i是虚数单位,则|a+bi|=()A.B. C. D.考点:复数求模;复数代数形式的乘除运算.专题:计算题.分析:首先进行复数的乘法运算,根据复数相等的充要条件,得到复数的实部和虚部分别相等,得到a,b的值,求出复数的模长.解答:解:∵(1+2ai)i=1﹣bi,∴i﹣2a=1﹣bi∴﹣2a=1,b=﹣1∴a=﹣,b=﹣1∴|a+bi|=故选C.点评:本题考查复数的代数形式的乘除运算和复数的求模,本题解题的关键是求出复数中的字母系数,本题是一个基础题.3.(5分)(2013•揭阳二模)已知点A(﹣1,5)和向量=(2,3),若,则点B的坐标为()A.(7,4)B.(7,14)C.(5,4)D.(5,14)考点:平面向量的坐标运算.专题:平面向量及应用.分析:设B(x,y),由得(x+1,y﹣5)=(6,9),求得x、y的值,即可求得点B的坐标.解答:解:设B(x,y),由得(x+1,y﹣5)=(6,9),故有,解得,故选D.点评:本题主要考查两个向量的坐标形式的运算,属于基础题.4.(5分)(2013•揭阳二模)在等差数列{a n}中,首项a1=0,公差d≠0,若a m=a1+a2+…+a9,则m的值为()A.37 B.36 C.20 D.19考点:数列的求和;等差数列.专题:计算题;等差数列与等比数列.分析:利用等差数列的通项公式可得a m=0+(m﹣1)d,利用等差数列前9项和的性质可得a1+a2+…+a9=9a5=36d,二式相等即可求得m的值.解答:解:∵{a n}为等差数列,首项a1=0,a m=a1+a2+…+a9,∴0+(m﹣1)d=9a5=36d,又公差d≠0,∴m=37,故选A.点评:本题考查等差数列的通项公式与求和,考查等差数列性质的应用,考查分析与运算能力,属于中档题.5.(5分)(2013•揭阳二模)一个棱长为2的正方体沿其棱的中点截去部分后所得几何体的三视图如图示,则该几何体的体积为()A.7 B.C.D.考点:由三视图求面积、体积.专题:计算题.分析:通过三视图复原的几何体,利用三视图的数据求出几何体的体积即可.解答:解:依题意可知该几何体的直观图如图示,其体积为正方体的体积去掉两个三棱锥的体积.即:,故选D.点评:本题考查几何体与三视图的关系,考查空间想象能力与计算能力.6.(5分)(2013•揭阳二模)已知函数,则y=f(x)的图象大致为()A.B.C.D.考点:利用导数研究函数的单调性;函数的图象.专题:计算题;函数的性质及应用.分析:利用函数的定义域与函数的值域排除B,D,通过函数的单调性排除C,推出结果即可.解答:解:令g(x)=x﹣ln(x+1),则,由g'(x)>0,得x>0,即函数g(x)在(0,+∞)上单调递增,由g'(x)<0得﹣1<x<0,即函数g(x)在(﹣1,0)上单调递减,所以当x=0时,函数g(x)有最小值,g(x)min=g(0)=0,于是对任意的x∈(﹣1,0)∪(0,+∞),有g(x)≥0,故排除B、D,因函数g(x)在(﹣1,0)上单调递减,则函数f(x)在(﹣1,0)上递增,故排除C,故选A.点评:本题考查函数的单调性与函数的导数的关系,函数的定义域以及函数的图形的判断,考查分析问题解决问题的能力.7.(5分)(2013•揭阳二模)某市教育局人事部门打算将甲、乙、丙、丁四名应届大学毕业生安排到该市三所不同的学校任教,每所学校至少安排一名,其中甲、乙因属同一学科,不能安排在同一所学校,则不同的安排方法种数为()A.18 B.24 C.30 D.36考点:排列、组合及简单计数问题.专题:计算题.分析:间接法:先计算四名学生中有两名分在一所学校的种数共有•种,去掉甲乙被分在同一所学校的情况共有种即可.解答:解:先计算四名学生中有两名分在一所学校的种数,可从4个中选2个,和其余的2个看作3个元素的全拍列共有•种,再排除甲乙被分在同一所学校的情况共有种,所以不同的安排方法种数是•﹣=36﹣6=30故选C.点评:本题考查排列组合及简单的计数问题,属中档题.8.(5分)(2013•揭阳二模)设f(x)是定义在(0,1)上的函数,对任意的y>x>1都有,记,则=()A.B.C.D.考点:数列的求和;抽象函数及其应用.专题:等差数列与等比数列.分析:依题意,可求得an=f()﹣f(),利用累加法即可求得故a i=f()﹣f(),逆用已知条件即可得到答案.解答:解:因an=f()=f()=f()﹣f(),故a i=a1+a2+…+a8=f()﹣f()+f()﹣f()+…+f()﹣f()=f()﹣f()=f()=f(),故选C.点评:本题考查抽象函数及其应用,求得a n=f()﹣f()是关键,也是难点,考查观察与推理能力,属于中档题.二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9-13题)9.(5分)(2013•揭阳二模)若点(a,﹣1)在函数的图象上,则的值为.考点:三角函数的化简求值.专题:三角函数的求值.分析:将x=a,y=﹣1代入函数解析式中求出a的值,将a的值代入所求式子中计算即可求出值.解答:解:将x=a,y=﹣1代入函数解析式得:﹣1=,解得:a=3,则tan=tan=tan(π+)=tan=.故答案为:点评:此题考查了三角函数的化简求值,涉及的知识有:对数的运算性质,诱导公式,以及特殊角的三角函数值,熟练掌握公式是解本题的关键.10.(5分)(2013•河东区二模)过双曲线的右焦点,且平行于经过一、三象限的渐近线的直线方程是4x﹣3y﹣20=0.考点:双曲线的简单性质.专题:函数的性质及应用;圆锥曲线的定义、性质与方程.分析:根据双曲线方程,可得右焦点的坐标为F(5,0),且经过一、三象限的渐近线斜率为k=.由平行直线的斜率相等,可得所求的直线方程的点斜式,再化成一般式即可.解答:解:∵双曲线的方程为∴a2=9,b2=16,得c==5因此,该双曲线右焦点的坐标为F(5,0)∵双曲线的渐近线方程为y=±x∴双曲线经过一、三象限的渐近线斜率为k=∴经过双曲线右焦点,且平行于经过一、三象限的渐近线的直线方程是y=(x﹣5)化为一般式,得4x﹣3y﹣20=0.故答案为:4x﹣3y﹣20=0点评:本题给出双曲线方程,求经过一个焦点并且平行于渐近线的直线方程,考查了直线的方程、直线的位置关系和双曲线的简单性质等知识,属于基础题.11.(5分)(2013•揭阳二模)某个部件由两个电子元件按图(2)方式连接而成,元件1或元件2正常工作,则部件正常工作,设两个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为.考点:正态分布曲线的特点及曲线所表示的意义.专题:概率与统计.分析:先根据正态分布的意义,两个电子元件的使用寿命超过1000小时的概率均为p=,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”,利用其对立事件求其概率即可.解答:解:两个电子元件的使用寿命均服从正态分布N(1000,502),得:两个电子元件的使用寿命超过1000小时的概率均为p=,则该部件使用寿命超过1000小时的概率为:p 1=1﹣(1﹣p)2=.故答案为:.点评:本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题.12.(5分)(2013•揭阳二模)已知函数f(x)=4|a|x﹣2a+1.若命题:“∃x0∈(0,1),使f (x0)=0”是真命题,则实数a的取值范围为.考点:特称命题;命题的真假判断与应用.专题:函数的性质及应用.分析:由于f(x)是单调函数,在(0,1)上存在零点,应有f(0)f(1)<0,解不等式求出数a的取值范围.解答:解:由:“∃x0∈(0,1),使f(x0)=0”是真命题,得:f(0)•f(1)<0⇒(1﹣2a)(4|a|﹣2a+1)<0或⇒.故答案为:点评:本题考查函数的单调性、单调区间,及函数存在零点的条件.13.(5分)(2013•揭阳二模)已知点P(x,y)满足,则点Q(x+y,y)构成的图形的面积为2.考点:二元一次不等式(组)与平面区域.专题:不等式的解法及应用.分析:设点Q(u,v),则x+y=u,y=v,可得,点Q的可行域为平行四边形OMN及其内部区域,数形结合求得点Q(u,v)构成的区域的面积.解答:解:令x+y=u,y=v,则点Q(u,v)满足,在平面内画出点Q(u,v)所构成的平面区域如图,它是一个平行四边形,一边长为1,高为2,故其面积为2×1=2.故答案为:2.点评:本题考查线性规划,可行域不是的图形的面积的求法,正确画出可行域是解题的关键,考查计算能力、作图能力.(二)选做题(14、15题,考生只能从中选做一题)14.(5分)(2013•揭阳二模)(坐标系与参数方程选做题)在极坐标系中,O为极点,直线l过圆C:的圆心C,且与直线OC垂直,则直线l的极坐标方程为ρcosθ+ρsinθ﹣2=0或.考点:简单曲线的极坐标方程.专题:计算题.分析:先求已知圆的圆心的极坐标,再根据直线l过圆C:的圆心C且与直线OC垂直,即可求得直线l的极坐标方程.解答:解:把化为直角坐标系的方程为x2+y2=2x+2y,圆心C的坐标为(1,1),与直线OC垂直的直线方程为x+y﹣2=0,化为极坐标系的方程为ρcosθ+ρsinθ﹣2=0或.故答案为:ρcosθ+ρsinθ﹣2=0或.点评:本题重点考查曲线的极坐标方程,考查极坐标与直角坐标之间的互化,属于基础题.15.(2013•揭阳二模)如图所示,C,D是半圆周上的两个三等分点,直径AB=4,CE⊥AB,垂足为E,BD与CE相交于点F,则BF的长为.考点:与圆有关的比例线段.专题:直线与圆.分析:利用圆的性质、含30°角的直角三角形的性质即可得出.解答:解:∵C,D是半圆周上的两个三等分点,∴∠DBA=30°,连接AD,则∠ADB=90°,∴AD=2,过点D作DG⊥AB于G,在Rt△ADG中,∠ADG=30°,∴AG==1.则AG=BE=1,∴=.故答案为.点评:熟练掌握圆的性质、含30°角的直角三角形的性质是解题的关键.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)(2006•北京)已知函数,(Ⅰ)求f(x)的定义域;(Ⅱ)设α是第四象限的角,且,求f(α)的值.考点:三角函数的定义域;弦切互化.分析:(1)由cosx≠0得出x取值范围得出答案.(2)通过tanα=﹣,求出sina=﹣,cosa=,代入函数式.解答:(1)解:∵依题意,有cosx≠0∴解得x≠kp+,∴f(x)的定义域为{x|x∈R,且x≠kp+,k∈Z}(2)解:∵=﹣2sinx+2cosx∴f(α)=﹣2sina+2cosa∵α是第四象限的角,且∴sina=﹣,cosa=∴f(α)=﹣2sina+2cosa=点评:本题主要考查三角函数的定义域的问题.属基础题.17.(12分)(2013•揭阳二模)某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,设取出的3箱中,第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.(1)在取出的3箱中,若该用户从第三箱中有放回的抽取3次(每次一件),求恰有两次抽到二等品的概率;(2)在取出的3箱中,若该用户再从每箱中任意抽取2件产品进行检验,用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及数学期望.考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:概率与统计.分析:(1)设随机变量ξ表示“3次抽取抽到次品的件数”,则ξ~B,利用二项分布即可得出;(2)利用超几何分布即可得到概率.进而得到分布列和数学期望.解答:解:(1)设A表示事件“从第三箱中有放回地抽取3次(每次一件),恰有两次取到二等品”,依题意知,每次抽到二等品的概率为,故.(2)ξ可能的取值为0,1,2,3.P(ξ=0)=,P(ξ=1)==,P(ξ=2)=+=,P(ξ=3)==.ξ的分布列为ξ0 1 2 3P数学期望为Eξ=1×+2×+3×=1.2.点评:熟练掌握二项分布、超几何分布及分布列和数学期望是解题的关键.18.(14分)(2013•揭阳二模)数列{a n}中,a1=3,a n+1=a n+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公比不为1的等比数列.(1)求c的值;(2)求{a n}的通项公式;(3)求最小的自然数n,使a n≥2013.考点:数列递推式;等比数列的通项公式;等比关系的确定.专题:综合题;等差数列与等比数列.分析:(1)表示出a2,a3,由a1,a2,a3成等比数列可得关于c的方程,解出即得c值,注意检验;(2)利用累加法可求得a n,注意检验n=1时是否满足;(3)代入通项公式可把a n≥2013变为关于n的不等式,解出n的范围,然后检验取其最小值即可;解答:解:(1)a1=3,a2=3+c,a3=3+3c,∵a1,a2,a3成等比数列,∴(3+c)2=3(3+3c),解得c=0或c=3.当c=0时,a1=a2=a3,不符合题意舍去,故c=3.=(n﹣1)c,(2)当n≥2时,由a2﹣a1=c,a3﹣a2=2c,…a n﹣a n﹣1得.又a 1=3,c=3,∴.当n=1时,上式也成立,∴.(3)由a n≥2013得,即n2﹣n﹣1340≥0,∵n∈N*,∴,令n=37,得a37=2001<2013,令n=38得a38=2112>2013,∴使a n≥2013成立的最小自然数n=38.点评:本题考查等比数列的通项公式、用递推式、累加法求通项公式等知识,属中档题.19.(14分)(2013•揭阳二模)在图(1)所示的长方形ABCD中,AD=2AB=2,E、F分别为AD、BC的中点,M、N两点分别在AF和CE上运动,且AM=EN=a.把长方形ABCD沿EF折成大小为θ的二面角A﹣EF﹣C,如图(2)所示,其中(1)当θ=45°时,求三棱柱BCF﹣ADE的体积;(2)求证:不论θ怎么变化,直线MN总与平面BCF平行;(3)当θ=900且.时,求异面直线MN与AC所成角的余弦值.考点:用空间向量求直线间的夹角、距离;棱柱、棱锥、棱台的体积;异面直线及其所成的角;直线与平面平行的判定.专题:空间位置关系与距离;空间角.分析:(1)利用已知条件即可得到EF⊥平面ADE,∠DEA=θ.再利用三棱柱的体积计算公式即可得出;(2)证法一:过点M作MM1⊥BF交BF于M1,过点N作NN1⊥CF交BF于N1,连接M1N1,可证明四边形MNN1M1为平行四边形,再利用线面平行的判定定理即可证明结论;证法二:点M作MG⊥EF交EF于G,可证平面MNG∥平面BCF,利用面面平行的性质定理即可证明;(3)证法一:取CF的中点为Q,连接MQ、NQ,则MQ∥AC,得∠NMQ或其补角为异面直线MN与AC所成的角,利用余弦定理求出即可;证法二:建立空间直角坐标系,利用两条异面直线的方向向量的夹角即可得出.解答:解:(1)依题意得EF⊥DE,EF⊥AE,∴EF⊥平面ADE,∠DEA=θ.由θ=45°得,,∴.(2)证法一:过点M作MM1⊥BF交BF于M1,过点N作NN1⊥CF交BF于N1,连接M1N1,∵MM1∥AB,NN1∥EF∴MM1∥NN1又∵,∴MM 1=NN1∴四边形MNN1M1为平行四边形,∴MN∥N1M1,又MN⊄面BCF,N1M1⊂面BCF,∴MN∥面BCF.证法二:过点M作MG⊥EF交EF于G,连接NG,则,∴NG∥CF.又NG⊄面BCF,CF⊂面BCF,∴NG∥面BCF,同理可证得MG∥面BCF,又MG∩NG=G,∴平面MNG∥平面BCF,∵MN⊂平面MNG,∴MN∥面BCF.(3)证法一:取CF的中点为Q,连接MQ、NQ,则MQ∥AC,∴∠NMQ或其补角为异面直线MN与AC所成的角,∵θ=900且.∴,∴,﹣﹣﹣﹣∴.即MN与AC所成角的余弦值为.证法二:∵θ=900且.分别以FE、FB、FC所在直线为x轴,y轴,z轴,建立空间直角坐标系.,∴,所以与AC所成角的余弦值为.点评:熟练掌握线面垂直的判定定理、三棱柱的体积计算公式、平行四边形的判定和性质定理、线面平行的判定定理、面面平行的判定定理和性质定理、异面直线所成的角的定义、余弦定理、通过建立空间直角坐标系利用两条异面直线的方向向量的夹角求得异面直线的夹角.20.(14分)(2013•揭阳二模)如图已知抛物线C:y2=2px(p>0)的准线为l,焦点为F,圆M的圆心在x轴的正半轴上,且与y轴相切.过原点作倾斜角为的直线t,交l于点A,交圆M于点B,且|AO|=|OB|=2.(1)求圆M和抛物线C的方程;(2)设G,H是抛物线C上异于原点O的两个不同点,且,求△GOH面积的最小值;(3)在抛物线C上是否存在两点P,Q关于直线m:y=k(x﹣1)(k≠0)对称?若存在,求出直线m的方程,若不存在,说明理由.考点:直线与圆锥曲线的关系;圆的标准方程;抛物线的标准方程.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)由|AO|=2,=OAcos60°可求得p,从而可求得抛物线C的方程;继而可求得圆M的半径r,从而可求其方程;(2)设G(x 1,y1),H(x2,y2),由•=0得x1x2+y1y2=0,由=4x1,=4x2,可求得x1x2=16,利用三角形的面积公式,结合基本不等式即可求得△GOH面积的最小值;(3)设P(x3,y3),Q(x4,y4)关于直线m对称,且PQ中点D(x0,y0),利用P (x 3,y3),Q(x4,y4)在抛物线C上,=4x3,=4x4,两式相减可求得y0=﹣2k,最后利用D(x0,y0)在m:y=k(x﹣1)(k≠0)上即可知点D(x0,y0)在抛物线外,从而可得答案.解答:解:(1)∵,即p=2,∴所求抛物线的方程为y2=4x﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)∴设圆的半径为r,则,∴圆的方程为(x﹣2)2+y2=4.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(2)设G(x1,y1),H(x2,y2),由•=0得x1x2+y1y2=0,∵=4x 1,=4x2,∴x1x2=16,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)∵=,∴=•=(+)(+)=,=[+4x 1x2(x1+x2)+16x1x2]≥[+4x 1x2•2+16x1x2]=256∴≥16,当且仅当x 1=x2=2时取等号,∴△GOH面积最小值为16.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)(3)设P(x3,y3),Q(x4,y4)关于直线m对称,且PQ中点D(x0,y0)∵P(x3,y3),Q(x4,y4)在抛物线C上,∴=4x 3,=4x4,两式相减得:(y3﹣y4)(y3+y4)=4(x3﹣x4)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)∴y 3+y4=4•==﹣4k,∴y0=﹣2k∵D(x0,y0)在m:y=k(x﹣1)(k≠0)上∴x0=﹣1<0,点D(x0,y0)在抛物线外﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)∴在抛物线C上不存在两点P,Q关于直线m对称.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)点评:本题考查直线与圆锥曲线的关系,考查圆的标准方程与抛物线的标准方程,考查基本不等式及点差法,突出抽象思维能力与运算能力的考查,属于难题.21.(14分)(2013•揭阳二模)设函数在上的最大值为a n (n=1,2,…).(1)求a 1,a 2的值;(2)求数列{a n }的通项公式;(3)证明:对任意n ∈N *(n ≥2),都有成立.考点:数列与函数的综合;数列的函数特性.专题:计算题;证明题;等差数列与等比数列.分析: (1)解法一:通过函数的导数,判断函数的单调性,求出最大值即可求a 1,a 2的值; 解法二:利用函数的导数,求出函数的最值,推出a 1,a 2的值.(2)利用(1)解法求出n ≥3时函数的最大值,即可求数列{a n }的通项公式;(3)利用分析法以及二项式定理直接证明:对任意n ∈N *(n ≥2),都有成立.解答: 解:(1)解法1:∵﹣﹣﹣﹣﹣﹣﹣(1分)当n=1时,f 1'(x )=(1﹣x )(1﹣3x ) 当时,f 1'(x )≤0,即函数f 1(x )在上单调递减, ∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)当n=2时,f 2'(x )=2x (1﹣x )(1﹣2x ) 当时,f 2'(x )≤0,即函数f 2(x )在上单调递减, ∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)【解法2:当n=1时,,则当时,f 1'(x)≤0,即函数f1(x)在上单调递减,∴,当n=2时,,则=2x(1﹣x)(1﹣2x)当时,f 2'(x)≤0,即函数f2(x)在上单调递减,∴】(2)令f n'(x)=0得x=1或,∵当n≥3时,且当时f n'(x)>0,当时f n'(x)<0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)故f n(x)在处取得最大值,即当n≥3时,=,﹣﹣﹣﹣﹣﹣﹣(9分)当n=2时(*)仍然成立,综上得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)(3)当n≥2时,要证,只需证明,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)∵∴对任意n∈N*(n≥2),都有成立.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)点评: 本题考查数列与函数的导数的应用,考查分析问题解决问题的能力,数列通项公式的求法,二项式定理的应用,考查计算能力转化思想的应用.。
广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题(含答案)
揭阳市2013年高中毕业班第二次高考模拟考试数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟.一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U R =,{|A x y ==,则=A C UA.[0,)+∞B.(,0)-∞C. (0,)+∞D. (,0]-∞ 2.若(12)1ai i bi +=-,其中a 、b ∈R ,i 是虚数单位,则||a bi +=A .12i + BC.2D .543.已知点A (1,5)-和向量a =(2,3),若3AB a =,则点B 的坐标为 A.(7,4) B.(7,14) C.(5,4) D.(5,14) 4.在等差数列{}n a 中,首项10,a =公差0d ≠,若129m a a a a =+++,则m 的值为A .37B .36C .20D .19 5.一个棱长为2的正方体沿其棱的中点截去部分后所得几何体的三视图 如图(1)示,则该几何体的体积为A.7B.223C.476D.233图(1)6.已知函数1()ln(1)f x x x =-+,则()y f x =的图象大致为侧视图正视图7.某市教育局人事部门打算将甲、乙、丙、丁四名应届大学毕业生安排到该市三所不同的学校任教,每所学校至少安排一名,其中甲、乙因属同一学科,不能安排在同一所学校,则不同的安排方法种数为A.18B.24C.30D.36 8.设()f x 是定义在(0,1)上的函数,对任意的1y x >>都有11()()()1y x f f f xy x y-=--,记21()()55n a f n N n n *=∈++,则81i i a =∑= A.1()2f B.1()3f C. 1()4f D. 1()5f 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9-13题)9.若点(,1)a -在函数13log y x =的图象上,则4tanaπ的值为 . 10.过双曲线221916x y -=的右焦点,且平行于经过一、三象限的渐近线的直线方程是 .11.某个部件由两个电子元件按图(2)方式连接而成,元件1或元件2正常工作,则部件正常工作,设两个电子元件的使用寿命(单位:小时)均服从正态分布2(1000,50)N ,且各个 图(2)元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为 .元件2元件112.已知函数()4||21f x a x a =-+.若命题:“0(0,1)x ∃∈,使0()0f x =”是真命题,则实数a 的取值范围为 . 13.已知点(,)P x y 满足01,0 2.x x y ≤≤⎧⎨≤+≤⎩则点(,)Q x y y +构成的图形的面积为 .(二)选做题(14、15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)在极坐标系中,O 为极点,直线l 过圆C:)4πρθ=-的圆心C ,且与直线OC 垂直,则直线l 的极坐标方程为 .15.(几何证明选讲选做题) 如图(3)所示,,C D 是半圆周上的两个三等分点,直径4AB =,CE AB ⊥,垂足为E ,BD 与CE 相交于点F ,则BF 的长为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数1)4()cos x f x xπ-=, (1)求函数()f x 的定义域;(2)设α是第四象限的角,且4tan 3α=-,求()f α的值.17. (本小题满分12分)某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,设取出的3箱中,第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.(1)在取出的3箱中,若该用户从第三箱中有放回的抽取3次(每次一件),求恰有两次抽到二等品的概率;(2)在取出的3箱中,若该用户再从每箱中任意抽取2件产品进行检验,用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及数学期望. 18.(本小题满分14分)数列{}n a 中,13a =,1n n a a cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列. (1)求c 的值; (2)求{}n a 的通项公式;(3)求最小的自然数n ,使2013n a ≥.图3BA o19.(本小题满分14分)在图(4)所示的长方形ABCD 中, AD=2AB=2,E 、F 分别为AD 、BC 的中点, M 、N 两点分别在AF 和CE 上运动,且AM=EN=a (0a <<把长方形ABCD 沿EF 折成大小为θ的二面角A-EF-C ,如图(5)所示,其中(0,]2πθ∈图(5)图(4)MN FDC B AE(1)当045θ=时,求三棱柱BCF-ADE 的体积;(2)求证:不论θ怎么变化,直线MN 总与平面BCF 平行;(3)当090θ=且2a =时,求异面直线MN 与AC 所成角余弦值.20. (本小题满分14分)如图(6)已知抛物线2:2(0)C y px p =>的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,且与y 轴相切.过原点作倾斜角为3π的直线t ,交l 于点A ,交圆M 于点B,且||||2AO OB ==.(1)求圆M 和抛物线C 的方程;(2)设,G H 是抛物线C 上异于原点O 的两个不同点,且0OG OH ⋅=,求GOH ∆面积的最小值;(3)在抛物线C 上是否存在两点Q P ,关于直线()():10m y k x k =-≠对称?若存在,求出直线m 的方程,若不存在,说明理由.21.(本小题满分14分)设函数2()(1)n n f x x x =-在1[,1]2上的最大值为n a (1,2,n =).(1)求12,a a 的值;(2)求数列{}n a 的通项公式;(3)证明:对任意*n N ∈(2n ≥),都有21(2)n a n ≤+成立.数学(理科)参考答案及评分说明一.选择题:解析:1.由210x-≥得0x ≥,[0,)A ∴=+∞,故选B .2.由(12)1ai i bi +=-得1,12a b ⇒=-=-||a bi ⇒+=选C . 3.设(,)B x y ,由3AB a =得1659x y +=⎧⎨-=⎩,所以选D .4.由129m a a a a =+++得5(1)93637m d a d m -==⇒=,选A .5.依题意可知该几何体的直观图如右上图,其体积为.3112322111323-⨯⨯⨯⨯⨯=,故选D.6.令()ln(1)g x x x =-+,则1'()111xg x x x =-=++,由'()0,g x >得0,x >即函数()g x 在(0,)+∞上单调递增,由'()0g x <得10x -<<,即函数()g x 在(1,0)-上单调递减,所以当0x =时,函数()g x 有最小值,min ()(0)0g x g ==,于是对任意的(1,0)(0,)x ∈-+∞,有()0g x ≥,故排除B 、D,因函数()g x 在(1,0)-上单调递减,则函数()f x 在(1,0)-上递增,故排除C,所以答案选A.7.四名学生中有两名分在一所学校的种数是24C ,顺序有33A 种,而甲乙被分在同一所学校的有33A 种,所以不同的安排方法种数是23343330C A A -=.故选C .8. 因21(3)(2)()55(3)(2)1n n n a f f n n n n ⎛⎫+-+== ⎪++++-⎝⎭11()()23f f n n =-++,故81i i a =∑128111111()()()()()()34451011a a a f f f f f f =+++=-+-++-111131()()()()31111314f f f f -=-==⨯-,故选C.二.填空题:9.依题意得3a =,则4tana π=4tan3π= 10.双曲线221916x y -=的右焦点为(5,0),渐近线的方程为43y x =±,所以所求直线方程为4(5),3y x =-即43200x y --=.11.两个电子元件的使用寿命均服从正态分布2(1000,50)N 得:两个电子元件的使用寿命超过1000小时的概率均为12p =,则该部件使用寿命超过1000小时的概率为:2131(1)4P p =--=12.由“∃)1,0(0∈x ,使得0)(0=x f ”是真命题,得(0)(1)0f f ⋅<⇒(12)(4||21)0a a a --+<0(21)(21)0a a a ≥⎧⇔⎨+->⎩或0(61)(21)0a a a <⎧⎨--<⎩⇒12a >. 13.令,x y u y v +==,则点(,)Q u v 满足01,0 2.u v u ≤-≤⎧⎨≤≤⎩,在uov 平面内画出点(,)Q u v 所构成的平面区域如图,易得其面积为2.14.把)4πρθ=-化为直角坐标系的方程为2222x y x y +=+,圆心C 的坐标为(1,1),与直线OC 垂直的直线方程为20,x y +-=化为极坐标系的方程为cos sin 20ρθρθ+-=或cos()4πρθ-15.依题意知30DBA ∠=,则AD=2,过点D 作DG AB ⊥于G ,则AG=BE=1,所以3BF =三.解答题:16.解:(1)函数()f x 要有意义,需满足:cos 0x ≠,解得,2x k k Z ππ≠+∈,------------2分即()f x 的定义域为{|,}2x x k k Z ππ≠+∈-------------------------------------4分(2)∵1)4()cos x f x xπ-=122)22cos x x x =1cos 2sin 2cos x xx +-=--------6分22cos 2sin cos cos x x xx -= 2(cos sin )x x =--------------------------------------------------8分由4tan 3α=-,得4sin cos 3αα=-, 又22sin cos 1αα+= ∴29cos 25α=,∵α是第四象限的角∴3cos 5α=,4sin 5α=----------------------10分∴14()2(cos sin )5f ααα=-=.-----------------------------------------------------------12分17. 解:(1)设A 表示事件“从第三箱中有放回地抽取3次(每次一件),恰有两次取到二等品”,依题意知,每次抽到二等品的概率为25,------------------------------2分故2232336()()55125P A C =⨯=. ------------------------------------------5分 (2)ξ可能的取值为0,1,2,3.----------------------------------6分P (ξ=0)=C 24C 25·C 23C 25=18100=950, P (ξ=1)=C 14C 25·C 23C 25+C 24C 25·C 13·C 12C 25=1225,P (ξ=2)=C 14C 25·C 13·C 12C 25+C 24C 25·C 22C 25=1550, P (ξ=3)=C 14C 25·C 22C 25=125.-----------------------------10分ξ的分布列为分数学期望为E ξ=1×1225+2×1550+3×125=1.2.-------------------------------------------------------12分18.解:(1)13a =,23a c =+,333a c =+, --------------------------------1分 ∵1a ,2a ,3a 成等比数列,∴2(3)3(33)c c +=+, --------------------------------2分 解得0c =或3c =. --------------------------------3分 当0c =时,123a a a ==,不符合题意舍去,故3c =.-------------------------------4分 (2)当2n ≥时,由21a a c -=,322a a c -=,……1(1)n n a a n c --=-,G EBCD FN MN 1M 1EBC DFNM得1(1)[12(1)]2n n n a a n c c --=+++-=.--------------------------------6分 又13a =,3c =,∴2333(1)(2)(23)22n a n n n n n =+-=-+=,,.-------------------------8分当1n =时,上式也成立,∴23(2)()2n a n n n N *=-+∈.--------------------------------9分 (3)由2013n a ≥得23(2)20132n n -+≥,即213400n n --≥--------------------------10分 ∵n N ∈*,∴n ≥141813622+⨯>=--------------------------------11分令37n =,得3720012013a =<,令38n =得3821122013a =>----------------------13分 ∴使2013n a ≥成立的最小自然数38n =.--------------------------------14分19.解:(1)依题意得,,EF DE EF AE EF ⊥⊥∴⊥平面ADE ,DEA ∠=θ-------2分由45θ=得,12sin 4524ADE S DE EA ∆=⋅=, ∴4BCF ADE ADE V S EF -∆=⋅=----------------------------------------------------------------------4分(2)证法一:过点M 作1MM BF ⊥交BF 于1M ,过点N 作1NN CF ⊥交BF 于1N ,连结11M N ,------------5分∵11//,//MM AB NN EF ∴11//MM NN 又∵11MM NN FM CN AB FA CE EF=== ∴11MM NN =--------------------------------7分 ∴四边形11MNN M 为平行四边形,--------------------------------------------------------8分11//MN N M ∴,11,,MN BCF N M BCF ⊄⊂又面面//.MN BCF ∴面--------------------10分【法二:过点M 作MG EF ⊥交EF 于G ,连结NG ,则,CN FM FGNE MA GE== //NG CF ∴--------------------------------------------------------------6分,,//NG BCF CF BCF NG BCF ⊄⊂∴又面面面,------------7分同理可证得//MG BCF 面,又MGNG G =, ∴平面MNG//平面BCF-------------9分QEABC DFNM∵MN ⊂平面MNG, //MN BCF ∴面.----------------------------------------------------10分】 (3)法一:取CF 的中点为Q ,连结MQ 、NQ ,则MQ//AC , ∴NMQ ∠或其补角为异面直线MN 与AC 所成的角,--------11分∵090θ=且a =∴12NQ =,MQ ==MN ∴=---------------------------------------------------------------------12分222cos 2QM MN NQ NMQ MN QM +-∴∠==⋅即MN 与AC所成角的余弦值为3--------------------------------14分 【法二:∵090θ=且2a =分别以FE 、FB 、FC 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系. --------------11分 则111111(1,1,0),(0,0,1),(,,0),(,0,),(1,1,1),(0,,),222222A C M N AC MN =--=-得----12分cos ,3AC MN ∴<>==,……………………………………………13分 所以与AC…………………………………………………14分】 20. 解:(1)∵1cos 602122p OA ==⨯=,即2p =, ∴所求抛物线的方程为24y x = --------------------------------2分 ∴设圆的半径为r ,则122cos60OB r =⋅=,∴圆的方程为22(2)4x y -+=.--------------4分(2) 设()()1122,,,G x y H x y ,由0OG OH ⋅=得02121=+y y x x∵2211224,4y x y x ==,∴1216x x =, --------------------------------6分 ∵12GOH S OG OH ∆=,∴()()222222*********GOHS OG OH x y x y ∆==++=()()2211221444x x x x ++ =()()21212121214164x x x x x x x x ⎡⎤+++⎣⎦≥()212121214164x x x x x x ⎡⎤+⋅⎣⎦=256∴16GOH S ∆≥,当且仅当122x x ==时取等号,∴GOH ∆面积最小值为16.-------------------------------------------9分 (3) 设()()4433,,,y x Q y x P 关于直线m 对称,且PQ 中点()00,y x D ∵ ()()4433,,,y x Q y x P 在抛物线C 上,∴2233444,4y x y x ==两式相减得:()()()3434344y y y y x x -+=---------------------------------11分∴343434444PQx x y y k y y k -+=⋅==--,∴02y k =-∵()00,y x D 在()():10m y k x k =-≠上∴010x =-<,点()00,y x D 在抛物线外--------------------------------13分∴在抛物线C 上不存在两点Q P ,关于直线m 对称. --------------------------14分 21.解:(1)解法1:∵121'()(1)2(1)(1)[(1)2]n n n n f x nx x x x x x n x x --=---=----------1分当1n =时,1'()(1)(13)f x x x =--当1[,1]2x ∈时,1'()0f x ≤,即函数1()f x 在1[,1]2上单调递减, ∴1111()28a f ==, --------------------------------------------------3分 当2n =时,2'()f x 2(1)(12)x x x =--当1[,1]2x ∈时,2'()0f x ≤,即函数2()f x 在1[,1]2上单调递减, ∴2211()216a f ==---------------------------------------------------5分 【解法2:当1n =时,21()(1)f x x x =-,则21'()(1)2(1)(1)(13)f x x x x x x=---=--当1[,1]2x ∈时,1'()0f x ≤,即函数1()f x 在1[,1]2上单调递减,∴1111()28a f ==, 当2n =时,222()(1)f x x x =-,则222'()2(1)2(1)f x x x x x =---2(1)(12)x x x =--当1[,1]2x ∈时,2'()0f x ≤,即函数2()f x 在1[,1]2上单调递减,∴2211()216a f ==】(2)令'()0n f x =得1x =或2n x n =+,∵当3n ≥时,1[,1]22n n ∈+且当1[,)22nx n ∈+时'()0n f x >,当(,1]2nx n ∈+时'()0n f x <,-----------------------7分 故()n f x 在2nx n =+处取得最大值,即当3n ≥时,22()()()222n n n n n a f n n n ==+++24(2)nn n n +=+,------(*)------------------9分 当2n =时(*)仍然成立,综上得21,184.2(2)n nn n a n n n +⎧=⎪⎪=⎨⎪≥⎪+⎩ -------------------------------------10分(3)当2n ≥时,要证2241(2)(2)n n n n n +≤++,只需证明2(1)4n n +≥-------------------11分∵01222(1)()()n n nn n n C C C nn n +=+++2(1)41212142n n n-≥++⋅≥++=∴对任意*n N ∈(2n ≥),都有21(2)n a n ≤+成立.--------------------------------14分。
2013年广州二模理科数学试卷及答案(纯word版)
广州市2013届普通高中毕业班综合测试(二)数学(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
参考公式:锥体的体积公式Sh 油,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 对于任意向量a 、b 、c,下列命题中正确的是A. |a.b| = |a| |b|B. |a+b|=|a|+丨b 丨C. (a.b)c =a (b-c)D. a.a =|a|2 2. 直线y=kx +1与圆x 2+y 2-2y=0的位置关系是A.相交B.相切C.相离D.取决于k 的值 3. 若1-i(i 是虚数单位)是关于x 的方程x 2+2px +q=0(p 、q ∈R)的一个解,则p+q=A. -3B. -1C. 1D. 34. 已知函数y=f(x)的图象如图l 所示,则其导函数y=f'(x)的图象可能是5. 若函数*))(6cos(N x y ∈+=ωπω的一个对称中心是()0,6π,则ω的最小值为 A.1 B. 2C. 4D. 86. 一个圆锥的正(主)视图及其尺寸如图2所示.若一个平 行于圆锥底面的平面将此圆锥截成体积之比为l:7的上、下两部分,则截面的面积为7. 某辆汽车购买时的费用是15万元,每年使用的保险费、路桥费、汽油费等约为1.5万 元.年维修保养费用第一年3000元,以后逐年递增3000元,则这辆汽车报废的最佳年 限(即使用多少年的年平均费用最少)是 ( ) A. 8 年 B. IO 年 C. 12 年 D. 15 年9. 记实数x 1,x 2,…,x n 中的最大数为max{x 1,x 2,…,x n } ,最小数为min{x 1,x 2,…,x n }则max{min{x+1,x 2 - x + 1, -x +6}}=( ) A. 43 B. 1 C. 3 D. 27 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(-)必做题(9-13题)9.某商场销售甲、乙、丙三种不同型号的钢笔,甲、乙、丙三种型号钢笔数量之比依次为 2:3:4. 现用分层抽样的方法抽出一个容量为n 的样本,其中甲型钢笔有12支,则此样 本容量n =____10.已知a 为锐角,且)4cos(=+πa 11.用0,1,2,3,4,5这六个数字,可以组成____个没有重复数字且能被5整除的五位数(结果用数值表示).12.已知函数 f(x) =x 2 - 2x ,点集 M = {(X ,Y )| f(x) +f(y)≤2},N = {(X , Y )| f{x)-f{y)0},则M N 所构成平面区域的面积为______13.数列{a n }的项是由l 或2构成,且首项为1,在第k 个l 和第k+ 1个l 之间有2k-1 个2,即数列{a n } 为:1, 2,1, 2,2,2,1,2,2,2,2,2, 1, …,记数列 {a n }的前n 项和为S n ,则S 20=________; S 2013 =_____.(二)选做题(14-15题,考生只能从中选做一题)14.(几何证明选讲选做题)15.(坐标系与参数方程选做题)= 0的距离为d ,则丨PA 丨+ d 的最小值为_______.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)某单位有A 、B 、C 三个工作点,需要建立一个公共无线网络发射点0,使得发射点到 三个工作点的距离相等.已知这三个工作点之间的距离分别为AB=80m, BC = 70m, CA=50m.假定A 、B 、C 、O 四点在同一平面内. (1)求BAC ∠的大小;(2)求点O 到直线BC 的距离17.(本小题满分12分)已知正方形ABCD 的边长为2,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点.(1) 在正方形ABCD 内部随机取一点P ,求满足|PH|<2的概率;(2) 从A 、B 、C 、D 、E 、F 、G 、H 这八个点中,随机选取两个点,记这两个点之间的 距离为ξ,求随机变量f 的分布列与数学期望ξE . 18.(本小题满分14分)等边三角形ABC 的边长为3,点D 、E 分别是边AB 、AC 上的点,且满足==EA CE DB AD沿DE 折起到ΔA 1DE 的位置,使二面角A 1-DE-B 成直二面角, 连结A 1B 、A 1C (如图4).(1) 求证:A 1D 丄平面BCED;(2) 在线段BC 上是否存在点P ,使直线PA 1与平面A 1BD 所成的角为600?若存在,求出PB 的长;若不存在,请说明理由19.(本小题满分W 分)巳知a>0,设命题p:函数f(x)=x 2-2ax+ 1-2a 在区间[0,1]上与x 轴有两个不同 的交点;命题q: g(x) =|x-a|-ax 在区间(0, + ∞ )上有最小值.若q p ∧⌝)(是真命题,求实数a 的取值范围.20.(本小题满分14分)经过点F (0,1)且与直线y= -1相切的动圆的圆心轨迹为M 点A 、D 在轨迹M 上, 且关于y 轴对称,过线段AD (两端点除外)上的任意一点作直线l ,使直线l 与轨迹M 在点D 处的切线平行,设直线l 与轨迹M 交于点B 、 C.(1) 求轨迹M 的方程;(2) 证明:CAD BAD ∠=∠;(3) 若点D 到直线AB 的距离等于||22AD ,且ΔABC 的面积为20,求直线BC 的方程.21.(本小题满分14分)设a n 是函数*)(1)(23N n x n x x f ∈-+=的零点.(1)证明:0<a n <1;。
广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编9:圆锥曲线
广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编9:圆锥曲线一、选择题1 .(广东省韶关市2013届高三第三次调研考试数学(理科)试题(word 版) )椭圆221x m y +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为 ( )A .14B .12C .2D .4【答案】A2 .(广东省湛江一中等“十校”2013届高三下学期联考数学(理)试题)定义:关于x 的不等式||x A B-<的解集叫A 的B 邻域.已知2a b +-的a b +邻域为区间(2,8)-,其中a b 、分别为椭圆12222=+by ax 的长半轴和短半轴.若此椭圆的一焦点与抛物线x y542=的焦点重合,则椭圆的方程为 ( )A .13822=+yxB .14922=+yxC .18922=+yxD .191622=+yx【答案】B3 .(广东省海珠区2013届高三上学期综合测试一数学(理)试题)已知椭圆()2222:10x y C a b ab+=>>的离心率为,双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为.A 22184xy+= .B 221126xy+= .C221168xy+= .D 221205xy+=【答案】B4 .(广东省潮州市2013届高三上学期期末教学质量检测数学(理)试题)若抛物线22y p x =的焦点与双曲线22122xy-=的右焦点重合,则p 的值为 ( )A .2-B .2C .4-D .4【答案】D 双曲线22122xy-=的右焦点为(2,0),所以抛物线22y p x =的焦点为(2,0),则4p =.5 .(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))设F 1,F 2是椭圆)0(12222>>=+b a by ax 的左右焦点,若直线x =m a (m >1)上存在一点P,使ΔF 2PF 1是底角为300的等腰三角形,则m 的取值范围是( )AD .【答案】A6 .(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))已知双曲线22221x y ab-=的渐近线方程为y =,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于()A .12B.2C .2D .1【答案】A7 .(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))方程||||169x x y y +=-1的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:①f(x)在R 上单调递减;②函数F(x)=4f(x)+3x 不存在零点;③函数y=f(x)的值域是R;④f(x)的图象不经过第一象限,其中正确的个数是 ( ) A .1个 B .2个C .3个D .4个 【答案】D二、填空题8 .(广东省珠海一中等六校2013届高三第一次联考数学(理)试题)已知双曲线22221(0b 0)x y a ab-=>,>和椭圆22xy=1169+有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为____________.【答案】22143xy-=9.(广东省深圳市南山区2013届高三上学期期末考试数学(理)试题)已知双曲线22221(0,0)x y a b ab-=>>的一条渐近线方程为20x y +=,则双曲线的离心率e 的值为__________ .【答案】210.(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)双曲线的焦点在x 轴上,实轴长为4,离心率为3,则该双曲线的标准方程为___,渐近线方程为___.【答案】221432xy-=y =±11.(广东省汕头市2013届高三3月教学质量测评数学(理)试题)已知动点P 在抛物线y 2=4x 上,那么使得点P 到定点Q(2,,-1)的距离与点P 到抛物线焦点的距离之和最小的点P 的坐标为___【答案】)1,41(-12.(广东省梅州市2013届高三3月总复习质检数学(理)试题)已知双曲线22221(0,0)x y a b ab-=>>的两条近线的夹角为3π,则双曲线的离心率为___313.(广东省茂名市实验中学2013届高三下学期模拟(二)测试数学(理)试题(详解))已知点A 是抛物线C 1:y 2=2px(p>0)与双曲线C 2:22221(0,0)x y a b ab-=>>的一条渐近线的交点,若点A 到抛物线C 1的准线的距离为p,则双曲线的离心率等于____14.(广东省茂名市2013届高三第一次模拟考试数学(理)试题)已知双曲线221x k y -=的一个焦点是0),则其渐近线方程为________. 【答案】2y x =±;15.(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))已知圆C 经过直线220x y -+=与坐标轴的两个交点,且经过抛物线28y x =的焦点,则圆C 的方程为______________.【答案】22115()()222x y -+-=[或2220x y x y +---=];易得圆心坐标为11(,)22,半径为r =, 故所求圆的方程为22115()()222x y -+-=【或2220x y x y +---=. 】16.(广东省江门市2013年高考模拟考试(即一模)数学(理)试题 )在平面直角坐标系Oxy 中,若双曲线14222=+-m ymx的焦距为8,则=m _______.【答案】3(未排除4-,给3分)17.(2013年广东省佛山市普通高中高三教学质量检测(一)数学(理)试题)已知抛物线24x y =上一点P 到焦点F 的距离是5,则点P 的横坐标是_____.【答案】4±18.(广东省韶关市2013届高三4月第二次调研测试数学理试题)设点P 是双曲线22221(0,0)x y a b ab-=>>与圆2222x y a b +=+在第一象限的交点,其中12,F F 分别是双曲线的左、右焦点,若21tan 3PF F ∠=,则双曲线的离心率为______________.19.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)下图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降2米后水面宽________米.【答案】20.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)过双曲线221916xy-=的右焦点,且平行于经过一、三象限的渐近线的直线方程是 ________.【答案】双曲线221916xy-=的右焦点为(5,0),渐近线的方程为43y x =±,所以所求直线方程为4(5),3y x =-即43200x y --=.三、解答题 21.(广东省韶关市2013届高三第三次调研考试数学(理科)试题(word 版) )在平面直角坐标系xoy 中,设点F (1,0),直线l :1x =-,点P 在直线l 上移动,R 是线段P F 与y 轴的交点,,R Q F P P Q l ⊥⊥.(Ⅰ)求动点Q 的轨迹的方程;(Ⅱ) 记Q 的轨迹的方程为E ,过点F 作两条互相垂直的曲线E 的弦AB 、CD ,设AB 、CD 的中点分别为N M ,.求证:直线MN 必过定点)0,3(R .【答案】解:(Ⅰ)依题意知,直线l 的方程为:1x =-.点R 是线段F P 的中点,且R Q ⊥F P ,∴R Q 是线段F P 的垂直平分线∴P Q 是点Q 到直线l 的距离.∵点Q 在线段F P 的垂直平分线,∴P Q Q F =故动点Q 的轨迹E 是以F 为焦点,l 为准线的抛物线,其方程为:24(0)y x x =>(Ⅱ) 设()()B B A A y x B y x A ,,,,()()N N M M y x N y x M ,,,,直线AB 的方程为)1(-=x k y则⎪⎩⎪⎨⎧==)2(4)1(422BB AA x y x y(1)—(2)得ky y B A 4=+,即ky M 2=,代入方程)1(-=x k y ,解得122+=kx M . 所以点M 的坐标为222(1,)kk+ 同理可得:N 的坐标为2(21,2)k k +-. 直线MN 的斜率为21kk x x y y k NM N M MN -=--=,方程为)12(1222---=+kx kk k y ,整理得)3()1(2-=-x k k y ,显然,不论k 为何值,(3,0)均满足方程, 所以直线MN 恒过定点R (3,0).1422.(广东省汕头一中2013年高三4月模拟考试数学理试题 )在平面直角坐标系中,已知点()2,0A 、()2,0B -,P 是平面内一动点,直线P A 、P B 的斜率之积为34-.(1)求动点P 的轨迹C 的方程;(2)过点1,02⎛⎫⎪⎝⎭作直线l 与轨迹C 交于E 、F 两点,线段E F 的中点为M ,求直线M A 的斜率k 的取值范围.2013年4月汕头一中高三模拟考【答案】(1)依题意,有3224P A P B y y k k x x ⋅=⋅=--+(2x≠±), -----------------------------化简得:22143xy+= (2x ≠±),为所求动点P 的轨迹C 的方程------------------------(2)依题意,可设(,)Mx y 、(,)E x m y n ++、(,)F xm y n --,则有2222()()143()()143x m y n x m y n ⎧+++=⎪⎪⎨--⎪+=⎪⎩,两式相减,得4430014342E F m x n n x y k m yx -+=⇒==-=-,由此得点M 的轨迹方程为:226830x yx +-=(0x≠).------------------------------设直线M A :2xm y =+(其中1mk=),则22222(68)211806830x m y m y m y x y x =+⎧⇒+++=⎨+-=⎩, ------------------------------故由22(21)72(68)0||8m mm ∆=-+≥⇒≥,即18k≥,解得:k 的取值范围是11,88⎡⎤-⎢⎥⎣⎦. ---------------------------23.(广东省汕头一中2013年高三4月模拟考试数学理试题 )已知抛物线C :212x y =,过焦点F 的动直线l 交抛物线于A 、B 两点,O 为坐标原点.(1)求证:O A O B ⋅为定值;(2)设M 是线段A B 的中点,过M 作x 轴的垂线交抛物线C 于点N ,证明:抛物线C 在点N 处的切线与A B 平行.【答案】(1)设直线l的方程为:18y k x =+,()11,A x y ,()22,B x y .-------------------------由21218x y y k x ⎧=⎪⎪⎨⎪=+⎪⎩得:2110264x k x --=,∴12116x x =------------------------- ∴()2121212123464O A O B x x y y x x x x ⋅=+=+=-为定值----------------------------(2)由(1)得:点M 的横坐标为4k ,∴点N 的横坐标为4k ----------------------------∵'4y x = ∴4'|k x y k == ----------------------------∴平行另解:设()00,N x y ,则12024x x k x +==,220028ky x ==----------------------------设抛物线C 在点N 处的切线为284kk y m x ⎛⎫-=- ⎪⎝⎭ 由228412k k y m x x y ⎧⎛⎫-=- ⎪⎪⎪⎝⎭⎨⎪=⎪⎩得:2202816m m k k x x -+-= ------------------------------- ∴22404816mm k k ⎛⎫∆=--= ⎪⎝⎭,解得:m k = ------------------------------- ∴平行24.(广东省东莞市2013届高三第二次模拟数学理试题)已知椭圆22122:1(0)x y C a b ab+=>>的离心率为e =,直线:2l y x =+与以原点为圆心、以椭圆1C 的短半轴长为半径的圆O 相切.(1)求椭圆C 1的方程;(2)设椭圆1C 的左焦点为1F ,右焦点为2F ,直线1l 过点1F ,且垂直于椭圆的长轴,动直线2l 垂直于1l ,垂足为点P ,线段2PF 的垂直平分线交2l 于点M ,求点M 的轨迹2C 的方程;(3)设2C 与x 轴交于点Q ,不同的两点R 、S 在2C 上,且满足0=⋅RS QR ,求||QS的取值范围.【答案】解:(1)由直线:2l y x =+与圆222x y b +=相切,b =,即b =由e =得222213b e a=-=,所以a =所以椭圆的方程是221:132xyC +=(2)由条件,知2||||MF MP =,即动点M 到定点2F 的距离等于它到直线1:1l x =-的距离,由抛物线的定义得点M 的轨迹2C 的方程是x y 42=(3)由(2),知(0,0)Q ,设221212,,,44y y R y S y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,∴222121121,,,44y y y QR y RS y y ⎛⎫⎛⎫-==- ⎪ ⎪⎝⎭⎝⎭由0=⋅RS QR ,得()()222121121016y yy y y y -+-=∵12y y ≠,∴21116y y y ⎛⎫=-+⎪⎝⎭,∴222121256323264y y y =++≥+=,当且仅当2121256y y =,即14y =±时等号成立又||QS == ∵2264y ≥,∴当2264y =,即28y =±时,min ||QS =, 故||QS的取值范围是)⎡+∞⎣25.(广东省肇庆市2013届高三上学期期末统一检测数学(理)试题)已知两圆222212:20,:(1)4C x yx C x y+-=++=的圆心分别为12,C C ,P为一个动点,且12||||P C P C +=(1)求动点P 的轨迹M 的方程;(2)是否存在过点(2,0)A 的直线l 与轨迹M 交于不同的两点C 、D,使得11||||C C C D =?若存在,求直线l 的方程;若不存在,请说明理由.【答案】解:(1)两圆的圆心坐标分别为1(1,0),C 和2(1,0)C-∵1212||||||2P C P C C C +=>=∴根据椭圆的定义可知,动点P 的轨迹为以原点为中心,1(1,0),C 和2(1,0)C -为焦点,长轴长为2a =的椭圆, 1,1a c b =====∴椭圆的方程为2212xy+=,即动点P 的轨迹M 的方程为2212xy+=(2)(i)当直线l 的斜率不存在时,易知点(2,0)A 在椭圆M 的外部,直线l 与椭圆M 无交点,所以直线l 不存在.(ii)设直线l 斜率存在,设为k ,则直线l 的方程为(2)y k x =-由方程组2212(2)x y y k x ⎧+=⎪⎨⎪=-⎩得2222(21)8820k x k x k +-+-=①依题意28(21)0k ∆=-->解得22k -<<当22k -<<时,设交点1122(,),(,)C x y D x y ,CD 的中点为00(,)N x y ,方程①的解为12224242x x kk==++ ,则212024221x x k x k+==+∴2002242(2)22121k ky k x k k k ⎛⎫-=-=-= ⎪++⎝⎭要使11||||C C C D =,必须1C N l ⊥,即11CNk k ⋅=-∴222212114021kk k kk--+⋅=--+,即2102k k -+=②∵1114102∆=-⨯=-<或,∴2102kk -+=无解所以不存在直线,使得11||||C C C D =综上所述,不存在直线l ,使得11||||C C C D =26.(广东省深圳市南山区2013届高三上学期期末考试数学(理)试题)已知椭圆2222:1(0)x y C a b ab+=>>3,.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A B ,两点,坐标原点O 到直线l的距离为2,求A O B △面积的最大值.【答案】(2)设11()A x y ,,22()B x y ,.27.(广东省汕头市东山中学2013届高三下学期入学摸底考试数学(理)试题)己知斜率为1的直线l 与双曲线2222:1x y Cab-=(0a >,0b >),相交于B 、D 两点,且B D 的中点为(1,3)M(1)求双曲线C 的离心率;(2)设C 的右顶点为A ,右焦点为F ,||||17D FB F ⋅=,证明:过A 、B 、D 三点的圆与x 轴相切.【答案】解:(1)由题设知,直线l 的方程为2y x =+代入双曲线C 的方程,并化简得:2222222()440b a x a x a a b----=设11(,)B x y ,22(,)D x y ,则212224ax x b a+=-,22212224aa bx x b a +⋅=- ①由(1,3)M为B D 的中点知:1212x x +=,故2221412ab a⋅=-,即223b a= ②所以2223ca a-=,即224c a= 故2c ea==所以双曲线C 的离心率为2e = (注:本题也可用点差法解决) (2)由①、②知,双曲线C 的方程为:22233x ya-= (,0)A a ,(2,0)F a ,122x x +=,2124302ax x +⋅=-<1|||2|B F x a ====-同理2|||2|D Fx a =-2222121212|||||(2)(2)||42()||864||548|B F D F x a x a x x a x x a a a a a a ⋅=--=-++=----=++又因为||||17D F B F ⋅= 且25480a a ++>所以254817a a ++= 解得:1a=,95a =-(舍去)12|||6B D x x =-===连结M A ,则由(1,0)A ,(1,3)M 知||3M A =,从而||||||M A M B M D ==,且M A x⊥轴,因此以M 为圆心,M A 为半径的圆经过A 、B 、D 三点,且在点A 处与x 轴相切. 所以过A 、B 、D 三点的圆与x 轴相切28.(广东省汕头市东山中学2013届高三第二次模拟考试数学(理)试题(详解))已知直线33=+-y x 经过椭圆C :12222=+by ax (0>>b a )的一个顶点B 和一个焦点F .⑴求椭圆的标准方程;⑵设P 是椭圆C 上动点,求||||||PB PF -的取值范围,并求||||||PB PF -取最小值时点P 的坐标.【答案】【答案】⑴依题意,)1 , 0(B ,)0 , 3(-F , 所以1=b ,3=c ,222=+=cba ,所以椭圆的标准方程为1422=+yx5分.⑵||||||||0BF PB PF ≤-≤,当且仅当||||PB PF =时,0||||||=-PB PF ,当且仅当P 是直线BF 与椭圆C 的交点时,||||||||BF PB PF =- ,2||=BF ,所以||||||PB PF -的取值范围是]2 , 0[ .设) , (n m P ,由||||PB PF =得013=++n m ,由⎪⎩⎪⎨⎧=++=+0131422n m n m ,解得⎩⎨⎧-==10n m 或⎪⎪⎩⎪⎪⎨⎧=-=13111338n m ,所求点P 为)1 , 0(-P 和)1311, 1338(-P .29.(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)在平面直角坐标系xOy 中,动点P到两点(0),0)的距离之和等于4,设点P 的轨迹为曲线C ,直线l 过点(1,0)E -且与曲线C 交于A ,B 两点.(1)求曲线C 的轨迹方程;(2)是否存在△AOB 面积的最大值,若存在,求出△AOB 的面积;若不存在,说明理由.【答案】解.(Ⅰ)由椭圆定义可知,点P 的轨迹C是以(0),0)为焦点,长半轴长为2 的椭圆.故曲线C 的方程为2214xy +=(Ⅱ)存在△AOB 面积的最大值因为直线l 过点(1,0)E -,可设直线l 的方程为 1x my =-或0y =(舍).则221,4 1.x y x my ⎧+=⎪⎨⎪=-⎩整理得 22(4)230m y my +--=由22(2)12(4)0m m ∆=++>. 设1122()()A x y B x y ,,,.解得1y =2y =则21||y y -=因为1212AOBS OE y y ∆=⋅-==设1()g t t t=+,t =t ≥.则()g t在区间)+∞上为增函数.所以()g t ≥.所以AOB S ∆≤当且仅当0m =时取等号,即max ()AOB S ∆=.所以AOB S ∆30.(广东省汕头市2013届高三3月教学质量测评数学(理)试题)〔本小题满分14分)如图.已知椭圆22221(0)xy a b ab+=>>的长轴为AB,过点B 的直线l 与x 轴垂直,椭圆的离心率e =为椭圆的左焦点且11AF F B=1 .(I)求椭圆的标准方程;(II)设P 是椭圆上异于A 、B 的任意一点,PH⊥x 轴,H 为垂足,延长HP 到点Q 使得HP=PQ.连接AQ 并延长交直线l 于点M.N 为MB 的中点,判定直线QN 与以AB 为直径的圆O 的位置关系.【答案】解:(Ⅰ)易知A )0,(a -, B )0,(a )0,(1c F -1)()0,(11=+⋅-=⋅∴c a c a B F AF1222==-∴bca又23=e 43122222=-==∴aa ac e ,解得42=a1422=+∴y x 所求椭圆方程为:(Ⅱ)设),(00y x P 则)2,(00y x Q )22(≠-≠x x 及 2200+=∴x y k AQ所以直线AQ 方程)2(22:00++=x x y y)28,2(00+∴x y M )24,2(00+∴x y N4222242000000-=--+=∴x y x x y x y k QN又点P 的坐标满足椭圆方程得到:442020=+y x ,所以 2244y x -=-0200200024242y x y y x x y x k QN -=-=-=∴∴直线 QN 的方程:)(220000x x y x y y --=-化简整理得到:442202000=+=+y x y y x x 即4200=+y y x x 所以 点O 到直线QN 的距离244220=+=y x d∴直线QN 与AB 为直径的圆O 相切.31.(广东省梅州市2013届高三3月总复习质检数学(理)试题)(本小题满分14分)已知F 1,F 2分别是椭圆C:22221(0)y x a b ab+=>>的上、下焦点,其中F 1也是抛物线C 1:24x y =的焦点,点M 是C 1与C 2在第二象限的交点,且15||3MF =.(1)求椭圆C 1的方程;(2)已知A(b,0),B(0,a),直线y=kx(k>0)与AB 相交于点D,与椭圆C 1相交于点E,F 两点,求四边形AEBF 面积的最大值. 【答案】32.(广东省茂名市实验中学2013届高三下学期模拟(二)测试数学(理)试题(详解))如图,已知点M0(x0,y0)是椭圆C:222yx+=1上的动点,以M0为切点的切线l0与直线y=2相交于点P.(1)过点M0且l0与垂直的直线为l1,求l1与y轴交点纵坐标的取值范围;(2)在y轴上是否存在定点T,使得以PM0为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,说明理由.【答案】解:(1)由椭圆得:y=,'y=1222(22)x x---切线的斜率为2x-,所以,直线l1的方程为:00)2y y x xx-=-, 与y轴交点纵坐标为22因为11x-≤≤,所以,201x≤≤,20222x≤-≤,所以,当切点在第一、二象限时l1与y轴交点纵坐标的取值范围为:02y≤≤则对称性可知l1与y轴交点纵坐标的取值范围为:22y-≤≤.(2)依题意,可得∠PTM0=90°,设存在T(0,t),M0(x0,y0)由(1)得点P的坐标(22000222y y xx-+,2),由P T M T=可求得t=1所以存在点T(0,1)满足条件.33.(广东省茂名市2013届高三第一次模拟考试数学(理)试题)已知椭圆1C:22221x ya b+= (0a b>>)的离心率为3,连接椭圆的四个顶点得到的四边形的面积为(1)求椭圆1C的方程;(2)设椭圆1C的左焦点为1F,右焦点为2F,直线1l过点1F且垂直于椭圆的长轴,动直线2l垂直1l于点P ,线段2P F 的垂直平分线交2l 于点M ,求点M 的轨迹2C 的方程;(3)设O 为坐标原点,取2C 上不同于O 的点S ,以OS 为直径作圆与2C 相交另外一点R ,求该圆面积的最小值时点S 的坐标.【答案】解:(1)解:由3e =得223a c =,再由222c a b =-,解得2a =由题意可知1222a b ⋅⋅=,即a b ⋅=解方程组2a ab ⎧=⎪⎨⎪=⎩得a b ==所以椭圆C 1的方程是22132xy+=(2)因为2M P M F =,所以动点M 到定直线1:1l x =-的距离等于它到定点2F (1,0)的距离,所以动点M 的轨迹2C 是以1l 为准线,2F 为焦点的抛物线, 所以点M 的轨迹2C 的方程为24y x =(3)因为以O S 为直径的圆与2C 相交于点R ,所以∠ORS = 90°,即0O R S R ⋅=设S (1x ,1y ),R (2x ,2y ),S R =(2x -1x ,2y -1y ),O R=(2x ,2y )所以222221*********()()()()016y y y O R S R x x x y y y y y y -⋅=-+-=+-= 因为12y y ≠,20y ≠,化简得12216y y y ⎛⎫=-+ ⎪⎝⎭所以221222256323264y y y =++≥=,当且仅当2222256y y =即22y =16,y 2=±4时等号成立圆的直径|OS===因为21y ≥64,所以当21y =64即1y =±8时,m inO S=,所以所求圆的面积的最小时,点S 的坐标为(16,±8)34.(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))如图(6),设点)0,(1c F -、)0,(2c F 分别是椭圆)1(1:222>=+a yax C 的左、右焦点,P 为椭圆C 上任意一点,且12PF PF ⋅uuu r uuu r最小值为0.(1)求椭圆C 的方程;(2)若动直线12,l l 均与椭圆C 相切,且12//l l ,试探究在x 轴上是否存在定点B ,点B 到12,l l 的距离之积恒为1?若存在,请求出点B 坐标;若不存在,请说明理由.图(6)F 2F 1oyx【答案】解:(1)设),(y x P ,则有),(1y c x P F +=,),(2y c x P F -=[]a a x c x aa cy x PF PF ,,11222222221-∈-+-=-+=⋅由12PF PF ⋅uuu r uuu r最小值为0得210122=⇒=⇒=-a c c ,∴椭圆C 的方程为1222=+yx(2)①当直线12,l l 斜率存在时,设其方程为,y kx m y kx n =+=+把1l 的方程代入椭圆方程得222(12)4220k x mkx m +++-=∵直线1l 与椭圆C 相切,∴2222164(12)(22)0k m k m ∆=-+-=,化简得2212m k =+同理,2212n k =+∴22m n =,若m n =,则12,l l 重合,不合题意,∴m n =- 设在x 轴上存在点(,0)B t ,点B 到直线12,l l 的距离之积为1,则1=,即2222||1k t m k -=+,--- 把2212k m +=代入并去绝对值整理,22(3)2k t -=或者22(1)0k t -=前式显然不恒成立;而要使得后式对任意的k R ∈恒成立则210t -=,解得1t =±;--------------------------------------------------------- ②当直线12,l l 斜率不存在时,其方程为x =x =,定点(1,0)-到直线12,l l的距离之积为1)1-+=; 定点(1,0)到直线12,l l的距离之积为1)1+-=; 综上所述,满足题意的定点B 为(1,0)-或(1,0)35.(广东省江门市2013年高考模拟考试(即一模)数学(理)试题 )已知椭圆C 的中心在原点O ,离心率23=e ,右焦点为)0 , 3( F .⑴求椭圆C 的方程;⑵设椭圆的上顶点为A ,在椭圆C 上是否存在点P ,使得向量OA OP +与FA 共线?若存在,求直线AP 的方程;若不存在,简要说明理由.【答案】解:⑴设椭圆C 的方程为22221(0)x y a b ab+=>>, 椭圆C 的离心率23=e ,右焦点为)0 , 3( F ,∴c c a==,222a b c =+,∴2,1,a b c ===故椭圆C 的方程为2214xy +=⑵假设椭圆C 上是存在点P (00,x y ),使得向量OA OP +与FA 共线,00(,1)OP OA x y +=+,(FA =,∴011y +=,即001)x y =+,(1)又 点P (00,x y )在椭圆2214xy +=上,∴22014x y += (2)由⑴、⑵组成方程组解得0001x y =⎧⎨=-⎩,或0017x y ⎧=⎪⎪⎨⎪=⎪⎩∴(0,1)P -,或1()7P , 当点P 的坐标为(0,1)-时,直线AP 的方程为0y =,当点P的坐标为1()7P 时,直线AP440y -+=,故直线AP 的方程为0y =440y -+=36.(广东省华附、省实、深中、广雅四校2013届高三上学期期末联考数学(理)试题)已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点D (0, 2 )为圆心,1为半径的圆相切,又知双曲线C 的一个焦点与D 关于直线y =x 对称. (Ⅰ)求双曲线C 的方程;(Ⅱ)设直线y =mx +1与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围;(Ⅲ)若Q 是双曲线C 上的任一点,F 1F 2为双曲线C 的左,右两个焦点,从F 1引∠F 1QF 2的平分线的垂线,垂足为N ,试求点N 的轨迹方程.【答案】解:(Ⅰ)设双曲线C 的渐近线方程为y =kx ,则kx -y =0∵该直线与圆x 2+(y - 2 )2=1相切,有|- 2 |k 2 + 1= 1 ⇒ k =±1.∴双曲线C 的两条渐近线方程为y =±x , 故设双曲线C 的方程为 x 2a 2-y2a 2= 1 . 易求得双曲线C 的一个焦点为 ( 2 ,0),∴2a 2=2,a 2=1.∴双曲线C 的方程为x 2-y 2=1.(Ⅱ)由 ⎩⎨⎧ y =mx +1 x 2-y 2=1得(1-m 2)x 2-2mx -2=0. 令f (x )= (1-m 2)x 2-2mx -2直线与双曲线左支交于两点,等价于方程f (x )=0在(-∞,0)上有两个不等实根. 因此 ⎩⎪⎨⎪⎧ △>02m1-m 2 <0-21-m2 >0 解得1<m < 2 .又AB 中点为(m 1-m 2 ,11-m2 ),∴直线l 的方程为y =1-2m 2+m +2 (x +2). 令x =0,得b =2-2m 2+m +2=2-2(m -14 )2+178.∵1<m < 2 ,∴-2(m -14 )2+178 ∈ (-2+ 2 , 1),∴b ∈ (-∞,-2- 2 )∪(2,+∞).(Ⅲ)若Q 在双曲线的右支上,则延长2QF 到T ,使||||1QF QT =, 若Q 在双曲线的左支上,则在QF 2上取一点T ,使| QT |=|QF 1 |.根据双曲线的定义| TF 2 |=2,所以点T 在以F 2( 2 ,0)为圆心,2为半径的圆上,即点T 的轨迹方程是(x - 2 )2+y 2=4 (x ≠ 0) ①由于点N 是线段F 1T 的中点,设N (x ,y ),T (x T ,y T ).则 ⎩⎪⎨⎪⎧ x =x T - 22y =yT2,即 ⎩⎨⎧ x T =2x + 2 y T = 2y.代入①并整理得点N 的轨迹方程为x 2+y 2=1.(x ≠ -22) (或者用几何意义得到| NO |=12| F 2T |=1, 得点N 的轨迹方程为x 2+y 2=1.)37.(广东省海珠区2013届高三上学期综合测试一数学(理)试题)(本小题满分14分)设抛物线()2:20C x py p =>的焦点为F ,()()000,0A x y x ≠是抛物线C 上的一定点. (1)已知直线l 过抛物线C 的焦点F ,且与C 的对称轴垂直,l 与C 交于,Q R 两点, S 为C 的准线上一点,若QRS ∆的面积为4,求p 的值;(2)过点A 作倾斜角互补的两条直线AM ,AN ,与抛物线C 的交点分别为()11,,M x y ()22,N x y .若直线AM ,AN 的斜率都存在,证明:直线MN 的斜率等于抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率.【答案】(本小题主要考查直线、抛物线、对称等知识,考查数形结合、化归与转化、方程的思想方法,考查数学探究能力以及运算求解能力) 解: (1)由题设0,2p F ⎛⎫ ⎪⎝⎭,设1,,2p Q x ⎛⎫ ⎪⎝⎭则1,2p R x ⎛⎫- ⎪⎝⎭QR =2p ===.∴由QRS ∆的面积为4,得:1242p p ⨯⨯=,得: 2.p =(2)由题意()100,A x y -首先求抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率.解法一:设抛物线在1A 处的切线的斜率为k ,则其方程为()00y k x x y =++ 联立()0022y k x x y x py⎧=++⎪⎨=⎪⎩得2002220x pkx px k py ---=将2002py x =代入上式得:2200220x pkx px k x ---=()()22002420pk px k x ∆=-++=即2220020p k px k x ++=即()200pk x +=得0.x k p=-即抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率为0.x p-解法二:由22x py =得212y x p=,∴'x y p=∴抛物线C 在点A 关于对称轴的对称点()100,A x y -处的切线的斜率为0.x p-再求直线MN 的斜率.解法一:设直线AM 的斜率为1k ,则由题意直线AN 的斜率为1k -直线AM 的的方程为()010y y k x x -=-,则直线AN 的的方程为()010y y k x x -=--.联立()21002x py y k x x y ⎧=⎪⎨=-+⎪⎩得221100220x pk x pk x x -+-=(1)方程(1)有两个根01,x x ,∴()()2210102420pk px k x ∆=--->∴0,1x =0112x x pk +=,即1102x pk x =-,同理可得2102x pk x =--直线MN 的斜率222121122121222MN x x y y x x ppk x x x x p--+===--0022x x pp-==-∴直线MN 的斜率等于抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率解法二:AM AN k k =-01020102y y y y x x x x --∴=---将22212012,,222x x x y y y ppp===分别代入上式得:22221201022222x x x x pp ppx x x x --=---,整理得0122x x x =+∴直线MN 的斜率222121122121222MN x x y y x x ppk x x x x p--+===--0022x x pp-==-∴直线MN 的斜率等于抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率.38.(广东省广州市2013届高三调研测试数学(理)试题)如图5, 已知抛物线2P yx:=,直线A B 与抛物线P 交于A B ,两点,O A O B ^,O A O B O C uur uuu r uuu r+=,O C 与A B 交于点M .(1) 求点M 的轨迹方程;求四边形A O B C 的面积的最小值.,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识) 解法一: (1)解:设()()()221122Mx y A yy Byy ,,,,,,∵O A O B O C +=,∴M 是线段A B 的中点 ∴()222121212222yy y y y y x +-+==,①122y y y +=. ②∵O A O B ⊥, ∴0O A O B ⋅=.∴2212120y y y y += 依题意知120y y ≠,∴121y y =-. ③把②、③代入①得:2422yx +=,即()2112yx =-∴点M 的轨迹方程为()2112yx =-(2)解:依题意得四边形A O B C 是矩形,∴四边形A O B C 的面积为S O A O B ==⋅===∵22121222y y y y +≥=,当且仅当12y y=时,等号成立,∴2S ≥=∴四边形A O B C 的面积的最小值为2 解法二:(1)解:依题意,知直线O A O B ,的斜率存在,设直线O A 的斜率为k , 由于O A O B ⊥,则直线O B 的斜率为1k-故直线O A 的方程为y k x =,直线O B 的方程为1y x k=-.由2y k x yx ,.⎧=⎨=⎩ 消去y ,得220k xx -=.解得0x =或21x k=∴点A 的坐标为211k k,⎛⎫⎪⎝⎭同理得点B 的坐标为()2k k ,-∵O A O B O C +=,∴M 是线段A B 的中点 设点M 的坐标为()x y ,,则221212k k x kky ,.⎧+⎪=⎪⎪⎨⎪-⎪=⎪⎩消去k ,得()2112yx =-∴点M 的轨迹方程为()2112yx =-(2)解:依题意得四边形A O B C 是矩形, ∴四边形A O B C 的面积为S O A O B ==⋅=≥2=当且仅当221kk=,即21k=时,等号成立∴四边形A O B C 的面积的最小值为239.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)已知椭圆1C 的中心在坐标原点,两个焦点分别为1(2,0)F -,2F ()20,,点(2,3)A 在椭圆1C 上,过点A 的直线L 与抛物线22:4C x y =交于B C ,两点,抛物线2C 在点B C ,处的切线分别为12l l ,,且1l 与2l 交于点P .(1) 求椭圆1C 的方程;(2) 是否存在满足1212P F P F A F A F +=+的点P ? 若存在,指出这样的点P 有几个(不必求出点P 的坐标); 若不存在,说明理由.【答案】(本小题主要考查椭圆、抛物线、曲线的切线等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识) (1) 解法1:设椭圆1C 的方程为22221x y ab+=()0a b >>,依题意: 222222231,4.a b a b ⎧+=⎪⎨⎪=+⎩解得: 2216,12.a b ⎧=⎪⎨=⎪⎩ ∴ 椭圆1C 的方程为2211612xy+=解法2:设椭圆1C 的方程为22221x y ab+=()0a b >>,根据椭圆的定义得1228a A F A F =+=,即4a =, ∵2c =, ∴22212b a c =-=∴椭圆1C 的方程为2211612xy+=(2)解法1:设点)41,(211x x B ,)41,(222x x C ,则))(41,(212212x x x x BC --=,)413,2(211x x BA --=,∵C B A ,,三点共线, (苏元高考吧:)∴B C B A //∴()()()222211211113244x x x xx x ⎛⎫--=-- ⎪⎝⎭,化简得:1212212x x x x ()+-=. ①由24xy=,即214y x ,=得y '=12x∴抛物线2C 在点B 处的切线1l 的方程为)(2411121x x x x y -=-,即211412x x x y -=. ②同理,抛物线2C 在点C 处的切线2l 的方程为 222412x x x y -=. ③设点),(y x P ,由②③得:=-211412x x x 222412x x x -,而21x x ≠,则 )(2121x x x += 代入②得 2141x x y =,则212x x x +=,214x x y =代入 ① 得 1244=-y x ,即点P 的轨迹方程为3-=x y . 若1212P F P F A F A F +=+ ,则点P 在椭圆1C 上,而点P 又在直线3-=x y 上, ∵直线3-=x y 经过椭圆1C 内一点(3,0), ∴直线3-=x y 与椭圆1C 交于两点∴满足条件1212P F P F A F A F +=+ 的点P 有两个 解法2:设点),(11y x B ,),(22y x C ,),(00y x P ,由24xy=,即214y x ,=得y '=12x∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-,即2111212x y x x y -+=∵21141x y =, ∴112y x x y -=. ∵点),(00y x P 在切线1l 上, ∴10102y x x y -=. ① 同理, 20202y x x y -=. ②综合①、②得,点),(),,(2211y x C y x B 的坐标都满足方程y x x y -=002∵经过),(),,(2211y x C y x B 的直线是唯一的,∴直线L 的方程为y x x y -=002,∵点)3,2(A 在直线L 上, ∴300-=x y ∴点P 的轨迹方程为3-=x y若1212P F P F A F A F +=+ ,则点P 在椭圆1C 上,又在直线3-=x y 上, ∵直线3-=x y 经过椭圆1C 内一点(3,0), ∴直线3-=x y 与椭圆1C 交于两点∴满足条件1212P F P F A F A F +=+ 的点P 有两个 解法3:显然直线L 的斜率存在,设直线L 的方程为()23y kx =-+,由()2234y k x x y ,,⎧=-+⎪⎨=⎪⎩消去y ,得248120x k x k -+-=设()()1122B x y Cxy ,,,,则12124812x x k x x k ,+==-由24xy=,即214y x ,=得y '=12x∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-,即2111212x y x x y -+=∵21141x y =, ∴211124x y x x =-.同理,得抛物线2C 在点C 处的切线2l 的方程为222124x y x x =-由211222124124x y x x x y x x ,,⎧=-⎪⎪⎨⎪=-⎪⎩解得121222234x x x k x x y k ,.⎧+==⎪⎪⎨⎪==-⎪⎩∴()223P k k ,-∵1212P F P F A F A F +=+,∴点P 在椭圆22111612xyC :+=上∴()()2222311612k k -+=.化简得271230kk --=.(*)由()2124732280Δ=-⨯⨯-=>,可得方程(*)有两个不等的实数根. ∴满足条件的点P 有两个40.(广东省潮州市2013届高三上学期期末教学质量检测数学(理)试题)已知点(4,0)M 、(1,0)N ,若动点P 满足6||M N M P N P =⋅.(1)求动点P 的轨迹C ; (2)在曲线C 上求一点Q ,使点Q 到直线l :2120x y +-=的距离最小.【答案】解:(1)设动点(,)P x y ,又点(4,0)M 、(1,0)N ,∴(4,)M P x y =-,(3,0)M N =-,(1,)N P x y =-由6||M N M P N P =⋅,得3(4)x --=∴222(816)4(21)4x x x x y -+=-++,故223412x y +=,即22143xy+=,∴轨迹C 是焦点为(1,0)±、长轴长24a =的椭圆;评分说明:只求出轨迹方程,没有说明曲线类型或交代不规范的扣1分.(2)椭圆C 上的点Q 到直线l 的距离的最值等于平行于直线l :2120x y +-=且与椭圆C 相切的直线1l 与直线l 的距离. 设直线1l 的方程为20(12)x y m m ++=≠-由22341220x y x y m ⎧+=⎨++=⎩,消去y 得2242120x m x m ++-= (*). 依题意得0∆=,即0)12(16422=--m m ,故216m =,解得4m =±.当4m =时,直线1l :240x y ++=,直线l 与1l的距离|412|15d +==.当4m =-时,直线1l :240x y +-=,直线l 与1l的距离5d ==.55<,故曲线C 上的点Q 到直线l5当4m =-时,方程(*)化为24840x x -+=,即2(1)0x -=,解得1x =. 由1240y +-=,得32y =,故3(1,)2Q .∴曲线C 上的点3(1,)2Q 到直线l 的距离最小41.(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)设椭圆22221(0,0)x y a b ba+=>>的离心率为12,其左焦点E 与抛物线21:4C x y =-的焦点相同.(Ⅰ)求此椭圆的方程;(Ⅱ)若过此椭圆的右焦点F 的直线与曲线C 只有一个交点P ,则(1)求直线的方程;(2)椭圆上是否存在点(,)M x y ,使得12MPF S ∆=,若存在,请说明一共有几个点;若不存在,请说明理由.【答案】解:(Ⅰ)抛物线C 的焦点为(1,0)E -,它是题设椭圆的左焦点.离心率为112b=,所以,2b =.由2221b a -=求得a =因此,所求椭圆的方程为22143xy+= (*)(Ⅱ)(1)椭圆的右焦点为(1,0)F ,过点F 与y 轴平行的直线显然与曲线C 没有交点.设直线的斜率为k ,① 若0k =,则直线0y =过点(1,0)F 且与曲线C 只有一个交点(0,0),此时直线 的方程为0y =;② 若0k ≠,因直线过点(1,0)F ,故可设其方程为(1)y k x =-,将其代入24y x =-消去y ,得22222(2)0k x k x k --+=.因为直线与曲线C 只有一个交点P ,所以判别式22224(2)40k k k --⋅=,于是1k =±,从而直线的方程为1y x =-或1y x =-+.因此,所求的直线的方程为0y =或1y x =-或1y x =-+.(2)由(1)可求出点P 的坐标是(0,0)或(1,2)-或(1,2)--. ①若点P 的坐标是(0,0),则1PF =.于是12MPF S ∆==112y ⨯⨯,从而1y =±,代入(*)式联立:221431x y y ⎧+=⎪⎨⎪=⎩或221431x yy ⎧+=⎪⎨⎪=-⎩,求得x =此时满足条件的点M 有4个: 1,1,1,1⎫⎛⎫⎫⎛⎫--⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎭⎝⎭⎭⎝⎭. ②若点P 的坐标是(1,2)-,则PF =点M 到直线:1y x =-+于是有11122MPF S y ∆==⨯+-,从而112x y +-=±,与(*)式联立:22143112x y x y ⎧+=⎪⎪⎨⎪+-=⎪⎩或22143112x yx y ⎧+=⎪⎪⎨⎪+-=-⎪⎩解之,可求出满足条件的点M 有4个:,,1115,714⎛⎫- ⎪⎝⎭,31,2⎛⎫- ⎪⎝⎭. ③ 若点P 的坐标是(1,2)--,则PF =点(,)M x y 到直线:1y x =-于是有11122MPF S y ∆==⨯--,从而112x y --=±,与(*)式联立:22143112x y x y ⎧+=⎪⎪⎨⎪--=⎪⎩或22143112x yx y ⎧+=⎪⎪⎨⎪--=-⎪⎩,解之,可求出满足条件的点M 有4个:,,1115,714⎛⎫ ⎪⎝⎭,31,2⎛⎫-- ⎪⎝⎭. 综合①②③,以上12个点各不相同且均在该椭圆上,因此,满足条件的点M 共有12个.图上椭圆上的12个点即为所求.42.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))已知抛物线C:y 2=4x, F是抛物线的焦点,设A(x 1,y 1),B (x 2 ,y 2)是C 上异于 原点O 的两个不重合点,OA 丄OB ,且AB 与x 轴交于点T (1) 求x 1x 2的值;(2) 求T 的坐标;(3) 当点A 在C 上运动时,动点R 满足:FR FB FA =+,求点R 的轨迹方程.。
广东省揭阳市高三第二次模拟理综试题参考答案
2013届广东省揭阳市高三第二次模拟理综试题参考答案一、单项选择题(本题包括16小题,每小题4分,共64分。
每小题给出的四个选项中,只有一个选项符合题目要求)二、双项选择题(本题包括9小题,每小题6分,共54分。
每小题给出的四个选项中,有两个选项符合题目要求,全选对得6分,只选1个且正确得3分,错选、不选得0分)三、非选择题(共182分)生物部分(4小题,共64分,除注明外,每空2分)26.(16分)(1)叶绿体基粒的类囊体薄膜(或类囊体薄膜,1分,只写叶绿体膜不给分)、线粒体内膜(1分,只写线粒体膜不给分)磷脂双分子层自由扩散ATP(2)健那绿叶绿体存在于叶肉细胞中核仁与某种RNA的合成和核糖体的形成有关(3)精子所含的少量细胞质,不参与受精作用,所以叶绿体或线粒体中的目的基因不会通过花粉传递给下一代(或:精子只提供细胞核参与受精作用,所以细胞质内的基因不会通过花粉传递给子代,而只能由卵细胞传递给子代)27.(16分)(1)RNA聚合酶核孔从a到b TCAGCC(2)丙流动性(3)阻止GA-MYB基因的转录(4)催化大麦种子中储藏的淀粉水解,为种子萌发提供可利用的小分子物质28.(16分)(1)见下图(满分4分,每个箭头及文字都正确,得1分)(2)捕食、竞争(2分,每答对一项得1分)吸收营养,降低富营养化程度;遮光,影响藻类生长;分泌有害代谢物抑藻(任答一点,合理即可)(3)生态系统的自我调节能力是有限的(4)ADP+Pi+能量ATP(满分共2分,把“酶1”、“酶2”合写成“酶”也给满分,写漏一个箭头,扣一分)自然选择(5)②(1分)①③②(1分)29.(16分)(1)胰岛素胰高血糖素(2)减少肾小管和集合管(2分,每答对一项得1分)皮肤冷觉感受器→传入神经→下丘脑体温调节中枢→传出神经→肾上腺(完全正确才给分)(3)用血糖测定仪测定各组大鼠的血糖浓度,并统计(计算平均值)(2分,漏写“并统计”扣1分)③饲喂桑叶提取液2mL/d实验结论:桑叶提取液的降低血糖作用明显,但不能降到正常水平(2分,每一要点1分)化学部分(4小题,共64分)30.(15分)(1)CH3CH2CHO (2分)(2)C4H6O(2分);碳碳双键、酯基、羟基(3分)(3)加聚 (2分)(4)HCOOCH=CHCH 3 (2分)(5)CH 2=CH 2+Br 2 → CH 2BrCH 2Br (2分)CH 2BrCH 2Br+2NaOH HOCH 2CH 2OH+2NaBr (2分,条件错扣1分)31.(16分)(1)CO (g )+H 2O (g ) CO 2(g )+H 2(g ) ΔH = -41.2 kJ/mol (3分) (2)① < (2分)②解:依题意,可设反应容器的体积为1L ,B 点处n (NH 3)=4.0moL ,n (CO 2)=1.0moL (1分)2NH 3(g ) + CO 2(g )CO (NH 2)2(l ) + H 2O (l )起始浓度(mol/L ) 4.0 1.0平衡浓度(mol/L ) 1.28 0.64 (2分) NH 3的平衡转化率 α(NH 3)= 0.428.1×100% = 32% (2分)(3)CO 2(2分) O 2+4e -+4H +==2H 2O (2分) 1.6 (2分) 32.(17分)(1)MnO 2 +SO 2== Mn 2++SO 42- (3分);pH 为3左右、温度为40℃左右 (2分) (2)Fe (OH )3、Al (OH )3(2分) (3)除去Cu 2+、Zn 2+ (2分) (4)蒸发浓缩 冷却结晶 (2分) (5)Mn 2+-2e -+2H 2O == MnO 2+ 4H + (3分) (6)1.0×10-17 (3分) 33.(16分)(1)A>C>B (3分) (2)使用SO 2可防止 被氧化(或SO 2可利用工业废气获得,变废为宝。
平面向量 Word版(含答案)
广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编4:平面向量一、选择题1 .(广东省汕头一中2013年高三4月模拟考试数学理试题 )已知,,O A B 是平面上的三个点,直线AB 上有一点C ,满足20AC CB += ,则OC =( )A .2OA OB - B .2OA OB -+C .2133OA OB -D .1233OA OB -+【答案】A2 .(广东省珠海一中等六校2013届高三第一次联考数学(理)试题)已知向量a =(x ,1),b=(3,6),a ⊥b ,则实数x 的值为 ( )A .12B .2-C .2D .21-【答案】B3 .(广东省珠海一中等六校2013届高三第二次联考数学(理)试题)在平面直角坐标系中,O 为坐标原点,点(3,4)A ,将向量OA 绕点O 按逆时针方向旋转23π后得向量OB ,则点B 的坐标是3.(22A -+--3.(22B ---+3.(22C -+-+ .(4,3)D -【答案】B4 .(广东省珠海一中等六校2013届高三第二次联考数学(理)试题)OAB ∆,点P 在边AB 上,3AB AP = ,设,OA a OB b ==,则OP =12.33A a b + 21.33B a b + .C 1233a b - .D 2133a b -PBA【答案】B5 .(广东省肇庆市2013届高三上学期期末统一检测数学(理)试题)定义空间两个向量的一种运算sin ,⊗=⋅<>a b a b a b ,则关于空间向量上述运算的以下结论中,①⊗=⊗a b b a ,②()()λλ⊗=⊗a b a b ,③()()()+⊗=⊗+⊗a b c a c b c , ④若1122(,),(,)x y x y ==a b ,则1221x y x y ⊗=-a b . 恒成立的有 ( )A .1个B .2个C .3个D .4个【答案】B 解析: ①恒成立; ② ()λ⊗=a b sin ,λ⋅<>a b a b ,()λ⊗=a b sin ,λ⋅<>a b a b ,当0<λ时,()()λλ⊗=⊗a b a b 不成立;③当,,a b c 不共面时,()()()+⊗=⊗+⊗a b c a c b c 不成立,例如取,,a b c 为两两垂直的单位向量,易得()+⊗=a b c ()()2⊗+⊗=a c b c ;④由sin ,⊗=⋅<>a b a b a b ,cos ,=⋅<>a b a b a b ,可知2222()()⊗+=⋅ a b a b a b,2()⊗=a b 222222222112212121221()()()()()x y x y x x y y x y x y ⋅-=++-+=- a b a b ,故1221x y x y ⊗=-a b 恒成立.6 .(广东省肇庆市2013届高三上学期期末统一检测数学(理)试题)已知向量(1,cos ),(1,2cos )θθ=-=a b 且⊥a b ,则cos 2θ等于( )A .1-B .0C .12D .2【答案】B 解析:212cos 0cos 20θθ⊥⇔-+=⇔=a b .7 .(广东省汕头市东山中学2013届高三第二次模拟考试数学(理)试题(详解))在平行四边形ABCD 中,AE →=13AB →,AF →=14AD →,CE 与BF 相交于G 点.若AB →=a ,AD →=b ,则 AG →=( )A .27a +17bB .27a +37bC .37a +17bD .47a +27b【答案】C8 .(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)已知平面向量a ,b 的夹角为60°,=a ,||1=b ,则|2|+=a b( )A .2B C .D .【答案】C9 .(广东省汕头市2013届高三上学期期末统一质量检测数学(理)试题)若向量)1,1(),0,2(==b a ,则下列结论正确的是( )A .1=⋅B .||||b a =C .⊥-)(D .//【答案】C10.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)如图2,一条河的两岸平行,河的宽度600d =m,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1km,水流速度为2km/h, 若客船行驶完航程所用最短时间为6分钟,则客船在静水中 的速度大小为( )A .8 km/hB .C .km/hD.10km/h二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. 【答案】B11.(广东省潮州市2013届高三上学期期末教学质量检测数学(理)试题)平面四边形ABCD 中0AB CD += ,()0AB AD AC -=⋅,则四边形ABCD 是( )A .矩形B .菱形C .正方形D .梯形【答案】B 由0AB CD += ,得AB CD DC =-=,故平面四边形ABCD 是平行四边形,又()0AB AD AC -=⋅ ,故0DB AC =⋅,所以DB AC ⊥,即对角线互相垂直.12.(2013年广东省佛山市普通高中高三教学质量检测(一)数学(理)试题)已知(1,2)=a ,(0,1)=b ,(,2)k =-c ,若(2)+⊥a b c ,则k =( )A .2B .8C .2-D .8-【答案】B13.(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)在ABC ∆中,已知||||||2AB BC CA ===,则向量AB BC =( )A .2B .2-C .D .-【答案】B 解析:1cos 22232AB BC AB BC ππ⎛⎫⎛⎫=⋅-=⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭14.(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))向量(2,0),(,)a b x y == ,若b 与b a - 的夹角等于6π,则|b |的最大值为( )A .4B .C .2 D【答案】A15.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)已知点A (1,5)-和向量a =(2,3),若3AB a =,则点B 的坐标为( )A .(7,4)B .(7,14)C .(5,4)D .(5,14) 【答案】设(,)B x y ,由3AB a = 得1659x y +=⎧⎨-=⎩,所以选D .16.(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))已知向量(1,1)a =- ,(3,)b m = ,//()a a b +,则m =( )A .2B .2-C .3-D .3【答案】【解析】向量(1,1)a =- ,(3,)b m = ,()(2,1)a b m +=+,因为//()a a b +∴(1)2m -+=,3m =-故选C .17.(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))对于任意向量a 、b 、c ,下列命题中正确的是 ( )A .=a b a b B .+=+a b a b C.()()= a b c a b cD .2= a a a【答案】D18.(广东省潮州市2013届高三第二次模拟考试数学(理)试题)设向量12(,)a a a = ,12(,)b b b = ,定义一运算:12121122(,)(,)(,)a b a a b b a b a b ⊗=⊗=,已知1(,2)2m = ,11(,sin )n x x = .点Q 在()y f x =的图像上运动,且满足OQ m n =⊗(其中O 为坐标原点),则()y f x =的最大值及最小正周期分别是 ( )A .1,2π B .1,42π C .2,π D .2,4π(一)必做题:第9至13题为必做题,每道试题考生都必须作答. 【答案】C二、填空题19.(广东省汕头市东厦中学2013届高三第三次质量检测数学(理)试题 )已知向量,的夹角为60,12==,_________=+;向量与向量2+的夹角的大小为_________.【答案】632π20.(广东省珠海一中等六校2013届高三第二次联考数学(理)试题)如图,在边长为2的菱形ABCD 中,60BAD ∠=,E 为CD 的中点,则___________.AE BD ⋅=BAEDC【答案】121.(广东省湛江一中等“十校”2013届高三下学期联考数学(理)试题)在ABC ∆中90C ∠=o ,BC =2 则=⋅BC AB ________ .【答案】-422.(广东省汕头市东山中学2013届高三下学期入学摸底考试数学(理)试题)若向量a 、b 满足2||||==,与b 的夹角为︒60,则=+||_______【答案】32;23.(广东省汕头市2013届高三3月教学质量测评数学(理)试题)已知在三角形ABC中,AB=2,AC=3,∠BAC=θ,若D 为BC 的三等分点〔靠近点B 一侧).则的取值范围为____.【答案】⎪⎭⎫⎝⎛-37,3524.(广东省华附、省实、深中、广雅四校2013届高三上学期期末联考数学(理)试题)已知e 1、e 2、e 3为不共面向量,若a =e 1+e 2+e 3,b =e 1-e 2+e 3,c =e 1+e 2-e 3,d =e 1+2e 2+3e 3,且d =xa +yb +zc ,则x 、y 、z 分别为_*****_.【答案】答案:52 ,-12,-1解:由d =xa +yb +zc 得e 1+2e 2+3e 3=(x +y +z )e 1+(x -y +z )e 2+ (x +y -z )e 3,∴⎩⎪⎨⎪⎧x +y +z =1,x -y +z =2,x +y -z =3,解得:⎩⎪⎨⎪⎧x =52,y =-12,z =-1.故x 、y 、z 分别为52,-12,-1.25.(广东省韶关市2013届高三4月第二次调研测试数学理试题)已知平面向量a2,)(b a a -⊥;则><b a ,cos 的值是_______.【答案】21; 26.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)已知正方形ABCD 的边长为1,点E 是AB 边上的点,则DE CB ⋅的值为____________.【答案】127.(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)已知向量,a b, ()-⊥a b a , 向量a 与b 的夹角为________.【答案】4π三、解答题28.(广东省珠海一中等六校2013届高三第二次联考数学(理)试题)已知(s i n ,c o sa θθ= 、b =(1)若//a b,求tan θ的值;(2)若()f a b θ=+, ABC ∆的三个内角,,A B C 对应的三条边分别为a 、b 、c ,且(0)a f =,()6b f π=-,()3c f π=,求AB AC ⋅.【答案】解:(1)//,sin 0a b θθ∴=sin tan θθθ∴⇒(2)(sin 1)a b θθ+=+a b ∴+===(0)a f ∴===()6b f π∴=-==()33c f π∴===由余弦定理可知:222cos 230b c a A bc +-==7cos cos 2AB AC AB AC A bc A ∴⋅=== (其它方法酌情给分)。
广东省揭阳市高三第二次模拟考试数学(理)试题含答案【精选】.doc
6 23 正视图俯视图左视图图1绝密★启用前揭阳市高中毕业班第二次高考模拟考试题数学(理科)本试卷共4页,满分150分.考试用时120分钟.注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,答在本试卷上无效.4.考试结束,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.(1)函数()1lg(63)f x x x =+-的定义域为(A )(,2)-∞ (B )(2,)+∞ (C )[1,2)- (D )[1,2]- (2)已知复数iia z 213++=(R a ∈,i 是虚数单位)是纯虚数,则||z 为 (A )32(B )152(C )6 (D )3(3)“p q ∧为真”是“p q ∨为真”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件(4)已知1sin cos 3αα-=,则cos(2)2πα-= (A )89- (B )23 (C )89(D 17 (5)已知01a b c <<<<,则(A )b a a a >(B )a b c c >(C )log log a b c c > (D )log log b b c a >(6)中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图1 所示(单位:升),则此量器的体积为(单位:立方升) (A )14(B )212π+(C )π+12(D )π238+ (7)设计如图2的程序框图,统计高三某班59位同学的数学平均分,输出不少于平均分的人数 (用j 表示),则判断框中应填入的条件是 (A )?58<i (B )?58≤i (C )?59<j(D )?59≤j(8)某微信群中四人同时抢3 则其中甲、乙两人都抢到红包的概率为 (A )14 (B )34 (C )53 (D )21 (9)已知实数,x y 满足不等式组⎪⎩⎪⎨⎧≤≤≤-+≥+-a y y x y x 003202,若 y x z 2-=的最小值为-3,则a 的值为(A )1(B )23(C )2(D )37(10)函数x x x f 21()(2-=的大致图象是(A ) (B ) (C ) (D ) (11)已知一长方体的体对角线的长为10,这条对角线在长方体一个面上的正投影长为8,则这个长方体体积的最大值为O P QQD E F COBAP 图4图3F E DBCA(A )64 (B )128 (C )192 (D )384 (12)已知函数)0(21sin 212sin )(2>-+=ωωωx xx f ,R x ∈.若)(x f 在区间)2,(ππ内有零点,则ω的取值范围是(A )155(,)(,)484+∞U (B ))1,85[]41,0(Y (C )1155(,)(,)8484U (D )115(,)(,)848+∞U第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题:第(21)题为必考题,每个试题考生都必须做答.第(22)题:第(23)题为选考题,考生根据要求做答. 二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题卡相应的横线上.(13)已知向量(1,2),(2,1)a x b x =-=-r r 满足||||a b a b ⋅=-⋅r r u u r r,则 x = .(14)已知直线3460x y --=与圆2220()x y y m m R +-+=∈相切,则m 的值为 .(15)在△ABC 中,已知AB u u u r 与BC uuur 的夹角为150°,||2AC =u u u r ,则||AB uuu r 的取值范围是 .(16)已知双曲线2221(0)4x y b b-=>的离心率为1F 、2F 是双曲线的两个焦点,A为左顶点、B (0,)b ,点P 在线段AB 上,则12PF PF ⋅u u u r u u u u r的最小值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知数列{}n a 中,11a =,1)1(21+++=+n na n a nn . (I )求证:数列}1{+nan 是等比数列;(II )求数列}{n a 的前n 项和为n S . (18)(本小题满分12分)已知图3中,四边形 ABCD 是等腰梯形,CD AB //,CD EF //,O 、Q 分别为线段AB 、CD 的中点,OQ 与EF的交点为P ,OP =1,PQ =2,现将梯形ABCD 沿EF 折起,使得3=OQ ,连结AD 、BC ,得一几何体如图4示.(Ⅰ)证明:平面ABCD ⊥平面ABFE ;(Ⅱ)若图3中,45A ∠=o ,CD=2,求平面ADE 与平面BCF 所成锐二面角的余弦值. (19)(本小题满分12分)某学校在一次第二课堂活动中,特意设置了过关智 力游戏,游戏共五关.规定第一关没过者没奖励,过n *)(N n ∈关者奖励12-n 件小奖品(奖品都一样).图5 是小明在10次过关游戏中过关数的条形图,以此频率估 计概率.(Ⅰ)估计小明在1次游戏中所得奖品数的期望值; (Ⅱ)估计小明在3 次游戏中至少过两关的平均次数; (Ⅲ)估计小明在3 次游戏中所得奖品超过30件的概率. (20)(本小题满分12分)已知椭圆()012222>>=+b a by a x 与抛物线)0(22>=p px y 共焦点2F ,抛物线上的点M 到y 轴的距离等于2||1MF -,且椭圆与抛物线的交点Q 满足25||2=QF . (I )求抛物线的方程和椭圆的方程;(II )过抛物线上的点P 作抛物线的切线=+y kx m 交椭圆于A 、B 两点,设线段AB 的中点为),(00y x C ,求0x 的取值范围.(21)(本小题满分12分)设函数2)()(a x x f -=(a R ∈),x x g ln )(=,(Ⅰ) 试求曲线)()()(x g x f x F +=在点))1(,1(F 处的切线l 与曲线)(x F 的公共点个数;(Ⅱ) 若函数)()()(x g x f x G ⋅=有两个极值点,求实数a 的取值范围. (附:当0<a ,趋近于0时,xax -ln 2趋向于∞+) 请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一个题目计分. (22) (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,已知直线l 1:x y ⋅=αtan (πα<≤0,2πα≠),抛物线C :⎩⎨⎧-==ty t x 22(t 为参数).以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.(Ⅰ)求直线l 1 和抛物线C 的极坐标方程;(Ⅱ)若直线l 1 和抛物线C 相交于点A (异于原点O ),过原点作与l 1垂直的直线l 2,l 2和抛物线C 相交于点B (异于原点O ),求△OAB 的面积的最小值.(23) (本小题满分10分)选修4-5:不等式选讲已知函数()21f x x =-. (Ⅰ)求不等式()1f x ≤的解集A ;(Ⅱ)当,m n A ∈时,证明:1m n mn +≤+.揭阳市高中毕业班第二次高考模拟考试题数学(理科)参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.一、选择题:解析:(6)易得该几何体为一底面半径为2、高为2的圆柱与一长、宽、高分别为4、3、1的长方体的组合,故其体积为: 21()24311222ππ⨯⨯+⨯⨯=+.(8)3个红包分配给四人共有34A 种分法,“甲、乙两人都抢到红包”指从3个红包中选2个分配给甲、乙,其余1个分配给另外二人,其概率为2213223432214322C A A A ⋅⨯⨯==⨯⨯. (9)如右图,当直线y xz 2-=过点(2,)A a a -时,取得最小值,即2231a a a --=-⇒=.(10)由(0)1f =-可排除(D ),由044)2(=-=-f ,01616)4(=-=-f ,可排(A )(C ),故选(B ). (11)以投影面为底面,6=,设长方体底面边长分别为,a b ,则2264a b +=,6V ab =223()192a b ≤+=.(12) 1cos sin 1())2224x x f x x ωωπω-=+-=-,由(41)()0()4k f x x k Z πω+=⇒=∈令2ω=得函数)(x f 有一零点98x π=(,2)ππ∈,排除(B )、(C ),令38ω=得函数()f x 在(0,)+∞上的零点从小到大为:12210,,33x x ππ==L ,显然1x ∉)2,(ππ,2x ∉)2,(ππ可排除(A ),故答案为(D )【法二:)4sin(22)(πω-=x x f ,由0)(=x f 得ππωk x =-4,当)2,(ππ∈x 时,)42,4(4πωππωππω--∈-x ,由题意知存在Z k ∈,)42,4(πωππωππ--∈k ,即)412,41(--∈ωωk ,所以41)41(21+<<+k k ω,由0>ω知0≥k ,当Λ,2,1,0=k 时,4181<<ω,4585<<ω,4989<<ω,…,所以选D .】 二、填空题:解析:(15) 由AB u u u r 与BC uuur 的夹角为150°知30B ∠=o ,由正弦定理得: ||||4sin sin 30ABAC C ==ou u u r u u u r||4sin AB C ⇒=u u u r ,又0150C <<o得0||4AB <≤u u u r . (16)易得1c b ==,设(,)P x y 则12(,),)PF PF x y x y ⋅=-⋅-u u u r u u u u r225x y =+-,显然,当OP AB ⊥时,22x y +取得最小值, 由面积法易得22min4()5x y +=,故12PF PF ⋅u u u r u u u u r 的最小值为421555-=-. 三、解答题:(17)解:(I )证法1:由已知得1211+⋅=++nan a n n ,-----------------------------1分 ∴)1(2111+=+++nan a n n ,--------------------------------------------------------3分 又211=+a ,得01≠+na n,∴21111=++++na n a n n ,---------------------------------------5分 ∴数列}1{+na n是首项为2,公比为2的等比数列.-----------------------6分 【证法2:由1)1(21+++=+n na n a nn 得12(1)(1)n n na n a n n +=+++,----------------1分Q D EF COBAP由01>a 及递推关系,可知0>n a ,所以01≠+na n, ∴111(1)2(1)2(1)12(1)(1)(1)(1)1n n n n n n a na n n n a n n n a n a n n n a n n n+++++++++===+++++++,------------------5分∴数列}1{+na n是首项为2,公比为2的等比数列.----------------------------------6分】 (II )由(I )得n n nna 22211=⋅=+-,∴n n a n n -⋅=2,---------------------------8分 23122232(1)22n n n S n n -=+⨯+⨯++-+⋅L ])1(321[n n +-++++-Λ,设23122232(1)22n nn T n n -=+⨯+⨯++-+⋅L ,-------------① 则2341222232(1)22n n n T n n +=+⨯+⨯++-+⋅L ,---------② ①式减去②式得23122222n n n T n +-=++++-⋅L12(12)212n n n +-=-⋅-22)1(1---=+n n ,得22)1(1+-=+n n n T ,------------------------------------------------------------------10分又(1)123(1)2n n n n +++++-+=L , ∴1(1)(1)222n n n n S n ++=--+.-----------------------------------------------------12分 (18)解:(Ⅰ)证明:在图3中,四边形ABCD 为等腰梯形,O 、Q 分别为线段AB 、CD 的中点,∴OQ 为等腰梯形ABCD 的对称轴,又AB//CD EF //, ∴OP ⊥EF 、PQ ⊥EF ,①---------------------2分 在图4中,∵222PQ OP OQ =+,∴OP OQ ⊥--------------3分 由①及P PQ OP =I ,得EF ⊥平面OPQ ,∴EF ⊥OQ ,----------------4分 又OP EF P =I ,∴OQ ⊥平面ABFE ,----------------------------------5分又⊂OQ 平面ABCD ,∴平面ABCD ⊥平面ABFE ;-------------------------------------6分 (Ⅱ)在图4中,由45A ∠=o,CD=2,易得PE=PF=3,AO=OB=4,----------------7分以O 为原点,PO 所在的直线为轴建立空间直角坐标系xyz O -,如图所示, 则)0,4,0(B 、)0,3,1(-F、C得)0,1,1(--=BF,(0,BC =-u u u r-------8分 设(,,)m x y z =r是平面BCF 的一个法向量,则⎪⎩⎪⎨⎧⊥⊥BC m BFm ρρ,得030m BF x y m BC y ⎧⋅=--=⎪⎨⋅=-=⎪⎩u u u r r u u u r r , 取=3,得(m =u r---------9分同理可得平面ADE的一个法向量(n =r-------------------------------------10分设所求锐二面角的平面角为θ,则|||||||,cos |cos n m n m n m ρρρρρρ⋅⋅=><=θ35= 所以平面ADE 与平面BCF 所成锐二面角的余弦值为35.-------------------------------12分 (19)解:(Ⅰ)设小明在1次游戏中所得奖品数为ξ,则ξ的分布列为-------------------2分ξ的期望值41.0161.082.043.022.01)(=⨯+⨯+⨯+⨯+⨯=ξE ;----------------4分(Ⅱ)小明在1 次游戏中至少过两关的概率为0.7,-----------------------------5分 设小明在3 次游戏中至少过两关的次数为,可知)7.0,3(~B X , 则的平均次数1.27.03)(=⨯=X E ;------------------------------------------7分(Ⅲ)小明在3 次游戏中所得奖品超过30件含三类:恰好一次16=ξ和两次8=ξ,恰好二次16=ξ,恰好三次16=ξ,---------------------------------------------------------------8分213)8()16(=⋅=ξξP P C 003.01.01.032=⨯⨯=,---------------------------------9分)16()16(223≠⋅=ξξP P C =027.0)1.01(1.032=-⨯⨯,------------------------10分333)16(=ξP C 001.01.03==------------------------------------------------------------11分所以小明在 3 次游戏中所得奖品超过30件的概率为031.0001.0027.0003.0=++.------12分(20)解:(I )∵抛物线上的点M 到y 轴的距离等于2||1MF -,∴点M 到直线1-=x 的距离等于点M 到焦点2F 的距离,----------------1分 得1-=x 是抛物线px y 22=的准线,即12-=-p, 解得2=p ,∴抛物线的方程为x y 42=;-----------------------------------3分 可知椭圆的右焦点)0,1(2F ,左焦点)0,1(1-F , 由25||2=QF 得251=+Q x ,又Q Q x y 42=,解得)6,23(±Q ,-------4分 由椭圆的定义得||||221QF QF a +=62527=+=,----------------------5分 ∴3=a ,又1=c ,得8222=-=c a b ,∴椭圆的方程为18922=+y x .-----------------------------------------------------6分 (II )显然0≠k ,0≠m ,由⎩⎨⎧=+=xy m kx y 42,消去,得0442=+-m y ky , 由题意知01616=-=∆km ,得1=km ,-----------------------------------7分由⎪⎩⎪⎨⎧=++=18922y x m kx y ,消去y ,得072918)89(222=-+++m kmx x k , 其中4)18(22-=∆km 0)729)(89(22>-+m k ,化简得08922>+-m k ,-------------------------------------------------------9分 又mk 1=,得09824<--m m ,解得902<<m ,--------------------10分 设A (1,y 1),B (2,y 2),则89922210+-=+=k x x x <0, 由91122>=m k ,得10->x ,∴0x 的取值范围是)0,1(-.--------------12分 (21)解:(Ⅰ)∵2)1()1(a F -=,xa x x F 1)(2)('+-=,切线l 的斜率为a F 23)1('-=,---------------------------------------------1分∴切线l 的方程为)1)(23()1(2--=--x a a y ,即2)23(2-+-=a x a y ,-----2分联立x a x x F y ln )()(2+-==,得02ln 32=++-x x x ; 设2ln 3)(2++-=x x x x h ,则x x x h 132)('+-=xx x )1)(12(--=,----------3分 由0)('>x h 及0>x ,得210<<x 或1>x , ∴)(x h 在)21,0(和),1(∞+上单调递增,可知)(x h 在)1,21(上单调递减,----4分 又0)1(=h ,031)1(242<-=ee e h ,所以∈∃0x )21,0(,0)(0=x h ,-----------5分∴方程02ln 32=++-x x x 有两个根:1和0x ,从而切线l 与曲线)(x F 有两个公共点.--6分(Ⅱ)由题意知0)1ln 2)(()('=-+-=xax a x x G 在),0(∞+至少有两不同根,----------------7分设xa x x r -+=1ln 2)(,①当0>a 时,a x =1是0)('=x G 的根,由1ln 2+=x y 与x a y =(0>a )恰有一个公共点,可知01ln 2=-+xa x 恰有一根2x ,由a x x ==12得a =1,不合题意,∴当0>a 且1≠a 时,检验可知a x =1和2x 是)(x G 的两个极值点;-----------------8分②当0=a 时,0)1ln 2()('=+=x x x G 在),0(∞+仅一根,所以0=a 不合题意;--9分③当0<a 时,需01ln 2)(=-+=x a x x r 在),0(∞+至少有两不同根, 由02)('2>+=x a x x r ,得2a x ->,所以)(x r 在),2(∞+-a 上单调递增, 可知)(x r 在)2,0(a -上单调递减, 因为0<a ,趋近于0时,)(x r 趋向于∞+,且1>x 时,0)(>x r ,由题意知,需0)(min<x r ,即03)2ln(2)2(<+-=-a a r ,解得232-->e a ,------11分 ∴0223<<--a e . 综上知,32(2,0)(0,1)(1,)a e -∈-+∞U U .---------------------------------------------------12分选做题:(22)解:(Ⅰ)可知l 1是过原点且倾斜角为α的直线,其极坐标方程为αθ=(,)2R παρ≠∈---------------------------------------------------------2分抛物线C 的普通方程为x y 42=,-------------------------------------------3分其极坐标方程为θρθρcos 4)sin (2=,化简得θθρcos 4sin 2=.-----------------------------------------------------5分(Ⅱ)解法1:由直线l 1 和抛物线C 有两个交点知0α≠,把αθ=代入θθρcos 4sin 2=,得ααρ2sin cos 4=A ,-----------------6分 可知直线l 2的极坐标方程为2παθ+=)(R ∈ρ,-----------------------7分 代入θθρcos 4sin 2=,得ααρsin 4cos 2-=B ,所以ααρ2cos sin 4-=B ,----8分 ||||21||||21B A OAB OB OA S ρρ⋅=⋅=∆|cos sin 2|16αα=16|2sin |16≥=α, ∴△OAB 的面积的最小值为16.----------------------------------------------------------10分【解法2:设1l 的方程为(0)y kx k =≠,由24,.y x y kx ⎧=⎨=⎩得点244(,)A k k ,------6分 依题意得直线2l 的方程为1y x k=-,同理可得点2(4,4)B k k -,-------------7分故1||||2OAB S OA OB ∆=⋅=-------------------------8分21816||k k +==⋅≥,(当且仅当1k =±时,等号成立) ∴△OAB 的面积的最小值为16.----------------------------------------------------------10分】(23)解:(Ⅰ)由211x -≤,得1211x -≤-≤,即||1x ≤,--------------3分解得11x -≤≤,所以[]1,1A =-;----------------------------------------------5分 (Ⅱ)法一:()22222211m n mn m n m n +-+=+--()()2211m n =--------------------------------------7分因为,m n A ∈,故11m -≤≤,11n -≤≤,210m -≤,210n -≤,--------8分 故()()22110m n ---≤,()221m n mn +≤+又显然10mn +≥,故1m n mn +≤+.-------------------------------------------------1 0分【法二:因为,m n A ∈,故11m -≤≤,11n -≤≤,----------------6分而()()()1110m n mn m n +-+=--≤------------------------------7分 ()()()1110m n mn m n +--+=++≥⎡⎤⎣⎦,-------------------------8分即()11mn m n mn -+≤+≤+,故1m n mn +≤+.------------------------------------10分】。
广东省13市2025届高三第二次模拟考试数学试卷含解析
广东省13市2025届高三第二次模拟考试数学试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:2n =及3n =时,如图:记n S 为每个序列中最后一列数之和,则6S 为( )A .147B .294C .882D .17642.如图,将两个全等等腰直角三角形拼成一个平行四边形ABCD ,将平行四边形ABCD 沿对角线BD 折起,使平面ABD ⊥平面BCD ,则直线AC 与BD 所成角余弦值为( )A 22B 6C 3D .133.祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A 、B 为两个同高的几何体,:p A 、B 的体积不相等,:q A 、B 在等高处的截面积不恒相等.根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知直线x y t +=与圆()2222x y t t t R +=-∈有公共点,则()4t t -的最大值为( )A .4B .289C .329D .327 5.如图,在矩形OABC 中的曲线分别是sin y x =,cos y x =的一部分,,02A π⎛⎫ ⎪⎝⎭,()0,1C ,在矩形OABC 内随机取一点,若此点取自阴影部分的概率为1P ,取自非阴影部分的概率为2P ,则( )A .12P P <B .12P P >C .12P P =D .大小关系不能确定6.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是( )A .83B .163C .43D .8 7.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( )A .内切B .相交C .外切D .相离8.在关于x 的不等式2210ax x ++>中,“1a >”是“2210ax x ++>恒成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.已知变量x ,y 满足不等式组210x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则2x y -的最小值为( )A .4-B .2-C .0D .410.若点(2,k)到直线5x-12y+6=0的距离是4,则k 的值是( )A .1B .-3C .1或53D .-3或17311.曲线(2)x 在点(0,2)处的切线方程为2y x b =-+,则ab =( )A .4-B .8-C .4D .812.已知3sin 2cos 1,(,)2παααπ-=∈,则1tan 21tan 2αα-=+( ) A .12- B .2- C .12 D .2 二、填空题:本题共4小题,每小题5分,共20分。
导数与积分(2) Word版(含答案)
广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编17:导数与积分(2)一、选择题1 .(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))由曲线sin ,cos y x y x ==与直线0,2x x π==所围成的平面图形(图1中的阴影部分)的面积是( )A .1B .4πC .3D .2【答案】D2 .(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)如图所示,图中曲线方程为21y x =-,用定积分表达围成封闭图形(阴影部分)的面积是【答案】C3 .(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))曲线f(x)=xlnx在点x=1处的切线方程为( )A .y=2x+2B .y=2x-2C .y=x-1C .y=x+1【答案】C4 .(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)将边长为2的等边三角形PAB 沿x 轴滚动,某时刻P 与坐标原点重合(如图),设顶点(,)P x y 的轨迹方程是()y f x =,关于函数()y f x =的有下列说法:①()f x 的值域为[0,2];②()f x 是周期函数;③( 1.9)()(2013)f f f π-<<;④69()2f x dx π=⎰.其中正确的说法个数为: ( )A .0B .C .2D .3【答案】C5 .(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))已知函数()yf x =的图象如图1所示,则其导函数()y f x '=的图象可能是【答案】A二、填空题6 .(广东省茂名市2013届高三第一次模拟考试数学(理)试题)计算________.【答案】2e ;7 .(广东省江门市2013年高考模拟考试(即一模)数学(理)试题 )在平面直角坐标系Oxy中,直线a y =(0>a )与抛物线2x y =所围成的封闭图形的面积为328,则=a _______. 【答案】28 .(广东省海珠区2013届高三上学期综合测试一数学(理)试题)不等式211x -<的解集为(),a b ,计算定积分)2b ax dx -=⎰_______.【答案】139.(广东省广州市2013届高三调研测试数学(理)试题)若直线2y x m =+是曲线ln y x x=图1A .B .C .D .O x P A 第8题图的切线,则实数m 的值为_________.【答案】e -分析:设切点为000(,ln )x x x ,由1(ln )ln ln 1y x x x x x x''==+=+ 得0ln 1k x =+, 故切线方程为0000ln (ln 1)()y x x x x x -=+-,整理得00(ln 1)y x x x =+-, 与2y x m =+比较得00ln 12x x m+=⎧⎨-=⎩,解得0e x =,故e m =-10.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)10x cos ⎰d x =______________.【答案】1sin11.(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)20(3sin )x x dx π+=⎰________________.【答案】2318π+解析:22220033(3sin )(cos )|128x x dx x x πππ+=-=+⎰.12.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))曲线y= x 3-x + 3在点(1,3)处的切线方程为_______【答案】21x y -+13.(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))若直线y kx =与曲线ln y x =相切,则k =__________________.【答案】1e14.(广东省潮州市2013届高三第二次模拟考试数学(理)试题)计算= ________.【答案】2e .三、解答题15.(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))已知函数()ln f x x =,2()()g x f x ax bx =++,函数()g x 的图象在点(1,(1))g 处的切线平行于x 轴.(1)确定a 与b 的关系;(2)试讨论函数()g x 的单调性; (3)证明:对任意*n N ∈,都有()211ln 1ni i n i=-+>∑成立.【答案】解:(1)依题意得2()ln g x x axbx =++,则1'()2g x ax b x=++ 由函数()g x 的图象在点(1,(1))g 处的切线平行于x 轴得:'(1)120g a b =++= ∴21b a =--(2)由(1)得22(21)1'()ax a x g x x -++=(21)(1)ax x x--=∵函数()g x 的定义域为(0,)+∞∴当0a ≤时,210ax -<在(0,)+∞上恒成立, 由'()0g x >得01x <<,由'()0g x <得1x >, 即函数()g x 在(0,1)上单调递增,在(1,)+∞单调递减; 当0a >时,令'()0g x =得1x =或12x a=, 若112a <,即12a >时,由'()0g x >得1x >或102x a <<,由'()0g x <得112x a<<,即函数()g x 在1(0,)2a ,(1,)+∞上单调递增,在1(,1)2a单调递减;若112a >,即102a <<时,由'()0g x >得12x a>或01x <<,由'()0g x <得112x a<<, 即函数()g x 在(0,1),1(,)2a +∞上单调递增,在1(1,)2a单调递减;若112a =,即12a =时,在(0,)+∞上恒有'()0g x ≥, 即函数()g x 在(0,)+∞上单调递增,综上得:当0a ≤时,函数()g x 在(0,1)上单调递增,在(1,)+∞单调递减; 当102a <<时,函数()g x 在(0,1)单调递增,在1(1,)2a 单调递减;在1(,)2a+∞上单调递增;当12a =时,函数()g x 在(0,)+∞上单调递增, 当12a >时,函数()g x 在1(0,)2a 上单调递增,在1(,1)2a单调递减;在(1,)+∞上单调递增.(3)证法一:由(2)知当1a =时,函数2()ln 3g x x x x =+-在(1,)+∞单调递增,2ln 3(1)2x x x g ∴+-≥=-,即2ln 32(1)(2)x x x x x ≥-+-=---,令*11,x n N n =+∈,则2111ln(1)n n n+>-, 2222111111111111ln(1)ln(1)ln(1)...ln(1)...123112233n n n∴++++++++>-+-+-++-2222111111111111ln[(1)(1)(1)...(1)]...123112233n n n∴++++++>-+-+-++-即()211ln 1ni i n i=-+>∑ 【证法二:构造数列{}n a ,使其前n 项和ln(1)n T n =+, 则当2n ≥时,111ln()ln(1)n n n n a T T n n-+=-==+, 显然1ln 2a =也满足该式, 故只需证221111ln(1)n n n n n-+>=- 令1x n=,即证2ln(1)0x x x +-+>,记2()ln(1)h x x x x =+-+,0x > 则11(21)'()12120111x x h x x x x x x +=-+=-+=>+++,()h x 在(0,)+∞上单调递增,故()(0)0h x h >=,∴221111ln(1)n n n n n -+>=-成立,2222111111111111ln(1)ln(1)ln(1)...ln(1)...123112233n n n∴++++++++>-+-+-++-即()211ln 1ni i n i =-+>∑ 】 【证法三:令211()ln(1)i ni i n n i ϕ==-=+-∑,则2(1)()ln(2)ln(1)(1)n n n n n n ϕϕ+-=+--++2111ln(1)11(1)n n n =+-++++ 令11,1x n =++则(1,2]x ∈,*11,,1x n N n =-∈+ 记22()ln (1)(1)ln 32h x x x x x x x =--+-=+-+∵1(21)(1)()230x x h x x x x--'=+-=>∴函数()h x 在(1,2]单调递增, 又(1)0,(1,2],()0,h x h x =∴∈>当时即(1)()0n n ϕϕ+->, ∴数列()n ϕ单调递增,又(1)ln 20ϕ=>,∴()211ln 1ni i n i =-+>∑ 】 16.(广东省江门市2013年高考模拟考试(即一模)数学(理)试题 )已知x a a x a x x f ln )()12(21)(22+++-=(0>x ,a 是常数),若对曲线)(x f y =上任意一点) , (00y x P 处的切线)(x g y =,)()(x g x f ≥恒成立,求a 的取值范围.江门市2013年高考模拟考【答案】解:依题意,xaa a x x f +++-=2/)12()()(00x f y =,曲线)(x f y =在点) , (00y x P 处的切线为))((00/0x x x f y y -=- ,即))((00/0x x x f y y -+=,所以))(()(00/0x x x f y x g -+= 直接计算得)1)(ln ()12(21)(002200-++++--=x x x a a x a x x x x g , 直接计算得)()(x g x f ≥等价于0)1)(ln ()(2100220≥+-++-x xx x a a x x 记)1)(ln ()(21)(00220+-++-=x xx x a a x x x h ,则 )1)(()11)(()()(020020/xx aa x x x x a a x x x h +--=-++-=若02≤+a a ,则由0)(/=x h ,得0x x = ,且当00x x <<时,0)(/<x h ,当0x x >时,0)(/>x h ,所以)(x h 在0x x =处取得极小值,从而也是最小值,即0)()(0=≥x h x h ,从而)()(x g x f ≥恒成立 .若02>+a a ,取a a x +=20,则0)1)(()(020/≥+--=xx aa x x x h 且当01x x ≠时0)(/>x h ,)(x h 单调递增 ,所以当00x x <<时,0)()(0=<x h x h ,与)()(x g x f ≥恒成立矛盾,所以02≤+a a ,从而a 的取值范围为01≤≤-a17.(广东省海珠区2013届高三上学期综合测试一数学(理)试题)(本小题满分14分)已知函数()()2ln f x x a x x =+--在0x =处取得极值.(1)求实数a 的值;(2)若关于x 的方程()52f x x b =-+在区间[]0,2上恰有两个不同的实数根,求实数b 的取值范围;(3)证明:对任意的正整数n ,不等式()23412ln 149n n n+++++>+ 都成立. 【答案】(本小题主要考查导数、函数的单调性、不等式、最值、方程的根等知识,考查化归转化、分类讨论、数形结和的数学思想方法,以及抽象概括能力、运算求解能力、创新能力和综合应用能力) 解:(1)()'121,f x x x a=--+ 0x = 时,()f x 取得极值, ()'00,f ∴=故12010,0a-⨯-=+解得 1.a =经检验1a =符合题意 (2)由1a =知()()2ln 1,f x x x x =+--由()52f x x b =-+,得()23ln 10,2x x x b +-+-= 令()()23ln 1,2x x x x b ϕ=+-+-则()52f x x b =-+在区间[]0,2上恰有两个不同的实数根等价于()0x ϕ=在区间[]0,2上恰有两个不同的实数根()()()()'451132,1221x x x x x x ϕ-+-=-+=++当[]0,1x ∈时,()'0x ϕ>,于是()x ϕ在[)0,1上单调递增; 当(]1,2x ∈时,()'0x ϕ<,于是()x ϕ在(]1,2上单调递减依题意有()()()()()0031ln 111022ln 12430b b b ϕϕϕ=-≤⎧⎪⎪=+-+->⎨⎪⎪=+-+-≤⎩,解得,1ln 31ln 2.2b -≤<+(3) ()()2ln 1f x x x x =+--的定义域为{}1x x >-,由(1)知()()()'231x x f x x -+=+,令()'0fx =得,0x =或32x =-(舍去), ∴当10x -<<时, ()'0f x >,()f x 单调递增;当0x >时, ()'0fx <,()f x 单调递减.()0f ∴为()f x 在()1,-+∞上的最大值. ()()0f x f ∴≤,故()2ln 10x x x +--≤(当且仅当0x =时,等号成立)对任意正整数n ,取10x n=> 得,2111ln 1,n n n⎛⎫+<+⎪⎝⎭ 211ln n n n n++⎛⎫∴< ⎪⎝⎭.故()23413412ln 2ln ln ln ln 14923n n n n n++++++>++++=+ . 18.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)已知二次函数()21fx x a x m =+++,关于x的不等式()()2211f x m x m <-+-的解集为()1m m ,+,其中m 为非零常数.设()()1f xg x x =-.(1)求a 的值;(2)k k (∈R )如何取值时,函数()x ϕ()g x =-()1k x ln -存在极值点,并求出极值点;(3)若1m =,且x 0>,求证:()()1122nn ng x g x n (⎡⎤+-+≥-∈⎣⎦N *). 【答案】(本小题主要考查二次函数、一元二次不等式、一元二次方程、函数应用、均值不等式等基础知识,考查数形结合、函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识) (1)解:∵关于x 的不等式()()2211fx m x m <-+-的解集为()1m m ,+,即不等式()22120x a m x m m ++-++<的解集为()1m m ,+,∴()2212x a m x m m ++-++=()()1x mx m ---.∴()2212x a m x m m ++-++=()()2211x m x m m -+++.∴()1221a m m +-=-+. ∴2a =-(2)解法1:由(1)得()()1f xg x x =-()221111x x m m x x x -++==-+--.∴()()xg x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞.∴()1x ϕ'=-()211mkx x ---()()22211x k x k m x -++-+=- 方程()2210x k x k m -++-+=(*)的判别式()()222414Δk k m k m =+--+=+①当0m >时,0Δ>,方程(*)的两个实根为11x ,=<21x ,=>则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>. ∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x②当0m <时,由0Δ>,得k <-k >若k <-,则11x ,=<21x ,=<故x ∈()1,+∞时,()0x ϕ'>∴函数()x ϕ在()1,+∞上单调递增. ∴函数()x ϕ没有极值点若k >时,1212k x ,+-=>2212k x ,++=>则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x ,有极大值点1x综上所述, 当0m >时,k 取任意实数, 函数()x ϕ有极小值点2x ; 当0m <时,k >函数()x ϕ有极小值点2x ,有极大值点1x (其中122k x +-=, 222k x ++=解法2:由(1)得()()1f xg x x =-()221111x x m m x x x -++==-+--.∴()()xg x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞.∴()1x ϕ'=-()211mkx x ---()()22211x k x k m x -++-+=- 若函数()()x g x ϕ=-()1k x ln -存在极值点等价于函数()x ϕ'有两个不等的零点,且至少有一个零点在()1,+∞上 令()x ϕ'()()22211x k x k m x -++-+=-0=,得()221x k x k m -++-+0=, (*)则()()2224140Δkk m k m =+--+=+>,(**)方程(*)的两个实根为1x =2x =设()h x=()221x k x k m -++-+,①若1211x x ,<>,则()10h m =-<,得0m >,此时,k 取任意实数, (**)成立.则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>. ∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x②若1211x x ,>>,则()10212h m k ,.⎧=->⎪⎨+>⎪⎩得00m k ,.⎧<⎨>⎩又由(**)解得k >k <-故k >则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x ,有极大值点1x综上所述, 当0m >时,k 取任何实数, 函数()x ϕ有极小值点2x ; 当0m <时,k >函数()x ϕ有极小值点2x ,有极大值点1x (其中122k x +-=, 222k x ++=(2)证法1:∵1m =, ∴()g x=()111x x -+-.∴()()1111nnn n n g x g x x x x x ⎛⎫⎛⎫⎡⎤+-+=+-+ ⎪ ⎪⎣⎦⎝⎭⎝⎭ 112212111111n n n n n n n n n n n n n x C x C x C x C x x x x x x ----⎛⎫=+⋅+⋅++⋅+-+ ⎪⎝⎭ 122412n n n n n n n C x C x C x ----=+++令T 122412n n n nn n n C xC x C x ----=+++ , 则T 122412n nn n n n n n C xC x C x -----=+++122412n n n n n n n C x C x C x ----=+++ .∵x 0>, ∴2T ()()()122244122n n n n n n n n n n C xx C x x C x x -------=++++++≥121n nn n C C C -⋅+⋅++⋅ ()1212n n n n C C C -=+++()012102n n n n n n n n n n C C C C C C C -=+++++--()222n =-∴22n T ≥-,即()()1122nn n g x g x ⎡⎤+-+≥-⎣⎦证法2:下面用数学归纳法证明不等式11nn n x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22n ≥-.① 当1n =时,左边110x x x x ⎛⎫⎛⎫=+-+= ⎪ ⎪⎝⎭⎝⎭,右边1220=-=,不等式成立;② 假设当n k =k (∈N *)时,不等式成立,即11kk k x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22k≥-,则 11111k k k x x x x +++⎛⎫⎛⎫+-+ ⎪⎪⎝⎭⎝⎭11111111kk k k k k k x x x x x x x x x x x x ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥=++-++++-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111kk k x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=++-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦111k k x x --⎛⎫+ ⎪⎝⎭()22k ≥⋅-+122k +=-也就是说,当1n k =+时,不等式也成立.由①②可得,对∀n ∈N *,()()1122nn n g x g x ⎡⎤+-+≥-⎣⎦都成立19.(广东省潮州市2013届高三上学期期末教学质量检测数学(理)试题)二次函数()f x 满足(0)(1)0f f ==,且最小值是14-.(1)求()f x 的解析式; (2)设常数1(0,)2t ∈,求直线l :2y t t =-与()f x 的图象以及y 轴所围成封闭图形的面积是()S t ;(3)已知0m ≥,0n ≥,求证:211()()24m n m n +++≥【答案】解:(1)由二次函数()f x 满足(0)(1)0f f ==.设()(1)(0)f x ax x a =-≠,则221()()24af x ax ax a x =-=--又()f x 的最小值是14-,故144a -=-.解得1a =.∴2()f x x x =-;(2)依题意,由22x x t t -=-,得x t =,或1x t =-.(1t - t) 由定积分的几何意义知3232222002()[()()]()|3232ttx x t t S t x x t t dx t x tx =---=--+=-+⎰(3)∵()f x 的最小值为14-,故14m -,14n -∴12m n +-≥-,故12m n ++≥∵1()02m n +,102m n ++, ∴11()()22m n m n +++=∴211()()24m n m n +++≥20.(2013年广东省佛山市普通高中高三教学质量检测(一)数学(理)试题)设()x g x e =,()[(1)]()f x g x a g x =λ+-λ-λ,其中,a λ是常数,且01λ<<.(1)求函数()f x 的极值;(2)证明:对任意正数a ,存在正数x ,使不等式11x e a x--<成立; (3)设12,λλ∈+R ,且121λλ+=,证明:对任意正数21,a a 都有:12121122a a a a λλ≤λ+λ.【答案】解析:(1)∵()[(1)]()f x g x a g x λλλλ'''=+--,由()0f x '>得,[(1)]()g x a g x λλ''+->,∴(1)x a x λλ+->,即(1)()0x a λ--<,解得x a <, 故当x a <时,()0f x '>;当x a >时,()0f x '<; ∴当x a =时,()f x 取极大值,但()f x 没有极小值(2)∵111x x e e x x x----=, 又当0x >时,令()1xh x e x =--,则()10xh x e '=->, 故()(0)0h x h >=,因此原不等式化为1x e x a x--<,即(1)10x e a x -+-<, 令()(1)1x g x e a x =-+-,则()(1)xg x e a '=-+, 由()0g x '=得:1xe a =+,解得ln(1)x a =+,当0ln(1)x a <<+时,()0g x '<;当ln(1)x a >+时,()0g x '>. 故当ln(1)x a =+时,()g x 取最小值[ln(1)](1)ln(1)g a a a a +=-++,令()ln(1),01a s a a a a =-+>+,则2211()0(1)1(1)a s a a a a '=-=-<+++. 故()(0)0s a s <=,即[ln(1)](1)ln(1)0g a a a a +=-++<.因此,存在正数ln(1)x a =+,使原不等式成立(3)对任意正数12,a a ,存在实数12,x x 使11x a e =,22x a e =, 则121122112212xx x x a a e ee λλλλλλ+=⋅=,12112212x x a a e e λλλλ+=+,原不等式12121122a a a a λλλλ≤+11221212x x x x e e e λλλλ+⇔≤+,11221122()()()g x x g x g x λλλλ⇔+≤+由(1)()(1)()f x g a λ≤-恒成立,故[(1)]()(1)()g x a g x g a λλλλ+-≤+-, 取1212,,,1x x a x λλλλ===-=, 即得11221122()()()g x x g x g x λλλλ+≤+, 即11221212x x x x e e e λλλλ+≤+,故所证不等式成立21.(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)已知函数321,(1)()(1),(1)x x ax bx x f x c e x -⎧-++<⎪=⎨-≥⎪⎩在32,0==x x 处存在极值. (1)求实数b a ,的值;(2)函数)(x f y =的图像上存在两点B A ,使得AOB ∆是以坐标原点O 为直角顶点的直角三角形,且斜边AB 的中点在y 轴上,求实数c 的取值范围; (3)当e c =时,讨论关于x 的方程()f x kx =()k R ∈的实根的个数.【答案】解(1)当1x <时,2()32f x x ax b '=-++.因为函数f(x)在20,3x x ==处存在极值,所以(0)0,2()0,3f f '=⎧⎪⎨'=⎪⎩解得1,0a b ==. (2) 由(1)得321,(1),()(1),(1),x x x x f x c e x -⎧-+<⎪=⎨-≥⎪⎩根据条件知A,B 的横坐标互为相反数,不妨设32(,),(,()),(0)A t t t B t f t t -+>.若1t <,则32()f t t t =-+,由AOB ∠是直角得,0OA OB ⋅= ,即23232()()0t t t t t -++-+=,即4210t t -+=.此时无解;若1t ≥,则1()(1)t f t c e -=-. 由于AB 的中点在y 轴上,且AOB ∠是直角,所以B 点不可能在x 轴上,即1t ≠. 由0OA OB ⋅= ,即2321()(1)t t t t c e --++⋅-=0,即()11(1)1t c t e -=+-..因为函数()1(1)1t y t e -=+-在1t >上的值域是(0,)+∞,所以实数c 的取值范围是(0,)+∞.(3)由方程()f x kx =,知32,(1),(1)x x x x kx e e x ⎧-+<⎪=⎨-≥⎪⎩,可知0一定是方程的根,所以仅就0x ≠时进行研究:方程等价于2,(10),,(1).x x x x x k e e x x ⎧-+<≠⎪=⎨-≥⎪⎩且构造函数2,(10),(),(1),x x x x x g x e e x x⎧-+<≠⎪=⎨-≥⎪⎩且对于10x x <≠且部分,函数2()g x x x =-+的图像是开口向下的抛物线的一部分, 当12x =时取得最大值14,其值域是1(,0)(0,]4-∞ ; 对于1x ≥部分,函数()x e e g x x -=,由2(1)()0x e x e g x x-+'=>,知函数()g x 在()1,+∞上单调递增.所以,①当14k >或0k ≤时,方程()f x kx =有两个实根; ②当14k =时,方程()f x kx =有三个实根; ③当104k <<时,方程()f x kx =有四个实根.22.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))已知a <2,(1) 求f(x)的单调区间; (2)若存在x 1∈[e,e2],使得对任意的x 2∈[—2,0],f (x 1)<g(x 2)恒成立,求实数a 的取值范围.【答案】23.(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))定义(,)|||ln |x x y e y y x y ρ=---,其中,x R y R +∈∈.(1)设0a >,函数()(,)f x x a ρ=,试判断()f x 的定义域内零点的个数; (2)设0a b <<,函数()(,)(,)F x x a x b ρρ=-,求()F x 的最小值; (3)记(2)中最小值为(,)T a b ,若{}n a 是各项均为正数的单调递增数列,证明:1111(,)()ln 2nii n i T a aa a ++=<-∑.【答案】24.(广东省韶关市2013届高三4月第二次调研测试数学理试题)设函数32()()f x ax a b x bx c =-+++其中0,,a b c R ≥∈(1)若1()3f '=0,求()f x 的单调区间;(2)设M 表示'(0)f 与'(1)f 两个数中的最大值,求证:当0≤x ≤1时,|()f x '|≤M .【答案】设函数32()()f x ax a b x bx c =-+++其中0,,a b c R ≥∈(1)若1()3f '=0,求()f x 的单调区间(2)设M 表示'(0)f 与'(1)f 两个数中的最大值,求证:当0≤x ≤1时,|()f x '|≤M . 解:(1)由1()3f '=0,得a =b .当0a =时,则0b =,()f x c =不具备单调性 故f (x )= ax 3-2ax 2+ax +c .由()f x '=a (3x 2-4x +1)=0,得x 1=13,x 2=1列表:由表可得,函数f (x )的单调增区间是(-∞,13)及(1,+∞) .单调减区间是1[,1]3(2)当0a =时,()f x '=2bx b -+ 若0b = ()0f x '=,若0b >,或0b <,()f x '在[0,1]是单调函数,'(0)(1)f f '-=≤()f x '≤(0)f ',或'(1)f -=(0)f '≤()f x '≤(1)f '所以,()f x '≤M当0a >时,()f x '=3ax 2-2(a +b )x +b =3222()33a b a b aba x a a++---. ①当1,033a b a b a a++≥或≤时,则()f x '在[0,1]上是单调函数,所以(1)f '≤()f x '≤(0)f ',或(0)f '≤()f x '≤(1)f ',且(0)f '+(1)f '=a >0.所以M -()f x '<≤M②当013a ba +<<,即-a <b <2a ,则223a b ab a +--≤()f x '≤M . (i) 当-a <b ≤2a 时,则0<a +b ≤32a. 所以 (1)f '223a b ab a +--=22223a b ab a --=223()3a a b a -+≥214a >0.所以 M -()f x '<≤M (ii) 当2a <b <2a 时,则()(2)2a b b a --<0,即a 2+b 2-52ab <0. 所以223a b ab b a +--=2243ab a b a -->22523ab a b a-->0,即(0)f '>223a b ab a +-.所以 M -()f x '<≤M综上所述:当0≤x ≤1时,|()f x '|≤M25.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)已知函数2(),()ln f x x ax g x x =-=.(1)若()()f x g x ≥对于定义域内的任意x 恒成立,求实数a 的取值范围; (2)设()()()h x f x g x =+有两个极值点12,x x ,且11(0,)2x ∈,证明:123()()ln 24h x h x ->-; (3)设1()()()2ax r x f x g +=+对于任意的(1,2)a ∈,总存在01[,1]2x ∈,使不等式2()(1)r x k a >- 成立,求实数k 的取值范围.【答案】解析:(Ⅰ)由题意:)()(x g x f ≥⇔≥-ax x 2x ln ,)0(>x分离参数a 可得:)0(ln >-≤x xx x a设x x x x ln )(-=φ,则22/1ln )(x x x x -+=φ由于函数2x y =,x y ln =在区间),0(+∞上都是增函数,所以函数1ln 2-+=x x y 在区间),0(+∞上也是增函数,显然1=x 时,该函数值为0 所以当)1,0(∈x 时,0)(/<x ϕ,当),1(+∞∈x 时,0)(/>x ϕ所以函数)(x φ在)1,0(∈x 上是减函数,在),1(+∞∈x 上是增函数 所以1)1()(min ==φφx ,所以1)(min =≤x a φ即]1,(-∞∈a(Ⅱ)由题意知道:x ax x x h ln )(2+-=,且)0(,12)(2|>+-=x x ax x x h所以方程)0(0122>=+-x ax x 有两个不相等的实数根21,x x ,且)21,0(1∈x , 又因为,2121=x x 所以),1(2112+∞∈=x x ,且)2,1(,122=+=i x ax i i而)ln ()()(112121x ax x x h x h +-=-)ln (2222x ax x +--]ln )12([12121x x x ++-=]ln )12([22222x x x ++--212122lnx x x x +-=22222221ln )21(x x x x +-=2222222ln 41x x x --=,)1(2>x设)1(,2ln 41)(222≥--=x x x x x u ,则02)12()(322/≥-=x x x u所以2ln 43)1()(-=>u x u ,即2ln 43)()(21->-x h x h(Ⅲ))21()()(ax g x f x r ++=21ln2++-=ax ax x 所以12)(|++-=ax a a x x r 12222++-=ax x x a ax 1)22(22+--=ax a a x ax 因为(1,2)a ∈,所以21212212222=-≤-=-a a a a 所以当),21(+∞∈x 时,)(x r 是增函数,所以当01[,1]2x ∈时, 21ln1)1()(max 0++-==a a r x r ,(1,2)a ∈所以,要满足题意就需要满足下面的条件:)1(21ln12a k a a ->++-,令)1(21ln 1)(2a k a a a --++-=ϕ,(1,2)a ∈即对任意(1,2)a ∈,)1(21ln1)(2a k a a a --++-=ϕ0>恒成立 因为)122(11222111)(2/-++=+-+=+++-=k ka a aa a ka ka ka a a ϕ分类讨论如下:(1)若0=k ,则1)(/+-=a aa ϕ,所以)(a ϕ在)2,1(∈a 递减,此时0)1()(=<ϕϕa 不符合题意(2)若0<k ,则)121(12)(/+-+=k a a ka a ϕ,所以)(a ϕ在)2,1(∈a 递减,此时0)1()(=<ϕϕa 不符合题意.(3)若0>k ,则)121(12)(/+-+=k a a ka a ϕ,那么当1121>-k 时,假设t 为2与121-k中较小的一个数,即}121,2min{-=k t ,则)(a ϕ在区间})121,2min{,1(-k 上递减,此时0)1()(=<ϕϕa 不符合题意.综上可得⎪⎩⎪⎨⎧≤->11210k k 解得41≥k ,即实数k 的取值范围为),41[+∞26.(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))已知函数32(),()ln ,(0)f x x x bx g x a x a =-++=>.(1)若()f x 存在极值点,求实数b 的取值范围;(3)当b=0时,令(),1()(),1f x x F xg x x <⎧=⎨≥⎩.P(11,()x F x ),Q(22,()x F x )为曲线y=()F x 上的两动点,O 为坐标原点,请完成下面两个问题:①能否使得POQ 是以O 为直角顶点的直角三角形,且斜边中点在y 轴上?请说明理由. ②当1<12x x <时,若存在012(,)x x x ∈,使得曲线y=F(x)在x=x 0处的切线l ∥PQ, 求证:1202x x x +<【答案】27.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)设函数2()(1)n n f x x x =-在1[,1]2上的最大值为n a (1,2,n = ).(1)求12,a a 的值;(2)求数列{}n a 的通项公式;(3)证明:对任意*n N ∈(2n ≥),都有21(2)n a n ≤+成立.【答案】解:(1)解法1:∵121'()(1)2(1)(1)[(1)2]n n n n f x nx x x x x x n x x --=---=---当1n =时,1'()(1)(13)f x x x =--当1[,1]2x ∈时,1'()0f x ≤,即函数1()f x 在1[,1]2上单调递减, ∴1111()28a f ==, 当2n =时,2'()f x 2(1)(12)x x x =--当1[,1]2x ∈时,2'()0f x ≤,即函数2()f x 在1[,1]2上单调递减, ∴2211()216a f ==【解法2:当1n =时,21()(1)f x x x =-,则21'()(1)2(1)(1)(13)f x x x x x x =---=-- 当1[,1]2x ∈时,1'()0f x ≤,即函数1()f x 在1[,1]2上单调递减,∴1111()28a f ==, 当2n =时,222()(1)f x x x =-,则222'()2(1)2(1)f x x x x x =---2(1)(12)x x x =--当1[,1]2x ∈时,2'()0f x ≤,即函数2()f x 在1[,1]2上单调递减,∴2211()216a f ==】 (2)令'()0n f x =得1x =或2n x n =+,∵当3n ≥时,1[,1]22n n ∈+且当1[,)22nx n ∈+时'()0n f x >,当(,1]2nx n ∈+时'()0n f x <, 故()n f x 在2nx n =+处取得最大值,即当3n ≥时,22()()()222n n n n n a f n n n ==+++24(2)nn n n +=+,------(*) 当2n =时(*)仍然成立,综上得21,184.2(2)n nn n a n n n +⎧=⎪⎪=⎨⎪≥⎪+⎩(3)当2n ≥时,要证2241(2)(2)n n n n n +≤++,只需证明2(1)4n n +≥∵01222(1)()()n nnn n n C C C nnn+=+++ 2(1)41212142n n n-≥++⋅≥++=∴对任意*n N ∈(2n ≥),都有21(2)n a n ≤+成立 28.(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))已知函数2()1f x a bx x =++在3x =处的切线方程为58y x =-. (1)求函数()f x 的解析式;(2)若关于x 的方程()x f x k e =恰有两个不同的实根,求实数k 的值; (3)数列{}n a 满足12(2)a f =,1(),n n a f a n N *+=∈, 求12320131111S a a a a =+++⋅⋅⋅⋅+的整数部分.惠州市2013届高三第一次模拟考【答案】解: (1) f'(x)=2ax+b ,依题设,有`(3)5(3)7f f =⎧⎨=⎩,即659317a b a b +=⎧⎨++=⎩,解得11a b =⎧⎨=-⎩2()=1f x x x ∴-+(2)方程()=k x f x e ∴,即21k xx x e -+=,得2k (1)xx x e -=-+, 记2F(x)(1)xx x e -=-+,则22F'(x)=(21)(1)(32)(1)(2)x x x x x e x x e x x e x x e -------+=--+=---令F'(x)=0,得121,2x x ==当x 变化时,F'(x)、F(x)的变化情况如下表:∴当1x =时,F(x)取极小值1e ;当2x =时,F(x)取极大值23e作出直线y x =和函数2F(x)(1)xx x e -=-+的大致图象,可知当1k e =或23k e =时,它们有两个不同的交点,因此方程()x f x k e =恰有两个不同的实根,(3) 12(2)3a f ==,得1312a >>,又21()1n n n n a f a a a +==-+.22121(1)0n n n n n a a a a a +∴-=-+=->,11n n a a +∴>>由211n n n a a a +=-+,得11=(1)n n n a a a +--,111111(1)1n nnnnaa a a a+∴==----,即111111nnn aa a+=---122013122320132014111111111()()()111111S a aaa aaaaa∴=+++=-+-++-------12014201411111122a aa=-=-<---又1211242637211S a a>++==>即12S <<,故S 的整数部分为. l4分。
2013揭阳精编模拟试题(理)
dcba FEOD'C'B'A'D C BAFED CBA揭阳市2013年精编模拟试题数学(理科)(本试题仅供我市高三老师参考!因时间仓促,且能力水平有限,错漏之处,请老师们改后上传,不胜感激!----黄开明)一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数(1)()n z i n N *=+∈,则使得z 为实数的最小n 值为A.0B.2C.3D.4 2.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S =A.7B.15C.20D.25 3. 在△ABC 中,“60A >”是“sin 2A >”的 A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 4.下列函数在其定义域内,既是奇函数又存在零点的是A .()1x f x e =-B .1()f x x x -=+C .1()f x x x -=-D .()|sin |f x x =- 5.如图(1),已知正方形ABCD 的边长为2,E 为CD 的中点,AE 与BD 交于 点F ,则FD DE ⋅= A.13-B. 23-C.13 D 236.如图(2),记正方体''''ABCD A B C D -的中心为O ,面 图(1)''B BCC 的中心为E ,F 为''B C 的中点,则空间四边形'D OEF 在该正方体的各个面上的正投影可能是图中的A.a 、b 、dB. a 、b 、cC. b 、c 、dD. a 、b 、c 、d7.已知椭圆221169x y+=的左右焦点分别为1F 、2F ,点 P 在椭圆上,若P 、1F 、2F ,是一个直角三角形的顶点,则点P 到x 轴的距离为 图(2)A.94 B.7C.94或7D.948. 设集合{1,2,3,,7}A =L ,{4,5,6,7}B =,则满足,C A C B φ⊆≠I 的集合C 的个数为 A.8 B.56 C. 120 D. 128二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9-13题) 9.函数12y x =的值域为 .10.已知2sin 2,(0,)3ααπ=-∈, ,则cos sin αα-= .11.若变量x,y 满足约束条件13215x y x x y ≥⎧⎪≥⎨⎪+≤⎩则3log (2)w x y =+的最大值为 .12.直线y=ex+b(e 为自然对数的底数)与两个函数(),()ln x f x e g x x ==的图象至多有一个公共点,则实数b 的取值范围是__________. 13. 如图(3),点121,,(2)m A A A m -≥将区间[0,l]m 等分,记直线0,1,0x x y === 和曲线x y e =所围成的区域为Ω,图中m 个矩形构成的阴影区域为1Ω,在Ω中 图(3) (二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,已知直线(sin cos )m ρθθ-=(θ为参数)与曲线22(cos 2sin )30ρρθθ--+=相切,则实数m =______,15.(几何证明选讲选做题) 如图(4),PA 与圆O 相切于A ,不过圆心O线PCB 与直径AE 相交于D 点.已知∠BPA =030,2=AD ,1=PC ,则圆O 的半径等于 . 7 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()sin cos f x x a x =-的一个零点是π4. (1)求实数a 的值;(2)设()()()cos g x f x f x x x =⋅-+,求()g x 的单调递增区间.17.(本小题满分12分)某地农民种植A 种蔬菜,每亩每年生产成本为7000元,A 种蔬菜每亩产量及价格受天气、市场双重影响,预计明年雨水正常的概率为23,雨水偏少的概率为13,若雨水正常,A 种蔬菜每亩产量为2000公斤,单价为6元/公斤的概率为14,单价为3元/公斤的概率为34,若雨水偏少,A BM E DCBAA 种蔬菜每亩产量为1500公斤,单价为6元/公斤的概率为23,单价为3元/公斤的概率为13。
2013年广东省高考数学理科真题文字版有详解
绝密★启用前试卷类型:A 2013年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟参考公式:台体的体积公式V=错误!未找到引用源。
(S1+S2+错误!未找到引用源。
)h,其中S1,S2分别表示台体的上、下底面积,h表示台体的高。
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M=∣x∣x2+2x=0,x∈R},N={x∣x2-2x=0,x∈R},则M∪N=A. {0}B. {0,2}C. {-2,0} D {-2,0,2}2.定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sinx中,奇函数的个数是A. 4B.3C. 2D.13.若复数z满足iz=2+4i,则在复平面内,z对应的点的坐标是A. (2,4)B.(2,-4)C. (4,-2) D(4,2)4.已知离散型随机变量X的分布列为1 2 3P则X的数学期望E(X)=A. 错误!未找到引用源。
B. 2C. 错误!未找到引用源。
D 3 5.某四棱太的三视图如图1所示,则该四棱台的体积是XA .4B .错误!未找到引用源。
C .错误!未找到引用源。
D .66.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是 A .若α⊥β,m α,nβ,则m ⊥ n B .若α∥β,m α,n β,则m ∥nC .若m ⊥ n ,m α,n β,则α⊥βD .若m α,m ∥n ,n ∥β,则α⊥β7.已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是A .错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
=1 B .错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
= 1C .错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
分类坐标系与参数方程
分类汇编20:坐标系与参数方程一、选择题 二、填空题1 .(广东省韶关市2013届高三第三次调研考试数学(理科)试题(word 版) )设M 、N 分别是曲线2sin 0ρθ+=和s ()42in πρθ+=上的动点,则M 、N 的最小距离是______【答案】1 [来源:]2 .(广东省茂名市实验中学2013届高三下学期模拟(二)测试数学(理)试题(详解))在极坐标系中,直线sin ρθ=与圆2cos ρθ=相交的弦长为____[来源:]【答案】3 .(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)(坐标系与参数方程选做题)已知曲线1l 的极坐标系方程为sin 4πρθ⎛⎫-= ⎪⎝⎭(0,ρ> 02)θπ≤≤,直线2l 的参数方程为{1222x ty t =-=+(为参数),若以直角坐标系的x 轴的非负半轴为极轴,则1l 与2l 的交点A 的直角坐标是____________【答案】解析:sin sin cos cos sin 1444y x πππρθρθρθ⎛⎫-=⇒-=⇒-= ⎪⎝⎭{12322x tx y y t =-⇒+==+,由3112x y x y x y +==⎧⎧⇒⎨⎨-==⎩⎩(1,2)A ⇒4 .(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))在极坐标系中,圆3cos ρθ=上的点到直线co s()13πρθ-=的距离的最大值是______.【答案】745 .(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)(坐标系与参数方程)在极坐标系中,设曲线1:2sin C ρθ=与2:2cos C ρθ=的交点分别为A B 、,则线段AB 的垂直平分线的极坐标方程为________________.【答案】sin 4πρθ⎛⎫+= ⎪⎝⎭(或1cos sin =+θρθρ)6 .(广东省汕头一中2013年高三4月模拟考试数学理试题 )(坐标系与参数方程选做题)在极坐标系中,极点到曲线22)4cos(=+θπρ的距离是_____________[来源:]【答案】7 .(广东省汕头市东厦中学2013届高三第三次质量检测数学(理)试题 )(坐标系与参数方程选做题)在极坐标系中,过圆6cos ρθ=的圆心,且垂直于极轴的直线的极坐标方程为________.【答案】cos 3ρθ=.8 .(广东省珠海一中等六校2013届高三第一次联考数学(理)试题)(坐标系与参数方程选做题) 在极坐标系中,直线ρsin(θ+π4)=2被圆ρ=4截得的弦长为__________.【答案】349 .(广东省肇庆市2013届高三上学期期末统一检测数学(理)试题)(坐标系与参数方程选做题)在极坐标系(),ρθ(0,02πρθ>≤<)中,曲线2sin ρθ=与2cos ρθ=的交点的极坐标为_____【答案】解析:4π⎛⎫⎪⎝⎭两式相除得tan 12sin44ππθθρ=⇒=⇒==,交点的极坐标为4π⎛⎫⎪⎝⎭10.(广东省湛江一中等“十校”2013届高三下学期联考数学(理)试题)已知抛物线C 的参数方程为⎩⎨⎧==ty t x 882(t 为参数),若斜率为1的直线经过抛物线C 的焦点,且与圆222(4)(0)x y r r -+=>相切,则半径r =________.[来源: 数理化网]【答案】211.(广东省深圳市南山区2013届高三上学期期末考试数学(理)试题)(坐标系与参数方程选做题)已知曲线C 的极坐标方程是6sin ρθ=,以极点为平面直角坐标系的原点,极轴为x 的正半轴,建立平面直角坐标系,直线l的参数方程是1(2x t y ⎧=-⎪⎨=⎪⎩为参数),则直线l 与曲线C 相交所得的弦的弦长为________. 【答案】412.(广东省汕头市东山中学2013届高三下学期入学摸底考试数学(理)试题)(坐标系与参数方程选做题)曲线1C :1co s sin x y θθ=+⎧⎨=⎩(θ为参数)上的点到曲线2C:12112x t y t⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数)上的点的最短距离为______【答案】1;13.(广东省汕头市东山中学2013届高三第二次模拟考试数学(理)试题(详解))(坐标系与参数方程选做题)过点(2,)3π且平行于极轴的直线的极坐标方程为__________.[来源:]【答案】sin ρθ=【解析】点(2,)3π的直角坐标为,∴过点平行于x 轴的直线方程为y =即极坐标方程为sin ρθ=14.(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)已知圆M:x 2+y 2-2x-4y+1=0,则圆心M 到直线43,31,x t y t =+⎧⎨=+⎩(t 为参数)的距离为______.[来源:]【答案】215.(广东省汕头市2013届高三上学期期末统一质量检测数学(理)试题)(坐标系与参数方程)在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,则直线21x t y t=--⎧⎨=-⎩(t 为参数)截圆22co s ρρθ+-3=0的弦长为____ 【答案】 416.(广东省汕头市2013届高三3月教学质量测评数学(理)试题)已知直线l 方程是22x t y t =+⎧⎨=-⎩(t 为参数),以坐标原点为极点.x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=2,则圆C 上的点到直线l 的距离最小值是___【答案】222- [来源:]17.(广东省梅州市2013届高三3月总复习质检数学(理)试题)(坐标系与参数方程选做题)在极坐标系中,圆ρ=2上的点到直线sin()6πρθ+=3的距离的最小值是____【答案】118.(广东省茂名市2013届高三第一次模拟考试数学(理)试题)(坐标系与参数方程选做题)已知曲线C 的参数方程为2cos sin x y θθ=+⎧⎨=⎩(θ为参数),则曲线C 上的点到直线3x -4y +4=0的距离的最大值为______________[来源:数理化网]【答案】3;19.(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))(坐标系与参数方程选做题)已知曲线1C :ρ=和曲线2C :cos()4πρθ+=,则1C 上到2C 的距离等于的点的个数为__________.【答案】3;将方程ρ=与cos()4πρθ+=化为直角坐标方程得222x y +=与20x y --=,知1C 为圆心在坐标原点,半径为,2C 为直线,因圆心到直线20x y --=,故满足条件的点的个数3n =.20.(广东省华附、省实、深中、广雅四校2013届高三上学期期末联考数学(理)试题)(坐标系与参数方程)在极坐标中,圆ρ =4cos θ 的圆心C 到直线 ρ sin (θ +π4)=2 2 的距离为 _*****_.【答案】答案: 2解:在直角坐标系中,圆:x 2+y 2=4x ,圆心C (2,0),直线:x +y =4,所以,所求为2.21.(广东省海珠区2013届高三上学期综合测试一数学(理)试题)(坐标系与参数方程选做题) 已知直线l的参数方程为1x y ⎧=⎪⎪⎨⎪=+⎪⎩ (t 为参数),圆C 的参数方程为cos 2sin x y θθ=+⎧⎨=⎩ (θ为参数), 则圆心C到直线l的距离为__________.【答案】22.(广东省广州市2013届高三调研测试数学(理)试题)(坐标系与参数方程选讲选做题)已知圆C 的参数方程为2x y c o s ,s i n ,θθ⎧=⎨=+⎩(θ为参数), 以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为1sin cos ρθρθ+=, 则直线l 截圆C所得的弦长是________.【答案】分析:圆C 的参数方程化为平面直角坐标方程为22(2)1x y +-=,直线l 的极坐标方程化为平面直角坐标方程为1x y +=,如右图所示,圆心到直线的距离2d ==,故圆C 截直线l 所得的弦长为=[来源:]23.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)(坐标系与参数方程选做题)在极坐标系中,定点32,2A π⎛⎫⎪⎝⎭,点B 在直线cos sin 0ρθθ+=上运动,当线段A B 最短时,点B 的极坐标为_______.【答案】1116,π⎛⎫⎪⎝⎭ 答案可以是:11126k k ,(ππ⎛⎫+∈ ⎪⎝⎭Z ).24.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))(坐标系与参数方程选做题)在直角坐标系x oy 中,曲线C 的参数方程是⎩⎨⎧=+=θθsin 2cos 22y x (θπθ],2,0[∈为参数),若以O 为极点,x轴正半轴为极轴,则曲线C 的极坐标方程是________.【答案】4cos ρθ= [来源:]25.(广东省韶关市2013届高三4月第二次调研测试数学理试题)(坐标系与参数方程选做题)在极坐标系中,过点π1,2A ⎛⎫-⎪⎝⎭引圆8sin ρθ=的一条切线,则切线长为______.【答案】3;26.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)直角坐标系xO y 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点,A B 分别在曲线12co s :sin x C y θθ=+⎧⎪⎨=⎪⎩(θ为参数)和曲线2:1C ρ=上,则||A B 的最大值为__________.【答案】527.(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))(坐标系与参数方程)在极坐标系(,)ρθ (02)θπ≤<中,曲线(cos sin )1ρθθ+=与(cos sin )1ρθθ-=-的交点的极坐标为_________.【答案】(1,)2π28.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)(坐标系与参数方程选做题)在极坐标系中,O 为极点,直线l 过圆C:s()4πρθ=-的圆心C,且与直线OC 垂直,则直线l 的极坐标方程为_________.【答案】把s()4πρθ=-化为直角坐标系的方程为2222x y x y +=+,圆心C 的坐标为(1,1),与直线OC 垂直的直线方程为20,x y +-=化为极坐标系的方程为cos sin 20ρθρθ+-=或co s()4πρθ-=29.(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))(坐标系与参数方程选做题)若直线的极坐标方程为cos()4πρθ-=,曲线C :1ρ=上的点到直线的距离为d ,则d 的最大值为_________.【答案】【解析】直线的直角坐标方程为60x y +-=,曲线C 的方程为221x y +=,为圆;d 的最大值为圆心到直线的距离加半径,即为max 11d =30.(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))(坐标系与参数方程选做题)在极坐标系中,已知点1,2A π⎛⎫⎪⎝⎭,点P 是曲线2sin 4cos ρθθ=上任意一点,设点P 到直线cos 10ρθ+=的距离为d ,则PA d +的最小值为______.【答案】31.(广东省潮州市2013届高三第二次模拟考试数学(理)试题)(坐标系与参数方程选做题)在极坐标系) , (θρ(πθ20<≤)中,直线4πθ=被圆θρsin 2=截得的弦的长是__________.【答案】2.。
广东省揭阳市2013年高中毕业班第二次高考模拟考数学(理科)-推荐下载
D. {0,1}
D.5
图1
4.要得到函数 y sin(2x ) 的图象,只要将函数 y sin 2x 的图象 4
A.向左平移 单位
4
C.向右平移 单位
8
5.已知命题 p : x R , cos x 5 ;命题 q : x R, x2 x 1 0 .则下列结论正确的是 4
此三棱柱的侧视图(又称左视图)的面积为
A.167.已知点源自A.18.已知平面区域
M
(
x,
y)
B. 2 3 C. 4 3
满足
{(
x 1,
x
y
2x y 2 0.
B.2
x,
y)
|
y
1
0
0,
y 4 x2
D. 8 3
若 ax y 的最小值为 3,则 a 的值为
(1)求角 A 的值;
(2)若 a 3 ,设角 B 的大小为 x, 用 x 表示 c ,并求 c 的取值范围.
17.(本小题满分 12 分)
某单位甲乙两个科室人数及男女工作人员分布情况见右表.现
采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两个 主 主
科室中共抽取 3 名工作人员进行一项关于“低碳生活”的调查.
C.[ 2
.
2
,1]
.
A
D.4
C
D.[ 2
C1 2
B1
主 主 a0主 a1主 a2主 a3主 a4主 a5
主 主 x0
i=1
v主 a5
i 5主
主主v
高三数学试题广东揭阳一中、潮州金山中学2013届高三上学期联考--理
高三数学试题广东揭阳一中、潮州金山中学2013届高三上学期联考--理广东省揭阳一中、潮州金山中学 2013届高三上学期联合摸底考试数学(理)试题一、选择题(本大题共8小题,每小题5分,共40分,每小题给出的四个选项中,只有一项是符合题目要求。
)1.若集合2{|23},{|1,},M x x N y y x x R M N=-<<==+∈I 则集合=A .(2,)-+∞B .(—2,3)C .[1,3)D .R2.设i 是虚数单位,复数12ai i +-为纯虚数,则实数a 的值为 A .2B .—2C .12-D .123.设310(),(6)[(5)]10x x f x f f x x -≥⎧=⎨+<⎩则f 的值为 A .8 B .7C .6D .54."0"m n >>是方程221mx ny +=表示焦点在y 轴上的椭圆”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.一个空间几何体的三视图如图所示,则该几何体的体积为 A .1 B .3C .6D .26.某程序框图如图所示,则该程序运行后输出的S的值为 A .1 B .12C .14D .187.在△ABC 中,三个内角A ,B ,C 所对的边为a,b,c ,且 222,90,cos cos ba ac c C A A C =-+-=︒=则A .14B .—14C .4D .—48.对于非空集合A ,B ,定义运算:{|,}A B x x A B x A B ⊕=∈∉U I 且,已知M={|},{|},x a x b N x c x d <<=<<其中a 、b 、c 、d 满足a+b=c+d,ab<cd<0,则M ⊕N=A .(a,d)(,)b c UB .(,][,)c a bd U C .(,)(,)c a b d U D .(,][,)a c d b U二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年广东省揭阳市高考数学二模试卷(理科)
一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)(2013•揭阳二模)已知全集U=R,,则∁U A=()
A.[0,+∞)B.(﹣∞,0)C.(0,+∞)D.(﹣∞,0]
考点:其他不等式的解法;补集及其运算.
专题:函数的性质及应用.
分析:求函数的定义域求得A,再利用补集的定义求得则∁U A.
解答:
解:集合A即函数y=的定义域,由2x﹣1≥0,求得x≥0,A=[0,+∞),
故∁U A=(﹣∞,0),
故选B.
点评:本题主要考查对数不等式的解法,求集合的补集,属于基础题.
2.(5分)(2013•揭阳二模)若(1+2ai)i=1﹣bi,其中a、b∈R,i是虚数单位,则|a+bi|=()A.B.C.D.
考点:复数求模;复数代数形式的乘除运算.
专题:计算题.
分析:首先进行复数的乘法运算,根据复数相等的充要条件,得到复数的实部和虚部分别相等,得到a,b的值,求出复数的模长.
解答:解:∵(1+2ai)i=1﹣bi,
∴i﹣2a=1﹣bi
∴﹣2a=1,b=﹣1
∴a=﹣,b=﹣1
∴|a+bi|=
故选C.
点评:本题考查复数的代数形式的乘除运算和复数的求模,本题解题的关键是求出复数中的字母系数,本题是一个基础题.
3.(5分)(2013•揭阳二模)已知点A(﹣1,5)和向量=(2,3),若,则点B的坐标为()
A.(7,4)B.(7,14)C.(5,4)D.(5,14)
考点:平面向量的坐标运算.
专题:平面向量及应用.
分析:
设B(x,y),由得(x+1,y﹣5)=(6,9),求得x、y的值,即可求得点B的坐
标.
解答:
解:设B(x,y),由得(x+1,y﹣5)=(6,9),
故有,解得,
故选D.
点评:本题主要考查两个向量的坐标形式的运算,属于基础题.
4.(5分)(2013•揭阳二模)在等差数列{a n}中,首项a1=0,公差d≠0,若a m=a1+a2+…+a9,则m的值为()
A.37 B.36 C.20 D.19
考点:数列的求和;等差数列.
专题:计算题;等差数列与等比数列.
分析:利用等差数列的通项公式可得a m=0+(m﹣1)d,利用等差数列前9项和的性质可得a1+a2+…+a9=9a5=36d,二式相等即可求得m的值.
解答:解:∵{a n}为等差数列,首项a1=0,a m=a1+a2+…+a9,
∴0+(m﹣1)d=9a5=36d,又公差d≠0,
∴m=37,
故选A.
点评:本题考查等差数列的通项公式与求和,考查等差数列性质的应用,考查分析与运算能力,属于中档题.
5.(5分)(2013•揭阳二模)一个棱长为2的正方体沿其棱的中点截去部分后所得几何体的三视图如图示,则该几何体的体积为()
A.7B.C.D.
考点:由三视图求面积、体积.
专题:计算题.
分析:通过三视图复原的几何体,利用三视图的数据求出几何体的体积即可.
解答:解:依题意可知该几何体的直观图如图示,其体积为正方体的体积去掉两个三棱锥的体积.即:
,
故选D.
点评:本题考查几何体与三视图的关系,考查空间想象能力与计算能力.
6.(5分)(2013•揭阳二模)已知函数,则y=f(x)的图象大致为()A.B.C.D.
考点:利用导数研究函数的单调性;函数的图象.
专题:计算题;函数的性质及应用.
分析:利用函数的定义域与函数的值域排除B,D,通过函数的单调性排除C,推出结果即可.
解答:
解:令g(x)=x﹣ln(x+1),则,
由g'(x)>0,得x>0,即函数g(x)在(0,+∞)上单调递增,
由g'(x)<0得﹣1<x<0,即函数g(x)在(﹣1,0)上单调递减,
所以当x=0时,函数g(x)有最小值,g(x)min=g(0)=0,
于是对任意的x∈(﹣1,0)∪(0,+∞),有g(x)≥0,故排除B、D,
因函数g(x)在(﹣1,0)上单调递减,则函数f(x)在(﹣1,0)上递增,故排除C,
故选A.
点评:本题考查函数的单调性与函数的导数的关系,函数的定义域以及函数的图形的判断,考查分析问题解决问题的能力.
7.(5分)(2013•揭阳二模)某市教育局人事部门打算将甲、乙、丙、丁四名应届大学毕业生安排到该市三所不同的学校任教,每所学校至少安排一名,其中甲、乙因属同一学科,不能安排在同一所学校,则不同的安排方法种数为()
A.18 B.24 C.30 D.36
考点:排列、组合及简单计数问题.
专题:计算题.
分析:间接法:先计算四名学生中有两名分在一所学校的种数共有•种,去掉甲乙被分在同一所学校的情况共有种即可.。