平行四边形知识点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形中位线定理

(1)三角形中位线定理:

三角形的中位线平行于第三边,并且等于第三边的一半.

(2)几何语言:

如图,∵点D、E分别是AB、AC的中点

∴DE∥BC,DE=BC.

平行四边形的性质

(1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.(2)平行四边形的性质:

①边:平行四边形的对边相等.

②角:平行四边形的对角相等.

③对角线:平行四边形的对角线互相平分.

(3)平行线间的距离处处相等.

(4)平行四边形的面积:

①平行四边形的面积等于它的底和这个底上的高的积.

②同底(等底)同高(等高)的平行四边形面积相等.

平行四边形的判定

(1)两组对边分别平行的四边形是平行四边形.符号语言:∵AB∥DC,AD∥BC ∴四边行ABCD是平行四边形.

(2)两组对边分别相等的四边形是平行四边形.符号语言:∵AB=DC,AD=BC∴四边行ABCD是平行四边形.

(3)一组对边平行且相等的四边形是平行四边形.

符号语言:∵AB∥DC,AB=DC∴四边行ABCD是平行四边形.

(4)两组对角分别相等的四边形是平行四边形.

符号语言:∵∠ABC=∠ADC,∠DAB=∠DCB∴四边行ABCD是平行四边形.(5)对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD∴四

边行ABCD是平行四边形.

平行四边形的判定与性质

平行四边形的判定与性质的作用

平行四边形对应边相等,对应角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.

运用定义,也可以判定某个图形是平行四边形,这是常用的方法,不要忘记平行四边形的定义,有时用定义判定比用其他判定定理还简单.

凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题.

菱形的性质

(1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.

(2)菱形的性质

①菱形具有平行四边形的一切性质;

②菱形的四条边都相等;

③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;

④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.

(3)菱形的面积计算

①利用平行四边形的面积公式.

②菱形面积=ab.(a、b是两条对角线的长度)

菱形的判定

①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱

形);

②四条边都相等的四边形是菱形.

几何语言:∵AB=BC=CD=DA∴四边形ABCD是菱形;

③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱

形”).

几何语言:∵AC⊥BD,四边形ABCD是平行四边形∴平行四边形ABCD是菱形

矩形的性质

(1)矩形的定义:有一个角是直角的平行四边形是矩形.

(2)矩形的性质

①平行四边形的性质矩形都具有;

②角:矩形的四个角都是直角;

③边:邻边垂直;

④对角线:矩形的对角线相等;

⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中

点连线所在的直线;对称中心是两条对角线的交点.

(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.

矩形的判定

(1)矩形的判定:

①矩形的定义:有一个角是直角的平行四边形是矩形;

②有三个角是直角的四边形是矩形;

③对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”)(2)①证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常

证这个四边形的对角线相等.

②题设中出现多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定

矩形.

正方形的判定

正方形的判定方法:

①先判定四边形是矩形,再判定这个矩形有一组邻边相等;

②先判定四边形是菱形,再判定这个菱形有一个角为直角.

③还可以先判定四边形是平行四边形,再用1或2进行判定.

梯形

(1)梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形.

梯形中平行的两边叫梯形的底,其中较短的底叫上底,不平行的两边叫梯形的腰,两底的距离叫梯形的高.

(2)等腰梯形:两腰相等的梯形叫做等腰梯形.

(3)直角梯形:有一个角是直角的梯形叫做直角梯形.

直角梯形

直角梯形:有一个角是直角的梯形叫做直角梯形.

边:有一条腰与底边垂直,另一条腰不垂直.

角:有两个内角是直角.

过不是直角的一个顶点作梯形的高,则把直角梯形分割成一个矩形和直角三角形.这是常用的一种作辅助线的方法.

等腰梯形的性质

(1)性质:

①等腰梯形是轴对称图形,它的对称轴是经过上下底的中点的直线;

②等腰梯形同一底上的两个角相等;

③等腰梯形的两条对角线相等.

(2)由等腰梯形的性质可知,如果过上底的两个顶点分别作下底的两条高,可把等腰梯形分成矩形和两个全等的直角三角形,因此可知等腰梯形是轴对称图形,而一般的梯形不具备这个性质.

等腰梯形的判定

(1)利用定义:两腰相等的梯形叫做等腰梯形;

(2)定理:同一底上两个角相等的梯形是等腰梯形.

(3)对角线:对角线相等的梯形是等腰梯形.

判定一个梯形是否为等腰梯形,主要判断梯形的同一底上的两个角是否相等,可以通过添加辅助线把梯形底上的两个角平移到同一个三角形中,利用三角形来证明角的关系.

注意:对角线相等的梯形是等腰梯形这个判定方法不可以直接应用.

相关文档
最新文档