特殊三角形复习学案

合集下载

数学中考一轮复习学案 第19节 等腰三角形(含解析)

数学中考一轮复习学案  第19节 等腰三角形(含解析)

第四章图形的性质第19节等腰三角形■知识点一:等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.注意:三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为 .■知识点二:等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.注意:(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=12AB. ■知识点三:角平分线21P COBA(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA ⊥OA ,PB ⊥OB ,则PA =PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上. ■知识点四:垂直平分线PC OBA(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP 垂直且平分AB ,则PA =PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.■考点1.等腰三角形 ◇典例:1. (2018年黑龙江省绥化市)已知等腰三角形的一个外角为130°,则它的顶角的度数为 .【考点】等腰三角形的性质【分析】等腰三角形的一个外角等于130°,则等腰三角形的一个内角为50°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.解:当50°为顶角时,其他两角都为65°、65°,当50°为底角时,其他两角为50°、80°,所以等腰三角形的顶角为50°或80°.故答案为:50°或80°.【点评】本题考查了等腰三角形的性质,及三角形内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.2.(2017年北京市)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.求证:AD=BC.【考点】等腰三角形的判定与性质.【分析】根据等腰三角形的性质得到∠ABC=C=72°,根据角平分线的定义得到∠ABD=∠DBC=36°,∠BDC=72°,根据等腰三角形的判定即可得到结论.证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠DBC=36°,∴∠A=∠ABD,∴AD=BD,∵∠C=72°,∴∠BDC=72°,∴∠C=∠BDC,∴BC=BD,∴AD=BC.【点评】本题主要考查等腰三角形的性质和判定,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.◆变式训练1.(2018年内蒙古包头)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为()A.17.5° B.12.5°C.12° D.10°2.( 2017年湖北武汉市)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7■考点2.等边三角形◇典例(2018年辽宁省葫芦岛市)如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n A n+1C n的面积为.(用含正整数n的代数式表示)【考点】规律型:图形的变化类;等边三角形的性质【分析】由题意△A1A2C1是等边三角形,边长为,△A2A3C2是等边三角形,边长为×,△A3A4C3是等边三角形,边长为××=()2×,△A4A5C4是等边三角形,边长为×××=()3×,…,一次看到△A n B n+1C n的边长为()n﹣1×即可解决问题;解:由题意△A1A2C1是等边三角形,边长为,△A2A3C2是等边三角形,边长为×,△A3A4C3是等边三角形,边长为××=()2×,△A4A5C4是等边三角形,边长为×××=()3×,…,△A n A n+1C n的边长为()n﹣1×,∴△A n A n+1C n的面积为×[()n﹣1×]2=()2n﹣2×.【点评】本题考查等边三角形的性质、三角形的面积等知识,解题的关键是学会探究规律的方法,属于中考常考题型.◆变式训练(2018年内蒙古通辽市)如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD的面积为.■考点3.角平分线◇典例:(2018年山东省德州)如图,为的平分线.,..则点到射线的距离为__________.【考点】角平分线的性质【分析】过C作CF⊥AO,根据勾股定理可得CM的长,再根据角的平分线上的点到角的两边的距离相等可得CF=CM,进而可得答案.解:过C作CF⊥AO.∵OC为∠AOB的平分线,CM⊥OB,∴CM=CF.∵OC=5,OM=4,∴CM=3,∴CF=3.故答案为:3.【点睛】本题主要考查了角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.◆变式训练(2018年山东省东营)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是.■考点4.垂直平分线◇典例:(2018年贵州省安顺)已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.【考点】作图—复杂作图,线段垂直平分线【分析】利用线段垂直平分线的性质以及圆的性质分别分得出即可.解:A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;B、如图所示:此时PA=PC,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;D、如图所示:此时BP=AP,故能得出PA+PC=BC,故此选项正确;故选:D.【点评】此题主要考查了复杂作图,根据线段垂直平分线的性质得出是解题关键.◆变式训练(2018年山东省青岛)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.一、选择题1.(2018 年广西梧州市)如图,已知 BG 是∠ABC 的平分线,DE⊥AB 于点 E,DF⊥BC 于点 F,DE=6,则 DF 的长度是()A.2 B.3 C.4 D.62.(2018年浙江省湖州市)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°3.(2018年四川省攀枝花市)如图,等腰直角三角形的顶点A.C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为()A.30°B.15°C.10°D.20°4.(2018年甘肃省兰州市(a卷))如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是()A.50°B.60°C.65°D.70°5.(2018年福建省(A卷))如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°二、填空题6.(2018年湖南省湘潭市)如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD= .7.(2018年贵州省遵义市)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为度.8.(2018年江苏省南京市)如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10cm,则DE= cm.9.(2018年浙江省绍兴市)数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.三、解答题10.(2018年浙江省嘉兴市)已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.一、选择题1.(2018 年广西梧州市)如图,在△ABC 中,AB=AC,∠C=70°,△AB′C′与△ABC 关于直线 EF对称,∠CAF=10°,连接 BB′,则∠ABB′的度数是()A.30° B.35° C.40° D.45°2.(2018年青海省)如图,把直角三角形ABO放置在平面直角坐标系中,已知∠OAB=300,B点的坐标为(0,2),将∆ABO沿着斜边AB翻折后得到∆ABC,则点C的坐标是()A. B. C. D.3.(2018年黑龙江省大庆市)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30° B.35° C.45° D.60°4.(2018年湖北省襄阳市)如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD 的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm5.(2018年江苏省扬州市)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC6.(2018年广西玉林市)如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交 C.垂直 D.平行、相交或垂直7.(2018年四川省巴中市)如图,在Rt△ABC中,∠C=90°,按下列步骤作图:①以点B为圆心,适当长为半径画弧,与AB,BC分别交于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧交于点P;③作射线BP交AC于点F;④过点F作FG⊥AB 于点G.下列结论正确的是()A.CF=FG B.AF=AG C.AF=CF D.AG=FG二、填空题8.(2018年黑龙江省哈尔滨市)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.9.(2018年广西桂林市)如图,在ΔABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是__________10.(2018年四川省南充市)如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.11.(2018年湖南省娄底市)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF= cm.三、解答题12.(2018年浙江省绍兴市)数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.13.(2018年湖北省孝感市)如图,△ABC中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:①作∠BAC的平分线AM交BC于点D;②作边AB的垂直平分线EF,EF与AM相交于点P;③连接PB,PC.请你观察图形解答下列问题:(1)线段PA,PB,PC之间的数量关系是;(2)若∠ABC=70°,求∠BPC的度数.14.(2018年江苏省镇江市)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC= °.15.(2018年黑龙江省哈尔滨市)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.。

等腰直角三角形-学案

等腰直角三角形-学案

学习过程一、复习预习二、知识讲解考点/易错点1等腰直角三角形特有(1)两底角等于45°。

(2)两腰相等。

考点/易错点2等腰直角三角形中的四条特殊的线段:角平分线,中线,高,中位线.中线:顶点与对边中点的连线,平分三角形。

高:顶点到对边垂足的连线。

角平分线;顶点到两边距离相等的点所构成的直线。

中位线:任意两边中点的连线。

考点/易错点3等腰直角三角形常见题型1、多垂直、锐角相等2、通过三线合一构造全等3、利用垂直与等腰构造全等三、例题精析【例题1】【题干】△ABC中, ∠BAC=90°, AB=AC, D为BC 上一点,过B,C做BE⊥AD, CF⊥AD 求证: BE=EF+CF【答案】∵BE⊥AD,∠BAC=90°∴∠EBA=∠CAF易证: △EBA≌△FAC∴AE=FC, BE=AF∴BE=EF+CF【解析】直角三角形中,两锐角互余;结合三角形全等很容易得证【例题2】【题干】△ABC中,∠BAC=90°,AB=AC,AB是BC边上中线,∠ABF=∠CAE,求证:EF∥AC【答案】Rt△ABC中,AD为中线∴BD=AD,∠ABD=∠DAC=45°又∵∠ABF=∠CAE∴∠DBF=∠DAE∴易证:△DBF≌△DAE∴DE=DF,∴∠FED=∠C=45°∴EF∥AC【解析】通过三线合一构造全等【例题3】【题干】△ABC中,∠BAC=90°,AB=AC,BD F平分∠ABC,CE⊥BD交BD延长线于E求证:BD=2CE【答案】证:∵BD平分∠ABC,且CE⊥BE∴延长CE、BA交于F易证:△FBE≌△CBE∴FE=CE,△ABD≌△ACF∴BD=CF=2CE【解析】利用垂直与等腰构造全等【例题4】【题干】如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B 的坐标为()A、(0,0)B、(,﹣)C、(,﹣)D、(﹣,)【答案】解:过A点作垂直于直线y=﹣x的垂线AB,∵点B在直线y=﹣x上运动,∴∠AOB=45°,∴△AOB为等腰直角三角形,过B作BC垂直x轴垂足为C,则点C为OA的中点,则OC=BC=.作图可知B在x下方,y的右方.∴横坐标正,纵坐标为负.所以当线段AB最短时,点B的坐标为(,﹣).故选B.【解析】线段AB最短,说明AB此时为点A到y=﹣x的距离.过A点作垂直于直线y=﹣x 的垂线AB,由题意可知:△AOB为等腰直角三角形,过B作BC垂直x轴垂足为C,则点C为OA的中点,有OC=BC=,故可确定出点B的坐标.【例题5】【题干】△ABC和△AEF均为等腰直角三角形,其初始位置如图所示,若△AEF绕A点顺时针旋转,则BE与CF大小关系为()A、BE>CFB、BE=CFC、BE<CFD、无法确定【答案】解:连接BE、CF∵△ABC和△AEF均为等腰直角三角形,∴BA=BC,∠BAC=∠FAE,AF=AE,∴△BAE≌△CAF,∴BE=CF.故选B.【解析】连接BE、CF,证明△BAE≌△CAF即可得到结论.【例题6】【题干】下面的方格图案中的正方形顶点叫做格点,图1中以格点为顶点的等腰直角三角形共有4个,图2中以格点为顶点的等腰直角三角形共有10 个,图3中以格点为顶点的等腰直角三角形共有28 个,图4中以格点为顶点的等腰直角三角形共有50 个.【答案】解答:解:第一空 4 (正方形边长为1,直角边长为1的等腰三角形有4个);第二空4×2+2=10 (每个正方形都有4个边长为1的等腰直角三角形,还有2个直角边长为的就是以2为斜边)第三空4×4+2×4+4=28 (4个小正方形就是4×4,而相邻的两个小正方形都有2个直角边为的等腰直角三角形,这样相邻的有4对所以是2×4,然后再加上4个直角边长为2的)第四空4×6+2×7+4×2+4=50(正方形边长为1,直角边长为1的等腰三角形有4×6个小正方形,7对相邻的两个小正方形,4对直角边为2的大正方形,4个直角边长为的斜边为.【解析】分析:根据正方形的性质,知图1中,连接2条对角线,可以有4个以格点为顶点的等腰直角三角形;图2中,连接每个正方形的2条对角线,在图1的基础上,则共有4×2+2=10(个)以格点为顶点的等腰直角三角形;图3中,在图1和图2的基础上,则共有10×2+8=28(个)以格点为顶点的等腰直角三角形;图4中,在图2和图3的基础上,分解为几个(2)(3)的图形,然后观察形状不是(2)(3)的四边形中是否存在满足条件的三角形,利用勾股定理的逆定理即可作出判断.四、课堂运用【基础】1.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是()A、40°B、45°C、50°D、60°分析:先利用AAS判定△BDF≌△ADC,从而得出BD=DA,即△ABD为等腰直角三角形.所以得出∠ABC=45°.解答:解:∵AD⊥BC于D,BE⊥AC于E∴∠BEA=∠ADC=90°.∵∠FBD+∠BFD=90°,∠AFE+∠FAE=90°,∠BFD=∠AFE∴∠FBD=∠FAE∵∠BDF=∠ADC=90°,BF=AC∴△BDF≌△ADC(ASA)∴BD=AD∴∠ABC=∠BAD=45°故选B.2.用两个全等的等腰直角三角形拼下列图形:①等腰三角形;②等边三角形;③正方形;④等腰梯形.一定可以拼成的图形有()A、①③B、②④C、②③D、①④分析:可以将两个直角三角形拼拼,即可得到可以拼成等腰三角形与正方形.解答:解:①如图:∵∠B=∠B′=45°,∴可以拼成等腰三角形;③如图:,∴可以拼成正方形;∴一定可以拼成的图形有①③.故选A.3.如图,△ABC中,∠C=Rt∠,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,则△DBE的周长等于()A、10cmB、8cmC、12cmD、9cm分析:根据角平分线性质求出CD=DE,根据勾股定理求出AC=AE=AB,求出BD+DE=AE,即可求出答案.解答:解:∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE,由勾股定理得:AC=,AE=,∴AE=AC=BC,∴DE+BD=CD+BE=BC,∵AC=BC,∴BD+DE=AC=AE,∴△BDE的周长是BD+DE+BE=AE+BE=AB=10.故选A.【巩固】1.如图,在把易拉罐中的水倒入一个圆水杯的过程中,若水杯中的水在点P与易拉罐刚好接触,则此时水杯中的水深为()A、2cmB、4cmC、6cmD、8cm分析:易得易拉罐进入水杯部分为等腰直角三角形,底边长为8,可得底边上的高.让10减去底边上的高即为水深.解答:解:∵易拉罐进入水杯部分为等腰直角三角形,而斜边与圆水杯底相等为8cm.∴P点到杯口距离为4 cm.∴水深为10﹣4=6cm.故选C.2.如下图,△ABC中,∠C=90°,∠B=45°,AD是角平分线,DE⊥AB于E,则下列结论不正确的是()A、AC=AEB、CD=DEC、CD=DBD、AB=AC+CD分析:根据角平分线性质求出CD=DE,根据勾股定理求出AC=AE,根据三角形的内角和定理求出∠B=∠BDE,推出BE=DE=CD,即可推出AB=AC+CD.解答:解:B、∵AD是角平分线,DE⊥AB,∠C=90°,∴CD=DE,故本选项错误;A、由勾股定理得:AC=,AE=,∴AC=AE,故本选项错误;D、∵∠B=45°,DE⊥AB,∴∠BDE=180°﹣90°﹣45°=45°=∠B,∴BE=DE=CD,∴AB=AE+BE=AC+CD,故本选项错误;C、∵CD=DE,BD>DE,∴BD>CD,故本选项正确;故选C.3. 如图,将等腰直角△ABC沿BC方向平移得到△A1B1C1.若BC=3,△ABC与△A1B1C1重叠部分面积为2,则BB1= .分析:重叠部分为等腰直角三角形,设B1C=2x,则B1C边上的高为x,根据重叠部分的面积列方程求x,再求BB1.解答:解:设B1C=2x,根据等腰三角形的性质可知,重叠部分为等腰直角三角形,则B1C边上的高为x,∴×x×2x=2,解得x=(舍去负值),∴B1C=2,∴BB1=BC﹣B1C=.故答案为.4.如图,以第①个等腰直角三角形的斜边长作为第②个等腰直角三角形的腰,以第②个等腰直角三角形的斜边长做为第③个等腰直角三角形的腰,依次类推,若第⑨个等腰直角三角形的斜边长为厘米,则第①个等腰直角三角形的斜边长为厘米.分析:先设第①个等腰直角三角形的斜边是x,第②个的等腰直角三角形的斜边是x,那么第③个等腰直角三角形的斜边是2x,从而有第n个等腰直角三角形的斜边是()n﹣1x,根据题意可得()9﹣1x=16,解即可.解答:解:设第①个等腰直角三角形斜边长是x,根据题意得:()9﹣1x=16,∴16x=16,∴x=.【拔高】1.以点A和点B为其中两个顶点作位置不同的等腰直角三角形,一共可作出()A、2个B、4个C、6个D、8个分析:利用等腰直角三角形的性质来作图,要注意分不同的直角顶点来讨论.解答:解:此题应分三种情况:①以AB为腰,点A为直角顶点;可作△ABC1、△ABC2,两个等腰直角三角形;②以AB为腰,点B为直角顶点;可作△BAC3、△BAC4,两个等腰直角三角形;③以AB为底,点C为直角顶点;可作△ABC5、△ABC6,两个等腰直角三角形;综上可知,可作6个等腰直角三角形,故选C.2.己知,如图,在Rt△ABC中,∠C=90°,以Rt△ABC的三边为斜边分别向外作三个等腰直角三角形,其中∠H、∠E、∠F是直角,若斜边AB=3,则图中阴影部分的面积为()A、1B、2C、D、分析:在直角△ABC中,∠C=90°,AB2=AC2+BC2,即可求证:阴影部分面积△ACH和△BCF的面积之和为△ABE的面积,即阴影部分面积为2倍的△ABE的面积,根据此等量关系即可求解.解答:解:在直角△ABC中,∠C=90°,∴AB2=AC2+BC2,根据等腰直角三角形面积计算方法,△AEB的面积为×=,△AHC的面积为×=,△BCF的面积为×=,∴阴影部分面积为(AB2+AC2+BC2)=AB2,∵AB=3,∴阴影部分面积为×32=,故选C.3.如图,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,…,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S n= .分析:本题要先根据已知的条件求出S1、S2的值,然后通过这两个面积的求解过程得出一般化规律,进而可得出S n的表达式.解答:解:根据直角三角形的面积公式,得S1==2﹣1;根据勾股定理,得:AB=,则S2=1=20;A1B1=2,则S3=21,依此类推,发现:S n=2n﹣2.4.已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的斜边长是.分析:依次、反复运用勾股定理计算,根据计算结果即可得到结论.解答:解:根据勾股定理,第1个等腰直角三角形的斜边长是,第2个等腰直角三角形的斜边长是2=()2,第3个等腰直角三角形的斜边长是2=()3,第n个等腰直角三角形的斜边长是()n.课程小结等腰直角三角形的判定与性质的灵活应用课后作业【基础】1.在△ABC中,BC:AC:AB=1:1:,则△ABC是()A、等腰三角形B、钝角三角形C、直角三角形D、等腰直角三角形分析:根据题意设出三边分别为k、k、k,然后利用勾股定理的逆定理判定三角形为直角三角形,又有BC、AC边相等,所以三角形为等腰直角三角形.解答:解:设BC、AC、AB分别为k,k,k,∵k2+k2=(k)2,∴BC2+AC2=AB2,∴△ABC是直角三角形,又BC=AC,∴△ABC是等腰直角三角形.故选D.2.等腰直角三角形的一个底角的度数是()A、30°B、45°C、60°D、90°分析:根据等腰直角三角形的定义可知其顶角为90°,然后可根据三角形内角和定理及等腰三角形的性质求出其底角的度数.解答:解:等腰直角三角形一个底角的度数=(180°﹣90°)÷2=45°.故选B.3.等腰直角三角形的底角为45 度.分析:根据等腰直角三角形的性质和三角形内角和定理解答.解答:解:∵∠C=90°,AC=AB∴∠A=∠B=45°.4.等腰直角三角形一条边长是1 cm,那么它斜边上的高是.分析:题中没有指明该边是直角边不是斜边,则应该分情况进行分析.解答:解:(1)当1cm是斜边,则其高就是斜边1的一半是cm;(2)当其直角边是1cm时,根据勾股定理得其斜边是cm,再根据其高是斜边的一半得高是cm;所以它斜边上的高是cm或cm.【巩固】1.如图,将圆桶中的水倒入一个直径为40cm,高为55cm的圆口容器中,圆桶放置的角度与水平线的夹角为45度.若使容器中的水面与圆桶相接触,则容器中水的深度至少应为()A、10cmB、20cmC、30cmD、35cm分析:由题可知,进入容器中的三角形ABC可看作是一个斜边为40的等腰直角三角形,所以在此三角形中斜边上的高应该为20,因此若使高为55容器中的水面与圆桶相接触,由此可以求出水深.解答:解:如图,依题意得△ABC是一个斜边为40的等腰直角三角形,∴此三角形中斜边上的高应该为20,∴水深至少应为55﹣20=35cm.故选D.2. 如果等腰三角形底边上的高等于底边的一半,那么这个等腰三角形的顶角等于度.分析:根据等腰直角三角形底边上的“三线合一”的性质,判定等腰直角三角形.解答:解:根据等腰三角形底边上的高也是底边上的中线和顶角的角平分线可知,高把原等腰直角三角形分成两个等腰直角三角形,顶角也就平分成两个45°,故顶角是90°,故填90.3.等腰直角三角形的一边长为2cm,则它的周长为4+2或2+2 .分析:在等腰直角三角形中,已知了一边的长,但未明确此边是底还是腰,因此要分类讨论.解答:解:当底边长为2cm时,腰长是cm,则周长是2+2(cm);当腰长为2cm时,底边是2cm,因而周长是:4+(cm).因此这个等腰直角三角形的周长为4+2或2+2(cm).4.等腰直角三角形的一条直角边为1cm,则它的斜边上的高为cm.考点:等腰直角三角形。

三角形期末复习

三角形期末复习

三角形全章复习学案一.三角形概念1.下列说法正确的有()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④2.如图中三角形的个数是()A.6B.7C.8D.93.一个三角形有两条边相等,周长为20cm,三角形的一边长6cm,求其他两边长.二.三角形的角平分线、中线和高4.下面四个图形中,表示线段AD是△ABC中BC边上的高的图形为()A.B.C.D.5.在下列图形中,正确画出△ABC的边BC上的高的是()A.B.C.D.6.如图,AD⊥BC,GC⊥BC,CF⊥AB,垂足分别是D、C、F,下列说法中,错误的是()A.△ABC中,AD是边BC上的高B.△ABC中,GC是边BC上的高C.△GBC中,GC是边BC上的高D.△GBC中,CF是边BG上的高7.下列说法中,正确的个数是()①三角形的中线、角平分线、高都是线段;②三角形的三条角平分线、三条中线、三条高都在三角形内部;③直角三角形只有一条高;④三角形的三条角平分线、三条中线、三条高分别交于一点.A.1B.2C.3D.48.已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△ABC=4cm2,则阴影部分的面积为cm2.9.如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是.10.如图,A、B、C分别是线段A1B,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积.第8题第9题第10题第12题11.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.12.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF=()A.1B.2C.3D.413.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形D.三角形有稳定性三.三角形三边关系14.下列长度的三条线段,能构成三角形的是()A.5,5,5B.3,2,1C.5,6,12D.3,5,815.现有两根木棒,它们的长是20cm和30cm,若要钉成一个三角形木架,则应选取的第三根木棒长为()A.10cm B.50cm C.60cm D.40cm16.已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是()A.1<x<B.C.D.17.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种四.三角形内角和定理、外角定理18.如图,△ABC中,BO,CO分别是∠ABC,∠ACB的平分线,∠A=50°,则∠BOC等于()A.110°B.115°C.120°D.130°19.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形20.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形21.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=度.22.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将∠C沿DE对折,使点C落在△ABC外的点C′处,若∠1=20°,则∠2的度数为()A.80°B.90°C.100°D.110°23.如图,△ABC中,∠A=55°,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70°,那么∠A′DB的度数为.第18题第21题第22题第23题24.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.25.如图,在△ABC中,∠B=∠C,D为BC边上的一点,点E在AC边上,∠ADE=∠AED,若∠CDE=10°,则∠BAD的度数为()A.20°B.15°C.10°D.30°26.如图,BP是△ABC中∠ABC的平分线,CP是△ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°27.如图△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1,∠A1BC与∠A1CD的平分线相交于点A2,依此类推,∠A4BC与∠A4CD的平分线相交于点A5,则∠A5的度数为()A.19.2°B.8°C.6°D.3°28.如图,在△ABC中,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC,内角∠ABC,外角∠ACF,以下结论:①AD∥BC;②∠ACB=∠ADB;③∠ADC+∠ABD=90°;④,其中正确的结论有.第26题第27题第28题29.如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO 的平分线交于点F.(1)当∠OCD=50°(图1),试求∠F.(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.五.线段垂直平分线的性质30.如图,在△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于点E,BD=4,△ABE的周长为14,则△ABC的周长为.31.到三角形的三个顶点距离相等的点是()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点32.如图,在△ABC中,AB=AC,AB的中垂线交AB于点D,交BC的延长线于点E,交AC于点F,若∠A=50°,AB+BC=6,则△BCF的周长=,∠EFC=度.33.如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则∠DAE的度数是()A.10°B.15°C.20°D.25°第32题第33题第34题34.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.35.如图,△ABC中,∠BAC=80°,若MP和NQ分别垂直平分AB和AC.(1)求∠P AQ的度数.(2)若△APQ周长为12,BC长为8,求PQ的长.36.已知△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于F.求证:∠BAF=∠ACF.六.等腰三角形的性质37.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°38.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12B.16C.20D.16或2039.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80°D.40°或65°40.如图,在△P AB中,P A=PB,M,N,K分别是P A,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°41.等腰三角形一腰上的高与另一腰的夹角为20°,则顶角的度数是.42.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=.43.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?44.下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:245.如图,已知每个小方格的边长为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有()A.8个B.7个C.6个D.5个46.如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC 是等腰三角形.(过D作DG∥AC交BC于G)47.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.48.如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为.49.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.50.如图所示,P是等边三角形ABC内一点,将△ABP绕点B顺时针方向旋转60°,得到△CBP′,若PB=3,则PP′=.第51题第52题第53题51.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒时,M、N两点重合?(2)点M、N运动几秒时,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.52.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.653.如图,已知等边三角形ABC的边长为3,过AB边上一点P作PE⊥AC于点E,Q为BC延长线上一点,取P A =CQ,连接PQ,交AC于M,则EM的长为七.命题与定理54.有下列四个命题:①对顶角相等;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角相等或互补;④有两个角是锐角的三角形是直角三角形.其中是真命题的个数有()A.4个B.3个C.2个D.1个55.下列命题是真命题的个数为()①直线外一点与直线上各点连接的所有线段中,垂线段最短;②过一点有只有一条直线与已知直线垂直;③0的平方根和算术平方根都是0;④27的立方根是±3;⑤同旁内角互补.A.1个B.2个C.3个D.4个56.把命题“等角的补角相等”改写成“如果…那么…”的形式是.57.写出命题“直角三角形的两个锐角互余”的逆命题:.八.作图—基本作图58.用直尺和圆规作一个角等于已知角,如图,能得出∠A'O'B'=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS59.工人常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使CM=CN,过角尺顶点C作射线OC,由此作法便可得△NOC≌△MOC,其依据是()A.SSS B.SAS C.ASA D.AAS60.如图△ABC.(1)尺规作图BC边上的中线AD;(2)如果AB=5,AC=8,求△ACD与△ABD的周长之差;(3)直接写出△ABC与△ACD的面积之间的大小关系.2.在△ABC中,AB=AC.(1)尺规作图:求作AC的垂直平分线DE,分别交BC,AC于点D,E;(2)在(1)的条件下,连接AD,若AB=BD,求∠B的度数.3.如图,已知△ABC,∠BAC=90°(1)尺规作图:作∠ABC的平分线交AC于D点.(保留作图痕迹,不写作法)(2)若∠C=30°,线段DC与DB有怎样的数量关系?试说明理由.4.尺规作图:已知∠α,∠β,求作∠ABC,使得∠ABC=∠α﹣∠β.(不写作法,但要保留作图痕迹)5.如图,在△ABC中,AD平分∠BAC交BC于点D,∠B=60°,∠C=26°.(1)请用无刻度的直尺和圆规作出线段AC的垂直平分线;(要求:不写作法,保留作图痕迹,使用2B铅笔作图)(2)记(1)中所作AC的垂直平分线交BC于点E,交AC于点F,连接AE.求∠DAE的度数.全等三角形模型复习和拓展两个三角形可以经过哪些图形变换后全等?1.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC2.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD3.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组4.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC5.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个6.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.47.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,图中有对全等三角形.8.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.9.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.10.如图:在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.11.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.12.如图,△ABC中,∠ABC=∠BAC=45°,点P在AB上,AD⊥CP,BE⊥CP,垂足分别为D,E,已知DC=2,求BE的长.13.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.14.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.15.如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.16.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.。

中考数学全等三角形的复习课教学设计

中考数学全等三角形的复习课教学设计

全等三角形复习〔第1课时〕泰安六中苏晓林一、教材分析:本节课是全等三角形全章复习课,首先帮助学生理清全等三角形全章知识脉络,进一步了解全等三角形概念,理解性质、判定与运用;其次对学生所学全等三角形知识进展查缺补漏,再次通过拓展延伸以习题训练,提高学生综合运用全等三角形解决问题能力,并对中考对全等三角形考察方向有一个初步感知,为以后复习指明方向。

在练习过程中,要注意强调知识之间相互联系,使学生养成以联系与开展观点学习数学习惯.二、学情分析在知识上,学生经历全等三角形全章学习,对全等三角形性质、判定以及应用根本掌握,初步具有整体认识,但由于间隔时间有点长所以遗忘较多,全等三角形是学习初中几何根底与工具也是中考必考内容。

对全等三角形综合应用以及全章知识脉络形成正是以上各种能力综合表达,教学中要充分发挥学生主体作用,通过复习学生在全等三角形计算、证明对学生推理能力、发散思维能力与概括归纳能力将有所提高.三、教学目标1.进一步了解全等三角形概念,掌握三角形全等条件与性质;会应用全等三角形性质与判定解决有关问题.2.在题组训练过程中,引导学生总结出全等三角形解题模型,培养学生归纳总结能力,使学生体会数形结合思想、转化思想在解决问题中作用.3.培养学生把已有知识建立在联系思维习惯,并鼓励学生积极参与数学活动,在活动中学会思考、讨论、交流与合作。

四、教学重难点重点:全等三角形性质与判定应用.难点:能理解运用三角形全等解题根本过程。

五、教法与学法以“自助探究〞为主,以小组合作、练习法为辅;在具体教学活动中,要给予学生充足时间让学生自主学习,先形成自己全等三角形知识认知体系,尝试完成练习;给予学生充足空间展示学习结果,通过讨论交流、学生互评、教师最后点评方式实现本节课教学目.六、教具准备多媒体课件,七、课时安排2课时八、教学过程本节课是全等三角形全章复习课,本节课我主要采用学生“练后思〞模式,帮助学生搜整?全等三角形?全章知识脉络,建构知识网络,通过根底训练、概念变式练习、典例探究、拓展应用等活动进展查缺补漏与拓展延伸;借助“根底了题目-变式题目-典型题目-拓展题目〞五个梯次递进教学活动达成教学目标,使用多媒体课件展示教学思路,引导学生思维方向,实现课堂教学最优化。

届数学一轮复习第四章三角函数解三角形第3节两角和与差的正弦余弦和正切公式教学案含解析

届数学一轮复习第四章三角函数解三角形第3节两角和与差的正弦余弦和正切公式教学案含解析

第3节两角和与差的正弦、余弦和正切公式考试要求 1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3。

能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4。

能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).知识梳理1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin αcos β±cos αsin β.cos(α∓β)=cos αcos β±sin αsin β。

tan(α±β)=错误!。

2。

二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α.cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α。

tan 2α=错误!。

3.函数f(α)=a sin α+b cos α(a,b为常数),可以化为f(α)=错误!sin(α+φ)错误!或f(α)=错误!·cos(α-φ)错误!.[常用结论与微点提醒]1。

tan α±tan β=tan(α±β)(1∓tan αtan β)。

2。

cos2α=1+cos 2α2,sin2α=错误!。

3.1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=错误!sin错误!。

诊断自测1。

判断下列结论正误(在括号内打“√”或“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意的.()(2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.()(3)公式tan(α+β)=错误!可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立。

()(4)存在实数α,使tan 2α=2tan α。

九年级数学《解直角三角形-复习课》教案

九年级数学《解直角三角形-复习课》教案

第28章解直角三角形(单元复习课)教学任务分析问题1:在Rt △ABC 中,∠C=90°则(1)∠A 、∠B 的关系是_________, (2)_____,,的关系是c b a(3)边角关系是________________________________________________________________________________问题2:你能根据上述边角关系得到30°、45°、60°角的三角函数值吗?填写下表。

问题3:同角的三角函数之间有什么关系?互余的两角呢?问题4:锐角的正弦值是怎样随着角度数的变化而变化的?余弦、正切呢?其锐角三角函数值的范围分别是什么? 2、组织交流,总结要点;3、板书教师总结知识结构图(多媒体展示)。

【学生活动】 1、学生反思回顾知识点,回答和完成导学案中的问题及三个表格;2、绘制出自己总结的知识结构图;3、交流展示自己总结的知识结构图及自主学习的成果;4、看听记教师的总结。

用数学的意识。

帮助学生学会用数学的思考方法解决实际问题,引发认知冲突,激发学生学习兴趣。

【媒体应用】1、展示反思回顾的问题;2、展示导学案中提出的问题;3、展示师生共同总结的本章本章要点和本章知识结构图。

活动三 基础训练,查补缺漏: 【基础闯关】1、Rt △ABC 中,∠C=90°若SinA= 时,tanA= 。

2、Rt △ABC 中,∠C=90°,若AC=3BC ,则CosA= 。

3、菱形ABCD 中对角线AC 交BD 于点O ,且AC=8,BD=6,则下列结论中正确的为( )A 、Sin ∠ADB=B 、Cos ∠DAB=C 、tan ∠DBA =D 、tan ∠ADB=4、计算: (1)(2)丨Sin45°- 1丨-【教师活动】 1、操作多媒体出示问题。

2、组织学生交流和点评,得出正确答案。

【学生活动】 1、尝试完成练习,有困难的同学可以合作完成; 2、参与交流展示及点评。

人教版九年级下《28.1.3特殊角的三角函数值》学案(含答案)

人教版九年级下《28.1.3特殊角的三角函数值》学案(含答案)

28.1.3 特殊角的三角函数值学案一、新课导入1.课题导入情景:出示一副三角尺,老师手中的两块三角尺中有几个不同的锐角?问题:分别求出这几个锐角的正弦值、余弦值和正切值.本节课我们学习30°,45°,60°角的三角函数值.(板书课题)2.学习目标(1)推导并熟记30°,45°,60°角的三角函数值.(2)能运用30°,45°,60°角的三角函数值进行简单的计算.(3)能由30°,45°,60°角的三角函数值求对应的锐角.3.学习重、难点重点:推导并熟记30°,45°,60°角的三角函数值.难点:相关运算.二、分层学习1.自学指导(1)自学内容:教材P65探究~P66例3上面的内容.(2)自学时间:8分钟.(3)自学方法:完成探究提纲.②通过计算,得到30°,45°,60°角的正弦值、余弦值、正切值如下表:③观察上表,sin30°,sin45°,sin60°的值有什么规律?cos30°,cos45°,cos60°呢?tan30°,tan45°,tan60°呢?2.自学:学生可参考自学指导进行自学.3.助学(1)师助生:①明了学情:明了学生能否推导30°,45°,60°角的三角函数值.②差异指导:根据学情进行针对性指导.(2)生助生:小组内相互交流、研讨、纠正错误.4.强化:特殊角的三角函数值的推导和记忆以及30°,45°,60°角的正弦值、余弦值、正切值的变化规律.第二层次学习1.自学指导(1)自学内容:教材P66例3~P67练习上面的内容.(2)自学时间:10分钟.(3)自学方法:先自主学习,再同桌之间讨论交流,互相纠错.(4)自学参考提纲:①含30°,45°,60°角的三角函数值的计算题的解题要点是什么?熟练掌握特殊锐角的三角函数值.②求直角三角形中某锐角的解题要点是什么?先求该锐角的正弦值或余弦值或正切值,然后根据特殊锐角的三角函数值求该锐角的度数.③求下列各式的值:a.1-2sin30°cos30°;b.3tan30°-tan45°+2sin60°;=-1.c.(cos230°+sin230°)×tan60°.2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:明了学生对特殊角的三角函数值表的掌握情况.②差异指导:根据学情指导学生记忆或推导特殊角的三角函数值.(2)生助生:小组交流、研讨.4.强化(1)求特殊锐角的三角函数值的关键是先把它转化为实数的运算,再根据实数的运算法则计算.(2)求锐角的度数的关键是先求其正弦值或余弦值或正切值,然后对应特殊锐角的三角函数值求角的度数.(3)当A、B为锐角时,若A≠B,则sin A≠sin B,cos A≠cos B,tan A≠tanB.三、评价1.学生自我评价:这节课你学到了什么?还有什么疑惑?2.教师对学生的评价:(1)表现性评价:根据学生的情感态度和学习效果等方面进行评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时中的特殊角是指30°,45°,60°的角,课堂上采用“自主探究”的形式,给学生自主动手的时间并提供创新的空间与可能,再给不同层次的学生提供一个交流合作的机会,培养学生独立探究和合作的能力.本节课的最终教学目的是让学生理解并掌握30°,45°,60°角的三角函数值,并且能够熟记其函数值,然后利用它们进行计算.评价作业一、基础巩固(70分)3.(40分)求下列各式的值.(1)sin45°+cos45°;=2.(2)sin45°cos60°-cos45°;(3)cos245°+tan60°cos30°;=2.(4)1-cos30°sin60°+tan30°.的度数.∵∠B 是锐角且tan B =1,∴∠B =45°.∴∠C =180°-∠A -∠B =75°.二、综合应用(20分)是(D )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形6.(10分)如图,△ABC 内接于⊙O ,AB ,CD 为⊙O 的直径,D E ⊥AB 于点E ,三、拓展延伸(10分)7.(10分)对于钝角α,定义它的三角函数值如下:sinα=sin(180°-α),cosα=-cos(180°-α).(1)求sin 120°,cos 120°,sin 150°的值;(2)若一个三角形的三个内角的比是1∶1∶4,A,B是这个三角形的两个顶点,sin A,cos B是方程4x2-mx-1=0的两个不相等的实数根,求m的值及∠A 和∠B的大小.解:∵三角形的三个内角的比是1∶1∶4,∴三角形三个内角度数分别为30°,30°,120°.∴∠A=30°或120°,∠B=30°或120°.又∵sin A,cos B是方程4x2-mx-1=0的两个不相等的实数根,。

数学一轮复习第四章三角函数解三角形4.2同角三角函数的基本关系及诱导公式学案理

数学一轮复习第四章三角函数解三角形4.2同角三角函数的基本关系及诱导公式学案理

4。

2同角三角函数的基本关系及诱导公式必备知识预案自诊知识梳理1。

同角三角函数的基本关系(1)平方关系:sin2α+cos2α=。

(2)商数关系:sinαcosα=(α≠π2+kπ,k∈Z)。

2.三角函数的诱导公式公式一二三四五六角2kπ+α(k∈Z)π+α-απ-απ2-απ2+α正弦sin α余弦cos α正切tan α续表公式一二三四五六口诀函数名不变,符号看象限函数名改变,符号看象限1。

特殊角的三角函数值2.同角三角函数基本关系式的常用变形(1)(sin α±cos α)2=1±2sin αcos α;(2)sin α=tan αcos αα≠π2+kπ,k∈Z;(3)sin2α=sin2αsin2α+cos2α=tan2αtan2α+1;(4)cos 2α=cos 2αsin 2α+cos 2α=1tan 2α+1。

考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”。

(1)对任意的角α,β有sin 2α+cos 2β=1。

( ) (2)若α∈R ,则tan α=sinαcosα恒成立.( )(3)sin (π+α)=-sin α成立的条件是α为锐角。

( )(4)若cos(n π—θ)=13(n ∈Z ),则cos θ=13.( )2。

(2020河北衡水中学模拟一,理3)已知cos α-π2=-2√55,α∈π,3π2,则tan α=( )A 。

2B 。

32C.1D.123。

(2020河北唐山模拟,理4)已知角α的顶点在原点,始边与x 轴的正半轴重合,终边上一点A (2sin α,3)(sin α≠0),则cos α=( )A.12B 。

-12C 。

√32D.-√324。

函数f (x )=15sin x+π3+cos x —π6的最大值为( ) A.65B.1C.35D.15关键能力学案突破考点同角三角函数基本关系式的应用【例1】(1)若tan(α-π)=12,则sin 2α+1cos 2α-sin 2α=( )A。

八年级《等腰三角形》数学教案4篇

八年级《等腰三角形》数学教案4篇

八年级《等腰三角形》数学教案4篇教案,也称课时计划,教师经过备课,以课时为单位设计的具体教学方案,教案是上课的重要依据,通常包括:班级、学科、课题、上课时间、课的类型、教学方法、教学目的、教学内容、课的进程和时间分配等。

以下是我为大家整理的,感谢您的欣赏。

八年级《等腰三角形》数学教案1教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.教学重点1.等腰三角形的概念及性质.2.等腰三角形性质的应用.教学难点等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本P138探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在ABC中,AB=AC,作底边BC的中线AD,因为所以BAD≌CAD(SSS).所以∠B=∠C.[生乙]如右图,在ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为所以BAD≌CAD.所以BD=CD,∠BDA=∠CDA=∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,•再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出ABC的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.(课件演示)[例]因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在ABC中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本P141练习1、2、3.练习1.如下图,在下列等腰三角形中,分别求出它们的底角的度数.答案:(1)72°(2)30°2.如右图,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD.3.如右图,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本P138~P140,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.课后作业(一)课本P147─1、3、4、8题.(二)1.预习课本P141~P143.2.预习提纲:等腰三角形的判定.Ⅵ.活动与探究如右图,在ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质.结果:证明:延长CD交AB的延长线于P,如右图,在ADP 和ADC中ADP≌ADC.∠P=∠ACD.又DE∥AP,∠4=∠P.∠4=∠ACD.DE=EC.同理可证:AE=DE.AE=CE.板书设计§14.3.1.1等腰三角形(一)一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业八年级《等腰三角形》数学教案2一、教材的地位和作用现实生活中,等腰三角形的应用比比皆是.所以,利用“轴对称”的知识,进一步研究等腰三角形的特殊性质,不仅是现实生活的需要,而且从思想方法和知识储备上,为今后研究“四边形”和“圆”的性质打下坚实的基础.性质“等腰三角形的两个底角相等”是几何论证过程中,证明“两个角相等”的重要方法之一.“等腰三角形底边上的三条重要线段重合”的性质是今后证明“两条线段相等”“两条直线互相垂直”“两个角相等”等结论的重要理论依据.教学重点:1. 让学生主动经历思考和探索的过程.2. 掌握等腰三角形性质及其应用.教学难点:等腰三角形性质的理解和探究过程.二、学情分析本年级的学生已经研究过一般三角形的性质,积累了一定的经验,动手能力强,善于与同伴交流,这就为本节课的学习做好了知识、能力、情感方面的准备.不同层次的学生因为基础不同,在学习中必然会出现相异构想,这也将是我在教学过程中着重关注的一点.三、目标分析知识与技能1.了解等腰三角形的有关概念和掌握等腰三角形的性质2. 了解等边三角形的概念并探索其性质3. 运用等腰三角形的性质解决问题过程与方法1.通过观察等腰三角形的对称性,发展学生的形象思维.2.探索等腰三角形的性质时,经历了观察、动手实践、猜想、验证等数学过程,积累数学活动经验,发展了学生的归纳推理,类比迁移的能力. 在与他人交流的过程中,能运用数学语言合乎逻辑的进行讨论和质疑,提高了数学语言表达能力.情感态度价值观:1.通过情境创设,使学生感受到等腰三角形就在自己的身边,从而使学生认识到学习等腰三角形的必要性.2.通过等腰三角形的性质的归纳,使学生认识到科学结论的发现,是一个不断完善的过程,培养学生坚强的意志品质.3.通过小组合作,发展学生互帮互助的精神,体验合作学习中的乐趣和成就感.四、教法分析根据学生已有的认知,采取了激疑引趣——猜想探究——应用体验——建构延伸的教学模式,并利用多媒体辅助教学.教学过程教学过程设计意图同学们,我们在七年级已研究了一般三角形的性质,今天我们一起来探究特殊的三角形:等腰三角形.等腰三角形的定义有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角.腰和底边的夹角叫做底角.提出问题:生活中有哪些现象让你联想到等腰三角形?首先让学生明确:本学段的几何图形都是按一般的到特殊的顺序研究的.通过学生描述等腰三角形在生活中的应用,让学生感受到数学就在我们身边,以及研究等腰三角形的必要性.剪纸游戏你能利用手中的这个矩形纸片剪出一个等腰三角形吗? 注意安全呦!学情分析:大部分学生会有自己的想法,根据轴对称图形的性质,利用对折纸片,再“剪一刀”就是就得到了两条“腰”;可能还有的同学会利用正方形的折法,获得特殊的等腰直角三角形;可能还有同学先画图,再依线条剪得.在这个过程中,注重落实三维目标.让学生在获取新知的过程中更好的认识自我,建立自信.我不失时机的对学生给予鼓励和表扬,使活动更加深入,课堂充满愉悦和温馨.知其然,更重要的是知其所以然.因此,我力求让学生关注剪法的理性思考.我设计了问题:你是如何想到的? 为的是剖析学生的思维过程:“折叠”就是为了得到“对称轴”,“剪一刀”就是就得到了两条“腰”,由“重合”保证了“等腰”.这样就建立了“操作”与“证明”的中间桥梁.从实际操作中得到证明的方法,也为发现“三线合一”做了铺垫.提出问题:等腰三角形还有什么性质?请提出你的猜想,验证你的猜想?并填写在学案上.合作小组活动规则:1、有主记录员记录小组的结论;2、定出小组的主发言人(其它同学可作补充);3、小组探究出的结论是什么?4、说明你们小组所获得结论的理由.等腰三角形的性质:性质一:等腰三角形的两个底角相等(简称“等边对等角”).性质二:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(简称“三线合一”).学情分析:这个环节是本节课的重点,也是教学难点.尽管在教学过程中,因为学生的相异构想,数学猜想的初始叙述不准确,甚至不正确,但我不会立即去纠正他们,而是让同学们不断地质疑﹑辨析、研讨和归纳,逐渐完善结论.让他们真正经历数学知识的形成过程,真正的体现以人为本的教学理念,努力创设和谐的教育教学的生态环境.通过设置恰当的动手实践活动,引导学生经历观察、动手实践、猜想、验证等数学探究活动,这种探究的学习过程,恰恰是研究几何图形性质的一般规律和方法.(1)在此环节中,我的教学要充分把握好“四让”:能让学生观察的,尽量让学生观察;能让学生思考的,尽量让学生思考;能让学生表达的,尽量让学生表达;能让学生作结论的,尽量让学生作结论.这种教学方式,把学习的过程真正还给学生,不怕学生说不好,不怕学生出问题,其实学生说不好的地方、学生出问题的地方都正是我们应该教的地方,是教学的切入点、着眼点、增长点.(2)教师在这个过程中,充分听取和参与学生的小组讨论,对有困难的学生,及时指导.巩固知识1.等腰三角形顶角为70°,它的另外两个内角的度数分别为________;2.等腰三角形一个角为70°,它的另外两个内角的度数分别为_____;3.等腰三角形一个角为100°,它的另外两个内角的度数分别为_____.内化知识1.如图1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度数吗?知识迁移等边三角形有什么特殊的性质?简单地叙述理由.等边三角形的性质定理:等边三角形的各角都相等,并且每一个角都等于60°.拓展延伸如图2,在△ABC中,AB=AC,点D,E在BC上,AD=AE,你能说明BD=EC?由于学生之间存在知识基础、经验和能力的差异,我为学生提供了层次分明的反馈练习.将练习从易到难,从简到繁,以适应不同阶段、不同层次的学生的需要.让学生拾阶而上,逐步掌握知识,使学困生达到简单运用水平,中等生达到综合运用水平,优等生达到创建水平.畅谈收获总结活动情况,重在肯定与鼓励.引导学生从本课学习中所得到的新知识,运用的数学思想方法,新旧知识的联系等方面进行反思,提高学生自主建构知识网络、分析解决问题的能力.帮助学生梳理知识,回顾探究过程中所用到的从特殊到一般的数学方法,启发学生更深层次的思考,为学生的下一步学习做好铺垫.反思过程不仅是学生学习过程的继续,更重要的是一种提高和发展自己的过程.基础性作业:P65 习题1、2、3、4八年级《等腰三角形》数学教案3教学目标:【知识与技能】1、理解并掌握等腰三角形的性质。

13.3.1等腰三角形学案

13.3.1等腰三角形学案

类似的画一个图形做一做,看看是否得到同样的结论。 (1)画出的轴对称图形的形状、大小和原图形有什么关系? (2)画出的轴对称图形的点与原图形上的点有什么关系? (3)对应点所连线段与对称轴有什么关系? 归纳: 由一个平面图形可以得到与它关于一条直线 l 对称的图形, 这个图形与原图形的___、 _____完全相同; 新图形上的每一点都是原图形上的某一点关于直线 l 的_____-; 连接任意一对对应点的线段被对称轴_________. 【思考画图】 如果有一个图形和一条直线,如何作出这个图形关 于这条直线对称的图形呢? 例1 如图,已知△ABC 和直线 l,画出与△ABC 关于直线 l 对称的图形.
学 习重、 重点:探索并证明等腰三角形性质. 难 点 难点:证明过程中的辅助线添加。 学 习 过 程 【实验操作】 : 问题 1 按课本 75 页探究要求,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再
把它展开,得到的△ABC 有什么特点? 结论:△ABC 是个_________三角形。你能通过刚才的过程,发现等腰三角形有哪些特征? (把剪出的等腰三角形 ABC 沿折痕对折,找出其中重合的线段和角)
一部分,那么能保证△ABC ≌△A′B′C′吗? 追问 1:当满足一个条件时, △ABC 与△A′B′C′全等吗?思考并动手画一画。 追问 2 当满足两个条件时, △ABC 与△A′B′C′全等吗?思考有几种情况, 并动手画一画。
结论:当满足一个或两个条件时,△ABC 与△A′B′C′___________全等 追问 3 当满足三个条件时, △ABC 与△A′B′C′全等吗?满足三个条件时,又分为几种 情况呢? 探究 2 “边边边”的探究
2、工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB 是一个任意角,在边 OA, OB 上分别取 OM=ON,移动角尺,使角尺两边相同的刻度分别与 M、N 重合,过角尺顶点 C 的 射线 OC 便是∠AOB 的平分线。为什么?

《三角形的分类》(导学案)四年级下册数学北师大版

《三角形的分类》(导学案)四年级下册数学北师大版

四年级数学下册《三角形分类》导学单学习目标:1、经历三角形分类的探索活动,认识直角三角形、锐角三角形、钝角三角形、等腰三角形、等边三角形的特征。

2、通过分类活动,培养观察、比较、操作能力,发展空间观念。

3、发展合作交流的意识,提高倾听能力。

重难点:重点:按角、边给三角形分类。

难点:认识直角三角形、锐角三角形、钝角三角形、等腰三角形、等边三角形的特征。

教具:课件、方格纸、各种形状的三角形学具:方格纸、彩纸、量角器、小剪刀等学生学案教师导案我的学习过程:一、复习旧知1、你知道下面三角形中的各个角分别是什么角吗?2、它们都是三角形,但它们都是同一类三角形吗?二、自主探究、合作交流(一)用学具分一分。

一、复习旧知、引发思考1、师:你知道下面三角形中的各个角分别是什么角吗?(出示三个不同的三角形,师指任意角,生说角的名称)2、它们都是三角形,但它们都是同一类三角形吗?生思考。

3、今天,我们就来给三角形分类(板书课题)。

二、自主探究、合作交流1、认一认,笑笑是这样分的,你知道笑笑这样分的道理吗?得出结论:三角形按()分,可以分成()2、淘气发现下面两个三角形比较特殊,说一说,认一认。

得出结论:三角形按()分,可以分成()三、尝试练习1、独立完成书上23页第1、2、3题。

2、合作完成书上第4题:剪一剪。

(1)独立完成把一张长方形纸片沿图中虚线剪成两个三角形。

剪出的两个三角形是()三角形。

(2)两人合作,在一张长方形纸上剪出一个等腰三角形。

(3)将一张正方形纸沿图中虚线剪成两个三角形。

剪成的两个三角形是()三角形。

1、学生分小组讨论如何给三角形分类。

(1)每组一个学具袋。

要求:先独立思考,再组内交流想法。

(2)合作探究,师巡视。

2、全班交流分类标准。

学生汇报自己的分类标准并动手分一分,演示给全班同学看。

(1)按角分学生汇报后,师演示课件“按角分”,让学生把附页3中的图1所有三角形按角分一分,后集体交流。

(2)按边分师:如果按边的特征进行分类,又应如何分类?让学生把附页3中的图1所有三角形按边分一分,后集体交流。

202新数学复习第三章三角函数解三角形3.3.两角和与差的三角公式学案含解析

202新数学复习第三章三角函数解三角形3.3.两角和与差的三角公式学案含解析

第三节简单的三角恒等变换课标要求考情分析1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式推导出两角差的正弦、正切公式.3.能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,推导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.1。

利用两角和与差的正弦、余弦、正切公式及二倍角公式进行化简、求值是高考考查的热点,本部分内容常与三角函数的性质、向量、解三角形的知识相结合命题.2.命题形式多种多样,既有选择题、填空题,也有综合性的解答题.知识点一基本公式1.两角和与差的正弦、余弦、正切公式C(α-β):cos(α-β)=cosαcosβ+sinαsinβ.C(α+β):cos(α+β)=cosαcosβ-sinαsinβ。

S(α+β):sin(α+β)=sinαcosβ+cosαsinβ.S(α-β):sin(α-β)=sinαcosβ-cosαsinβ。

T(α+β):tan(α+β)=错误!(α,β,α+β≠错误!+kπ,k∈Z).T(α-β):tan(α-β)=错误!(α,β,α-β≠错误!+kπ,k∈Z).2.二倍角的正弦、余弦、正切公式S2α:sin2α=2sinαcosα.C2α:cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α。

T2α:tan2α=2tanα1-tanα错误!知识点二三角公式的变形技巧1.降幂公式:cos2α=错误!,sin2α=错误!。

2.升幂公式:1+cos2α=2cos2α,1-cos2α=2sin2α。

3.公式变形:tanα±tanβ=tan(α±β)(1∓tanαtanβ).4.辅助角公式:a sin x+b cos x=a2+b2sin(x+φ)错误!知识点三三角恒等变换1.重视三角函数的“三变”:“三变”是指“变角、变名、变式".(1)变角:对角的分拆要尽可能化成同角、特殊角;(2)变名:尽可能减少函数名称;(3)变式:对式子变形一般要尽可能有理化、整式化、降低次数等.2.在解决求值、化简、证明问题时,一般是观察角、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.1.思考辨析判断下列结论正误(在括号内打“√”或“×")(1)存在实数α,β,使等式sin(α+β)=sinα+sinβ成立.(√)(2)在锐角△ABC中,sin A sin B和cos A cos B大小不确定.(×)(3)公式tan(α+β)=tanα+tanβ1-tanαtanβ可以变形为tanα+tanβ=tan(α+β)(1-tanαtanβ),且对任意角α,β都成立.(×)(4)公式a sin x+b cos x=错误!sin(x+φ)中φ的取值与a,b的值无关.(×)解析:根据正弦、余弦和正切的和角、差角公式知(2)(3)(4)是错误的,(1)是正确的.2.小题热身(1)(2019·全国卷Ⅰ)tan255°=(D)A.-2-错误!B.-2+错误!C.2-错误!D.2+错误!(2)若sinα=错误!,则cos2α=(B)A.错误!B.错误!C.-错误!D.-错误!(3)sin347°cos148°+sin77°·cos58°=错误!.(4)已知tan(α-错误!)=错误!,则tanα=错误!。

锐角三角函数复习教案

锐角三角函数复习教案

第二十八章锐角三角函数(复习)一、教学目标::1、掌握锐角三角函数的概念,利用锐角三角函数的意义及直角三角形的边角关系解决一些数学问题。

2、通过运用勾股定理,直角三角形的边角关系以及锐角三角函数知识,培养学生分析问题、解决问题的能力。

3、渗透数形结合思想,培养学生良好的学习习惯。

二、教学重点:锐角三角函数及直角三角形有关知识的综合运用三、教学难点:实际问题转化成数学模型。

四、教学过程:(一)师生共同复习本章知识结构(1)锐角三角函数及特殊角的三角函数值:①如图所示,在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边.那么∠A的正弦:sin A=∠A的余弦:cos A=∠A的正切:tan A=∠B的正弦:sin A=∠B的余弦:cos B=∠B的正切:tan B=思考:通过边角关系,你发现了什么规律?②特殊角的三角函数值:③三角函数的增减性:当0°< α < 90°时对于sinα与tanα,角度越大,函数值越;对于cosα,角度越大,函数值越 .(2). 解直角三角形①在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边.三边关系:三角关系:边角关系:(3). 三角函数的应用 ①仰角和俯角在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角. ② 坡度,坡角如图:坡面的铅垂高度(h )和水平长度(l ) 的比叫做坡面坡度.记作i ,即i= h l.坡面与水平面的夹角叫做坡角,记作α,有 i = tan α. 坡度通常写成1∶m 的形式,如i =1∶6.显然,坡度越大,坡角α就越大,坡面就越陡. ③ 方位角:以正南或正北方向为准,正南或正北方向线与目标方向线构成的小于900的角,叫做方位角. 如图所示 (二)、双基练习1、若∠A 为锐角,sinA=13,则:cosA=_____,tanA=______2、比较大小:sin530_____ sin540 sin270______ cos7203、(2014·凉山州)在△ABC 中,若|cos A -12|+(1-tan B)2=0,则∠C 的度数是( )A .45°B .60°C .75°D .105°4、(2015·兰州)如图,△ABC 中,∠B =90°,BC =2AB ,则cos A =( )A .52B .12C .255D .555、如图,在菱形ABCD 中,DE ⊥AB ,cos A =35,BE =2,则tan ∠DBE的值是_ __. (三)、能力提升练习 6、(2015·巴中)计算:|2-3|-(2015-π)0+2sin 60°+(13)-1.7、(2015·丽水)如图,点A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cos ∠α的值,错误的是( )A .BD BCB .BC AB C .AD AC D .CD AC8、(2015·太原)如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2 B.255 C .55 D .129、如图在菱形ABCD 中,对角线AC 、BD 相交于点O ,BD=8,tan ∠BDC=34,则线段AB 的长为( ) A 、 4 B 、5 C 、6 D 、1010、如图,在□ABCD 中,对角线AC ,BD 相交所成的锐角为α,若AC=a ,BD=b ,则:S □ABCD=( )A 、12absinaB 、absinaC 、abcosaD 、 12abcosa11、如图,直径为10的⊙A 经过点C(0,5)和点O(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( )A .12B .34C .32D .4512、(2014·临沂)如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15°方向的A 处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C 处,在C 处观测到B 在C 的北偏东60°方向上,则B ,C 之间的距离为( )A .20海里B .10 3 海里C .20 2 海里D .30海里13、(2015·曲靖)如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,则cos D =____. 14、(2015·宁波)如图,在数学活动课中,小敏为了测量校园内旗杆AB 的高度.站在教学楼的C 处测得旗杆底端B 的俯角为45°,测得旗杆顶端A 的俯角为30°.若旗杆与教学楼的距离为9 m ,则旗杆AB 的高度是__________m (结果保留根号)15、(2015·牡丹江)在△ABC 中,AB =122,AC =13,cos B =22,求BC 的长。

2020年九年级数学中考复习学案:正方形的蝴蝶三角形模型的构建,应用及其变式

2020年九年级数学中考复习学案:正方形的蝴蝶三角形模型的构建,应用及其变式

正方形的蝴蝶三角形模型的构建,应用及其变式摘要:建模解题是数学学习一种最基本的学习途径和最有效的学习方法,是基于构建主义理论的一种主动学习过程,是对现象和过程进行合理的抽象和量化,然后应用数学公式进行模拟和验证的一种模式化思维。

不同知识,不同条件,不同特点,可以构建不同数学模型,为数学灵活解题提供灵活解题方法。

正方形是一种重要的特殊四边形,也是重要的考题载体之一,而正方形中的一个重要的图形---蝴蝶三角形也日益成为考题的焦点,下面就结合2019年的考题构建一种正方形解题模型--蝴蝶三角形模型,并通过模型的应用,模型的变式,掌握模型的特点,为其他模型的构建提供模本。

关键词:构建主义,建模思想,变式。

《义务教育数学课程标准(2011边版)》第7页中给出了建立数学模型思想的地位:模型思想是学生体会和理解数学与外部世界联系的基本途径[1]。

鉴于数学建模的重要性,学会构建模型,并灵活运用模型解题成为数学学习的重要手段。

下面就向大家介绍一种正方形解题模型的构建,应用和变式,供学习时借鉴。

一、正方形蝴蝶三角形模型的构建如图1,在正方形ABCD中,点E,F分别在BC,CD 上,BE=CF,连接AE,BF二线交于点G,称△ABE和△BCF构成的图形为正方形ABCD的蝴蝶三角形。

蝴蝶三角形具有如下性质:性质1:蝴蝶三角形是全等三角形即△ABE≌△BCF。

性质2:斜边AE,BF的关系是AE=BF且AE⊥BF。

性质3:三角形ABG的面积等于四边形GECF的面积。

性质4:四边形ABFD的面积等于四边形AECD的面积。

性质5:设正方形的边长为a,BE=CF=b,则AE=BF=√a2+b2;BG=√a2+b2,GF=√a2+b2-√a2+b2。

二、蝴蝶三角形性质的证明(1)因为四边形ABCD是正方形,所以AB=BC,∠ABE=∠BCF=90°,因为BE=CF,所以△ABE≌△BCF;(2)因为△ABE≌△BCF,所以AE=BF,∠BAE=∠CBF ,因为∠BAE+∠BEA=90°,所以∠CBF+∠BEA=90°,所以∠BGE=90°即AE⊥BF。

冀教版数学八年级上册第17章特殊三角形学案

冀教版数学八年级上册第17章特殊三角形学案

等腰三角形的性质学习目标:1. 知道等腰三角形的有关概念,会画等腰三角形,能利用等腰三角形的性质进行有关的计算和证明.2 . 经历等腰三角形学习过程,积累数学活动经验,体会数学的基本思想.3.学会从数学角度发现问题和提出问题,获得分析问题和解决问题的一些基本方法,体会解决问题的多样性.学习过程一 .学习准备1.已知等腰三角形的一边等于6cm,另一边等于8cm,则此三角形的周长为 .2.等腰三角形中,一个角是40°,那么它的顶角度数为 .3.等腰三角形腰为5cm,底边为6 cm,面积是 .4.证明:等腰三角形两底角相等.(用规范的格式证明)(通过上面的练习,说一说等腰三角形有那些性质)二.学习探究活动一(1)如图1在等腰△ABC中,AB=AC=5,BC=6,P点为底边的中点,PD+PE= .(2)如图2在等腰△ABC中,若P点为底边上任意一点,你认为PD+PE是定值吗?说明理由.(3)如图3在等腰△ABC中,若P点为底边上任意一点,过C点做腰AB 上的高CF,你能发现PD,PE和CF存在什么数量关系,提出你的猜想并证明.(4)如图4,若P点在BC的延长线上,那么PD,PE和CF的数量关系又有何变化?写出你的猜想并证明.活动二如图,点O 是等边△ABC 内一点, ∠AOB= 110°,∠BOC=α,将△BOC 绕点C 按顺时针方向旋转得△ADC ,连接OD探究:当α为多少度时, △AOD △是等腰三角形?活动三在边长为3、4、5的直角三角形周围拼接一个直角三角形,使它们拼成一个等腰三角形,请画出图形并写出你拼成的等腰三角形的周长.3备用图三.学习反思通过今天的学习,你认为等腰三角形中常用的辅助线是什么?常用的数学方法是什么?四.学习评价1.已知等腰三角形的一边等于6cm ,另一边等于8cm ,则此等腰三角形底角的余弦值为 .2已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为(思考 :若去掉腰长为5的条件情况又如何)ABCDO1103.已知等腰三角形一边长为20 , 且面积为120,求等腰三角形的周长.等腰三角形的判定导学活动过程教学目标:知识与能力1、了解等腰三角形的边角定义。

模式1中考数学第一轮复习导学案-等腰三学案-等腰三角形与直51

模式1中考数学第一轮复习导学案-等腰三学案-等腰三角形与直51

等腰三角形与直角三角形◆课前热身1.如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长为()A.3 2B.23C.12D.342.如图,已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21 B.15 C.6 D.以上答案都不对3.等腰三角形一腰上的高与另一腰的夹角为30º,腰长为4 cm,则其腰上的高为 cm.4.如图,在边长为1的等边△ABC中,中线AD与中线BE相交于点O,则OA长度为.【参考答案】1. B2. A3.234.33ACDB第2题图ADCPB第1题图60°◆考点聚焦等腰三角线1.等腰三角形的判定与性质.2.等边三角形的判定与性质.3.运用等腰三角形、等边三角形的判定与性质解决有关计算与证明问题.直角三角形1.运用勾股定理计算线段的长,证明线段的数量关系,解决与面积有关的问题以及简单的实际问题.2.运用勾股定理及其逆定理从数的角度来研究直角三角形.3.折叠问题.4.将直角三角形,平面直角坐标系,函数,开放性问题,探索性问题结合在一起综合运用.◆备考兵法等腰三角线1.运用三角形不等关系,•结合等腰三角形的判定与性质解决等腰三角形中高、边、角的计算问题,并要注意分类讨论.2.要正确辨析等腰三角形的判定与性质.3.能熟练运用等腰三角形、方程(组)、函数等知识综合解决实际问题.直角三角形1.正确区分勾股定理与其逆定理,掌握常用的勾股数.2.在解决直角三角形的有关问题时,应注意以勾股定理为桥梁建立方程(组)•来解决问题,实现几何问题代数化.3.在解决直角三角形的相关问题时,要注意题中是否含有特殊角(30°,45°,60°).若有,则应运用一些相关的特殊性质解题.4.在解决许多非直角三角形的计算与证明问题时,•常常通过作高转化为直角三角形来解决.5.折叠问题是新中考热点之一,在处理折叠问题时,动手操作,认真观察,充分发挥空间想象力,注意折叠过程中,线段,角发生的变化,寻找破题思路.◆考点链接一.等腰三角形的性质与判定:1. 等腰三角形的两底角__________;2. 等腰三角形底边上的______,底边上的________,顶角的_______,三线合一;3. 有两个角相等的三角形是_________. 二.等边三角形的性质与判定:1. 等边三角形每个角都等于_______,同样具有“三线合一”的性质;2. 三个角相等的三角形是________,三边相等的三角形是_______,一个角等于60°的_______三角形是等边三角形. 三.直角三角形的性质与判定: 1. 直角三角形两锐角________.2. 直角三角形中30°所对的直角边等于斜边的________.3. 直角三角形中,斜边的中线等于斜边的______.;4. 勾股定理:_________________________________________.5. 勾股定理的逆定理:_________________________________________________. ◆典例精析例1(湖北襄樊)在ABC △中,12cm 6cm AB AC BC D ===,,为BC 的中点,动点P从B 点出发,以每秒1cm 的速度沿B A C →→的方向运动.设运动时间为t ,那么当t = 秒时,过D 、P 两点的直线将ABC △的周长分成两个部分,使其中一部分是另一部分的2倍.【答案】7或17【解析】本题考查等腰三角形中的动点问题,两种情况,①当点P 在BA 上时,BP =t ,AP =12-t ,2(t+3)=12-t+12+3,解得t =7;②当点P 在AC 上时, PC =24-t ,t+3=2(24-t+3),解得t =17,故填7或17.例2(山东滨州)某楼梯的侧面视图如图所示,其中4AB =米,30BAC ∠=°, 90C ∠=°,因某种活动要求铺设红色地毯,则在AB 段楼梯所铺地毯的长度应为 .【答案】(2+23)米.【解析】掌握30°所对的直角边等于斜边的一半,即可求解.BC A30°例3(四川乐山)如图,AD⊥CD,AB=13,BC=12,CD=3,AD=4,则sinB等于()A.513B.1213C.35D.45【答案】 A【解析】由AD⊥DC,知△ADC为直角三角形.由勾股定理得:AC2=AD2+DC2=32+42=5,AC=5,在△ACB中,∵AB2=169,BC2+AC2=52+122=169,∴AB2=BC2+AC2.由勾股定理的逆定理知:△ABC是直角三角形.∴sinB=ACAB=513.例4(安徽)已知点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画图表示.图1 图2解析(1)过点O作OE⊥AB,OF⊥AC,E,F分别是垂尺,由题意知,OE=OF,又OB=OC.∴Rt△OEB≌Rt△OFC.∴∠B=∠C.∴AC=AB.(2)过点O作OE⊥AB,OF⊥AC,E,F分别是垂足.由题意知,OE=OF.在Rt△OEB和Rt△OFC中,OE=OF,OB=OC.∴Rt△OEB≌Rt△OFE.∴∠OBE=∠OCF.又OB=OC.∴∠OBC=∠OCB.∴∠ABC=∠ACB.∴AC=AB.(3)不一定成立.当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC,否则AB≠AC,•如示例图.成立不成立【点拨】本例从O点的特殊位置(BC边的中点)探究图形的性质,再运用变化的观点探究一般位置(点O在△ABC内,点O在三角形外)下图形的性质有何变化,培养同学们从不同的角度分析,解决问题的能力,拓展思维,提高综合解题能力.◆迎考精练一、选择题1.(四川达州)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是()A.13 B.26 C.47 D.942.(甘肃白银)如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()A.5 B.4 C.3 D.2 3.(山东济宁)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上), 则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是()A.12B.14C.15D.1104.(浙江嘉兴)如图,等腰△ABC 中,底边a BC =,∠A =36°, ∠ABC 的平分线交AC 于D ,∠BCD 的平分线交BD 于E ,设215-=k , 则DE =( )A .a k 2B .a k 3C .2k a D .3k a5.(湖北恩施)如图,长方体的长为15,宽为10,高为20, 点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( )A .521B .25C .1055+D .35 6.(浙江宁波)等腰直角三角形的一个底角的度数是( )A .30°B .45°C .60°D .90°7.(山东威海)如图,AB =AC,BD =BC ,若∠A =40°,则∠ABD 的度数是( )A .20B .30C .35D .408.(湖北襄樊)如图,已知直线110AB CD DCF =︒∥,∠,且AE AF =,则A ∠等于( )A .30︒B .40︒C .50︒D .70︒二、填空题1.(四川泸州)如图,已知Rt △ABC 中,AC =3,BC = 4,过直角顶点C 作CA 1⊥AB ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直做下去,得到了一组线段CA 1,A 1C 1,12C A ,…,则AF BCDEBADCADC EB 第4题图52015 10CA BCA1=,=5554CAAC2.(四川内江)已知Rt△ABC的周长是344+,斜边上的中线长是2,则S△ABC=___.3.(四川宜宾)已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为.ABCEFH第12题图4.(湖南长沙)如图,等腰ABC△中,AB AC=,AD是底边上的高,若5cm6cmAB BC==,,则AD= cm.三、解答题1.(河南)如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.2.(浙江绍兴)如图,在ABC△中,40AB AC BAC=∠=,°,分别以AB AC,为边作ACDB两个等腰直角三角形ABD 和ACE ,使90BAD CAE ∠=∠=°.(1)求DBC ∠的度数;(2)求证:BD CE =.3.(湖北恩施)恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷()A 和世界级自然保护区星斗山()B 位于笔直的沪渝高速公路X 同侧,50km AB A =,、B 到直线X 的距离分别为10km 和40km ,要在沪渝高速公路旁修建一服务区P ,向A 、B 两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(AP 与直线X 垂直,垂足为P ),P 到A 、B 的距离之和1S PA PB =+,图(2)是方案二的示意图(点A 关于直线X 的对称点是A ',连接BA '交直线X 于点P ),P 到A 、B 的距离之和2S PA PB =+.(1)求1S 、2S ,并比较它们的大小; (2)请你说明2S PA PB =+的值为最小;(3)拟建的恩施到张家界高速公路Y 与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B 到直线Y 的距离为30km ,请你在X 旁和Y 旁各修建一服务区P 、Q ,使P 、A 、B 、Q 组成的四边形的周长最小.并求出这个最小值.4.(广东中山)如图所示,ABC △是等边三角形, D 点是AC 的中点,延长BC 到E ,使CE CD =,(1)用尺规作图的方法,过D 点作DM BE ⊥,垂足是M (不写作法,保留作图痕迹); (2)求证:BM EM =.【参考答案】 选择题BA PX图(1)YXBAQP O图(3)BAP X A '图(2)1. C2. A3. C4. A5. B6. B7. B 8. B【解析】本题考查平行线的性质、等腰三角形的性质等知识,∵110AB CD DCF =︒∥,∠,所以110EFB DCF ∠=∠=︒,∴70AFE ∠=︒,∵AE AF =,∴70E AFE ∠=∠=︒,∴40A ∠=︒,故选B 填空题 1.512,452. 83.29 4. 4 解答题1. OE ⊥AB .证明:在△BAC 和△ABD 中,AC BD BAC ABD AB BA =⎧⎪∠=∠⎨⎪=⎩∴△BAC ≌△ABD .∴∠OBA =∠OAB , ∴OA =OB . 又∵AE =BE , ∴OE ⊥AB .2. 解:(1)ΔABD 是等腰直角三角形,90∠=°BAD , ∴∠ABD =45°,AB =AC, ∴∠ABC =70°,∴∠CBD =70°+45°=115°.证明:(2)AB =AC,90BAD CAE ∠=∠=°,AD =AE,∴ΔBAD ≌ΔCAE,∴BD =CE .3. 解:⑴图(1)中过B 作BC ⊥AP,垂足为C,则PC =40,又AP =10,∴AC =30在Rt △ABC 中,AB =50 AC =30 ∴BC =40∴ BP =24022=+BC CPS 1=10240+⑵图10(2)中,过B 作BC ⊥AA ′垂足为C ,则A ′C =50, 又BC =40∴BA'=4110504022=+由轴对称知:PA =PA'∴S 2=BA'=4110∴1S ﹥2S (2)如 图10(2),在公路上任找一点M,连接MA,MB,MA',由轴对称知MA =MA' ∴MB+MA =MB+MA'﹥A'B∴S 2=BA'为最小(3)过A 作关于X 轴的对称点A', 过B 作关于Y 轴的对称点B',连接A'B',交X 轴于点P, 交Y 轴于点Q,则P,Q 即为所求过A'、 B'分别作X 轴、Y 轴的平行线交于点G,A'B'=5505010022=+∴所求四边形的周长为55050+ P XBA QYB'A'4. 解:(1)作图见下图,(2)ABC △是等边三角形,D 是AC 的中点,BD ∴平分ABC ∠(三线合一), 2ABC DBE ∴∠=∠.CE CD =,CED CDE ∴∠=∠.又ACB CED CDE ∠=∠+∠,2ACB E ∴∠=∠.又ABC ACB ∠=∠,22DBC E ∴∠=∠,DBC E ∴∠=∠,BD DE ∴=.又DM BE ⊥,BM EM ∴=. AC B DEM。

特殊三角形复习学案

特殊三角形复习学案

特殊三角形复习课标要求(1)了解等腰三角形的概念,探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;底边上的高线、中线及顶角平分线重合。

探索并掌握等腰三角形的判定定理:有两个角相等的三角形是等腰三角形。

探索等边三角形的性质定理:等边三角形的各角都等于60°,及等边三角形的判定定理:三个角都相等的三角形(或有一个角是60°的等腰三角形)是等边三角形。

(2)了解直角三角形的概念,探索并掌握直角三角形的性质定理:直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半。

掌握有两个角互余的三角形是直角三角形。

(3)探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。

课标分析从知识与技能、数学思考、问题解决、情感与态度等四个方面阐述(1)、知识与技能掌握基本的证明方法和基本的作图等技能;掌握基本的推理技能。

(2)、数学思考在研究图形性质和运动、确定物体位置等过程中,进一步发展空间观念;经历借助图形思考问题的过程,初步建立几何直观。

体会通过合情推理探索数学结论,运用演绎推理加以证明的过程,在多种形式的数学活动中,发展合情推理与演绎推理的能力。

能独立思考,体会数学的基本思想和思维方式(3)、问题解决尝试从不同角度寻求解决问题的方法并能有效地解决问题;在与他人合作和交流过程中,能较好地理解他人的思考方法和结论。

经历借助图形思考问题的过程,初步建立几何直观。

(4)、情感与态度感受成功的快乐,体验独自克服困难、解决数学问题的过程,有克服困难的勇气,具备学好数学的信心。

在运用数学表述和解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的价值。

教学目标:1、知道等腰三角形的轴对称性及对称轴;2、掌握等腰三角形和等边三角形的有关性质和判定,能运用这些性质及判定进行有关计算和证明。

3、掌握直角三角形的性质和判定,能运用这些性质及判定进行有关计算和证明。

4、掌握勾股定理及其逆定理,进一步理解数形之间的联系。

直角三角形的性质教学案

直角三角形的性质教学案

直角三角形的性质教学案直角三角形是初中数学中的重要概念,它具有独特的性质和特点。

本教学案旨在帮助学生理解直角三角形的性质,并能够应用这些性质解决相关问题。

以下是本教学案的内容安排:引言:教师简要介绍直角三角形的概念和重要性,并引出直角三角形的性质。

引言部分不仅能激发学生的学习兴趣,还能帮助他们明确学习目标。

性质一:直角三角形的定义直角三角形是指其中一个角为直角(90度)的三角形。

教师向学生介绍直角三角形的定义,并通过图示和实例让学生在视觉上理解直角三角形的形状。

性质二:勾股定理教师向学生引入勾股定理的概念,并解释为何直角三角形中恒成立。

教师可以通过提供多个实例,以及演示勾股定理的证明过程加深学生的理解。

性质三:三角形的边长关系教师介绍直角三角形的特殊边长关系,包括斜边长度与直角边长度的关系,以及两直角边长度之间的关系。

性质四:三角形的角度关系教师向学生介绍直角三角形中角度的关系,包括直角边与斜边和另一直角边的角度关系。

性质五:特殊直角三角形教师介绍两个特殊直角三角形——45-45-90三角形和30-60-90三角形,并分别讲解它们的边长比例和角度关系。

教师可以通过图片和实例帮助学生更好地理解这两种特殊直角三角形。

应用示例:教师提供几个具体应用示例,并引导学生运用所学的性质解决实际问题。

示例可以涉及房屋设计、地理测量等方面,以增加学生的实际应用能力。

总结:教师对本节课内容进行总结,并强调直角三角形的重要性和应用价值。

同时,鼓励学生积极运用所学知识解决实际问题,并展示自己的学习成果。

本教学案通过逐步引入直角三角形的性质,帮助学生逐渐理解和应用相关知识。

通过清晰的表述和整洁美观的排版,帮助学生更好地理解和吸收知识。

同时,教师可以根据具体情况调整教学方法,以适应学生的学习需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊三角形复习课标要求(1)了解等腰三角形的概念,探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;底边上的高线、中线及顶角平分线重合。

探索并掌握等腰三角形的判定定理:有两个角相等的三角形是等腰三角形。

探索等边三角形的性质定理:等边三角形的各角都等于60°,及等边三角形的判定定理:三个角都相等的三角形(或有一个角是60°的等腰三角形)是等边三角形。

(2)了解直角三角形的概念,探索并掌握直角三角形的性质定理:直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半。

掌握有两个角互余的三角形是直角三角形。

(3)探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。

课标分析从知识与技能、数学思考、问题解决、情感与态度等四个方面阐述(1)、知识与技能掌握基本的证明方法和基本的作图等技能;掌握基本的推理技能。

(2)、数学思考在研究图形性质和运动、确定物体位置等过程中,进一步发展空间观念;经历借助图形思考问题的过程,初步建立几何直观。

体会通过合情推理探索数学结论,运用演绎推理加以证明的过程,在多种形式的数学活动中,发展合情推理与演绎推理的能力。

能独立思考,体会数学的基本思想和思维方式(3)、问题解决尝试从不同角度寻求解决问题的方法并能有效地解决问题;在与他人合作和交流过程中,能较好地理解他人的思考方法和结论。

经历借助图形思考问题的过程,初步建立几何直观。

(4)、情感与态度感受成功的快乐,体验独自克服困难、解决数学问题的过程,有克服困难的勇气,具备学好数学的信心。

在运用数学表述和解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的价值。

教学目标:1、知道等腰三角形的轴对称性及对称轴;2、掌握等腰三角形和等边三角形的有关性质和判定,能运用这些性质及判定进行有关计算和证明。

3、掌握直角三角形的性质和判定,能运用这些性质及判定进行有关计算和证明。

4、掌握勾股定理及其逆定理,进一步理解数形之间的联系。

教学重点:等腰三角形的性质和判定,直角三角形的性质和判定,勾股定理。

教学难点:灵活运用等腰三角形、直角三角形的性质和判定,进行有关计算和证明。

教学过程【自主练习】自主完成课件“自主尝试”环节。

【知识回顾】1.等腰三角形:(1)性质:相等,相等,底边上的高线、中线、顶角的角平分线“三线合一”;(2)判定:有两边相等、两角相等或两线合一的三角形是等腰三角形.2.等边三角形:(1)性质:相等,三内角都等于;(2)判定:三边相等、三内角相等或有一个角是60°的等腰三角形是等边三角形.3.直角三角形:在△ABC中,∠C=90°.(1)性质:边与边的关系:(勾股定理)a2+b2=;(2)角与角的关系:∠A+∠B=;(3)边与角的关系:若∠A=30°,则a=c,b= c;若a=c,则∠A=30°;若∠A=45°,则a=b=c;若a=c,则∠A=45°;斜边上的中线m=c=R.其中R为三角形外接圆的半径.(4)判定:有一个角是直角的三角形是直角三角形;如果三角的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形;如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形.【基础自测】1.(2011·)如果一个等腰三角形的两边长分别是5 cm 和6 cm ,那么此三角形的周长是( )A .15 cmB .16 cmC .17 cmD .16 cm 或17 cm2.(2011·)下列关于等腰三角形的性质叙述错误的是( )A .等腰三角形两底角相等B .等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合C .等腰三角形是中心对称图形D .等腰三角形是轴对称图形3.(2011·)如图,已知△ABC 中,∠ABC =45°, F是高AD 和BE 的交点,CD =4,则线段DF 的长度为( )A .2B .4C .3D .44.如图,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE 等于( ) A .1013 B .1513 C .6013 D .75135.如图,在边长为4的等边三角形ABC 中,AD 是BC 边上的高,点E 、F 是AD 上的两点,则图中阴影部分的面积是( )A .43B .33C .23D .3题型分类 深度剖析题型一 等腰三角形有关边角的讨论 【例 1】 (1)方程x 2-9x +18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A .12B .12或15C .15D .不能确定(2)如果等腰三角形的一个内角是80°,那么顶角是________度.探究提高 在等腰三角形中,如果没有明确底边和腰,某一边可以是底, EB 4题图也可以是腰.同样,某一角可以是底角也可以是顶角,必须仔细分类讨论.变式训练1 (1)(2011·株洲)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.①求∠ECD的度数;②若CE=5,求BC长.(2)(2011·)等腰三角形的周长为14,其一边长为4,那么,它的底边为___________________.题型二等腰三角形的性质【例 2】如图,在等腰Rt△ABC中,∠BAC=90°,点D是BC的中点,且AE=BF,试判断△DEF的形状.变式训练2 已知:如图,D是等腰△ABC底边BC上一点,它到两腰AB、AC的距离分别为DE、DF.当D点在什么位置时,DE=DF?并加以证明.题型三等边三角形【例 3】(1)已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.(2)(2010·大兴安岭)如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.其中正确结论的个数( )A.1个 B.2个 C.3个 D.4个变式训练3 如图,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.题型四直角三角形、勾股定理【例 4】(1)如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1、l2、l3上,且l1、l2之间的距离为2,l2、l3之间的距离为3,则AC的长是( ) A.2B.2 C.4 D.7(2)如图,在钝角三角形ABC中,BC=9,AB=17,AC=10,AD⊥BC,交BC的延长线于D,求AD 的长.变式训练4 (1)如图,直线l上有三个正方形a、b、c,若a、c的面积分别为5和11,则b的面积为( )A.4 B.6 C.16D.55(2)(2011·鸡西)已知三角形相邻两边长分别为20 cm和 30 cm,第三边上的高为10 cm,则此三角形的面积为__________cm2.三角形的高可能在形外在△ABC中,高AD和高BE相交于H,且BH=AC,求∠ABC的度数易出错的等腰三角形问题已知△ABC是等腰三角形,由A所引BC边上的高恰好等于BC边长的一半,试求∠BAC的度数.总结提醒1.对于等腰三角形问题,当给出的条件(如边、角情况)不明时,一般要分情况逐一考察,否则,容易出现错解或漏解的错误.2.当顶角是锐角时,腰上的高在三角形内;当顶角为直角时,腰上的高与另一腰重合;当顶角为钝角时,腰上的高在三角形外.这是在解与等腰三角形腰上的高有关的问题时,应考虑的几个方面.方法与技巧1. 掌握分类的思想和方法,可深入理解,有效记忆,便于应用.例如:从三角形三边长的比较,可把三角形分为不等边三角形和等腰三角形,等腰三角形又分为等边三角形和其它等腰三角形;而从最大内角的大小出发,又可以把三角形分为锐角三角形、直角三角形和钝角三角形.由于两种分类的标准不同,所以一个具体的三角形,在两种分类中,必各属于其中的一类.如等腰直角三角形,在第一种分类中,属于其它等腰三角形;在第二种分类中,属于直角三角形.2. 在一个三角形中“等边对等角,等角对等边”,当所要求证的两边、两角位于同一个三角形中,利用等腰三角形来论证它们的相等关系是常用的方法.3. 等腰三角形“三线合一”的性质,运用广泛而又灵活,在于三线中只要有任两线重合,则可判定三角形等腰,即第三线也重合.4. 证明等边三角形的方法一般有两种:一是直接论证三边或三角相等;二是先证明是等腰三角形,再证明其中一角为60°.5. 在直角三角形中斜边上中线等于斜边的一半,同时这条中线将直角三角形分成了两个等腰三角形,这一特征在解题中时有运用;在直角三角形中,含锐角30°、45°这两类是较为特殊的,它们的边、角有一些特殊的数量关系,应该熟记在心.失误与防范1.在解有关等腰三角形的问题时,有一种习惯上的认识,总认为腰大于底,这是造成错解的原因.实际上底也可以大于腰,此时也能构成三角形.2.有关等腰三角形的问题,若条件中没有明确底和腰时,一般应从某一边是底还是腰这两个方面进行讨论,还要特别注意构成三角形的条件;同样,在底角没有被指定的等腰三角形中,应就某角是顶角还是底角进行讨论.我们要细心谨慎,注意运用分类讨论的方法,将问题考虑全面,不能想当然.3.在已知三角形三边的前提下,判断这个三角形是否为直角三角形,首先要确定三条边中的最大边,再根据勾股定理的逆定理来判定.在解题时,往往受思维定式的影响,误认为如果是直角三角形,则c就是斜边,从而造成误解.当堂测试考点一:等腰三角形性质的运用1、(2012•襄阳)在等腰△ABC中,∠A=30°,AB=8,则AB边上的高CD的长考点二:线段垂直平分线3、(2012•毕节地区)如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD,若BD=1,则AC的长是()A.23 B.2 C.43 D.44.(2012•)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A.3 B.2 C.3 D.1考点三:等边三角形的判定与性质5.(2012•)如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移,使B点与C点重合,得到△DCE,连接BD,交AC于F.(1)猜想AC与BD的位置关系,并证明你的结论;(2)求线段BD的长.考点四:角的平分线6、(2012•)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF= .7.(2012•)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DC=2,则D到AB边的距离是.考点五:勾股定理8、(2012•黔西南州)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,则四边形ACEB的周长为.9.(2012•新疆)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S 1=258π,S 2=2π,则S 3是 .课下作业1.(2012•)如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为( )A .3B .3.5C .2.5D .2.82.(2012•)如图,在平面直角坐标系中,点P 坐标为(-2,3),以点O 为圆心,以OP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标介于( )A .-4和-3之间B .3和4之间C .-5和-4之间D .4和5之间3.(2012•)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( )A .16B .18C .20D .16或204.(2012•)已知实数x ,y 满足|x-4|+8y -=0,则以x ,y 的值为两边长的等腰三角形的周长是( )C .16D .以上答案均不对5.(2012•)如图在直角△ABC 中,∠BAC=90°,AB=8,AC=6,DE 是AB 边的垂直平分线,垂足为D ,交边BC 于点E ,连接AE ,则△ACE 的周长为( )A .16B .15C .14D .136.(2012•黔东南州)如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 的坐标为( )A .(2,0)B .(51-,0)C .(101-,0)D .(5,0)7.(2012•铜仁地区)如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为( )A.6B.7C.8D.9 8.(2012•)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.13 9.(2012•)如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,则BD= .10.(2012•黄冈)如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为.。

相关文档
最新文档