以太网定义(精)
以太网及TCPIP通俗理解
1 以太网------EtherNet:---------------------------参考图解以太网最早由Xerox(施乐)公司创建,于1980年DEC、lntel和Xerox三家公司联合开发成为一个标准。
以太网是应用最为广泛的局域网,包括标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)和10G(10Gbit/s)以太网,采用的是CSMA/CD访问控制法,它们都符合IEEE802.3。
IEEE 802.3标准IEEE802.3规定了包括物理层的连线、电信号和介质访问层协议的内容。
以太网是当前应用最普遍的局域网技术,它很大程度上取代了其他局域网标准。
如令牌环、FDDI和ARCNET。
历经100M以太网在上世纪末的飞速发展后,目前千兆以太网甚至10G以太网正在国际组织和领导企业的推动下不断拓展应用范围。
常见的802.3应用为:10M: 10base-T (铜线UTP模式)100M: 100base-TX (铜线UTP模式)100base-FX(光纤线)1000M: 1000base-T(铜线UTP模式)2 UIP协议:uIP由瑞典计算机科学学院(网络嵌入式系统小组)的Adam Dunkels 开发。
其源代码由C 语言编写,并完全公开,uIP 的最新版本是1.0 版本,本指南移植和使用的版本正是此版本。
uIP协议栈去掉了完整的TCP/IP中不常用的功能,简化了通讯流程,但保留了网络通信必须使用的协议,设计重点放在了IP/TCP/ICMP/UDP/ARP这些网络层和传输层协议上,保证了其代码的通用性和结构的稳定性。
由于uIP协议栈专门为嵌入式系统而设计,因此还具有如下优越功能:1)代码非常少,其协议栈代码不到6K,很方便阅读和移植。
2)占用的内存数非常少,RAM 占用仅几百字节。
3)其硬件处理层、协议栈层和应用层共用一个全局缓存区,不存在数据的拷贝,且发送和接收都是依靠这个缓存区,极大的节省空间和时间。
以太网概念和TCP
以太网概念和TCP/IP协议2010-09-25 10:03(1) 以太网:►1975年: 美国施乐(Xerox)公司的Palo Alto研究中心研制成功[METC76],该网采用无源电缆作为总线来传送数据帧,故以传播电磁波的“以太(Ether)”命名。
►1981年:美国施乐(Xerox)公司+数字装备公司(Digital)+英特尔(Intel)公司联合推出以太网(EtherNet)规约[ETHE80]►1982年:修改为第二版,DIX Ethernet V2因此:“以太网”应该是特指“DIX Ethernet V2”所描述的技术。
(2) IEEE802.3►80年代初期: 美国电气和电子工程师学会IEEE 802委员会制定出局域网体系结构, 即IEEE 802参考模型.IEEE 802参考模型相当于OSI模型的最低两层:►1983年:IEEE 802 委员会以美国施乐(Xerox)公司+数字装备公司(Digital)+英特尔(Intel)公司提交的DIX Ethernet V2为基础,推出了IEEE802.3►IEEE802.3又叫做具有CSMA/CD(载波监听多路访问/冲突检测)的网络。
CSMA/CD是IEEE802.3采用的媒体接入控制技术,或称介质访问控制技术。
因此: IEEE802.3 以“以太网”为技术原形,本质特点是采用CSMA/CD 的介质访问控制技术。
“以太网”与IEEE802.3略有区别。
但在忽略网络协议细节时, 人们习惯将IEEE802.3称为”以太网”。
与IEEE 802 有关的其它网络协议:IEEE 802.1—概述、体系结构和网络互连,以及网络管理和性能测量。
IEEE 802.2—逻辑链路控制LLC。
最高层协议与任何一种局域网MAC 子层的接口。
IEEE 802.3—CSMA/CD网络,定义CSMA/CD总线网的MAC子层和物理层的规范。
IEEE 802.4—令牌总线网。
以太网物理接口类型介绍与信号定义
以太网物理接口介绍一、以太网接口类型以太网接口常用有双绞线接口(俗称电口)和光纤接口(俗称光口)2种。
另外还有早期的同轴电缆接口。
下面是常用以太网接口的代号:10BASE2: 采用细同轴电缆接口的IEEE 802.3 10Mb/s物理层规格 (参见 IEEE 802.3 Clause 10.)10BASE5: 采用粗同轴电缆接口的IEEE 802.3 10Mb/s物理层规格 (参见 IEEE 802.3 Clause 8.)10BASE-F:采用光纤电缆接口的IEEE 802.3 10Mb/s物理层规格 (参见 IEEE 802.3 Clause 15.)10BASE-T:采用电话双绞线的IEEE 802.3 10Mb/s物理层规格 (参见 IEEE 802.3 Clause 14.)100BASE-FX: 采用两个光纤的IEEE 802.3 100Mb/s 物理层规格 (参见 IEEE 802.3 Clauses 24 and 26.)100BASE-T2: 采用两对3类线或更好的平衡线缆的IEEE 802.3 100 Mb/s 物理层规格 (参见 IEEE 802.3 Clause 32.)100BASE-T4: 采用四对3、4、5类线非屏蔽双绞线的IEEE 802.3 100 Mb/s 物理层规格 (参见 IEEE 802.3 Clause 23.)100BASE-TX: 采用两对5类非屏蔽双绞线或屏蔽双绞线的IEEE 802.3 100 Mb/s 物理层规格 (参见 IEEE 802.3 Clauses 24 and 25.) 1000BASE-CX: 1000BASE-X 在特制的屏蔽电缆传输的接口规格(参见 IEEE 802.3 Clause 39.)1000BASE-LX: 1000BASE-X 采用单模或多模长波激光器的规格(参见 IEEE 802.3 Clause 38.)1000BASE-SX: 1000BASE-X 采用多模短波激光器的规格(参见 IEEE 802.3 Clause 38.)1000BASE-T: 采用四对五类平衡电缆的1000 Mb/s 物理层规格 (参见 IEEE 802.3 Clause 40.)1.电口电口传输距离标准为100m,电口采用RJ-45接口。
以太网简要教程
以太网简要教程一、概述通常我们所说的以太网主要是指以下三种不同的局域网技术:以太网/IEEE 802.3—采用同轴电缆作为网络媒体,传输速率达到10Mbps;100Mbps以太网—又称为快速以太网,采用双绞线作为网络媒体,传输速率达到100Mbps;1000Mbps以太网—又称为千兆以太网,采用光缆或双绞线作为网络媒体,传输速率达到1000Mbps(1Gbps)以太网以其高度灵活,相对简单,易于实现的特点,成为当今最重要的一种局域网建网技术。
虽然其它网络技术也曾经被认为可以取代以太网的地位,但是绝大多数的网络管理人员仍然把将以太网作为首选的网络解决方案。
为了使以太网更加完善,解决所面临的各种问题和局限,一些业界主导厂商和标准制定组织不断的对以太网规范做出修订和改进。
也许,有的人会认为以太网的扩展性能相对较差,但是以太网所采用的传输机制仍然是目前网络数据传输的重要基础。
二、以太网工作原理以太网是由Xeros公司开发的一种基带局域网技术,使用同轴电缆作为网络媒体,采用载波多路访问和碰撞检测(CSMA/CD)机制,数据传输速率达到10Mbps。
虽然以太网是由Xeros公司早在70年代最先研制成功,但是如今以太网一词更多的被用来指各种采用CSMA/CD技术的局域网。
以太网被设计用来满足非持续性网络数据传输的需要,而IEEE802.3规范则是基于最初的以太网技术于1980年制定。
以太网版本2.0由Digital Equipment Corporation、Intel、和Xeros三家公司联合开发,与IEEE 802.3规范相互兼容。
太网结构示意图如下:以太网/IEEE 802.3通常使用专门的网络接口卡或通过系统主电路板上的电路实现。
以太网使用收发器与网络媒体进行连接。
收发器可以完成多种物理层功能,其中包括对网络碰撞进行检测。
收发器可以作为独立的设备通过电缆与终端站连接,也可以直接被集成到终端站的网卡当中。
以太网定义与传输方式
• 帧内数据为46~1500字节。
• 所以帧总长度为:
64(18+46)~1518(18+1500)
5.2.1 以太网802.2帧格式
• 以太网802.2帧中包含一个8字节的前导信息, 用来同步,告诉网上的接收节点现在有数据 输入,并且指明数据从何时开始,帧的长度 不包含前导信息的字节长度。
• 1975年,Xerox公司研制出第一个以太网。 • 70年代末,DEC、Intel、Xerox三家公司联合
开发第二代以太网。制定了10Mbps标准V1.0, 又称为DIX规范。
• 1982年DEC、Intel、Xerox这三家公司公布了 V2.0版,于1993年以其为基础制定了 IEEE802.3标准,IEEE将IEEE802.3标准提交 给ISO,ISO采纳并经修订后制定了局域网标准。
• 以太网802.2帧格式:
前导信息 目标地址 源地址 长度
数据
帧校验序列
8字节 6字节 6字节 2字节 46~1500字节 4字节
• 以太网802.2帧中的源MAC地址和目的MAC 地址的长度均为6个字节。源地址表明此帧 的发送节点,即此帧来自何处;目的地址表 明此帧的接收节点,即此帧去往何方。
• 数据域长度小于46字节时,需要在数据域后面加 填充位。
• 为什么帧长度是64~1518字节?
• 最大冲突检测时间为51.2微秒,最短帧长为64 字节。以保证帧完全发送前能检测到冲突。
A
B
A
B
(1) 在0时刻开始发送
A
B
(2) 大约在 - ℇ时刻快要到达 B
以太网规范
以太网规范以太网(Ethernet)是一种广泛应用于计算机网络的局域网技术。
它是由Xerox、Digital和Intel在20世纪70年代合作开发的,并在20世纪80年代被标准化为IEEE 802.3。
以太网规范包括了物理层和数据链路层两个部分,它定义了网络的传输介质、数据传输的方式以及网络设备之间的通信规则。
在物理层方面,以太网规范定义了几种不同的传输介质,如双绞线、同轴电缆和光纤等。
其中,最常见和广泛使用的是双绞线。
以太网使用双绞线作为传输介质的优点是成本低廉、易于安装和维护,并且具有较高的传输速度和较低的信号损耗。
在数据链路层方面,以太网规范定义了帧的格式、地址的分配、数据的传输方式等。
以太网帧的格式由目的MAC地址、源MAC地址、类型字段和数据字段组成。
其中,MAC地址是用于唯一标识网络设备的物理地址。
以太网规范还定义了一种称为CSMA/CD(Carrier Sense Multiple Access with Collision Detection)的介质访问控制方式,用于避免多个设备同时访问网络介质而产生冲突。
以太网规范还规定了不同速率的以太网,包括10 Mbps的Ethernet、100 Mbps的Fast Ethernet和1000 Mbps的Gigabit Ethernet。
这些不同速率的以太网可以互操作,即可以在同一网络中同时使用。
不同速率的以太网主要通过改变传输介质的速率、电平和编码方式来实现。
以太网规范还定义了一些其他的技术,如虚拟局域网(VLAN)和链路聚合(Link Aggregation)。
虚拟局域网允许将一个物理局域网划分为多个逻辑上的局域网,提供更好的网络管理和安全性。
链路聚合允许将多个以太网链路绑定在一起,形成一个更高带宽的链路,提供更好的网络性能和冗余备份。
总体而言,以太网规范为计算机网络提供了一个灵活、可靠和高性能的局域网技术。
它的发展和标准化为互联网的发展做出了重要贡献,并且在现代网络中仍然得到广泛应用。
RJ45接口信号定义,以及网线连接头信号安排(精)
RJ45接口信号定义,以及网线连接头信号安排以太网 10/100Base-T 接口:Pin Name Description1 TX+ Tranceive Data+ (发信号+2 TX- Tranceive Data- (发信号-3 RX+ Receive Data+ (收信号+4 n/c Not connected (空脚5 n/c Not connected (空脚6 RX- Receive Data- (收信号-7 n/c Not connected (空脚8 n/c Not connected (空脚以太网 100Base-T4 接口:Pin Name Description1 TX_D1+ Tranceive Data+2 TX_D1- Tranceive Data-3 RX_D2+ Receive Data+4 BI_D3+ Bi-directional Data+5 BI_D3- Bi-directional Data-6 RX_D2- Receive Data-7 BI_D4+ Bi-directional Data+8 BI_D4- Bi-directional Data-1 white/orange2 orange/white3 white/green4 blue/white5 white/blue6 green/white7 white/brown8 brown/white注:RJ45接口采用差分传输方式,tx+、tx-是一对双绞线,拧在一起可以减少干扰。
串口、并口接口定义并行口与串行口的区别是交换信息的方式不同,并行口能同时通过8条数据线传输信息,一次传输一个字节;而串行口只能用1条线传输一位数据,每次传输一个字节的一位。
并行口由于同时传输更多的信息,速度明显高于串行口,但串行口可以用于比并行口更远距离的数据传输。
1、25针并行口插口的针脚功能:针脚功能针脚功能1 选通 (STROBE低电平 10 确认 (ACKNLG低电平2 数据位0 (DATAO 11 忙 (BUSY3 数据位1 (DATA1 12 却纸 (PE4 数据位2 (DATA2 13 选择 (SLCT5 数据位3 (DATA3 14 自动换行 (AUTOFEED低电平6 数据位4 (DATA4 15 错误观点(ERROR低电平7 数据位5 (DATA5 16 初始化成(INIT低电平8 数据位6 (DATA6 17 选择输入 (SLCTIN低电平9 数据位7 (DATA7 18-25 地线路(GND2.串行口的典型代表是RS-232C及其兼容插口,有9针和25针两类。
以太网的名词解释
以太网的名词解释在当今的数字时代,以太网是我们日常生活中不可或缺的一部分。
它被广泛应用于家庭、企业和全球网络中。
然而,对于以太网这一术语的含义与其背后的技术我们可能并没有深入了解。
本文旨在通过定义和解释以太网的相关术语来揭示以太网的工作原理和应用。
以太网是一种用于计算机局域网(LAN)的标准通信协议。
它建立了一种连续的传输媒介,使得许多计算机和设备能够共享信息和资源。
在以太网中,每个设备通过一种称为“MAC地址”的唯一标识符进行身份识别。
MAC地址是一个由六组十六进制数表示的物理地址,类似于每个人拥有的独特身份证号码。
局域网适配器(LAN Adapter)是一种用于将计算机连接到以太网的硬件设备。
通常,它嵌入在计算机的主板上,负责接收和发送数据包。
此外,还有一种称为“网卡”的可插入设备可以用于将计算机连接到以太网。
以太帧(Ethernet Frame)是在以太网中传输的数据单位。
它由多个字段组成,包括目的地MAC地址和源MAC地址,用于在网络中正确地路由和传递数据。
以太帧的长度通常在64到1518字节之间,这允许在网络中传输不同大小的数据。
以太网交换机(Ethernet Switch)是一种用于连接多个设备的网络设备。
它根据MAC地址的目的地和源地址,将数据包传输到正确的设备。
与传统的以太网集线器不同,交换机可以提供更高的数据传输速率和更大的网络容量。
网络套接字(sockets)是以太网通信的一种接口。
它允许应用程序通过网络相互传输数据。
当网络套接字建立连接时,就会使用IP地址和端口号来唯一标识每个设备。
虚拟局域网(VLAN)是一种将网络分割成多个逻辑上独立的子网络的技术。
VLAN允许不同的用户和设备连接到同一个网络,同时保持彼此独立。
通过在交换机上配置VLAN,管理员可以实现网络流量的隔离和安全性的提高。
无线局域网(WLAN)是一种无线以太网技术,通过无线访问点(Access Point)将无线设备连接到局域网。
1以太网介绍及工作原理
以太网的解释以太网(EtherNet)以太网最早由Xerox(施乐)公司创建,在1980年,DEC、lntel和Xerox三家公司联合开发成为一个标准,以太网是应用最为广泛的局域网,包括标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)和10G(10Gbit/s)以太网,采用的是CSMA/CD访问控制法,它们都符合IEEE802.3IEEE 802.3标准它规定了包括物理层的连线、电信号和介质访问层协议的内容。
以太网是当前应用最普遍的局域网技术。
它很大程度上取代了其他局域网标准,如令牌环、FDDI和ARCNET。
历经100M以太网在上世纪末的飞速发展后,目前千兆以太网甚至10G以太网正在国际组织和领导企业的推动下不断拓展应用范围。
历史以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的一个。
人们通常认为以太网发明于1973年,当年罗伯特.梅特卡夫(Robert Metcalfe)给他PARC 的老板写了一篇有关以太网潜力的备忘录。
但是梅特卡夫本人认为以太网是之后几年才出现的。
在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。
1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐,成立了3Com公司。
3com 对迪吉多, 英特尔, 和施乐进行游说,希望与他们一起将以太网标准化、规范化。
这个通用的以太网标准于1980年9月30日出台。
当时业界有两个流行的非公有网络标准令牌环网和ARCNET,在以太网大潮的冲击下他们很快萎缩并被取代。
而在此过程中,3Com也成了一个国际化的大公司。
梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。
Saltzer在一篇与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。
受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。
(计算机网络技术)04以太网基础
以太网发展历程
总结词
以太网的发展经历了从10Mbps到100Gbps的多个阶 段,以太网技术不断演进,以满足更高的网络性能需 求。
详细描述
以太网的发展历程可以分为多个阶段。最初是以太网 的原始版本,数据传输速率仅为2.94Mbps。随后, 以太网技术不断演进,出现了10Mbps的以太网、快 速以太网、千兆以太网、万兆以太网等不同版本,数 据传输速率逐渐提升。近年来,随着云计算、大数据 等技术的快速发展,以太网技术又迎来了新的挑战和 机遇,出现了40Gbps、100Gbps甚至更高速率的以 太网。
03
以太网网卡支持 10Mbps和100Mbps的 传输速率,以及全双工 和半双工模式。
04
常见的以太网网卡接口 类型包括RJ-45和BNC。
以太网集线器
01
02
03
04
以太网集线器是网络中的基础 设备,用于连接多个以太网设
备。
它采用共享带宽的方式工作, 所有端口共享总带宽。
以太网集线器不具备交换功能 ,无法实现端口之间的快速数
(计算机网络技术)04 以太网基础
目录
• 以太网概述 • 以太网协议 • 以太网硬件 • 以太网技术 • 以太网安全性 • 以太网未来发展
01
以太网概述
以太网定义
总结词
以太网是一种局域网技术,采用CSMA/CD协议,以共享介质的方式实现计算机之间的 通信。
详细描述
以太网是一种基于总线型的局域网技术,通过使用双绞线或光纤等传输介质,将多台计 算机连接在一起,形成一个网络。在网络中,计算机之间通过以太网交换机或集线器进
防火墙
通过设置访问控制列表,限制特定IP 地址或MAC地址的设备访问网络资源。
以太网详解
以太网详解1.以太网是什么?以太网(Ethernet)最早是由Xerox(施乐)公司创建的局域网组网规范,1980年DEC、Intel和Xeox三家公司联合开发了初版Ethernet规范—DIX 1.0,1982年这三家公司又推出了修改版本DIX 2.0,并将其提交给EEE 802工作组,经IEEEE成员修改并通过后,成为IEEE的正式标准,并编号为IEEE 802.3。
虽然Ethernet规范和IEEE 802.3规范并不完全相同,但一般认为Ethernet和正IEEE 802.3是兼容的。
以太网是应用最广泛的局域网技术。
根据传输速率的不同,以太网分为标准以太网(10Mbit/s)、快速以太网(100Mbis)千兆以太网(1000Mbs)和万兆以太网(10Gbit/s),这些以太网都符合IEEE 802.3是兼容的。
2、标准以太网标准以太网是最早期的以太网,其传输速率为10Mbts,也称为传统以太网。
此种以太网的组网方式非常灵活,既可以使用粗、细缆组成总线网络,也可以使用双绞线组成星状网络,还可以同时使用同轴电缆和双绞线组成混合网络。
这些网络都符合EE8023标准,EEE8023中规定的一些传统以太网物理层标准如下。
①10 Base-2:使用细同轴电缆,最大网段长度为185m。
②10 Base-5:使用粗同轴电缆,最大网段长度为500m。
③10 Base-T:使用双纹线,最大网段长度为100m。
④10 Boad-36:使用同轴电缆,最大网段长度为3600m。
⑤10 Base-F:使用光纤,最大网段长度为2000m,传输速率为10Mb/s。
以土标准中首部的数字代表传输速率,单位为Mbis;末尾的数字代表单段网线长度(基准单位为100m);Base表示基带传输,Broad表示宽带传输。
3、快速以太网随着网络的发展和各项网络技术的普及,标准以太网技术已难以满足人们对网络数据流量和速率的需求。
1993年10月以前,人们只能选择价格昂贵、基于100Mbs光缆的FDD技术组建高标准网络,1993年10月,Grand Junction 公司推出了世界上第一台快速以太网集线器FastSwitch10/100和百兆网络接口卡Fast NIC 100,快速以太网技术正式得到应用。
什么是以太网
它不是一种具体的网络,是一种技术规范。
以太网是当今现有局域网采用的最通用的通信协议标准。
该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。
以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆10 Base T以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。
直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性最好。
△以太网的连接拓扑结构:总线型:所需的电缆较少、价格便宜、管理成本高,不易隔离故障点、采用共享的访问机制,易造成网络拥塞。
早期以太网多使用总线型的拓扑结构,采用同轴缆作为传输介质,连接简单,通常在小规模的网络中不需要专用的网络设备,但由于它存在的固有缺陷,已经逐渐被以集线器和交换机为核心的星型网络所代替。
星型:管理方便、容易扩展、需要专用的网络设备作为网络的核心节点、需要更多的网线、对核心设的可靠性要求高。
采用专用的网络设备(如集线器或交换机)作为核心节点,通过双绞线将局域网中的各台主机连接到核心节点上,这就形成了星型结构。
星型网络虽然需要的线缆比总线型多,但布线和连接器比总线型的要便宜。
此外,星型拓扑可以通过级联的方式很方便的将网络扩展到很大的规模,因此得到了广泛的应用,被绝大部分的以太网所采用。
传输介质:以太网可以采用多种连接介质,包括同轴缆、双绞线和光纤等。
其中双绞线多用于从主机到集线器或交换机的连接,而光纤则主要用于交换机间的级联和交换机到路由器间的点到点链路上。
同轴缆作为早期的主要连接介质已经逐渐趋于淘汰。
接口的工作模式:以太网卡可以工作在两种模式下:半双工和全双工。
半双工:半双工传输模式实现以太网载波监听多路访问冲突检测。
传统的共享LAN是在半双工下工作的,在同一时间只能传输单一方向的数据。
当两个方向的数据同时传输时,就会产生冲突,这会降低以太网的效率。
全双工:全双工传输是采用点对点连接,这种安排没有冲突,因为它们使用双绞线中两个独立的线路,这等于没有安装新的介质就提高了带宽。
ethernet标准
ethernet标准
摘要:
一、以太网标准的概述
1.以太网标准的定义
2.以太网的发展历程
二、以太网标准的主要内容
1.CSMA/CD协议
2.MAC 地址
3.数据帧结构
三、以太网标准的应用领域
1.企业网络
2.数据中心
3.智能家居
四、以太网标准的未来发展趋势
1.更高速度的以太网
2.更短传输时延的以太网
3.更智能化的以太网
正文:
以太网标准是一种计算机网络技术标准,定义了在局域网中数据通信的物理层和数据链路层的规范。
以太网标准经历了多个版本的发展,目前最新的版本是IEEE 802.3bz,也被称为2.5GBase-T。
以太网标准的核心技术是CSMA/CD协议,即载波侦听多路访问/冲突检测协议。
这种协议可以协调多个设备在同一物理媒介上进行数据传输,防止数据冲突,确保数据传输的可靠性。
同时,以太网标准定义了MAC地址,用于唯一标识网络中的设备。
在数据传输过程中,数据帧结构用于组织数据,保证数据传输的效率。
以太网标准在企业网络、数据中心和智能家居等领域得到了广泛的应用。
在企业网络中,以太网标准为办公设备和服务器提供了稳定、高效的数据传输环境。
在数据中心中,以太网标准满足了高速、高带宽、低延迟的数据传输需求。
在智能家居中,以太网标准为各种智能设备提供了互联互通的接口。
未来,以太网标准将朝着更高速度、更短传输时延和更智能化的方向发展。
例如,100GbE 和400GbE 等更高速度的以太网技术已经投入使用,而IEEE 802.3br 则定义了更短传输时延的以太网技术。
1以太网介绍及工作原理
以太网的解释以太网(EtherNe t)以太网最早由X e rox(施乐)公司创建,在1980年,D EC、lntel和X erox三家公司联合开发成为一个标准,以太网是应用最为广泛的局域网,包括标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)和10G(10Gbit/s)以太网,采用的是CSMA/CD访问控制法,它们都符合IEEE802.3IEEE 802.3标准它规定了包括物理层的连线、电信号和介质访问层协议的内容。
以太网是当前应用最普遍的局域网技术。
它很大程度上取代了其他局域网标准,如令牌环、FDDI和AR CNET。
历经100M以太网在上世纪末的飞速发展后,目前千兆以太网甚至10G以太网正在国际组织和领导企业的推动下不断拓展应用范围。
历史以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的一个。
人们通常认为以太网发明于1973年,当年罗伯特.梅特卡夫(RobertMetcalf e)给他PARC的老板写了一篇有关以太网潜力的备忘录。
但是梅特卡夫本人认为以太网是之后几年才出现的。
在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。
1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐,成立了3Com公司。
3com 对迪吉多, 英特尔, 和施乐进行游说,希望与他们一起将以太网标准化、规范化。
这个通用的以太网标准于1980年9月30日出台。
当时业界有两个流行的非公有网络标准令牌环网和AR CNET,在以太网大潮的冲击下他们很快萎缩并被取代。
而在此过程中,3Com也成了一个国际化的大公司。
梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。
以太网介绍及其线缆概述---网络基础篇(2)
以太⽹介绍及其线缆概述---⽹络基础篇(2)什么是以太⽹?1. 以太⽹是⼀种局域⽹的技术规范,⽽不是⼀种具体⽹络2. 定义物理层特性3. 定义数据链路层特性4. 定义信号传输模式5. 定义双⼯模式局域⽹分类令牌环/令牌总线⽹络(Token Ring) 没有QoS机制,服务得不到保障FDDI(Fiber Distributed Data Interface ) 改善令牌环的缺点 最⼤100M,仅仅⽀持光纤和5类线,难以移植以太⽹ 以太⽹是⽬前应⽤最普遍的局域⽹技术,取代了其他局域⽹标准如、物理层标准 物理层标准规定了信号、连接器和电缆要求。
物理层-信号信号(差分曼彻斯特编码)标准使不同设备能够实现互相操作。
物理层-连接器连接器分两种: 1. RJ-45连接器(插孔) 2. 光纤连接器物理层-电缆 电缆标准使不同公司制作的电缆和⽹卡能够协调⼯作。
物理介质的类型1、铜介质:(类型包括) -同轴电缆 -双绞线 - ⾮屏蔽双绞线 - 屏蔽双绞线同轴电缆• 同轴电缆 细缆:50Ω,传输数字信号,使⽤BNC接头连接到⽹卡 粗缆:75Ω,传输模拟信号,需要使⽤转换器转化成AUI接头⾮屏蔽双绞线UTP电缆UTP 电缆的特点UTP 电缆类型 -以太⽹直通电缆 -以太⽹交叉电缆 -反转电缆线序标准: 568A ⽩绿、绿、⽩橙、兰、⽩兰、橙、⽩棕、棕 568B ⽩橙、橙、⽩绿、兰、⽩兰、绿、⽩棕、棕有效线缆长度100⽶屏蔽双绞线 (STP) 电缆2、光纤介质:光纤中⼼是光传播的玻璃芯: – 芯外⾯包围着⼀层折射率⽐芯低的玻璃封套,以使光纤保持在芯内。
– 再外⾯的是⼀层薄的塑料外套,⽤来保护封套。
光纤分为单模光纤和多模光纤:光纤提供全双⼯通信,每个⽅向使⽤⼀根专⽤光缆。
光纤连接器⽹络传输介质标准数据链路层的功能数据链路层通常拆分成两个⼦层:上⼦层和下⼦层。
-逻辑链路控制 -介质访问控制数据链路层-创建帧数据链路层帧格式:数据链路层设备-⽹络适配器(Adapter)⽹络适配器(⽹卡) ⽹络适配器属于数据链路层设备MAC地址 每个⽹卡芯⽚都会烧录⼀个全球唯⼀的MAC地址⽹卡速率 10、100、1000M⾃适应双⼯模式 ⽀持全双⼯、半双⼯、⾃适应数据链路层设备-交换机每个接⼝都有⾃⼰的冲突域所有的接⼝都在同⼀个⼴播域思科⽹络设计三层接⼊层:把每个终端都连接在⼀起。
以太网简介
ethernet以太网最早由Xerox(施乐)公司创建,于1980年DEC、lntel和Xerox三家公司联合开发成为一个标准。
基本信息一、解释以太网(EtherNet)以太网最早由Xerox(施乐)公司创建,于1980年DEC、lntel和Xerox三家公司联合开发成为一个标准。
以太网是应用最为广泛的局域网,包括标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)和10G(10Gbit/s)以太网,采用的是CSMA/CD访问控制法,它们都符合IEEE802.3。
IEEE802.3标准IEEE802.3规定了包括物理层的连线、电信号和介质访问层协议的内容。
以太网是当前应用最普遍的局域网技术,它很大程度上取代了其他局域网标准。
如令牌环、FDDI和ARCNET。
历经100M以太网在上世纪末的飞速发展后,目前千兆以太网甚至10G以太网正在国际组织和领导企业的推动下不断拓展应用范围。
常见的802.3应用为:10M: 10base-T (铜线UTP模式)100M: 100base-TX (铜线UTP模式)100base-FX(光纤线)1000M: 1000base-T(铜线UTP模式二、历史以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的一个。
人们通常认为以太网发明于1973年,当年罗伯特·梅特卡夫(Robert Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。
但是梅特卡夫本人认为以太网是之后几年才出现的。
在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。
1977年底,梅特卡夫和他的合作者获得了“具有冲突检测的多点数据通信系统”的专利。
多点传输系统被称为CSMA/CD(带冲突检测的载波侦听多路访问),从此标志以太网的诞生。
1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐,成立了3Com公司。
什么是以太网?以太网的使用注意事项
什么是以太网?以太网的使用注意事项以太网简介以太网是一种在80年代初开发的通信标准,用于在本地环境(如家庭或建筑物)中的网络计算机和其他设备。
此本地环境定义为LAN(局域网),它连接多个设备,以便它们可以与该位置的其他设备创建,存储和共享信息。
以太网是一种有线系统,最初使用同轴电缆,现已成功发展到现在使用双绞铜线和光纤线。
谁发明了双绞线?亚历山大·格雷厄姆·贝尔(Alexander Graham Bell)在1881年发明了双绞线。
1983年,电气和电子工程师协会(IEEE)将以太网标准化为标准IEEE802.3。
该标准定义了有线以太网的“数据链路”层的物理层和MAC(媒体访问控制)部分。
这两层被定义为OSI(开放系统互连)模型中的前两层。
物理层包含以下组件:1.布线2.设备2.以太网物理层2.1以太网电缆首先,让我们看一下以太网布线。
如前所述,以太网电缆为:–同轴电缆(除了较旧的安装以外,这不是很常见)–双绞线–光纤2.1.1双绞线最常见的电缆是双绞线,最新的是双绞线。
–类别6,速度高达1Gbps。
–速度高达10Gbps的CAT6a和CAT7。
–5类和5e类电缆仍在许多现有应用中使用,但可以处理10Mbps至100Mbps之间的较低速度,但更容易受到噪声的影响。
以太网双绞线在电缆的任一端都使用RJ-45八针连接器,该连接器固定在半双工或全双工模式下用于发送和接收数据。
“半双工”一次沿一个方向传输数据,而全双工则允许同时沿两个方向传输数据。
以太网中的“全双工”可以通过使用两对电线来允许数据同时在两个方向上传输来实现。
2.1.2光纤电缆光纤电缆使用玻璃或塑料光纤作为光脉冲的导管,以传输数据。
它允许以太网以更高的速度传播更远的距离。
光纤电缆使用几种不同类型的连接器,具体取决于您的应用程序需求。
某些不同类型是SFP(小型可插拔或小尺寸可插拔)和SC(用户连接器,也称为方形连接器或标准连接器)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。
Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。
在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。
基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。
在星型或总线型配置结构中,集线器/交换机/网桥通过电缆使得计算机、打印机和工作站彼此之间相互连接。
以太网具有的一般特征概述如下:
共享媒体:所有网络设备依次使用同一通信媒体。
广播域:需要传输的帧被发送到所有节点,但只有寻址到的节点才会接收到帧。
CSMA/CD:以太网中利用载波监听多路访问/冲突检测方法(Carrier Sense Multiple Access/Collision Detection)以防止twp 或更多节点同时发送。
MAC 地址:媒体访问控制层的所有Ethernet 网络接口卡(NIC)都采用48位网络地址。
这种地址全球唯一。
Ethernet 基本网络组成:
共享媒体和电缆:10BaseT(双绞线),10Base-2(同轴细缆),10Base-5(同轴粗缆)。
转发器或集线器:集线器或转发器是用来接收网络设备上的大量以太网连接的一类设备。
通过某个连接的接收双方获得的数据被重新使用并发送到传输双方中所有连接设备上,以获得传输型设备。
网桥:网桥属于第二层设备,负责将网络划分为独立的冲突域获分段,达到能在同一个域/分段中维持广播及共享的目标。
网桥中包括一份涵盖所有分段和转发帧的表格,以确保分段内及其周围的通信行为正常进行。
交换机:交换机,与网桥相同,也属于第二层设备,且是一种多端口设备。
交换机所支持的功能类似于网桥,但它比网桥更具有的优势是,它可以临时将任意两个端口连接在一起。
交换机包括一个交换矩阵,通过它可以迅速连接端口或解除端口连接。
与集线器不同,交换机只转发从一个端口到其它连接目标节点且不包含广播的端口的帧。
以太网协议:IEEE 802.3标准中提供了以太帧结构。
当前以太网支持光纤和双绞线媒体支持下的四种传输速率:
10 Mbps – 10Base-T Ethernet(802.3)
100 Mbps – Fast Ethernet(802.3u)
1000 Mbps – Gigabit Ethernet(802.3z))
10 Gigabit Ethernet – IEEE 802.3ae
以太网简史:
1972年,罗伯特•梅特卡夫(Robert Metcalfe)和施乐公司帕洛阿尔托研究中心(Xerox PARC)的同事们研制出了世界上第一套实验型的以太网系统,用来实现Xerox Alto(一种具有图形用户界面的个人工作站)之间的互连,这种实验型的以太网用于Alto工作站、服务器以及激光打印机之间的互连,其数据传输率达到了2.94Mbps。
梅特卡夫发明的这套实验型的网络当时被称为Alto Aloha网。
1973年,梅特卡夫将其命名为以太网,并指出这一系统除了支持Alto工作站外,还可以支持任何类型的计算机,而且整个网络结构已经超越了Aloha系统。
他选择“以太”(ether)这一名词作为描述这一网络的特征:物理介质(比如电缆)将比特流传输到各个站点,就像古老的“以太理论”(luminiferous
ether)所阐述的那样,古代的“以太理论”认为“以太”通过电磁波充满了整个空间。
就这样,以太网诞生了。
最初的以太网事一种实验型的同轴电缆网,冲突检测采用CSMA/CD 。
该网络的成功,引起了大家的关注。
1980年,三家公司(数字设备公司、Intel公司、施乐公司)联合研发了10M以太网1.0规范。
最初的IEEE802.3即基于该规范,并且与该规范非常相似。
802.3
工作组于1983年通过了草案,并于1985年出版了官方标准ANSI/IEEE Std 802.3-1985。
从此以后,随着技术的发展,该标准进行了大量的补充与更新,以支持更多的传输介质和更高的传输速率等。
1979年,梅特卡夫成立了3Com公司,并生产出第一个可用的网络设备:以太网卡(NIC),它是允许从主机到IBM终端和PC机等不同设备相互之间实现无缝通信的第一款产品,使企业能够以无缝方式共享和打印文件,从而增强工作效率,提高企业范围的通信能力。
以太网和IEEE802.3:
以太网是Xerox公司发明的基带LAN标准。
它采用带冲突检测的载波监听多路访问协议(CSMA/CD),速率为10Mbps,传输介质为同轴电缆。
以太网是在20世纪70年代为解决网络中零散的和偶然的堵塞而开发的,而IEEE802.3标准是在最初的以太网技术基础上于1980年开发成功的。
现在,以太网一词泛指所有采用CSMA/CD协议的局域网。
以太网2.0版由数字设备公司、Intel公司和Xerox公司联合开发,它与IEEE802.3兼容。
以太网和IEEE802.3通常由接口卡(网卡)或主电路板上的电路实现。
以太网电缆协议规定用收发器将电缆连到网络物理设备上。
收发器执行物理层的大部分功能,其中包括冲突检测及收发器电缆将收发器连接到工作站上。
IEEE802.3提供了多种电缆规范,10Base5就是其中的一种,它与以太网最为接近。
在这一规范中,连接电缆称作连接单元接口(AUI),网络连接设备称为介质访问单元(MAU)而不再是收发器。
1.以太网和IEEE802.3的工作原理
在基于广播的以太网中,所有的工作站都可以收到发送到网上的信息帧。
每个工作站都要确认该信息帧是不是发送给自己的,一旦确认是发给自己的,就将它发送到高一层的协议层。
在采用CSMA/CD传输介质访问的以太网中,任何一个CSMA/CDLAN工作站在任何一时刻都可以访问网络。
发送数据前,工作站要侦听网络是否堵塞,只有检测到网络空闲时,工作站才能发送数据。
在基于竞争的以太网中,只要网络空闲,任一工作站均可发送数据。
当两个工作站发现网络空闲而同时发出数据时,就发生冲突。
这时,两个传送操作都遭到破坏,工作站必须在一定时间后重发,何时重发由延时算法决定。
2.以太网和IEEE802.3服务的差别
尽管以太网与IEEE802.3标准有很多相似之处,但也存在一定的差别。
以太网提供的服务对应于OSI参考模型的第一层和第二层,而IEEE802.3提供的服务对应于OSI参考模型的第一层和第二层的信道访问部分(即第二层的一部分)。
IEEE802.3没有定义逻辑链路控制协议,但定义了几个不同物理层,而以太网只定义了一个。
IEEE802.3的每个物理层协议都可以从三方面说明其特征,这三方面分别是LAN 的速度、信号传输方式和物理介质类型。