三角形复习课教案

合集下载

第11章三角形复习教案

第11章三角形复习教案

围 .例2 等腰三角形的周长为16,其一边长为6,求另两边长. 解:由于题中没有指明边长为6的边是底还是腰,∴分两种情况讨论:当6为底边长时,腰长为(16-6)÷2=5,这时另两边长分别为5,5;当6为腰长时,底边长为16-6-6=4,这时另两边长分别为6,4.综上所述,另两边长为5,5或6,4.变式题已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为( )2.若(a-1)2+|b-2|=0,则以a,b为边长的等腰三角形的周长为 .考点二三角形中的重要线段例3 如图,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC=8cm,求边AC的长变式题在△ABC中,AB=AC,DB为△ABC的中线,且BD将△ABC周长分为12cm与15cm两部分,求三角形各边长.例4 如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC的面积为24,求△BEF的面积.归纳:三角形的中线分该三角形为面积相等的两部分3.下列四个图形中,线段BE是△ABC的高的是()4.如图,①AD是△ABC的角平分线,则∠_____=∠____= ∠_____,②AE是△ABC的中线,则_____=_____= _____,③AF是△ABC的高线,则∠_____=∠_____=90考点三有关三角形内、外角的计算例5 ∠A ,∠B ,∠C是△ABC的三个内角,且分别满足下列条件,求∠A,∠B,∠C中未知角的度数.(1)∠A-∠B=16°,∠C=54°;(2)∠A:∠B:∠C=2:3:4.针对训练5.在△ABC中,三个内角∠A,∠B,∠C满足∠B-∠A=∠C-∠B,则∠B= .考点四多边形的内角和与外角和例7 已知一个多边形的每个外角都是其相邻内角度数的,求这个多边形的边数.归纳:在求边数的问题中,常常利用定理列出方程,进而再求得边数.例8 如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4.求∠CAD的度数.考点五本章中的思想方法方程思想例9 如图,在△ABC中,∠C=∠ABC,BE⊥AC, △BDE是等边三角形,求∠C的度数分类讨论思想例10 已知等腰三角形的两边长分别为10 和6 ,则 三角形的周长是化归思想例11 如图,求∠A +∠B +∠C +∠D +∠E +∠F +∠G 的度数.练习如图,△AOC 与△BOD 是有一组对顶角的三角形,其形状像数字“8”,我们不难发现有一重要结论: ∠A+∠C=∠B+∠D.这一图形也是常见的基本图形模型,我们称它为“8字型”图.A B CE D作业设计教材习题同步解析相关练习板书设计例题:练习教学反思。

数学八年级上册《三角形-复习课》教案

数学八年级上册《三角形-复习课》教案
教学重点
三角形三边关系、内角和,多边形的外角和与内角和公式是重点;
教学难点ห้องสมุดไป่ตู้
三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形是难点。
教学方法与手段
教学准备
第一课时
课时数
1课时
课堂教学实施设计(教师活动、学生活动)
复备内容或集体备课讨论记录(标、增、改、删、调)
一、知识结构(师生一起梳理)(5分钟)
探索∠A与∠1+∠2有什么数量关系?并说明理由。
例3如图所示,在△ABC中,△ABC的内角平分线与外角平分线交于点P,试说明∠P=1/2∠A.
板书设计:
教学小结:
6、三角形的外角和是多少?
n边形的外角和是多少?
你能说明为什么多边形的外角和与边数无关吗?
三、例题导引(15分钟)
例1 如图,在△ABC中,∠A︰∠B︰∠C=3︰4︰5,BD、CE分别是边AC、AB上的高,BD、CE相交于点H,求∠BHC的度数。
例2如图,把△ABC沿DE折叠,当点A落在四边形BCDE内部时,
二、回顾与思考(10分钟)
1、什么是三角形?
什么是多边形?
什么是正多边形?
三角形是不是多边形?
1、什么是三角形的高、中线、角平分线?
2、什么是对角线?
三角形有对角线吗?n边形的的对角线有多少条?
4、三角形的三条高,三条中线,三条角平分线各有什么特点?
5、三角形的内角和是多少?n边形的内角和是多少?
你能用三角形的内角和说明n边形的内角和吗?
初中20-20学年度第一学期教学设计
主备教师
审核教师
授课周次
授课时间
课题
三角形复习课
课型

相似三角形 复习课教案

相似三角形 复习课教案

相似三角形复习课教案一、教学目标1、使学生理解相似三角形的概念,掌握相似三角形的判定定理和性质定理。

2、能够熟练运用相似三角形的知识解决实际问题,提高学生的逻辑推理和综合运用能力。

3、通过复习,培养学生的数学思维和创新意识,激发学生学习数学的兴趣。

二、教学重难点1、重点(1)相似三角形的判定定理和性质定理。

(2)相似三角形的应用。

2、难点(1)相似三角形的判定定理的灵活运用。

(2)相似三角形在实际问题中的建模。

三、教学方法讲授法、练习法、讨论法四、教学过程(一)知识回顾1、相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形。

相似比:相似三角形对应边的比叫做相似比。

2、相似三角形的判定定理两角对应相等的两个三角形相似。

两边对应成比例且夹角相等的两个三角形相似。

三边对应成比例的两个三角形相似。

3、相似三角形的性质定理相似三角形对应角相等,对应边成比例。

相似三角形的周长比等于相似比,面积比等于相似比的平方。

(二)例题讲解例 1:如图,在△ABC 中,DE∥BC,AD = 3,BD = 2,AE = 4,求 CE 的长。

解:因为 DE∥BC,所以△ADE∽△ABC所以\(\frac{AD}{AB} =\frac{AE}{AC}\)因为 AD = 3,BD = 2,所以 AB = AD + BD = 5所以\(\frac{3}{5} =\frac{4}{AC}\)解得 AC =\(\frac{20}{3}\)所以 CE = AC AE =\(\frac{20}{3} 4 =\frac{8}{3}\)例 2:如图,在△ABC 中,∠BAC = 90°,AD⊥BC 于 D,E 为AC 的中点,ED 的延长线交 AB 的延长线于点 F。

求证:\(\frac{AB}{AC} =\frac{DF}{AF}\)证明:因为 AD⊥BC,∠BAC = 90°所以∠ADB =∠ADC = 90°,∠BAD +∠DAC = 90°,∠DAC+∠C = 90°所以∠BAD =∠C又因为 E 为 AC 的中点,所以 DE = EC所以∠EDC =∠C所以∠BAD =∠EDC又因为∠FDB =∠FDA +∠ADB =∠FDA + 90°,∠FAD =∠FDA +∠BAD所以∠FDB =∠FAD所以△FDB∽△FAD所以\(\frac{AB}{AC} =\frac{BD}{AD} =\frac{DF}{AF}\)(三)课堂练习1、如图,在△ABC 中,点 D、E 分别在边 AB、AC 上,且\(\frac{AD}{BD} =\frac{AE}{EC}\),求证:DE∥BC。

人教版下册四年级数学《复习三角形知识》教案

人教版下册四年级数学《复习三角形知识》教案

人教版下册四年级数学《复习三角形知识》
教案
教学目标
- 复习三角形的定义和性质
- 认识不同类型的三角形
- 掌握判断和画出不同类型三角形的方法
教学准备
- 教材:人教版下册四年级数学教材
- 教具:直尺、量角器、彩色铅笔
教学过程
导入
1. 利用多媒体展示图片,让学生回顾三角形的定义和性质。

复习三角形的定义和性质
1. 提问学生对三角形的定义和性质进行回答,鼓励学生积极参
与讨论。

2. 引导学生总结三角形的性质,例如三条边的长度关系、角的
和等于180度等。

认识不同类型的三角形
1. 利用多媒体展示不同类型的三角形图片,如等边三角形、等
腰三角形、直角三角形等。

2. 引导学生观察并讨论不同类型的三角形的特点,例如等边三
角形三条边相等、直角三角形有一个角为直角等。

判断和画出不同类型三角形的方法
1. 引导学生通过观察三角形的边长和角度来判断三角形的类型。

2. 提示学生使用直尺和量角器来画出不同类型的三角形,帮助
他们理解三角形的构成。

拓展练习
1. 分发练习册,让学生自主完成相关练习题,巩固所学的知识。

2. 教师巡视并及时解答学生的疑惑。

总结
1. 总结本节课所学的内容,强调三角形的定义、性质以及不同类型的三角形。

2. 鼓励学生通过课后练习巩固所学知识。

课后作业
1. 完成练习册上的相关练习题。

2. 复习并总结本节课所学的知识。

(完整版)解直角三角形的复习课教案.doc

(完整版)解直角三角形的复习课教案.doc

解直角三角形的复习课教案( 1)执教者:上海市园南中学姚春花教学目标: 掌握直角三角形的基本方法,能灵活运用锐角三角比解直角三角形。

并在解题过程中渗透化归方程等数学思想。

通过习题的变式, 让学生感悟图形间的联系,以及知识的本质。

通过一题多解,培养学生的发散思维。

教学重点与难点 :寻找合适的方法灵活求解直角三角形。

教学过程 : 一、回顾与思考1、在 Rt △ABC 中,∠ C=90°, b=2,c= 2 2 ,则∠ B=度; a=2、在 Rt △ABC 中,∠ C=90°,∠ A=3 0°, AB=3,则 AC= ;∠ B=度、在 Rt △ABC 中,∠ B=90°, sin A= 3, a=3,则 c= ;b=3 54、在 Rt △ABC 中,∠ A=60°∠ B=75°, AB=8,则 AC=归纳:1、解一个直角三角形要具备什么样的条件?生:除直角外,已知三角形的两个元素(其中至少有一个条件与边有关) ,才能解这个直角三角形。

2、解直角三角形运用到哪些定理或定义?(依据) ①勾股定理 ②锐角三角比 ③两锐角互余(以上四题均给出图形,教师根据学生的回答,让学生回顾知识)归纳:解直角三角形首先要根据题目给出图形, 其次关键在于正确选用只含有一个未知数的三角比的式子。

3、你能归纳出解一般三角形的思路吗? 构造有效的直角三角形二、小试牛刀1、已知在 Rt △ABC 中,∠ ACB=9 0°, CD 是斜边 AB 上的高,AB=10, tan A3,求 AC 的长 C4A BD归纳:常用解法:①寻找 Rt△(根据三角比)②转化角(等角的同名三角比相等)③设元(列方程求解)2、已知,如图,在△ ABC 中,∠ A=3 0°,F 为 AC上一点,且 AF : FC 4 : 1, EF ⊥ AB,E 为垂足,联结 EC,求 tan∠CEB 的值。

三角形的初步认识复习教案

三角形的初步认识复习教案

三角形的初步认识复习教案一、教学目标:1. 复习并巩固学生对三角形的基本概念、性质和分类的理解。

2. 提高学生运用三角形知识解决实际问题的能力。

3. 培养学生的逻辑思维能力和团队协作精神。

二、教学内容:1. 三角形的基本概念:三角形的定义、三角形的组成。

2. 三角形的性质:三角形的内角和、三角形的边长关系。

3. 三角形的分类:锐角三角形、直角三角形、钝角三角形。

4. 三角形的画法:如何准确地画出一个三角形。

5. 三角形在实际生活中的应用:举例说明三角形在现实生活中的应用。

三、教学重点与难点:1. 教学重点:三角形的基本概念、性质和分类,以及三角形在实际生活中的应用。

2. 教学难点:三角形内角和、边长关系的理解和运用。

四、教学方法:1. 采用问题驱动的教学方法,引导学生通过思考和讨论来复习三角形的相关知识。

2. 利用实物模型、图片等教学资源,帮助学生直观地理解三角形的性质和分类。

3. 设计具有挑战性的练习题,激发学生的学习兴趣,提高学生解决问题的能力。

五、教学过程:1. 导入:通过提问方式引导学生回顾三角形的基本概念,激发学生的学习兴趣。

2. 讲解:详细讲解三角形的基本概念、性质和分类,并通过实物模型、图片等进行展示。

3. 练习:设计一些具有针对性的练习题,让学生独立完成,巩固所学知识。

4. 讨论:组织学生进行小组讨论,分享彼此的学习心得和解决问题的方法。

5. 总结:对本节课的主要内容进行总结,强调三角形的内角和、边长关系等关键知识点。

6. 作业布置:布置一些有关三角形应用的问题,让学生在课后思考和解决。

六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及小组讨论表现,评估学生的学习积极性。

2. 练习题评价:对学生的练习题进行批改,评估学生对三角形基本概念、性质和分类的掌握程度。

3. 课后作业评价:对学生的课后作业进行批改,了解学生对三角形在实际生活中应用的理解和运用能力。

三角形的初步认识教案

三角形的初步认识教案

三角形的初步认识教案【篇一:三角形的初步认识复习教案】龙文教育学科老师个性化教案【篇二:《认识三角形》教学设计】《三角形的认识》教学设计【教学目标】1.联系实际和利用生活经验,通过观察、操作、测量等学习活动,认识三角形的基本特征,初步形成三角形的概念,初步认识三角形的底和高,感悟三角形底和高相互依存的关系。

2.在认识三角形有关特征的活动中,体会认识多边形特征的基本方法,发展观察、比较、抽象、概括等思维能力。

3.体会三角形是日常生活中常见的图形,并在学习活动中进一步产生学习图形的兴趣和积极性。

【教学重难点】重点:认识三角形的一些最基本的特征,认识三角形的底和高。

难点:懂得底和高的对应关系,会画三角形指定边上的高。

【教学准备】方格纸、三角尺、小棒、练习纸等【教学过程】一、走进生活,导出课题谈话:出示三角板,老师手里拿的是什么?(三角尺)它是什么形状的呢?出示书上图:你能从这幅图中找到三角形吗?提问:生活中,你在哪些地方看到过三角形?(结合举例出示自行车图等)揭示:三角形在生活中的运用非常广泛。

今天这节课我们进一步研究三角形。

(板书课题:认识三角形)【设计意图:数学来源于生活。

三角形的稳定性决定了它在生活中的广泛应用。

结合身边熟悉的物品、结合生活中常见的例子,导入新课的学习,激发学生的兴趣,让学生产生进一步探究的欲望。

】二、动手操作,了解特征1.激趣:想动手做一个三角形吗?首先,我们要明确活动要求。

出示要求:(1)用你手中的工具,想办法做出一个三角形。

(2)小组成员比较所做的不同的三角形,看看有什么共同点。

2.操作:学生分组活动,教师巡视。

3.交流:指名某组代表上台利用实物投影介绍,别的小组补充。

(材料:小棒、三角尺、方格纸、点子图、白纸)4.感受围成提问:刚才有同学是用小棒摆三角形的,那么摆一个三角形至少要用几根小棒?出示开口和出头的两种摆法:这样行吗?不管是摆还是画三角形,都要注意三条边首尾相连。

四年级数学下册《三角形》总复习教案优秀8篇

四年级数学下册《三角形》总复习教案优秀8篇

四年级数学下册《三角形》总复习教案优秀8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!四年级数学下册《三角形》总复习教案优秀8篇作为一名为他人授业解惑的教育工作者,就难以避免地要准备教案,借助教案可以有效提升自己的教学能力。

解三角形复习教案

解三角形复习教案

解三角形复习教案教案标题:解三角形复习教案教案目标:1. 复习学生在解三角形方面的基本知识和技能。

2. 强化学生对三角形相关概念的理解。

3. 提供学生机会通过练习和解决问题来巩固所学内容。

教学资源:1. 教科书2. 白板/黑板和彩色粉笔/白板笔3. 幻灯片或投影仪(可选)4. 三角形练习题和解答教学步骤:引入:1. 向学生复习三角形的定义和基本概念,例如三边、三角形内角和外角的性质等。

2. 提示学生,解三角形是通过已知条件来确定三角形的各个要素,如边长、角度等。

主体:3. 讲解解三角形的基本方法,包括使用正弦、余弦和正切函数以及三角恒等式。

4. 通过示例演示如何解决已知三边、两边一角和两角一边的三角形问题。

5. 提供学生机会进行实践,解决一些简单的三角形问题,如计算未知边长或角度。

6. 引导学生思考和讨论解决复杂三角形问题的策略,如使用余弦定理或正弦定理。

巩固:7. 分发练习题给学生,让他们独立或合作解决问题。

8. 鼓励学生互相检查答案,并解释他们的解决方法。

9. 与学生一起回顾和讨论练习题的解答,解释正确答案的推理过程。

总结:10. 总结本节课所学的内容,强调解三角形的重要性和应用领域。

11. 提醒学生复习并巩固所学内容,以便在考试中能够应用。

扩展活动(可选):12. 鼓励学生在课后进一步探索三角形的性质和解决问题的方法,可以使用在线资源或相关书籍。

13. 提供一些挑战性的三角形问题,以激发学生的兴趣和思考能力。

教学提示:1. 在讲解过程中,使用图示和实例来帮助学生更好地理解和记忆。

2. 鼓励学生积极参与课堂讨论和问题解决,并及时给予肯定和鼓励。

3. 根据学生的学习进度和理解程度,调整教学节奏和难度。

教案评估:1. 观察学生在课堂上的参与度和理解程度。

2. 检查学生在解决练习题和问题时的准确性和推理过程。

3. 提供反馈和指导,帮助学生改进和巩固所学内容。

三角形的初步认识复习教案

三角形的初步认识复习教案

三角形的初步认识复习教案一、教学目标:1. 让学生复习并巩固对三角形的定义、特征和分类的认识。

2. 培养学生运用三角形知识解决实际问题的能力。

3. 提高学生对几何图形的审美观念,培养空间想象力。

二、教学内容:1. 三角形的定义及特征2. 三角形的分类3. 三角形的性质4. 三角形的判定5. 三角形在实际中的应用三、教学重点与难点:1. 教学重点:三角形的基本概念、性质和应用。

2. 教学难点:三角形分类的判断及应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究三角形的性质。

2. 利用多媒体辅助教学,直观展示三角形的特点。

3. 结合实际例子,让学生感受三角形在生活中的应用。

4. 开展小组讨论,培养学生的合作意识。

五、教学过程:1. 导入:通过复习平面图形的分类,引导学生回顾三角形的概念。

2. 新课导入:讲解三角形的基本特征,如三角形的边长、角度等。

3. 案例分析:分析不同类型的三角形,让学生掌握三角形的分类方法。

4. 性质讲解:讲解三角形的基本性质,如三角形的内角和、外角性质等。

5. 课堂练习:设计有关三角形性质的练习题,巩固所学知识。

6. 生活应用:结合实际例子,让学生探讨三角形在生活中的应用。

8. 课后作业:布置有关三角形练习题,提高学生的应用能力。

9. 教学反思:针对本节课的教学效果,进行自我反思,找出需要改进的地方。

10. 课后拓展:引导学生深入研究三角形,探索更多的性质和应用。

六、教学评价:1. 采用课堂问答、练习题和小组讨论等方式,评价学生对三角形基本概念、性质和应用的掌握程度。

2. 关注学生在解决问题时的思维过程,评价其空间想象能力和创新能力。

3. 结合学生的课堂表现和作业完成情况,全面评价学生的学习效果。

七、教学资源:1. 教学课件:通过多媒体课件,展示三角形的特点和性质。

2. 练习题库:为学生提供丰富的练习题,巩固所学知识。

3. 实际案例:收集生活中的三角形实例,让学生感受三角形的应用。

全等三角形判定复习教案

全等三角形判定复习教案

全等三角形判定复习教案教案:全等三角形判定的复习一、教学目标:1.复习全等三角形的判定方法和性质。

2.掌握使用全等三角形的判定方法解决相关问题。

3.培养学生的逻辑思维能力和分析问题的能力。

二、教学重点:1.全等三角形的判定方法和性质。

2.全等三角形的相关题目解答。

三、教学难点:1.通过给出的条件判定三角形是否全等。

2.通过给出的三角形判定是否全等。

四、教学过程:Step 1:复习全等三角形的判定方法1.提问:回顾一下全等三角形的判定方法有哪些?2.学生回答:欢迎学生回答,教师进行总结。

3.教师解释:全等三角形的判定方法有以下几种:a.SSS判定法:三边相等的两个三角形全等。

b.SAS判定法:两边和夹角相等的两个三角形全等。

c.ASA判定法:两角和边相等的两个三角形全等。

d.AAS判定法:两角和对边相等的两个三角形全等。

e.RHS判定法:直角边和斜边相等的两个三角形全等。

Step 2:练习全等三角形的判定方法1.提问:根据给出的条件,判断以下三角形是否全等。

a.△ABC≌△DEF,AB=DE,BC=EF,∠B=∠E。

b.△ABC≌△DEF,AB=DE,BC=DF,AC=EF。

c.△ABC≌△DEF,AC=DE,∠A=∠D,∠C=∠F。

2.学生回答:请学生根据给出的条件,结合全等三角形的判定方法,回答问题。

3.教师解释和点评:让学生进行回答,并解释判断的依据和结果。

Step 3:复习全等三角形的性质1.提问:回顾一下全等三角形的性质有哪些?2.学生回答:欢迎学生回答,教师进行总结。

3.教师解释:全等三角形的性质包括以下几个方面:a.对应角相等:全等三角形的对应角相等。

b.对应边相等:全等三角形的对应边相等。

c.对应中线相等:全等三角形的对应中线相等。

d.对应角平分线相等:全等三角形的对应角平分线相等。

Step 4:练习全等三角形的性质1.提问:根据给出的全等三角形,判断下列几组线段是否相等。

a.AB≌DE,AC≌DF,∠B≌∠E,∠C≌∠F,AD≌DG,BE≌EH。

三角形教案 三角形教案(优秀6篇)

三角形教案 三角形教案(优秀6篇)

三角形教案三角形教案(优秀6篇)角形教案篇一1.内容:三角形外角的概念,三角形外角的性质。

2.内容解析:与三角形内角和定理一样,三角形的外角也是研究三角形时重点研究的一类角。

三角形的一边与另一边的延长线组成的角叫做三角形的外角。

三角形的外角的性质揭示了一个三角形的三个外角、外角与内角之间的数量关系。

三角形外角的性质为与三角形有关的角的计算和证明等数学问题提供了十分便捷的方法和思路。

三角形的外角的性质的探索与证明,让学生体会从特殊到一般,从具体到抽象的研究过程和方法,使他们既学会发现,又学会归纳、概括,逐步培养他们用数学的思想和方法来思考和处理问题的习惯。

基于以上分析,确定本节课的教学重点是:三角形的外角的性质的探索和证明。

二、目标和目标解析1.目标(1)了解三角形的外角的概念。

(2)探索并证明三角形的外角的性质。

(3)能运用三角形的外角的性质解决简单问题。

2.目标解析达成目标(1)的标志是:能在具体的图形中正确识别三角形的外角、理解三角形内外角及其位置有相对性。

达成目标(2)的标志是:学生能通过特殊的、具体的计算问题,探索发现三角形的外角的性质,并能探究多种方法进行证明。

达成目标(3)的标志是:能正确运用三角形外角的性质解决简单的与三角形有关的角的计算和证明问题。

三、教学问题诊断分析学生在具体情景中辨认三角形的内外角有一定困难,在证明的推理过程中要做到步步有据也有一定难度,规范地写出证明过程更加困难。

因此,教学时要注意分析证明结论的思路,通过问题设计,引导学生思考,让学生经历发现和提出问题、分析和解决问题的过程。

四、教学过程设计(一)知识回顾,温故知新问题1 三角形的内角和是多少?怎么证明?师生活动:学生回忆三角形的内角和定理,并说出证明的方法:剪图、拼图或折叠,画出图形,推理,表述清晰。

问题2 在ABC中,(1)∠C=90°,∠A=30° ,则∠B= ;(2)∠A=50°,∠B=∠C,则∠B= .师生活动:学生独立思考后回答问题。

初二数学《三角形的有关证明复习》课时教案

初二数学《三角形的有关证明复习》课时教案

初二数学《三角形的有关证明复习》课时教案【课题】《三角形的有关证明复习》【课型】复习【教学目标】1.了解三角形全等的识别方法和三角形全等的性质,能够证明与等腰三角形、直角三角形、线段垂直平分线、角平分线相关的性质定理和判定定理.2.理解互逆命题、互逆定理,体会反证法的含义.3.能够利用尺规作图作等腰三角形、直角三角形、已知线段的垂直平分线和已知角的角平分线.【教学方法】自主探究法【教具与教学准备】导学案、PPT、多媒体【学情分析】通过观察、操作、想象、推理、交流等活动能够解决本节课的内容。

【教学过程】一、激趣导入,交代目标:(一)激趣导入设计意图(以旧引新,从学生熟知的知识入手,起点低,让全体同学都参与,也为类比探索新知做好准备。

)知识回顾(15分钟)【课堂梳理】知识点一全等三角形1.判断三角形全等的方法:①(三个公理)______、______、_____、②(一个定理)_____.2.全等三角形的性质:①线段相等:对应边相等、对应边上的_______、对应中线、______相等.②角相等:相等.注:利用全等三角形证明线段或角相等知识点二等腰三角形3.等腰三角形性质:①定理: .(等边对等角)②推论: .(三线合一)4.等腰三角形的判断方法:①定义: .②定理: .(等角对等边)知识点三等边三角形5.等边三角形概念: .6.等边三角形的性质:①等边三角形的三条边______.(边)②等边三角形的三个内角都等于______.(角)7.等边三角形的判定:①______相等的三角形是等边三角形.②三个角相等的三角形是 .③有一个角等于____的等腰三角形是等边三角形.注:等边三角形是特殊的等腰三角形,它具有等腰三角形的所有性质.知识点四直角三角形8.直角三角形的性质:①直角三角形的两个锐角 .②直角三角形两条直角边的平方和等于 .③在直角三角形中,如果有一个锐角等于____,那么它所对的直角边等于斜边的 .9.直角三角形的判定:①有两个角的三角形是直角三角形.②如果三角形两边的平方和等于,那么这个三角形为直角三角形.10.直角三角形全等的判定方法:(HL) . 注:(HL)只适用于直角三角形.知识点五线段垂直平分线11.段垂直平分线的定理: .12.线段垂直平分线的逆定理: .13.三角形垂直平分线定理: .知识点六角平分线14.角平分线的定理: .15.角平分线的逆定理: .16.三角形角平分线定理: .注:若一个点到三角形三边以及到三角形三个顶点的距离相等,这个点一定为三角形三边垂直平分线与三个内角角平分线的交点.(二)交代目标多媒体出示,让一名学生读出来,共同学习,从而明确本节课的学习目标设计意图:明确本节课的学习目标,使学生的学习有针对性。

《三角形复习课》教案

《三角形复习课》教案
(3)三角形全等的条件与性质:掌握三角形全等的判定方法(SSS、SAS、ASA、AAS),理解全等三角形的性质。
举例:若两个三角形的三组对应边分别相等,则这两个三角形全等。
2.教学难点
(1)三角形内角和定理的应用:如何运用内角和定理解决实际问题,如求三角形未知角度等。
举例:已知三角形的两个内角,求第三个内角。
1.教学重点
(1)三角形的性质:熟练掌握三角形的定义、分类及性质,特别是三角形的内角和定理、三边关系。
举例:三角形内角和形与等边三角形的判定与性质:区分等腰三角形与等边三角形,了解它们的性质及应用。
举例:等腰三角形两腰相等,等边三角形三边相等,且对应角相等。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
《三角形复习课》教案
一、教学内容
《三角形复习课》教案
本节课我们将复习人教版八年级数学下册第七章《三角形》的相关内容。主要包括以下知识点:
1.三角形的定义、分类及性质;
2.三角形的内角和定理;
3.三角形的三边关系;
4.等腰三角形的性质与判定;
5.等边三角形的性质与判定;
6.三角形全等的条件与性质;
7.直角三角形的性质与判定。
4.培养学生的数学建模素养,通过等腰三角形、等边三角形和全等三角形的性质学习,使学生能够构建数学模型,解决相关问题。

《直角三角形复习》教案

《直角三角形复习》教案

《直角三角形复习》教案教学目标:1、复习巩固所学的锐角三角函数与直角三角形及其应用等有关知识、方法;2、发展学生的数学应用意识,培养分析问题和解决问题的能力。

教学重点:锐角三角函数的概念、计算和解直角三角形。

教学难点:解直角三角形的实际应用教学过程:一、知识梳理引导学生回忆本章所学知识,用图表的方式加以梳理概括。

着重说明以下几点:1、本章的重点是锐角的三角函数的概念、计算以及解直角三角形的一般方法。

2、注意对锐角三角函数概念的理解,要准确记忆30°、45°、60°角的三角函数值,有关锥度、坡度、方向角、仰角、俯角等概念的理解与应用。

二、例题教学:例1、如图,已知在Rt △ABC 中,∠ACB=Rt ∠,CD ⊥AB ,D 为垂足,CD=5,BD=2,求:(1) tanA; (2)cos ∠ACD;(3)AC 的长。

注意:角之间的转化,如∠ACD=∠B ,∠A=∠BCD 。

例2、在△ABC 中,∠C=90°,AB= ,3D 为AC 上一点,且∠DBC=30°,COS ∠ABC=53.求BC 和AD 的长。

B注意:求AD的长的关键在于求BC,因此解此类问题应从两Rt△的公共边入手。

2,求△ABC的例3 、已知:△ABC中,∠A=30°,∠C-∠B=60°,AC=2面积。

注意:画CD⊥AB,将解一般三角形问题转化为解直角三角形问题;在本题中,求公共直边CD成为求解的关键。

例4.北部湾海面上,一艘解放军军舰正在基地A的正东方向且距离A地40海里的B处训练。

突然接到基地命令,要该舰前往C岛,接送一名病危的渔民到基地医院救治。

已知C岛在A的北偏东方向60°,且在B的北偏西45°方向,军舰从B处出发,平均每小时行驶20海里,需要多少时间才能把患病渔民送到基地医院?(精确到0.1小时)例5.如图,城市规划期间,要拆除一电线杆AB,已知距电线杆水平距离14米的D处有一大坝,背水坡的坡度i=2:1,坝高CF为2米,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽为2米的人行道.请问:在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B为圆心,以AB长为半径的圆形区域为危险区域)。

三角形复习教案

三角形复习教案

三角形复习教案在这个教案中,我们将复习三角形的相关知识。

三角形是几何学中的基本概念之一,了解三角形的性质和定理对于解决几何问题非常重要。

本教案将按照以下顺序进行复习:三角形的定义、分类、性质和定理。

一、三角形的定义三角形是由三条边和三个顶点组成的图形。

三角形中的每个顶点都由两条边相交形成。

三角形的边和顶点之间有特定的关系,我们将在下面的内容中一一介绍。

二、三角形的分类根据三角形的边长和角度,我们可以将三角形分为以下几类:1. 等边三角形:三条边的长度都相等的三角形。

等边三角形的三个内角也相等,都为60度。

2. 等腰三角形:两条边的长度相等的三角形。

等腰三角形的两个底角也相等。

3. 直角三角形:其中一个角是一个直角(90度)。

直角三角形的两个较短的边相互垂直。

4. 钝角三角形:其中一个角大于90度的三角形。

5. 锐角三角形:所有角都小于90度的三角形。

三、三角形的性质三角形有许多有趣的性质,我们来一一介绍:1. 内角和定理:三角形的三个内角之和为180度。

2. 外角和定理:三角形的外角和等于360度。

3. 底角定理:等腰三角形的底角相等。

4. 等角定理:如果两个三角形的对应角度相等,那么它们是相似的。

5. 高度和定理:三角形的高度是从一个顶点到对应边的垂直距离。

四、三角形的定理除了上述的性质外,还有一些重要的定理与三角形相关:1. 余弦定理:用于计算一个三角形的边长。

它可以通过余弦函数表示为:c² = a² + b² - 2ab * cos(C),其中c代表三角形的第三边,a和b分别代表三角形的两个边,C代表对应的角度。

2. 正弦定理:用于计算一个三角形的角度或边长。

它可以通过正弦函数表示为:sin(A)/a = sin(B)/b = sin(C)/c,其中A、B、C分别代表三角形的角度,a、b、c分别代表三角形的边长。

3. 角平分线定理:一个角的平分线将该角分成两个相等的角度。

《三角形》复习教案

《三角形》复习教案

《三角形》复习教案一、教学目标1、学生能够熟练掌握三角形的基本概念,如三角形的定义、分类、三边关系等。

2、理解并掌握三角形的内角和定理、外角性质。

3、熟练运用三角形全等的判定方法进行证明和计算。

4、能够运用三角形的相关知识解决实际问题,提高分析和解决问题的能力。

二、教学重难点1、重点(1)三角形的内角和定理、外角性质。

(2)三角形全等的判定方法。

2、难点(1)三角形全等的综合运用。

(2)运用三角形知识解决实际问题。

三、教学方法讲授法、练习法、讨论法四、教学过程(一)知识回顾1、三角形的定义由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三角形的分类(1)按角分类:锐角三角形、直角三角形、钝角三角形。

(2)按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形)。

3、三角形的三边关系三角形任意两边之和大于第三边,任意两边之差小于第三边。

4、三角形的内角和定理三角形三个内角的和等于 180°。

5、三角形的外角性质(1)三角形的一个外角等于与它不相邻的两个内角的和。

(2)三角形的一个外角大于任何一个与它不相邻的内角。

6、三角形全等的判定方法(1)“边边边”(SSS):三边对应相等的两个三角形全等。

(2)“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。

(3)“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。

(4)“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。

(5)“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。

(二)典型例题例 1:已知一个三角形的两边长分别为 3 和 7,第三边长为整数,求第三边的长度可能是多少?解:设第三边长为 x,根据三角形三边关系可得:7 3 < x < 7 + 34 < x < 10因为第三边长为整数,所以 x 可以为 5、6、7、8、9。

例 2:如图,在△ABC 中,∠A = 50°,∠B = 60°,求∠ACD 的度数。

第十章三角形的有关证明复习课教案

第十章三角形的有关证明复习课教案

第十章三角形的有关证明复习课教案教学目标: 1.知识目标: 复习全等三角形, 线段垂直平分线的性质定理与逆定理, 角平分线的性质定理与逆定理, 三角形三边垂直平分线的特点, 三角的角平分线的特点。

2.能力目标: 应用上述知识解决一些类型题, 掌握方法, 培养学生分析问题解决问题的能力, 通过学生小组合作学习, 培养学生团结协作的能力。

3.情感目标: 通过情境导入, 让学生充分体会数学来源于生活, 应用于生活。

通过小组合作学习, 培养学生的集体荣誉感。

教学重难点:知识点的应用解题, 方法的归纳总结, 小组的团结协作。

教学方法: 学生合作学习, 教师指导教学。

教学准备:学案, 多媒体课件教学过程:本环节课前学生认真填写, 组内订正答案, 发挥小组的作用生生检查, 教师巡视指导。

本环节大胆放给学生充当设计师, 鼓励学生利用自己所学知识解决实际问题, 充分体会数学来源于生活, 服务于生活。

此题有三组全等三角形, 找学生上黑板展示方法, 归纳思路, 教师指导。

此题介绍两种方法, 重点为了练习本章新学的“HL”判定此题大部分学生会选择证全等, 教师旨在让学生练习线段垂直平分线的性质定理和逆定理。

此题应用两种方法解决。

此题旨在复习全等和线段垂直平分线的性质定理, 学生有可能证两次全等, 尽量让学生指出麻烦的问题所在, 教师指导。

通过此题旨在找出与第4题的联系, 掌握辅助线的添加, 从而解决问题。

通过此题教师意在(1)让学生练习角平分线的性质定理, 线段垂直平分线的性质定理和全等(2)看到线段垂直平分线上的点马上连接点与线段两端点, 得到相等线段。

小结收获: 本节你有哪些收获?包括(1)知识收获(2)能力收获五、作业: 必作: 1.从学案中挑2——3道自己掌握得不太好的题, 整理在错题本上。

2.如图, 在四边形ABCD中, AD BC, AE平分BAD, BE平分ABC求证: AB=AD+BC选作: 用两种方法解决第2题。

《三角形》复习教案

《三角形》复习教案

《三角形》复习教案一、教学目标1、学生能够理解三角形的基本概念,包括三角形的定义、边、角、顶点等。

能够准确说出三角形的组成部分。

能够区分不同类型的三角形。

2、掌握三角形的内角和定理,并能熟练运用。

理解内角和为 180 度的原理。

能够解决与内角和相关的计算问题。

3、熟悉三角形的三边关系,能够判断三条线段能否组成三角形。

掌握判断的方法和依据。

能够运用三边关系解决实际问题。

4、了解三角形的高线、中线、角平分线的定义和性质。

能够正确画出三角形的高线、中线、角平分线。

理解它们在三角形中的作用和特点。

5、掌握全等三角形的概念、性质和判定方法。

能够识别全等三角形。

能够运用全等三角形的性质和判定解决问题。

二、教学重难点1、重点三角形内角和定理及其应用。

三角形三边关系的应用。

全等三角形的判定方法。

2、难点三角形内角和定理的证明过程。

运用三边关系判断三条线段能否组成三角形。

灵活运用全等三角形的判定方法解决复杂问题。

三、教学方法1、讲授法讲解三角形的基本概念、定理和性质。

引导学生理解和掌握重点知识。

2、练习法安排适量的练习题,让学生通过练习巩固所学知识。

针对学生的练习情况进行讲解和纠错。

3、讨论法组织学生讨论疑难问题,促进学生之间的思维碰撞。

培养学生的合作学习能力和解决问题的能力。

四、教学过程1、知识回顾提问学生三角形的定义、边、角、顶点等基本概念。

引导学生回忆三角形的分类方法,如按角分类和按边分类。

2、内角和定理讲解三角形内角和定理的内容。

通过演示和推理,证明内角和为 180 度。

安排相关练习题,让学生巩固内角和定理的应用。

3、三边关系介绍三角形三边关系的定理。

举例说明如何判断三条线段能否组成三角形。

让学生进行实际操作,通过测量线段长度判断能否组成三角形。

4、高线、中线、角平分线分别讲解三角形高线、中线、角平分线的定义和性质。

示范如何画出这些线段,让学生动手练习。

强调它们在解决三角形问题中的作用。

5、全等三角形阐述全等三角形的概念和性质。

高中数学解三角形复习教案

高中数学解三角形复习教案

模块一:解三角形复习2.1.1 正弦定理教学过程: 一、复习准备:1. 讨论:在直角三角形中,边角关系有哪些?(三角形内角和定理、勾股定理、锐角三角函数)如何解直角三角形?那么斜三角形怎么办?2. 由已知的边和角求出未知的边和角,称为解三角形. 已学习过任意三角形的哪些边角关系?(内角和、大边对大角) 是否可以把边、角关系准确量化? →引入课题:正弦定理二、讲授新课:1. 教学正弦定理的推导:①特殊情况:直角三角形中的正弦定理:sin A =c a sin B =cb sin C =1 即c =sin sin sin a b cA B C==. ② 能否推广到斜三角形? (先研究锐角三角形,再探究钝角三角形)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,有sin sin CD a B b A ==,则sin sin a bA B=. 同理,sin sin a c A C =(思考如何作高?),从而sin sin sin a b cA B C==. ③*其它证法:证明一:(等积法)在任意斜△ABC当中S△ABC =111sin sin sin 222ab C ac B bc A ==. 两边同除以12abc 即得:sin a A =sin b B =sin cC. 证明二:(外接圆法)如图所示,∠A =∠D ,∴2sin sin a aCD R A D===同理sin b B =2R ,sin c C=2R . 证明三:(向量法)过A 作单位向量j r 垂直于AC u u u r ,由AC u u u r +CB u u u r =AB u u ur 边同乘以单位向量j r得…..④ 正弦定理的文字语言、符号语言,及基本应用:已知三角形的任意两角及其一边可以求其他边;已知三角形的任意两边与其中一边的对角可以求其他角的正弦值. 2. 教学例题:① 出示例1:在∆ABC 中,已知045A =,060B =,42a =cm ,解三角形.分析已知条件 → 讨论如何利用边角关系 → 示范格式 → 小结:已知两角一边② 出示例2:045,2,,ABC c A a b B C ∆==中,求和.分析已知条件 → 讨论如何利用边角关系 → 示范格式 → 小结:已知两边及一边对角③ 练习:060,1,,ABC b B c a A C ∆===中,求和.在∆ABC 中,已知10a =cm ,14b =cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )④ 讨论:已知两边和其中一边的对角解三角形时,如何判断解的数量?3. 小结:正弦定理的探索过程;正弦定理的两类应用;已知两边及一边对角的讨论. 三、巩固练习:1.已知∆ABC 中,∠A =60°,a =,求sin sin sin a b cA B C++++.2.1.2 余弦定理(一)教学要求:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题.教学重点:余弦定理的发现和证明过程及其基本应用. 教学难点:向量方法证明余弦定理. 教学过程: 一、复习准备:1. 提问:正弦定理的文字语言? 符号语言?基本应用?2. 练习:在△ABC 中,已知10c =,A =45︒,C =30︒,解此三角形. →变式3. 讨论:已知两边及夹角,如何求出此角的对边? 二、讲授新课:1. 教学余弦定理的推导:① 如图在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b .∵AC AB BC =+u u u r u u u r u u u r ,∴()()AC AC AB BC AB BC •=+•+u u u r u u u r u u u r u u u r u u u r u u u r222AB AB BC BC =+•+u u u r u u u r u u u r u u u r222||||cos(180)AB AB BC B BC =+•-+ou u u r u u u r u u u r u u u r 222cos c ac B a =-+.即2222cos b c a ac B =+-,→② 试证:2222cos a b c bc A =+-,2222cos c a b ab C =+-.③ 提出余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.用符号语言表示2222cos a b c bc A =+-,…等; → 基本应用:已知两边及夹角 ④ 讨论:已知三边,如何求三角?→ 余弦定理的推论:222cos 2b c a A bc+-=,…等.⑤ 思考:勾股定理与余弦定理之间的关系? 2. 教学例题:① 出示例1:在∆ABC中,已知=ac 060=B ,求b 及A . 分析已知条件 → 讨论如何利用边角关系 → 示范求b→ 讨论:如何求A ?(两种方法)(答案:b =060A =) → 小结:已知两边及夹角②在∆ABC 中,已知13a cm =,8b cm =,16c cm =,解三角形.分析已知条件 → 讨论如何利用边角关系 → 分三组练习 → 小结:已知两角一边3. 练习:① 在ΔABC 中,已知a =7,b =10,c =6,求A 、B 和C .② 在ΔABC 中,已知a =2,b =3,C =82°,解这个三角形.4. 小结:余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;余弦定理的应用范围:①已知三边求三角;②已知两边及它们的夹角,求第三边. 三、巩固练习:1. 在∆ABC 中,若222a b c bc =++,求角A . (答案:A =1200)2. 三角形ABC 中,A =120°,b =3,c =5,解三角形. → 变式:求sin B sin C ;sin B +sin C .3. 作业:教材P8 练习1、2(1)题.2.1 .3 正弦定理和余弦定理(练习)一、复习准备:1. 写出正弦定理、余弦定理及推论等公式.2. 讨论各公式所求解的三角形类型. 二、讲授新课:1. 教学三角形的解的讨论:① 出示例1:在△ABC 中,已知下列条件,解三角形. (i ) A =6π,a =25,b =; (ii ) A =6π,a =25b =50; (iii ) A =6π,a=,b =; (iiii ) A =6π,a =50,b =.分两组练习→ 讨论:解的个数情况为何会发生变化?② 用如下图示分析解的情况. (A 为锐角时)② 练习:在△ABC 中,已知下列条件,判断三角形的解的情况. (i ) A =23π,a =25,b =50; (ii ) A =23π,a =25,b =10 例1.根据下列条件,判断解三角形的情况(1) a =20,b =28,A =120°.无解 (2)a =28,b =20,A =45°;一解 (3)c =54,b =39,C =115°;一解 (4) b =11,a =20,B =30°;两解2. 教学正弦定理与余弦定理的活用:① 出示例2:在△ABC 中,已知sin A ∶sin B ∶sin C =6∶5∶4,求最大角的余弦. 分析:已知条件可以如何转化?→ 引入参数k ,设三边后利用余弦定理求角.② 出示例3:在ΔABC 中,已知a =7,b =10,c =6,判断三角形的类型. 分析:由三角形的什么知识可以判别? → 求最大角余弦,由符号进行判断已知边a,b 和∠A有两个解仅有一个解无解CH=bsinA<a<b a=CH=bsinA a<CH=bsinA结论:活用余弦定理,得到:=+⇔⇔∆>+⇔⇔∆<+⇔⇔222222222是直角是直角三角形是钝角是钝角三角形是锐角a b c A ABCa b c A ABCa b c A∆是锐角三角形ABC③出示例4:已知△ABC中,cos cosb Cc B=,试判断△ABC的形状.分析:如何将边角关系中的边化为角?→再思考:又如何将角化为边?3. 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:1. 已知a、b为△ABC的边,A、B分别是a、b的对角,且sin2sin3AB=,求a bb+的值2. 在△ABC中,sin A:sin B:sin C=4:5:6,则cos A:cos B:cos C=.3. 作业:2.2三角形中的几何计算一、 设疑自探正弦定理、余弦定理是两个重要的定理,在解决与三角形有关的几何计算问题中有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精锐教育学科教师辅导讲义学员编号:年级:课时数:学员姓名:辅导科目:数学学科教师:授课类型T(三角形)C(三角形相关的线段、角)T (三角形与多边形综合)授课日期及时段教学内容一、同步知识梳理知识点1.三角形的定义与分类:(1)三角形的定义:(2)三角形的分类:锐角三角形按角分直角三角形钝角三角形不等边三角形按边分等腰三角形:有两条边相等的三角形有三条边相等的三角形即等边三角形(3)三角形的三边关系:三角形任意两边之与大于第三边,任意两边之与小于第三边。

知识点2.三角形的高、中线、角平分线(1)三角形的高:过三角形的顶点向对边画垂线,顶点与垂足之间的线段叫做三角形的高线。

三条高的交点叫做垂心。

钝角三角形的垂线的位置在三角形的外部。

(2)三角形的中线:联结三角形顶点与对边中点的线段叫做三角形的中线。

三条中线的交点叫做重心。

(3)三角形的角平分线:三角形一内角的平分线与对边相交,交点到顶点之间的线段叫做角平分线。

三条角平分线的交点是内接圆的圆心即内心知识点3.三角形的稳定性:三角形具有稳定性。

知识点4.与三角形有关的角:(1)三角形内角与定理:三角形内角与为180°(2)三角形外角的性质:①三角形的外角等于与它不相邻两内角之与。

②三角形的外角大于与它不相邻的内角。

(3)三角形外角与定理:三角形外角与为360°(4)两个角互余的三角形是直角三角形。

知识点5.多边形(1)多边形定义:____________(2) n边形内角与定理:多边形内角与为(n-2)×180°(3) 多边形外角与定理:多边形外角与为360°。

(4)①多边形的对角线2)3(nn条对角线(5)正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形。

二、同步题型分析例1.下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11分析:看哪个选项中两条较小的边的与不大于最大的边即可.解:A、因为1+2<4,所以本组数不能构成三角形.故本选项错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C、因为9-4<5<8+4,所以本组数可以构成三角形.故本选项正确;D、因为5+5<11,所以本组数不能构成三角形.故本选项错误;故选C.点评:本题主要考查了三角形的三边关系定理:任意两边之与大于第三边,只要满足两短边的与大于最长的边,就可以构成三角形.例2.如图7.1.2-4所示,△ABC中,边BC上的高画得对吗?为什么?分析:锐角三角形的三条高交于一点,交点在三角形的内部;直角三角形的三条高交于一点,交点在三角形的直角顶点处;钝角三角形的三条高交于一点,交点在三角形的外部。

解答:(1)(2)(4)错,(3)对例3. 如图所示:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________=∠________=90°.(2)AE 平分∠BAC ,交BC 于E 点,则AE 叫做△ABC 的________,∠________=∠________=21∠________. (3)若AF =FC ,则△ABC 的中线是________,S △ABF =________.(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线.分析:熟悉三角形的垂线、角平分线、中线的概念是解题的关键。

(3)BF 是△ABC 的中线,所平分的两个三角形面积相等,因为等底同高。

例4.如图,CD 、CE 、CF 分别是△ABC 的中线、角平分线、高,那么下列结论错误的是( )A .AD=DB B .∠ACE=∠ECBC .∠AFC=∠BFC=90°D .∠ECF=∠BCF考点:三角形的角平分线、中线与高.分析:根据三角形的中线的定义,角平分线的定义与高线的定义对各选项分析判断后利用排除法求解. 解答:解:A 、∵CD 是中线, ∴AD=BD,故本选项错误;B 、∵CE 是角平分线, ∴∠ACE=∠ECB,故本选项错误;C 、∵CF 是高线, ∴∠AFC=∠BFC=90°,故本选项错误;D 、∵EF 与BF 不一定相等, ∴∠ECF=∠BCF 不一定正确,故本选项正确.故选D .点评:本题考查了三角形的角平分线、中线与高线,是基础题,熟记概念是解题的关键.例5.如图,哪些应用了三角形的稳定性,哪些应用了四边形的不稳定性.钢架桥 起重机 屋顶钢架 活动滑门分析:三角形具有稳定性,四边形有不稳定性。

解答:起重机、钢架桥、屋顶钢架有稳定性;活动滑门有不稳定性。

例6.如果三角形的一个内角等于其他两个内角的与,这个三角形是( )A.锐角三角形B.钝角三角形C.直角三角形D.不能确定分析:理解直角三角形定义,结合三角形内角与得出结论.解答:若△ABC 的三个内角∠A 、∠B 、∠C 中,∠A+∠B=∠C又∠A+∠B+∠C=180°,所以2∠C=180°,可得∠C=90°,所以选C.例7.已知一个三角形三个内角度数的比是1∶5∶6,则其最大内角的度数为( ).A .60°B .75°C .90°D .120°分析:已知三角形三个内角的度数之比,可以设一份为k °,则三个内角的度数分别为k °,5k °,6k °.根据三角形的内角与等于180°,列方程k +5k +6k =180,解得k =15.所以最大内角为6k °=90°,应选C. 解答:选C例8.如图,△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,则∠ACD 等于( ).A .100°B .120°C .130°D .150°分析:所求的角恰好是△ABC 的外角,根据外角推论1可求得.∵△ABC 中,∠A =70°,∠B =60°,∴∠ACD =∠A +∠B =70°+60°=130°.故选C.解答:C点评:本题考查的是三角形内角与外角的关系,三角形的外角等于与它不相邻的两个内角的与.例9.一个多边形的内角与是720°,这个多边形的边数是【 】A .4B .5C .6D .7考点:多边形内角与定理。

解析∵多边形的内角与公式为(n ﹣2)•180°,∴(n ﹣2)×180°=720°,解得n=6。

∴这个多边形的边数是6.故选C 。

例10.如图,1∠、2∠、3∠、4∠是五边形ABCDE 的4个外角,若2A 10∠=︒,则1234∠+∠+∠+∠= ▲解答:300。

考点:多边形外角性质,补角定义。

分析:由题意得,∠A 的外角=180°-∠A=60°,又∵多边形的外角与为360°,∴∠1+∠2+∠3+∠4=360°-∠A 的外角=300°。

例11.一个多边形的每个外角都是60°,则这个多边形是___边形,它的对角线共有______条对角线。

考点:多边形内角与外角;多边形的对角线.分析:利用外角与360°÷外角的度数即可;根据多边形的对角线条数公式n (n −3)/2即可算出答案. 故答案为:六;9.点评:此题主要考查了多边形的外角与,以及对角线的条数,关键是掌握对角线总条数的计算公式.n 边形过一个顶点有(n-3)条对角线,它们把n 边形分割成了(n-2)个三角形三、课堂达标检测1.如果一个三角形的两边长分别为2与4,则第三边长可能是( )A .2B .4C .6D .8选B2..如果线段a 、b 、c 能组成三角形,那么,它们的长度比可能是( )A.1∶2∶4B.1∶3∶4C.3∶4∶7D.2∶3∶43.如图,若上∠1=∠2、∠3=∠4,下列结论中错误的是( D )A.AD 是△ABC 的角平分线B.CE 是△ACD 的角平分线C.∠3=21∠ACBD.CE 是△ABC 的角平分线4.能把一个三角形分成两个面积相等的三角形是三角形的( A )A. 中线B. 高线C. 角平分线D. 以上都不对5.在△ABC 中,∠A =90°,∠C =55°,则∠B =_____;若∠C =4∠A ,∠A +∠B =100°,则∠B =________.6.如图所示,∠a =________.160°7.已知正n 边形的一个内角为135º,则边数n 的值是【 】A .6B .7C .8D .9解析:根据多边形内角与定理,得00n 2=135n -⋅⋅()180,解得n=8。

故选C 。

四.师生小结< 建议用时5分钟!>1.熟知三角形的三边关系、高、中线、角平分线。

2.掌握三角形的内角与定理、外角与定理。

3.掌握多边形内角与定理、外角与定理一.专题导入通过模块一同步训练的学习,我们初步掌握了与三角形有关的线段、角;多边形及其内角与。

三角形的线段与角是中考的必考内容,要求了解或理解,但是常常与其他章节结合考查,如平行线、全等、相似等知识。

三角形的全等与相似是以后学期要学的内容,也是中考考查的重点。

本章是关于三角形的初步认识,也是学好全等与相似的基础与前提,所以我们对于三角形要更深层次的认识与掌握。

二.专题精讲三.题型一. 三角形的三边关系例1.三角形的三边分别为3,1-2a,8,则a的取值范围是( )A.-6<a<-3 B.-5<a<-2 C.2<a<5 D.a<-5或a>-2分析:涉及到三角形三边关系时,尽可能简化运算,注意运算的准确性.解答:根据三角形三边关系得:8-3<1-2a<8+3,解得-5<a<-2,应选B.例2.有人说,自己的步子大,一步能走三米多,你相信吗?用你学过的数学知识说明理由.考点:三角形三边关系.分析:人的两腿可以看作两条线段,走的步子也可看作线段,则这三条线段正好构成三角形的三边,就应满足三边关系定理.解答:不能.如果此人一步能走三米多,由三角形三边的关系得,此人两腿长的与>3米多,这与实际情况不符.所以他一步不能走三米多.点评:本题就是利用三角形的三边关系定理解决实际问题.题型二.三角形有关的线段例1.如图,已知△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.分析:由三角形的内角与定理,可求∠BAC=70°.又AE是∠BAC的平分线,可知∠BAE=35°,再由AD是BC边上的高,可知∠ADB=90°,从而∠BAD=25°,所以∠DAE=∠BAE-∠BAD=10°.解答:在△ABC中,∵∠BAC=180°-∠B-∠C=70°,AE是∠BAC的平分线,∴∠BAE=∠CAE=35°.又∵AD是BC边上的高,∴∠ADB=90°.∵在△ABD中∠BAD=90°-∠B=25°,∴∠DAE=∠BAE-∠BAD=10°.点评:三角形内角与定理的运用。

相关文档
最新文档