生物化学-第二单元-糖代谢——三羧酸循环.

合集下载

生物化学知识点总结-生物化学糖代谢总结

生物化学知识点总结-生物化学糖代谢总结

生物化学知识点总结|生物化学糖代谢总结【考纲要求】1.糖的分解代谢:①糖酵解基本途径、关键酶和生理意义;②有氧氧化基本途径及供能;③三羧酸循环的生理意义。

2.糖原的合成与分解:①肝糖原的合成;②肝糖原的分解。

3.糖异生:①糖异生的基本途径;②糖异生的生理意义;③乳酸循环。

4.磷酸戊糖途径:①磷酸戊糖途径的关键酶和生成物;②磷酸戊搪途径的生理意义。

5.血糖及其调节:①血糖浓度;②胰岛素的调节;③胰高血糖素的调节;④糖皮质激素的调节。

6.糖蛋白及蛋白聚糖:①糖蛋白概念;②蛋白聚糖概念。

【考点纵览】1.限速酶:己糖激酶,磷酸果糖激酶,丙酮酸激酶;净生成atp;2分子atp;产物:乳酸2.糖原合成的关键酶是糖原合成酶。

糖原分解的关键酶是磷酸化酶。

3.能进行糖异生的物质主要有:甘油、氨基酸、乳酸、丙酮酸。

糖异生的四个关键酶:丙酮酸羧化酶,磷酸烯醇式丙酮酸羧激酶,果糖二磷酸酶,葡萄糖-6-磷酸酶。

4.磷酸戊糖途径的关键酶,6-磷酸葡萄糖脱氢酶,6-磷酸葡萄糖脱氢酶。

5.血糖浓度:3.9~6.1mmol/l.6.肾糖域概念及数值。

【历年考题点津】1.不能异生为糖的是a.甘油b.氨基酸c.脂肪酸d.乳酸e.丙酮酸答案:c2.1mol丙酮酸在线粒体内彻底氧化生成atp的mol数量是a.12b.15c.18d.21e.24答案:b(3~7题共用备选答案)a.果糖二磷酸酶-1b.6-磷酸果糖激酶c.hmgcoa还原酶d.磷酸化酶[医学教育网搜集整理]e. hmgcoa合成酶3.糖酵解途径中的关键酶是答案:b4.糖原分解途径中的关键酶是答案:d5.糖异生途径中的关键酶是答案:a6.参与酮体和胆固醇合成的酶是答案:e7.胆固醇合成途径中的关键酶是答案:c8.糖酵解的关键酶是a.3-磷酸甘油醛脱氢酶b.丙酮酸脱氢酶c.磷酸果糖激酶一1d.磷酸甘油酸激酶e.乳酸脱氢酶答案:c(9~12题共用备选答案)a.6-磷酸葡萄糖脱氢酶b.苹果酸脱氢酶c.丙酮酸脱氢酶d. nadh脱氢酶e.葡萄糖-6-磷酸酶价9.呼吸链中的酶是答案:d10.属三羧酸循环中的酶是答案:b11.属磷酸戊糖通路的酶是答案:a12.属糖异生的酶是答案:e13.下列关于己糖激酶叙述正确的是a.己糖激酶又称为葡萄糖激酶b.它催化的反应基本上是可逆的c.使葡萄糖活化以便参加反应d.催化反应生成6-磷酸果酸e.是酵解途径的唯一的关键酶答案:c14.在酵解过程中催化产生nadh和消耗无机磷酸的酶是a.乳酸脱氢酶b. 3-磷酸甘油醛脱氢酶c.醛缩酶d.丙酮酸激酶e.烯醇化酶答案:b15.进行底物水平磷酸化的反应是a.葡萄糖→6-磷酸葡萄糖b. 6-磷酸果糖→1,6-二磷酸果糖c.3-磷酸甘油醛→1,3-二磷酸甘油酸d.琥珀酰coa→琥珀酸e.丙酮酸→乙酰coa[医学教育网搜集整理] 答案:d16.乳酸循环所需的nadh主要来自a.三羧酸循环过程中产生的nadhb.脂酸β-氧化过程中产生的nadhc.糖酵解过程中3-磷酸甘油醛脱氢产生的nadhd.磷酸戊糖途径产生的nadph经转氢生成的nadhe.谷氨酸脱氢产生的nadh答案:c(17~18题共用备选答案)a.6-磷酸葡萄糖脱氢酶b.苹果酸脱氢酶c.丙酮酸脱氢酶d. nadh脱氢酶e.葡萄糖-6-磷酸酶17.属于磷酸戊糖通路的酶是答案:a18.属于糖异生的酶是答案:e19.糖尿出现时,全血血糖浓度至少为a.83.33mmol/l(1500mg/dl)b.66.67mmol/l(1200mg/dl)c.27.78mmol/l(500mg/dl)d.11.11mmol/l(200mg/dl)e.8.89mmol/l(160mg/dl) 答案:e。

生物化学学习指导(下)

生物化学学习指导(下)

糖类代谢要点解答1.糖代谢各途径发生的场所、限速酶或关键酶、能量转换和生理意义2.三羧酸循环的生物学意义有哪些?三羧酸循环是糖有氧分解的重要途径,有着重要的生物学意义。

(1)三羧酸循环是有机体获得生命活动所需能量的最重要途径。

在糖的有氧分解中,每个葡萄糖分子通过糖酵解途径只产生6个或8个ATP,而通过三羧酸循环就可产生24个ATP,远远超过糖酵解阶段或葡萄糖无氧降解(生成2个ATP)所产生的ATP的数目。

此外,脂肪、氨基酸等其他有机物作为呼吸底物彻底氧化时所产生的能量也主要是通过三羧酸循环。

因此,三羧酸循环是生物体能量的主要来源。

(2)三羧酸循环是物质代谢的枢纽。

三羧酸循环具有双重作用,一方面,三羧酸循环是糖、脂肪和氨基酸等有机物彻底氧化的共同途径;另一方面,许多合成代谢都利用三羧酸循环的中间产物作为生物合成的前体,循环中的草酰乙酸、α-酮戊二酸、柠檬酸、琥珀酰CoA和延胡索酸等又是生物体合成糖(糖异生)、氨基酸、脂肪酸和卟啉等的原料。

因此,三羧酸循环可以看成新陈代谢的中心环节,起到物质代谢枢纽的作用。

3.在葡萄糖的有氧氧化过程中,哪些步骤进行脱氢反应?哪些步骤进行脱羧反应?1分子葡萄糖有氧氧化净产生多少分子ATP?葡萄糖的有氧氧化过程包括糖酵解的反应、丙酮酸氧化脱羧和乙酰CoA进入三羧酸循环的反应,脱氢、脱羧及ATP的变化总结如下:4.磷酸戊糖途径有何特点?该途径有何生理意义?磷酸戊糖途径的特点是:第一,该途径不经过EMP-TCA反应,直接在六碳糖的基础上脱羧,脱氢;第二,该途径以NADP+为氢的受体,产生还原力NADPH+H+。

该途径的生理意义:(1)提供生物体重要的还原剂NADPH。

无论动物还是植物,NADPH不能直接被呼吸链氧化。

NADPH的重要功能是在很多合成反应中作为还原剂。

例如,在脂肪酸和胆固醇合成中,在二氢叶酸还原为四氢叶酸等反应中,都是NADPH作为还原剂。

NADPH还可使还原型谷胱甘肽再生.从而保证细胞的抗氧化能力。

生物化学 糖代谢

生物化学 糖代谢

生物化学:糖代谢糖是生物体重要的能量来源之一,也是构成生物体大量重要物质的原始物质。

糖代谢是指生物体对糖类物质进行分解、转化、合成的过程。

糖代谢主要包括两大路径:糖酵解和糖异生。

本篇文档将从分解和合成两个角度,介绍生物体内糖的代谢。

糖的分解糖酵解(糖类物质的分解)糖酵解是指生物体内将葡萄糖和其他糖类物质分解成更小的化合物,同时释放出能量。

糖酵解途径包括糖原泛素、琥珀酸途径、戊糖途径、甲酸途径等。

其中主要以糖原泛素和琥珀酸途径为代表。

糖原泛素途径糖原泛素途径又称为糖酵解途径,是生物体内最常用的糖分解方式。

它可以将葡萄糖分解成丙酮酸或者丁酮酸,同时产生2个ATP和2个NADH。

糖原泛素途径一般分为两个阶段:糖分解阶段和草酸循环。

糖分解阶段在这个阶段,葡萄糖通过酸化和裂解反应,进入三磷酸葡萄糖分子中,并生成一个六碳分子葡萄糖酸,此过程中消耗1个ATP。

接着,葡萄糖酸分子被磷酸化,生成高能量化合物1,3-二磷酸甘油酸,同时产生2个ATP。

随后,1,3-二磷酸甘油酸分子的丙酮酸残基被脱除,生成丙酮酸或者丁酮酸。

草酸循环草酸循环是指将生成的丙酮酸和丁酮酸在线粒体内发生可逆反应,生成柠檬酸,随后通过草酸循环将柠檬酸氧化分解成二氧化碳、水和ATP。

草酸循环中的关键酶有乳酸脱氢酶、肌酸激酶等。

琥珀酸途径琥珀酸途径也被称为三羧酸循环,是生物体内另一种重要的糖分解途径,它可以将葡萄糖分解成二氧化碳和水,同时产生30多个ATP。

琥珀酸途径中,葡萄糖通过磷酸化,生成高能分子葡萄糖6-磷酸,随后被氧化酶和酶羧化酶双重氧化分解成二氧化碳和水。

琥珀酸途径的关键酶有异构酶、羧酸还原酶等。

糖异生(糖合成)糖异生是指非糖类物质(如丙酮酸、乳酸等)通过一系列合成反应,转化成糖类物质的过程。

糖异生是生物体内糖类物质的重要来源之一,对维持生命的各种生理过程具有重要意义。

糖异生途径包括丙酮酸途径、戊糖途径和甘油三磷酸途径等。

丙酮酸途径丙酮酸途径是指通过丙酮酸合成糖的途径,它可以将丙酮酸反应生成物乙酰辅酶A进一步转移,合成3磷酸甘油醛,随后通过糖醛酸-3-磷酸酰基转移酶反应,合成葡萄糖6磷酸。

生物化学糖代谢笔记

生物化学糖代谢笔记

第九章糖代谢第二节糖的有氧氧化葡萄糖在有氧条件下彻底氧化分解生成CO2和H2O,并释放出大量能量的过程称为糖的有氧氧化绝大多数组织细胞通过糖的有氧氧化途径获得能量。

此代谢过程在细胞的胞液和线粒体内进行。

一分子葡萄糖彻底氧化分解可产生36/38分子ATP。

糖的有氧氧化代谢途径可分为:葡萄糖酵解、丙酮酸氧化脱羧和三羧酸循环三个阶段。

(一)葡萄糖经酵解途径生成丙酮酸:此阶段在细胞胞液(cytoplasm)中进行,一分子葡萄糖(glucose)分解后净生成2分子丙酮酸(pyruvate),2分子ATP,和2分子(NADH +H+)。

2分子(NADH +H+)在有氧条件下可进入线粒体(mitochondrion)产能,共可得到2×2或者2×3分子A TP。

故第一阶段可净生成6或8分子A TP。

(二)丙酮酸氧化脱羧生成乙酰CoA:丙酮酸进入线粒体(mitochondrion),在丙酮酸脱氢酶系(pyruvate dehydrogenase complex)的催化下氧化脱羧生成乙酰CoA (acetyl CoA)。

由一分子葡萄糖氧化分解产生两分子丙酮酸(pyruvate),故可生成两分子乙酰CoA(acetyl CoA),两分子CO2和两分子(NADH+H+),可生成2×3分子A TP 。

丙酮酸脱氢酶系(pyruvate dehydrogenase complex)是糖有氧氧化途径的关键酶之一。

多酶复合体:是催化功能上有联系的几种酶通过非共价键连接彼此嵌合形成的复合体。

其中每一个酶都有其特定的催化功能,都有其催化活性必需的辅酶。

丙酮酸脱氢酶系由三种酶单体构成:丙酮酸脱氢酶(E1),硫辛酸乙酰基转移酶(E2),二氢硫辛酸脱氢酶(E3)。

该多酶复合体包含六种辅助因子:TPP,硫辛酸,NAD+,FAD,HSCoA和Mg2+。

(三)经三羧酸循环彻底氧化分解:三羧酸循环(TAC,柠檬酸循环或Krebs循环)是指在线粒体中,乙酰CoA首先与草酰乙酸缩合生成柠檬酸,然后经过一系列的代谢反应,乙酰基被氧化分解,而草酰乙酸再生的循环反应过程。

糖代谢《生物化学》复习提要

糖代谢《生物化学》复习提要

糖代谢第一节概述一、糖的生理功能:1. 氧化供能。

是糖类最主要的生理功能。

2. 提供合成体内其他物质的原料。

如糖可提供合成某些氨基酸、脂肪、胆固醇、核苷等物质的原料。

3. 作为机体组织细胞的组成成分。

如糖是糖蛋白、蛋白聚糖、糖脂等的组成成分。

二、糖的消化吸收消化部位:主要在小肠,少量在口腔唾液和胰液中都有α-淀粉酶,可水解淀粉分子内的α-1,4糖苷键。

淀粉消化主要在小肠内进行。

在胰液内的α-淀粉酶作用下,淀粉被水解为麦芽糖和麦芽三糖,及含分支的异麦芽糖和α-临界糊精。

寡糖的进一步消化在小肠粘膜刷状缘进行。

α-葡萄糖苷酶水解没有分支的麦芽糖和麦芽三糖;α-临界糊精酶则可水解α-1,4糖苷键和α-1,6糖苷键,将α-糊精和异麦芽糖水解成葡萄糖。

肠粘膜细胞还存在有蔗糖酶和乳糖酶等,分别水解蔗糖和乳糖。

糖被消化成单糖后才能在小肠被吸收,再经门静脉进入肝。

小肠粘膜细胞对葡萄糖的摄人是一个依赖于特定载体转运的、主动耗能的过程,在吸收过程中同时伴有Na+的转运。

三、糖代谢的概况在供氧充足时,葡萄糖进行有氧氧化彻底氧化成C02和H20;在缺氧时,则进行糖酵解生成乳酸。

此外,葡萄糖也可进入磷酸戊糖途径等进行代谢,以发挥不同的生理作用。

葡萄糖也可经合成代谢聚合成糖原,储存于肝或肌组织。

有些非糖物质如乳酸、丙氨酸等还可经糖异生途径转变成葡萄糖或糖原。

以下将介绍糖的主要代谢途径、生理意义及其调控机制。

三、糖代谢的概况葡萄糖酵解途径丙酮酸有氧无氧ATP H 2O CO 2乳酸糖异生途径乳酸、氨基酸、甘油糖原肝糖原分解糖原合成磷酸戊糖途径核糖NADPH+H+淀粉消化吸收第二节 糖的无氧分解一、糖酵解的反应过程在缺氧情况下,葡萄糖生成乳酸的过程称之为糖酵解。

糖酵解的全部反应在胞浆中进行。

(一) 葡萄糖分解成丙酮酸(糖酵解途径)1.葡萄糖磷酸化成为6-磷酸葡萄糖: 葡萄糖进入细胞后首先的反应是磷酸化。

磷酸化后葡萄糖即不能自由通过细胞膜而逸出细胞。

生物化学糖代谢小结

生物化学糖代谢小结

糖代谢知识要点(一)糖酵解途径:糖酵解途径中,葡萄糖在一系列酶的催化下,经10 步反应降解为2 分子丙酮酸,同时产生2 分子NADH+H和2 分子ATP。

主要步骤为:(1)葡萄糖磷酸化形成二磷酸果糖;(2)二磷酸果糖分解成为磷酸甘油醛和磷酸二羟丙酮,二者可以互变;(3)磷酸甘油醛脱去2H 及磷酸变成丙酮酸,脱去的2H 被NAD所接受,形成NADH+H。

(二)丙酮酸的去路:(1)有氧条件下,丙酮酸进入线粒体氧化脱羧转变为乙酰辅酶A,同时产生1 分子NADH+H。

乙酰辅酶A 进入三羧酸循环,最后氧化为CO和HO。

(2)在厌氧条件下,可生成乳酸和乙醇。

同时NAD得到再生,使酵解过程持续进行。

(三)三羧酸循环:在线粒体基质中,丙酮酸氧化脱羧生成的乙酰辅酶A,再与草酰乙酸缩合成柠檬酸,进入三羧酸循环。

柠檬酸经脱水加水转变成异柠檬酸,异柠檬酸经连续两次脱羧和脱羧生成琥珀酰CoA;琥珀酰CoA 发生底物水平磷酸化产生1 分子GTP 和琥珀酸;琥珀酸再脱氢,加水及再脱氢作用依次变成延胡索酸,苹果酸及循环开始的草酰乙酸。

三羧酸循环每循环一次放出2 分子CO,产生3 分子NADH+H和一分子FADH。

(四)磷酸戊糖途径:在胞质中,在磷酸戊糖途径中磷酸葡萄糖经氧化阶段和非氧化阶段被氧化分解为CO,同时产生NADPH + H。

其主要过程是G-6-P 脱氧生成6-磷酸葡萄糖酸,再脱氢,脱羧生成核酮糖-5-磷酸。

6 分子核酮糖-5-磷酸经转酮反应和转醛反应生成5 分子6-磷酸葡萄糖。

中间产物甘油醛-3-磷酸,果糖-6-磷酸与糖酵解相衔接;核糖-5-磷酸是合成核酸的原料,4-磷酸赤藓糖参与芳香族氨基酸的合成;NADPH+H提供各种合成代谢所需要的还原力。

(五)糖异生作用:非糖物质如丙酮酸,草酰乙酸和乳酸等在一系列酶的作用下合成糖的过程,称为糖异生作用。

糖异生作用不是糖酵解的逆反应,因为要克服糖酵解的三个不可逆反应,且反应过程是在线粒体和细胞液中进行的。

大连理工大学生物化学课件--三羧酸循环

大连理工大学生物化学课件--三羧酸循环
1、三大供能营养素氧化供能的共同途径。 2、糖、脂肪和氨基酸代谢联系的中心枢纽。
3、循环中某些成分可用于合成其他物质。
49
Pasteur效应:
糖的有氧氧化对糖酵解的抑制作用称为Pasteur效应 机理: 有氧时NADH+H+可进入线粒体内氧化,于是丙
酮酸就进行有氧氧化而不生成乳酸------有氧氧化可抑
合酶(synthase):催化不需要任何核苷三磷酸(如ATP、 GTP等)作为能量来源的缩合反应; 合成酶(synthetase):催化的缩合反应必须使用ATP或其 他核苷三磷酸作为合成反应的能量来源; 连接酶(Ligase):催化使用ATP或其他能量来源,将2个 原子连接在一起的缩合反应; 裂解酶(lyase):催化断裂过程的酶,这一过程中发生电 子冲排; 激酶(kinase):将核苷三磷酸上的磷酰基转移到一个受体 分子的酶; 磷酸化酶(phosphorylase):磷酸化 磷酸酶(phosphatase):去磷酸化
三羧酸循环小结
1. TCA循环是糖、脂肪和蛋白质等物质分解代谢的共同途径。 氧化产生的能量暂存在电子载体 NADH和FADH2 。在氧化磷 酸化过程中,电子传递给氧,能量转移给ATP。
2. TCA循环,真核生物发生在线粒体,原核生物发生在细胞质。
3. 经TCA氧化一个乙酰CoA,获得的能量物质有三分子NADH、 一分子FADH2和一分子ATP/GTP。
2
三羧酸循环(Tricarboxylic acid circle)
又称柠檬酸循环,Krebs循环,简写TCA循环 有氧条件下,将酵解产生的丙酮酸氧化脱 羧成乙酰CoA,再经一系列氧化和脱羧,最终
生成CO2和H2O并产生能量。
3
肝脏中糖的去路

生物化学试题库及其答案——糖代谢

生物化学试题库及其答案——糖代谢

一、选择题1.果糖激酶所催化的反应产物是:A、F-1-PB、F-6-PC、F-1,6-2PD、G-6-PE、G-1-P2.醛缩酶所催化的反应产物是:A、G-6-PB、F-6-PC、1,3-二磷酸甘油酸D、3-磷酸甘油酸E、磷酸二羟丙酮3.14C标记葡萄糖分子的第1,4碳原子上经无氧分解为乳酸,14C应标记在乳酸的:A、羧基碳上B、羟基碳上C、甲基碳上D、羟基和羧基碳上E、羧基和甲基碳上4.哪步反应是通过底物水平磷酸化方式生成高能化合物的?A、草酰琥珀酸→a-酮戊二酸B、a-酮戊二酸→琥珀酰CoAC、琥珀酰CoA→琥珀酸D、琥珀酸→延胡羧酸E、苹果酸→草酰乙酸5.糖无氧分解有一步不可逆反应是下列那个酶催化的?A、3-磷酸甘油醛脱氢酶B、丙酮酸激酶C、醛缩酶D、磷酸丙糖异构酶E、乳酸脱氢酶6.丙酮酸脱氢酶系催化的反应不需要下述那种物质?A、乙酰CoAB、硫辛酸C、TPPD、生物素E、NAD+7.三羧酸循环的限速酶是:A、丙酮酸脱氢酶B、顺乌头酸酶C、琥珀酸脱氢酶D、异柠檬酸脱氢酶E、延胡羧酸酶8.糖无氧氧化时,不可逆转的反应产物是:A、乳酸B、甘油酸-3-PC、F-6-PD、乙醇9.三羧酸循环中催化琥珀酸形成延胡羧酸的琥珀酸脱氢酶的辅助因子是:A、NAD+B、CoA-SHC、FADD、TPPE、NADP+10.下面哪种酶在糖酵解和糖异生作用中都起作用:A、丙酮酸激酶B、丙酮酸羧化酶C、3-磷酸甘油酸脱氢酶D、己糖激酶E、果糖-1,6-二磷酸酯酶11.催化直链淀粉转化为支链淀粉的酶是:A、R酶B、D酶C、Q酶D、a-1,6糖苷酶12.支链淀粉降解分支点由下列那个酶催化?A、a和b-淀粉酶B、Q酶C、淀粉磷酸化酶D、R—酶13.三羧酸循环的下列反应中非氧化还原的步骤是:A、柠檬酸→异柠檬酸B、异柠檬酸→a-酮戊二酸C、a-酮戊二酸→琥珀酸D、琥珀酸→延胡羧酸14.一分子乙酰CoA经三羧酸循环彻底氧化后产物是:A、草酰乙酸B、草酰乙酸和CO2C、CO2+H2OD、CO2,NADH和FADH215.关于磷酸戊糖途径的叙述错误的是:A、6-磷酸葡萄糖转变为戊糖B、6-磷酸葡萄糖转变为戊糖时每生成1分子CO2,同时生成1分子NADH+HC、6-磷酸葡萄糖生成磷酸戊糖需要脱羧D、此途径生成NADPH+H+和磷酸戊糖16.由琥珀酸→草酰乙酸时的P/O是:A、2B、2.5C、3D、3.5E、417.胞浆中1mol乳酸彻底氧化后,产生的ATP数是:A、9或10B、11或12C、13或14D、15或16E、17或1818.胞浆中形成的NADH+H+经苹果酸穿梭后,每mol产生的ATP数是:A、1B、2C、3D、4E、519.下述哪个酶催化的反应不属于底物水平磷酸化反应:A、磷酸甘油酸激酶B、磷酸果糖激酶C、丙酮酸激酶D、琥珀酸辅助A合成酶20.1分子丙酮酸完全氧化分解产生多少CO2和ATP?A、3 CO2和15ATPB、2CO2和12ATPC、3CO2和16ATPD、3CO2和12ATP21.高等植物体内蔗糖水解由下列那种酶催化?A、转化酶B、磷酸蔗糖合成酶C、ADPG焦磷酸化酶D、蔗糖磷酸化酶22.a-淀粉酶的特征是:A、耐70℃左右的高温B、不耐70℃左右的高温C、在pH7.0时失活D、在pH3.3时活性高23.关于三羧酸循环过程的叙述正确的是:A、循环一周可产生4个NADH+H+B、循环一周可产生2个ATPC、丙二酸可抑制延胡羧酸转变为苹果酸D、琥珀酰CoA是a-酮戊二酸转变为琥珀酸是的中间产物24.支链淀粉中的a-1,6支点数等于:A、非还原端总数B、非还原端总数减1C、还原端总数D、还原端总数减1二、填空题1.植物体内蔗糖合成酶催化的蔗糖生物合成中葡萄糖的供体是,葡萄糖基的受体是;在磷酸蔗糖合成酶催化的生物合成中,葡萄糖基的供体是,葡萄糖基的受体是。

生物化学糖酵解

生物化学糖酵解
·碘乙酸为甘油醛-3-磷酸脱氢酶的抑制剂,可与酶活性 中心的—SH基结合。
·甘油醛-3-磷酸脱氢酶的Mr为14000,由4个相同亚基组 成,每个亚基牢固地结合一分子NAD+,并能独立参加 催化作用。已证明亚基第149位的半胱氨酸残基的—SH 基是活性基团。能特异地结合甘油醛-3-磷酸。NAD+的 吡啶环与活性—SH基很近,共同组成酶的活性部位。
磷酸二羟丙酮 + 甘油醛-3-磷酸 丙糖磷酸异构酶
·在丙糖磷酸异构酶的催化作用下,两个三碳糖之间有同分异构体 的互变。
甘油醛-3-磷酸
·由于甘油醛-3-磷酸的持续被氧化,反应的平衡将生成甘油醛3-磷酸的方向移动。总的结果相当于1分子果糖-1,6-二磷酸生 成2分子甘油醛-3-磷酸。
·甘油醛-3-磷酸氧化为甘油酸-1,3-二磷酸,该过程是 糖酵解过程中唯一的氧化脱氢反应,生物体通过此反应 可以获得能量。
CO2
NADH + H+ 乙醛
NAD+ 乙醇
丙酮酸脱氢酶
乙醇脱氢酶
无氧条件下,酵母等微生物及植物细胞的丙酮酸能继续转化为乙醇并释放出CO2,该过程称为乙醇发酵。 硫胺素焦磷酸(TPP)为辅酶。
乙醇发酵总反应式: 葡萄糖(C6H12O6)+2Pi+2ADP
2乙醇(CH3CH2OH)+2ATP+2H2O+2CO2
ADP 果糖-1,6二磷酸
·在醛缩酶的催化下,果糖-1,6-二磷酸分子在第3与第4碳原子之 间断裂为两个三碳化合物,即磷酸二羟丙酮与甘油醛-3-磷酸。
果糖-1,6-二磷酸 醛缩酶
·醛缩酶催化的是可逆反应,标准状况下,平衡倾向于醇醛缩合成 果糖-1,6-二磷酸一侧,但在细胞内,由于正反应产物丙糖磷酸 被移走,平衡可向正反应迅速进行。

生物化学糖代谢知识点总结归纳

生物化学糖代谢知识点总结归纳

各种组织细胞门静脉肠粘膜上皮细胞体循环 小肠肠腔 第六章糖代谢糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。

根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G )、果糖(F ),半乳糖(Gal ),核糖 双糖:麦芽糖(G-G ),蔗糖(G-F ),乳糖(G-Gal ) 多糖:淀粉,糖原(Gn ),纤维素 结合糖: 糖脂 ,糖蛋白其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式糖原:动物体内葡萄糖的储存形式 纤维素:作为植物的骨架一、糖的生理功能1. 氧化供能2. 机体重要的碳源3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。

二、糖代谢概况——分解、储存、合成 三、糖的消化吸收食物中糖的存在形式以淀粉为主。

1.消化 消化部位:主要在小肠,少量在口腔。

消化过程:口腔 胃 肠腔 肠黏膜上皮细胞刷状缘吸收部位:小肠上段 吸收形式:单糖吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。

2.吸收 吸收途径: SGLT 肝脏过程 第二阶段:丙酮酸的氧化脱羧 第三阶段:三羧酸循环第四阶段:氧化磷酸化 CO 2NADH+H +FADH 2H 2O[O]TAC 循环ATPADP四、糖的无氧分解第一阶段:糖酵解第二阶段:乳酸生成 反应部位:胞液产能方式:底物水平磷酸化 净生成ATP 数量:2×2-2= 2ATPE1 E2E3调节:糖无氧酵解代谢途径的调节主要是通过各种变构剂对三个关键酶进行变构调节。

生理意义: 五、糖的有氧氧化1、反应过程 ○1糖酵解途径(同糖酵解,略)②丙酮酸进入线粒体,氧化脱羧为乙酰CoA (acetyl CoA)。

总反应式:③乙酰CoA 进入柠檬酸循环及氧化磷酸化生成ATP 概述:三羧酸循环(Tricarboxylic acid Cycle,TAC )也称为柠檬酸循环或Krebs 循环,这是因为循环反应中第一个中间产物是含三个羧基的柠檬酸。

生物化学糖代谢重点简答题1

生物化学糖代谢重点简答题1

简答题1.一分子乙酰COA经三羧酸循环彻底氧化产生多少ATP?写出ATP生成过程。

产生10个ATP;一个分子乙酰CoA经三羧酸循环可生成3个NADH和1个FADH2 和1个GTP。

ATP生成过程:3NADH+H+➡3*2.5ATPFADH2➡1.5ATP1GTP➡ATP2.简述三羧酸循环的生物学意义。

.三羧酸循环的生物学意义:三羧酸循环是糖、脂肪、氨基酸三大营养素的最终代谢通路;三羧酸循环是糖、脂肪、氨基酸代谢互相联系的枢纽;为其它物质代谢提供小分子前体;为呼吸链提供氢离子+e。

3.糖异生途径中与能量代谢有关的反应有哪些?丙酮酸+ CO2+ ATP ➡草酰乙酸+ ADP + Pi草酰乙酸+GTP➡GDP+ CO2+磷酸烯醇式丙酮酸4.简述血糖的来源和去路。

血糖的来源:食物经消化吸收入血的葡萄糖和其他单糖;肝糖原分解释放的葡萄糖;非糖物质转变而来。

血糖的去路:氧化供能;合成糖原;转变成其他糖及糖衍生物;转变为非糖物质;当血糖浓度超过肾糖域时由尿排出血糖。

5.简述糖酵解的生理意义。

糖酵解主要的生理意义在于迅速提供能量。

6.简述糖异生的生理意义。

糖异生的生理意义:维持血糖浓度恒定;补充肝糖原;调节酸碱平衡。

7.糖的有氧氧化包括哪几个阶段?糖的有氧氧化有三个阶段。

第一阶段:葡萄糖经过糖酵解途径分解为丙酮酸;第二阶段:CoA;第三阶段:三羧酸循环及氧化磷酸化。

8.简述柠檬酸循环的要点。

经过一次三羧酸循环,消耗一分子乙酰CoA,经四次脱氢,二次脱羧,一次底物水平磷酸化,生成1分子FADH2,3分子NADH+H+,2分子CO2, 1分子GTP。

9.丙酮酸是一个重要的中间物,简要写出以丙酮酸为底物的三个不同的酶促反应。

丙酮酸+ CO2+ ATP➡草酰乙酸+ADP+Pi丙酮酸+ NADP++HSCoA➡NADH+H++SCoA+ CO2丙酮酸+NADH+ H+➡乳酸+ NAD+10.磷酸戊糖途径的生理意义。

磷酸戊糖途径的生理意义:为核酸的生物合成提供核糖;提供NADPH作为供氢体参与多种代谢反应。

生物化学,糖代谢

生物化学,糖代谢

丙酮酸
ATP
烯醇化酶(enolase):氟化物是抑制剂
Glu
ATP
ADP
G-6-P F-6-P
⑽ 磷酸烯醇式丙酮酸转变成丙酮酸, 并 四川省精品课程 生物化学 通过底物水平磷酸化生成ATP
ATP ADP
F-1,6-2P
COOH
ADP
P
K+ Mg2+
ATP
COOH C=O CH3
磷酸二 羟丙酮
NAD+ NADH+H+
ADP
1,6-双磷酸果糖
CH2 O
丙酮酸
ATP
Glu
ATP
ADP
G-6-P F-6-P
⑸ 磷酸丙糖的同分异构化
四川省精品课程 生物化学
ATP ADP
F-1,6-2P 磷酸二 羟丙酮
NAD+ NADH+H+
CH2 O C O
P
磷酸丙糖异构酶
CHO CH OH
3-磷酸 甘油醛
CH2OH
CH2 O
P
1,3-二磷酸甘油酸
四川省精品课程 生物化学
物质代谢与能量转换
Metabolism and Energy Conversion
糖 脂类 蛋白质 水 无机盐
消化 吸收
四川省精品课程 生物化学
简单物质 (
同 化 ) 合 成 分
复杂物质
( 异 化 )
维生素
纤维素 排泄
分 解 解
简单物质
废物
合成 分解 转变 调节 生 物质代谢 命 能量代谢 生成 现 象 贮存 释放 转化
通常指血液中的葡萄糖。
• 血糖的含量是反映体内糖代谢状况的

三羧酸循环

三羧酸循环

三羧酸循环三羧酸循环(tricarboxylic acid cycle)是需氧生物体内普遍存在的代谢途径,分布在线粒体。

因为在这个循环中几个主要的中间代谢物是含有三个羧基的柠檬酸,所以叫做三羧酸循环,又称为柠檬酸循环或者是TCA循环或TAC;或者以发现者Hans Adolf Krebs(英1953年获得诺贝尔生理学或医学奖)的姓名命名为Krebs循环。

三羧酸循环是三大营养素(糖类、脂类、氨基酸)的最终代谢通路,又是糖类、脂类、氨基酸代谢联系的枢纽。

生物意义1.三大营养素的最终代谢通路糖、脂肪和蛋白质在分解代谢过程都先生成乙酰辅酶A,乙酰辅酶A与草酰乙酸结合进入三羧酸循环而彻底氧化。

所以三羧酸循环是糖、脂肪和蛋白质分解的共同通路。

2.糖、脂肪和氨基酸代谢的联系通路三羧酸循环另一重要功能是为其他合成代谢提供小分子前体。

α-酮戊二酸和草酰乙酸分别是合成谷氨酸和天冬氨酸的前体;草酰乙酸先转变成丙酮酸再合成丙氨酸;许多氨基酸通过草酰乙酸可异生成糖。

所以三羧酸循环是糖、脂肪酸(不能异生成糖)和某些氨基酸相互转变的代谢枢纽。

3、三羧酸循环是生物机体获取能量的主要方式。

1个分子葡萄糖经无氧酵解净生成2个分子ATP,而有氧氧化可净生成38个ATP(不同生物化学书籍上数字不同,大多数倾向于32个ATP,其中三羧酸循环生成24个ATP,在一般生理条件下,许多组织细胞皆从糖的有氧氧化获得能量。

糖的有氧氧化不但释能效率高,而且逐步释能,并逐步储存于ATP 分子中,因此能的利用率也很高。

4、三羧酸循环是糖,脂肪和蛋白质三种主要有机物在体内彻底氧化的共同代谢途径,三羧酸循环的起始物乙酰-CoA,不但是糖氧化分解产物,它也可来自脂肪的甘油、脂肪酸和来自蛋白质的某些氨基酸代谢,因此三羧酸循环实际上是三种主要有机物在体内氧化供能的共同通路,估计人体内2/3的有机物是通过三羧酸循环而被分解的。

5、三羧酸循环是体内三种主要有机物互变的联络机构,因糖和甘油在体内代谢可生成α-酮戊二酸及草酰乙酸等三羧酸循环的中间产物,这些中间产物可以转变成为某些氨基酸;而有些氨基酸又可通过不同途径变成α-酮戊二酸和草酰乙酸,再经糖异生的途径生成糖或转变成甘油,因此三羧酸循环不仅是三种主要的有机物分解代谢的最终共同途径,而且也是它们互变的联络机构。

公卫执业医师生物化学辅导:糖代谢

公卫执业医师生物化学辅导:糖代谢

公卫执业医师生物化学辅导:糖代谢公卫执业医师生物化学辅导:糖代谢糖代谢是生物体广泛存在的最基本代谢。

糖代谢为生物提供重要的碳源和能源。

生物所需的能量,主要由糖代谢提供。

接下来我们一起来看看应届毕业生店铺为大家提供的公卫执业医师生物化学辅导:糖代谢。

糖代谢新陈代谢(物质代谢)是指生物与周围环境进行物质和能量交换的过程。

包括同化作用和异化作用。

特点:1、温和条件下由酶催化完成;2、反应协调而有顺序性;3、反应分步进行并伴有能量变化,有中间产物。

糖代谢是生物体广泛存在的最基本代谢。

糖代谢为生物提供重要的碳源和能源。

生物所需的能量,主要由糖代谢提供。

糖代谢包括糖的分解代谢和合成代谢,分解代谢包括糖的有氧氧化分解(糖酵解、丙酮酸氧化脱羧、三羧酸循环)和磷酸戊糖途径;合成代谢包括糖异生和光合作用。

注:代谢章节的特点是易懂难记,但对于任何一种代谢过程无非学习以下几个方面知识:1、每步中间反应的反应物和产物是什么;2、催化的酶是什么;3、物质和能量变化情况;4、代谢如何进行调节;(5、生物学意义)。

一、糖酵解糖酵解(EMP途径):葡萄糖经过一系列中间反应后生成丙酮酸的过程。

糖酵解在细胞质中进行。

1、过程:1)、葡萄糖磷酸化形成G-6-P;此反应不可逆,催化此反应的激酶有,已糖激酶和葡萄糖激酶。

激酶:催化ATP分子的磷酸基(r-磷酰基)转移到底物上的酶称激酶,一般需要Mg2+或Mn2+作为辅因子,底物诱导的裂缝关闭现象似乎是激酶的共同特征。

2)、G-6-P异构化为F-6-P;此反应可逆,反应方向由底物与产物的含量水平控制。

由磷酸葡萄糖异构酶催化,将葡萄糖的羰基C由C1移至C2 ,为C1位磷酸化作准备,同时保证C2上有羰基存在,这对分子的β断裂,形成三碳物是必需的。

3)、F-6-P磷酸化,生成F-1.6-P;此反应在体内不可逆,调节位点,由磷酸果糖激酶催化。

磷酸果糖激酶既是酵解途径的限速酶,又是酵解途径的第二个调节酶4)、 F-1.6-P裂解成3-磷酸甘油醛和磷酸二羟丙酮(DHAP);该反应可逆,由醛缩酶催化。

生物化学简答题

生物化学简答题

2.简述三羧酸循环的生理意义是什么它有哪些限速步骤生理意义:三羧酸循环是机体获取能量的主要方式;为生物合成提供原料;影响果实品质糖;脂肪和蛋白质代谢的枢纽限速步骤:1)在柠檬酸合酶的作用下,由草酰乙酸和乙酰-CoA合成柠檬酸2)在异柠檬酸脱氢酶催化下,异柠檬酸脱氢形成草酰琥珀酸。

3)在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化、脱羧,生成琥珀酰-CoA、NADH+H+和CO2。

4.什么是转氨作用简述转氨作用的两步反应过程为什么它在氨基酸代谢中有重要作用概念:转氨作用是指在转氨酶催化下将α-氨基酸的氨基转给另一个α-酮酸,生成相应的α-酮酸和一种新的α-氨基酸的过程。

磷酸吡哆醛是转氨酶的辅酶,起到携带NH2基的作用。

这一过程分为两步反应:-H2O+H2O+H2O-H2O转氨作用的生理意义:a)通过转氨作用可以调节体内非必需氨基酸的种类和数量,以满足体内蛋白质合成时对非必需氨基酸的需求。

b)转氨作用可使由糖代谢产生的丙酮酸、α-酮戊二酸、草酰乙酸变为氨基酸,因此,对糖和蛋白质代谢产物的相互转变有其重要性。

c)由于生物组织中普遍存在有转氨酶,而且转氨酶的活性又较强,故转氨作用是氨基酸脱氨的重要方式。

d)转氨作用的另一重要性是因肝炎病人血清的转氨酶活性有显著增加,测定病人血清的转氨酶含量大有助于肝炎病情的诊断。

转氨基作用还是联合脱氨基作用的重要组成部分,从而加速了体内氨的转变和运输,勾通了机体的糖代谢、脂代谢和氨基酸代谢的互相联系。

5.简述磷酸戊糖途径概念及生理意义概念:以6-磷酸葡萄糖开始,在6-磷酸葡萄糖脱氢酶催化作用下形成6-磷酸葡萄糖酸,进而代谢生成磷酸戊糖作为中间代谢产物,故将此过程称为磷酸戊糖途径。

1)产生大量的NADPH,为细胞的各种合成反应提供还原力2)途径中的中间物为许多化合物的合成提供原料:PPP途径可以产生多种磷酸单糖,如磷酸核糖、4-磷酸赤藓糖与磷酸烯醇式丙酮酸等。

3)提高植物的抗病能力:这主要是因为4-磷酸赤藓糖与磷酸烯醇式丙酮酸可合成莽草酸,进而合成绿原酸、咖啡酸等与抗病能力有关的物质。

生物化学糖代谢笔记

生物化学糖代谢笔记

第九章糖代谢第二节糖的有氧氧化葡萄糖在有氧条件下彻底氧化分解生成CO2和H2O,并释放出大量能量的过程称为糖的有氧氧化绝大多数组织细胞通过糖的有氧氧化途径获得能量。

此代谢过程在细胞的胞液和线粒体内进行。

一分子葡萄糖彻底氧化分解可产生36/38分子ATP。

糖的有氧氧化代谢途径可分为:葡萄糖酵解、丙酮酸氧化脱羧和三羧酸循环三个阶段。

(一)葡萄糖经酵解途径生成丙酮酸:此阶段在细胞胞液(cytoplasm)中进行,一分子葡萄糖(glucose)分解后净生成2分子丙酮酸(pyruvate),2分子ATP,和2分子(NADH +H+)。

2分子(NADH +H+)在有氧条件下可进入线粒体(mitochondrion)产能,共可得到2×2或者2×3分子A TP。

故第一阶段可净生成6或8分子A TP。

(二)丙酮酸氧化脱羧生成乙酰CoA:丙酮酸进入线粒体(mitochondrion),在丙酮酸脱氢酶系(pyruvate dehydrogenase complex)的催化下氧化脱羧生成乙酰CoA (acetyl CoA)。

由一分子葡萄糖氧化分解产生两分子丙酮酸(pyruvate),故可生成两分子乙酰CoA(acetyl CoA),两分子CO2和两分子(NADH+H+),可生成2×3分子A TP 。

丙酮酸脱氢酶系(pyruvate dehydrogenase complex)是糖有氧氧化途径的关键酶之一。

多酶复合体:是催化功能上有联系的几种酶通过非共价键连接彼此嵌合形成的复合体。

其中每一个酶都有其特定的催化功能,都有其催化活性必需的辅酶。

丙酮酸脱氢酶系由三种酶单体构成:丙酮酸脱氢酶(E1),硫辛酸乙酰基转移酶(E2),二氢硫辛酸脱氢酶(E3)。

该多酶复合体包含六种辅助因子:TPP,硫辛酸,NAD+,FAD,HSCoA和Mg2+。

(三)经三羧酸循环彻底氧化分解:三羧酸循环(TAC,柠檬酸循环或Krebs循环)是指在线粒体中,乙酰CoA首先与草酰乙酸缩合生成柠檬酸,然后经过一系列的代谢反应,乙酰基被氧化分解,而草酰乙酸再生的循环反应过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

异柠檬酸脱氢酶 (氧化脱羧)
草酰琥珀酸
琥珀酸脱氢酶 (氧化) 琥珀酸 GTP
NADH
CO2
α-酮戊二酸
琥珀酰-CoA合成酶 琥珀酰-CoA
α-酮戊二酸脱氢酶系
(底物水平磷酸化)
CO2 (氧化脱羧)
TAC
循 环 总 图
TAC小结
1)循环从C4物与乙酰CoA缩合生成C6物开始 2)每一次循环经历两次脱羧,放出2CO2 3)每一循环经历四次脱氢,其中3次以NAD+为氢受体, 1次以FAD为氢受体; 4)每循环一次,底物水平磷酸化一次生成1GTP(ATP); 5)循环一次结束以C4物(草酰乙酸)重新生成为标 志; 6)总反应:
(1)丙酮酸脱氢复合体 (2)该复合体可分为五步反应 3. 三羧酸循环及氧化磷酸化 (1)三羧酸循环反应过程 (2)三羧酸循环的小结 (3)三羧酸循环的生理意义
丙酮酸脱氢酶复合物催化的整个反应
(1)丙酮酸脱氢复合体
由丙酮酸脱氢酶(E1),二氢硫辛酰胺转 乙酰酶(E2)和二氢硫辛酰胺脱氢酶(E3) 组成。
第二阶段 2×丙酮酸→ 2×乙酰CoA
NAD+ NAD+
-1 -1 6or4
2 ×1
2 ×1
2×3
第三阶段 2×异柠檬酸→ 2× α -酮戊二酸
2× α -酮戊二酸→ 2× 琥珀酰CoA 2× 琥珀酰CoA → 2× 琥珀酸 2× 琥珀酸→ 2× 延胡索酸 2×苹果酸→ 2× 草酰乙酸
3)可逆磷酸化作用的共价调节:ATP存在时,Py 脱氢酶分子上的Ser-OH被磷酸激酶催化磷酸化而 没有活性,一旦磷酸基团被磷酸酯酶催化水解 (去磷酸化)可恢复活性。
柠檬酸(三羧酸)循环
(TAC) / Krebs cycle 乙酰CoA经一系列(8步)的氧化、脱羧,最
终生成CO2和H2O,并产生能量的过程,即乙 酰CoA与草酰乙酸缩合生成柠檬酸,再经一 系列的氧化、脱羧,循环后再生草酰乙酸, 其中生成2CO2,3(NADH+H+),1GTP(ATP), 1FADH2 CH3COSCoA+3NAD++FAD+GDP+Pi+2H2O
反应1:柠檬酸(Citric acid)形成
草酰乙酸
反应2:顺乌头酸水合酶作用于柠 檬酸生成异:琥珀酰辅酶A的生成
反应5:底物水平磷酸化
琥 珀 酰 CoA 转 变 为 琥 珀 酸 , 产 生 1GTP , 由 琥 珀 酰 CoA合成酶催化。
生成的GTP可在二磷酸核苷激酶催化下,将磷酸 根转移给ADP而生成ATP与GDP;需要Mg2+参与。
胞质内的NADH不能透过线粒体膜,需要 经过α-磷酸甘油穿梭和苹果酸-天冬氨 酸穿梭作用进入线粒体。
反应
辅酶 ATP
第一阶段 Glu→6-磷酸葡萄糖 6-磷酸果糖→ 1,6-磷酸果糖 2×3-磷酸甘油醛→ 2× 1,3-磷酸甘油酸 2× 1,3-磷酸甘油酸→ 2×3-磷酸甘油酸 2×磷酸烯醇式丙酮酸→ 2×丙酮酸
CH3COSCoA+3NAD++FAD+GDP+Pi+2H2O
2CO2+CoASH+3NADH+3H+ +FADH2+GTP
7) 三羧酸循环是不可逆的
8) 三羧酸循环本身不会改变其中间产物的总 量,但其它代谢会消耗其中间产物,需要及 时补充
(2)三羧酸循环的生理意义
三羧酸循环是三大营养素的最终代谢通路。 糖、脂肪、氨基酸在体内进行生物氧化都 将产生乙酰CoA,然后进入三羧酸循环进行 降解
2CO2+CoASH+3NADH+3H+ +FADH2+GTP
(1)三羧酸循环反应过程
反应1:柠檬酸形成
反应2:顺乌头酸水合酶作用于柠檬酸 生成异柠檬酸
反应3: -酮戊二酸的生成 反应4:琥珀酸辅酶A的生成 反应5:底物水平磷酸化 反应6:琥珀酸脱氢生成延胡索酸 反应7:延胡索酸加水生成苹果酸 反应8:苹果酸氧化生成草酰乙酸
反应6:琥珀酸脱氢生成延胡索酸
由琥珀酸dHE催化琥珀酸生成延胡索酸,H受体是 FAD。琥珀酸dHE是TCA中唯一一个掺入线粒体内 膜的酶(真核生物)(原核生物参入质膜),直 接与呼吸链相连。
丙二酸(malonate)是酶的竞争性抑制剂。
反应7:延胡索酸加水生成苹果酸
COO-
CH
HC COO-
NAD+ NANDA+DH++HH+ +
Py dHE复合物的调节
PyCH3CO~ScoA是一个重要的反应步骤,处于代 谢的分支点,受到严密的调节作用:
1)产物乙酰CoA和NADH都抑制Py dHE复合物,抑 制作用为相应的反应物CoA及NAD+所逆转。
2)核苷酸反馈调节:整个酶体系的活性由细胞的 能荷水平所调控,体系受GTP(ATP)抑制,为AMP所 活化。
H2O
延胡索酸酶
COO-
HOCH
CH2 COO-
延胡索酸
苹果酸
反应8:苹果酸氧化生成草酰乙酸
乙酰-CoA H2O
草酰乙酸
苹果酸脱氢酶 (氧化)
苹果酸
NADH
柠檬酸合成酶 (缩合)
柠檬酸
顺乌头酸酶(脱水)
H2O
顺乌头酸
H2O
顺乌头酸酶
(水化)
异柠檬酸
H2O
延胡索酸酶
(加水)
延胡索酸
FADH2
NADH
三羧酸循环又是糖、脂肪、氨基酸代谢联 系的枢纽。糖可以转变为脂肪;氨基酸的 碳架可以通过草酰乙酸等可转变为葡萄糖; 由葡萄糖提供的丙酮酸等可以用于合成某 些非必需氨基酸。
提供生物合成的前体
(二)糖有氧氧化的生理意义
三羧酸循环一次生成生成12个ATP。1mol 的葡萄糖彻底氧化生成和CO2和H2O,可净 生成36或38mol ATP。
参与反应的辅酶有硫胺素焦磷酸酯 (TPP)、硫辛酸、FAD、NAD+及CoA。
丙酮酸脱氢酶的辅基是TPP 二氢硫辛酰胺脱氢酶的辅酶是FAD、NAD+
丙酮酸脱氢酶系
CO2
丙酮酸 脱羧酶
TPP
硫辛酸
二氢硫辛 酸脱氢酶
FAD
乙酰硫辛酸
二氢硫辛酸
硫辛酸乙 酰转移酶
CoASH
O CH3-C-SCoA
第二单元 糖代谢 三羧酸循环(TCA)
二、糖的有氧氧化
(一)有氧氧化的反应过程 (二)糖有氧氧化的生理意义 (三)糖有氧氧化调节
O2
O2
葡萄糖 6-磷酸葡萄糖 丙酮酸 胞液
O2
H2O
丙酮酸
H++e
乙酰CoA
Krebs循环
线粒体 CO2
(一)有氧氧化的反应过程
1. 葡萄糖循糖酵解途径分解成丙酮酸 2. 丙酮酸氧化脱羧成为乙酰CoA
相关文档
最新文档