七年级数学乘法公式专项练习题及答案(北师大版)

合集下载

乘法公式化简求值100题(综合练)-2023-2024学年七年级数学下册专项突破讲与练(北师大版)

乘法公式化简求值100题(综合练)-2023-2024学年七年级数学下册专项突破讲与练(北师大版)

专题1.29乘法公式化简求值100题(分层练习)(综合练)57.(2023下·四川成都·七年级校考期中)(1)先化简,再求值:()()2222[2]x y y y x x ---÷,其中21,==x y .(2)解关于x 的方程:()()()23126x x x +--+=.58.(2023下·甘肃张掖·七年级校考期中)先化简再求值()()()()²24x y x y x y y x y y ⎡⎤+---+-÷⎣⎦,其中1,2x y ==59.(2023下·福建宁德·七年级校联考期中)(1)化简:()()()33 22682x y x y x y xy xy -+--+.(2)先化简再求值:()()()23115a a a -+++,其中2a =-.60.(2023下·山东淄博·六年级校考阶段练习)先化简,再求值:(1)()()()()()22323331a a a a a -+-+---,其中2a =-(2)()()()()()23242x y x y x y x x y y ⎡⎤-++---÷-⎣⎦,其中2x =,1y =.61.(2023下·山东泰安·六年级校考阶段练习)先化简,再求值(1)()()224a b a b ab +---,其中20222023a b ==,;(2)()()()()2222222x y x y x y x x y x ⎡⎤-+-+--÷⎣⎦,其中x y 33==-,.参考答案:【分析】本题主要考查了整式混合运算,代数式求值,幂的混合运算,解题的关键是熟练掌握相关的运算【点睛】本题考查整式的化简求值,掌握整式混合运算的运算顺序和计算法则以及完全平方公式和平方差公式是解题关键.26.(1)24a b -;(2)53x y --,1-【分析】(1)根据积的乘方和单项式乘多项式法则进行计算,再合并同类项即可;(2)先根据平方差和完全平方公式计算,再将括号内的各项进行合并,最后计算除法即可.【详解】(1)解:原式22222444a b a b a b=--24a b =-;(2)解:原式()()2222962x y x xy y x =++÷--+()()21062x x xy +÷-=53x y =--,当1,2x y =-=时,原式()5132561=-⨯--⨯=-=-.【点睛】本题考查了整式的混合运算,平方差公式和完全平方公式,熟练掌握整式混合运算的运算法则是解题的关键.27.(1)55m (2)2x y +,0【分析】(1)先计算积的乘方,再算乘除,最后算加减;(2)先根据单项式乘多项式、平方差公式去小括号,再计算多项式除单项式,最后代入求值.【详解】(1)解:()232432m m m m ⋅+-÷()5834m m m =+÷554m m =+55m =;(2)解:()()()2x x y x y x y y+-+-÷⎡⎤⎣⎦()()2222x xy x y y⎡⎤=+--÷⎣⎦()2222x xy x y y=+-+÷()22xy y y=+÷【点睛】本题考查整式的化简求值,解题的关键是熟练运用整式的加减运算以及乘除运算,本题属于基础。

北师大版七年级数学下册专项练习题-幂的乘方及积的乘方(含答案)

北师大版七年级数学下册专项练习题-幂的乘方及积的乘方(含答案)
4.已知a=96,b=314,c=275,则a、b、c的大小关系是( )
A. a>b>cB. a>c>bC. c>b>aD. b>c>a
5.新冠肺炎疫情肆虐全球,截止2020年北京时间11月1日零时全球新冠肺炎确诊病例已超质过4600万例.将数4600万用科学记数法表示为()
A. B. C. D.
6.如果(an•bmb)3=a9b15,那么( )
则 ,
因此 ,



故答案为: .
三、解答题
19.计算:(-2xy2)6+(-3x2y4)3;
【答案】37x6y12;
【解析】
(-2xy2)6+(-3x2y4)3,
=64x6y12-27x6y12,
=37x6y12.
20.小明做了这样一道题,他的方法如下:

请你用他的方法解下面题目.
设 , ,求 的值.
故选:C.
6.如果(an•bmb)3=a9b15,那么( )
A. m=4,n=3B. m=4,n=4
C. m=3,n=4D. m=3,n=3
【答案】A
【解析】
解:∵(anbmb)3=a9b15,∴(an)3(bm)3b3=a3nb3m+3=a9b15,
∴3n=9,3m+3=15,
解得:m=4,n=3,
=22+33−22×32
=4+27−4×9
=−5.
22.已知am=2,an=4,求下列各式的值:(1)am+n;(2)a3m+2n
【答案】(1)23或8;(2)27或128.
【解析】
(1) =2×4=8;
(2) = =8×16=128.
23.已知:3a=2,3b=6,3c=18,试确定a、b、c之间的数量关系.

2020北师大版七年级数学整式的乘除期末复习培优练习题1(附答案)

2020北师大版七年级数学整式的乘除期末复习培优练习题1(附答案)

2020北师大版七年级数学整式的乘除期末复习培优练习题1(附答案)一、单选题1.下列运算正确( )A .a•a 5=a 5B .a 7÷a 5=a 3C .(2a )3=6a 3D .10ab 3÷(﹣5ab )=﹣2b 22.下列计算正确的是( )A .a 2•a 3=a 5B .a 2+a 3=a 5C .(ab 2)3=ab 6D .a 10÷a 2=a 5 3.已知3ab =-,2a b +=,代数式33a b ab +的值为( )A .10B .30C .-10D .-304.计算:0.1253×(﹣8)3的结果是( )A .﹣8B .8C .1D .﹣1 5.如果a=-3-2,b=-0.32,c=-21-3⎛⎫ ⎪⎝⎭,d=01-5⎛⎫ ⎪⎝⎭,那么a ,b ,c ,d 四数的大小为( ) A .a<b<c<d B .b<a<d<c C .a<d<c<b D .a<b<d<c6.下列式子正确的是 ( )A .22x x -=B .238()ab ab =C .45a a a ⋅=D .22()()a b a b -+=+7.已知3a b +=,2ab =,则22a b +的值为( )A .3B .5C .6D .78.下列计算正确的是( )A .a 2+a 2=a 4B .2(a ﹣b )=2a ﹣bC .a 3•a 2=a 5D .(﹣b 2)3=﹣b 5 9.(-2)4÷(-2)3 等于( )A .(-2)12B .4C .-2D .1210.下列运算中,正确的是( )A .235325x x x +=B .336x x x ⋅=C .235()x x =D .33()ab a b =11.(-6a 3-6a 2c )÷(-2a 2)等于_______; 12.a b =a 8÷a÷a 4,则b= ______13.若3m =6,3n =2,则32m ﹣n =________.14.若ab =1,则(a n -b n )2-(a n +b n )2=________.15.如图,是我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式(a +b )n (n 为整数)的展开时的系数规律,(按a 的次数由大到小的顺序),此规律称之为“杨辉三角”.请依据此规律,写出(a +b )2018展开式中含a 2017项的系数是______________.…… ……16.若22(3)25x m x +-+是关于x 的完全平方式,则m=_____.17.计算:(1)(x +6)(6-x )=________;(2)(-x +12)(-x -12)=______. 18.计算:-x 2·x 3=________;3212a b ⎛⎫ ⎪⎝⎭=________;201712⎛⎫- ⎪⎝⎭×22016=________.19.若22a b 9-=,3a b +=-,则-a b =________.20.计算:x 3·x 2·x 10=________.21.计算:(1)(3a +5b -2c )(3a -5b -2c );(2)(x +1)(x 2-1)(x -1). 22.阅读下列材料:正整数的正整数次幂的个位数字是有规律的,以3为例:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,39=19683,…∴指数以1到4为一个周期,幂的个位数字就重复出现,一般来说,若a k 的个位数字是b ,则a 4m +k 的末位数字也是b (k 为正整数,m 为非负整数).请你根据上面提供的信息,求出下式:(3-1)(3+1)(32+1)(34+1)…(332+1)+1的计算结果的个位数字是几吗?23.利用完全平方公式()2222a b a ab b ±=±+,可对22a b +进行适当变形:如()22222222a b a ab b ab a b ab +=++-=+-或()22222222a b a ab b ab a b ab +=-++=-+ 从而使某些问题得到解决,计算:(1)14a a -=,求221a a ⎛⎫+ ⎪⎝⎭的值; (2)已知2,3a b ab -==,求44a b +的值.24.已知2x -5x 3=,求22x-12x-1-2x 11++()()()的值. 25.本学期我们学习了“有理数乘方”运算,知道乘方的结果叫做“幂”,下面介绍一种有关“幂”的新运算.定义:a m 与 a n (a≠0,m 、n 都是正整数)叫做同底数幂,同底数幂除法记作 a m ÷a n . 运算法则如下:a m ÷a n =,{=,11,m n m nm n m n n m m n a a a m n a a m n a a a --÷=÷=÷=当>时当时当<时根据“同底数幂除法”的运算法则,回答下列问题:(1)填空:5211()()22÷ = ,43÷45= . (2)如果 3x-1÷33x-4=127,求出 x 的值. (3)如果(x ﹣1)2x+2÷(x ﹣1)x+6=1,请直接写出 x 的值.26.已知a m =2,a n =3,求下列各式的值:(1)a m+1(2)a n+2(3)a m+n+1 .27.动手操作:如图①是一个长为2a ,宽为2b 的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形.提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的面积:_____________,_____________;(2)请写出三个代数式(a +b )2,(a -b )2,ab 之间的一个等量关系:___________________________;问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x+y=8,xy=7,求x-y的值.28.当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式.例如:由图①,可得等式(a+2b)(a+b)=a2+3ab+2b2.(1)由图②,可得等式_________________________________________________;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)利用图③中的纸片(足够多)画出一种拼图,使该拼图可用来验证等式:2a2+5ab+2b2=(2a+b)(a+2b);(4)小明用2张边长为a的正方形、3张边长为b的正方形、5张邻边长分别为a,b的长方形纸片重新拼出一个长方形,那么该长方形较长的一条边长为____________.29.如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.30.计算:(1)32÷2﹣2×20180(2)(﹣3x3)2﹣4x8÷x2参考答案1.D【解析】选项A ,原式=6a ;选项B ,原式=2a ;选项C ,原式=38a ;选项D ,原式=22b .故选D. 2.A【解析】【分析】结合选项分别进行同底数幂的除法、合并同类项、同底数幂的乘法等运算,然后选择正确选项.【详解】解:A 、a 2•a 3=a 5,计算正确,故本选项正确;B 、a 2和a 3不是同类项,不能合并,故本选项错误;C 、(ab 2)3=a 3b 6,计算错误,故本选项错误;D 、a 10÷a 2=a 8,计算错误,故本选项错误.故选A .【点睛】本题考查了同底数幂的除法、合并同类项、同底数幂的乘法等知识,掌握运算法则是解答本题的关键.3.D【解析】【分析】由a+b=2,ab=-3,可得a 2+b 2=10,将a 3b+ab 3分解成ab(a 2+b 2)即可解答.【详解】解:∵a+b=2,∴(a+b)2=4,∴a 2+2ab+b 2=4,∵ab=-3,∴a 2+b 2=10,∴a 3b+ab 3= ab(a 2+b 2)=(-3)×10=-30.故选D.【点睛】本题考查了因式分解的应用. 4.D【解析】解:原式=(18)3×(﹣8)3=[18×(﹣8)]3=﹣1,故选D.5.D 【解析】试题解析:1,0.09,9,1,9a b c d=-=-==.a b d c∴<<<故选D.点睛:正数都大于0,负数都小于0.两个负数,绝对值大的反而小.6.C【解析】解:A.原式=x,不符合题意;B.原式=a3b6,不符合题意;C.原式=a5,符合题意;D.(﹣a+b)2=(a﹣b)2≠(a+b)2,不符合题意.故选C.点睛:本题考查了幂的乘方与积的乘方,合并同类项,同底数幂的乘法,以及完全平方公式,熟练掌握运算法则及公式是解答本题的关键.7.B【解析】试题分析:∵(a+b)2=a2+b2+2ab,∴a2+b2=(a+b)2-2ab=32-2×2=5,故选B .点睛:本题考查了完全平方公式的综合应用,熟记完全平方公式的特点是解决此题的关键.8.C【解析】【分析】根据合并同类项、同底数幂的乘法、积的乘方及幂的乘方计算即可.【详解】解:A.a 2+a 2=2a 2,本项错误;B.2(a ﹣b )=2a ﹣2b ,本项错误;C.a 3•a 2=a 5,本项正确;D.(﹣b 2)3=﹣b 6,本项错误.故选C .【点睛】本题考查了根据合并同类项、同底数幂的乘法、积的乘方及幂的乘方等知识点,解题的关键是熟练掌握运算法则.9.C【解析】试题解析:()()43222-÷-=-,故C 项正确.故选C.10.B【解析】A. 2332x x 与 不是同类项,不能合并,故错误;B. 336x x x ⋅= ,正确;C. ()326x x = ,故错误;D. ()33ab a b =3,故错误,故选B.11.3a +3c【解析】(-6a 3-6a 2c )÷(-2a 2)= (-6a 3) ÷ (-2a 2)-6a 2c÷(-2a 2)= 3a+3c, 故答案为:3a+3c.12.3【解析】试题解析:84814b a a a a a --÷÷==,则b =8-1-4,故b =3.故答案为:3.13.18【解析】因为32m ﹣n =32m ÷3n =(3m )2÷3n ,当3m =6,3n =2时,原式=(3m )2÷3n =(6)2÷2=18,故答案为18. 14.-4【解析】(a n -b n )2-(a n +b n )2=(a 2n -2a n b n +b 2n )-(a 2n +2a n b n +b 2n )=-4a n b n =-4(ab)n =-4×1n =-4, 故答案为:-4.【点睛】本题考查了完全平方公式、积的乘方等,熟练掌握完全平方公式是解题的关键. 15.2018【解析】【分析】分析观察所给式子可知,含2017a 的项是2018()a b +的展开式从左至右的第二项,而从表中所给式子可知,()n a b +的展开式的第二项的系数等于n ,由此即可得到所答案了.【详解】观察题中所给式子可得:(1)含2017a 的项是2018()a b +的展开式从左至右的第二项;(2)()n a b +的展开式从左至右的第二项的系数等于n ,∴2018()a b +的展开式中含有2017a 的项的系数是2018.故答案为:2018.【点睛】“通过观察所给式子中的规律得到:(1)含2017a 的项是2018()a b +的展开式从左至右的第二项;(2)()n a b +的展开式从左至右的第二项的系数等于n”是解答本题的关键.16.-2或8【解析】【分析】根据完全平方公式可得.即:a 2+2ab+b 2=(a+b)2【详解】因为,()2x 2m 3x 25+-+是关于x 的完全平方式, 所以,m-3=±5 所以,m=8或m=-2故答案为-2或8【点睛】本题考核知识点:完全平方公式.解题关键点:熟记完全平方公式.17.36-x 2 x 2-14【解析】试题解析:(1)(x +6)(6-x )=(6+x )(6-x )=36-x 2; (2)(-x +12)(-x -12)=(x-12)( x+12)=x 2-14. 故答案为:36-x 2;x 2-14 18.-x 518a 6b 3 -12【解析】 -x 2·x 3=-x 5;3212a b ⎛⎫ ⎪⎝⎭=18a 6b 3;201712⎛⎫- ⎪⎝⎭×22016=(-201611)222⎛⎫⨯-⨯ ⎪⎝⎭=-12. 19.-3【解析】 分析:根据平方差公式将原式进行因式分解,从而得出答案.详解:根据题意可得:(a+b)(a -b)=9, ∴-3(a -b)=9, 解得:a -b=-3.点睛:本题主要考查的就是利用平方差公式进行因式分解,计算代数式的值,属于基础题型.利用平方差公式进行因式分解是解决此题的关键.20.x 15.【解析】【分析】利用同底数幂相乘,底数不变指数相加计算即可【详解】3210321015x x x x x ++⋅⋅==.故答案为:15x .【点睛】本题主要考查同底数幂相乘,底数不变,指数相加的计算.21.(1) 9a 2+4c 2-25b 2-12ac ;(2) x 4-2x 2+1.【解析】试题分析:(1)利用平方差公式进行计算即可;(2)原式先利用平方差公式再利用完全平方公式进行计算即可.试题解析:(1)原式=[(3a -2c) +5b] [(3a -2c) -5b]= (3a -2c)2 -(5b)2=9a 2+4c 2-25b 2-12ac ;(2)原式=(x +1) (x -1) (x 2-1)= (x 2-1)2=x 4-2x 2+1.22.1.【解析】试题分析:先根据平方差公式求出结果,根据规律得出答案即可.试题解析:(3-1)(3+1)(32+1)(34+1)…(332+1)+1=(32-1)(32+1)(34+1)…(332+1)+1=(34-1)(34+1)…(332+1)+1=364-1+1=364,∵64÷4=16,∴(3-1)(3+1)(32+1)(34+1)…(332+1)+1的个位数字是1.23.(1)18;(2)82.【解析】分析:(1)把已知条件两边平方,然后整理即可求解;(2)先求出()2222a b a b ab +=-+的值,然后根据()24422222a b a b a b +=+-即可求出a 4+b 4的值. 详解:(1)∵14a a -= ∴2222111-24218a a a a a a ⎛⎫⎛⎫+=+⋅=+= ⎪ ⎪⎝⎭⎝⎭ (2)2,3a b ab -==Q ∴()2222222310a b a b ab +=-+=+⨯=∴()24422222a b a b a b +=+- 22102382=-⨯=.点睛:本题考查了完全平方公式,根据完全平方公式变形为已知条件的形式,进而得出结果即可.24.7【解析】试题分析:根据整式的乘法的运算法则化简后,整体代入求值即可.试题解析:原式=2(2x2-3x+1) -2(x2+2x+1)+1=4x2-6x+2-2x2-4x-2+1=2x2-10x+1=2(x2-5x)+1=6+1=7.25.(1)18、116;(2)x=3;(3)x=4,x=0,x=2.【解析】【分析】根据同底数幂的乘法、除法法则求解即可. 【详解】解:(1)填空:521122⎛⎫⎛⎫÷⎪ ⎪⎝⎭⎝⎭=18,43÷45=116,故答案为18、116;(2)由题意,得3x﹣4﹣(x﹣1)=3,解得:x=3,∴x=3.(3)由题意知,①2x+2﹣(x+6)=0,解得:x=4;②x﹣1=1,解得:x=2;③x﹣1=﹣1且2x+2与x+6为偶数,解得:x=0;综上,x=4,x=0,x=2.本题主要考查同底数幂的乘法、除法法则,其中同底数幂相乘: ·m n m n a a a +=,同底数幂相乘,底数不变, 指数相加;同底数幂相除, m n m n a a a -÷=,同底数幂相除, 底数不变, 指数相减.26.(1) 2a ;(2) 3a 2;(3) 6a.【解析】试题分析:(1)逆用同底数幂的乘法法则,将a m+1化为a m ·a ,再代入计算即可;(2)逆用同底数幂的乘法法则,将a n+2化为a n ·a 2,再代入计算即可;(3)逆用同底数幂的乘法法则,将a m+n+1化为a m ·a n ·a ,再代入计算即可.试题解析:(1)a m+1=a m ·a=2a.(2)a n+2=a n ·a 2=3a 2.(3)a m+n+1=a m ·a n ·a=6a.27.(1) (a -b )2;(a +b )2-4ab;(2) (a +b )2-4ab =(a -b )2,问题解决: x -y =±6【解析】【分析】(1)第一种方法为:大正方形面积-4个小长方形面积,第二种表示方法为:阴影部分正方形的面积;(2)可得等量关系为:(a+b )2-4ab=(a-b )2;利用(a+b )2-4ab=(a-b )2可求解.【详解】解:提出问题:(1) (a -b )2;(a +b )2-4ab.(2) (a +b )2-4ab =(a -b )2问题解决:由(2)得(x -y )2=(x +y )2-4xy .∵x +y =8,xy =7,∴(x -y )2=64-28=36.∴x -y =±6.【点睛】本题考查了完全平方公式的几何背景.解决问题的关键是读懂题意,找到所求的量的等量关系.本题更需注意要根据所找到的规律做题.28.(1)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(2)45;(3)答案见解析;(4) 2a +3b.试题分析:(1).根据图2,利用直接求与间接法分别表示出正方形面积,即可确定出所求等式;(2).根据(1)中的等式,进行变形,求出所求式子的值即可;(3).根据已知等式,做出长为2a+b,宽为a+2b的长方形图形即可;(4).根据题意知图形的面积是2a2+5ab+3b2,列出关系式2a2+5ab+3b2=(2a+3b)(a+b),即可确定出长方形较长的边.解:(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2-2(ab+ac+bc)=112-2×38=45.(3)如图所示.(4)根据题意得:2a2+5ab+3b2=(2a+3b)(a+b),则较长的一边为2a+3b.点睛:本题考查了多项式乘以多项式,弄懂图形的面积的不同表示方法,熟练掌握运算法则是解本题的关键;29.(1)矩形的周长为4m;(2)矩形的面积为33.【解析】【分析】(1)根据题意和矩形的周长公式列出代数式解答即可.(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【详解】(1)矩形的长为:m﹣n,矩形的宽为:m+n,矩形的周长为:2[(m-n)+(m+n)]=4m;(2)矩形的面积为S=(m+n)(m﹣n)=m2-n2,当m=7,n=4时,S=72-42=33.【点睛】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.30.(1) 36 (2) 5x6【解析】【分析】根据整式的混合运算法则依次计算即可.【详解】解:(1)原式=9÷14×1=36(2)原式=9x6﹣4x6=5x6【点睛】考查了整式的混合运算法则:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.。

整式的乘法练习题(含解析答案)

整式的乘法练习题(含解析答案)

北师大版数学七年级下册第一章1.4整式的乘法课时练习一、选择题1.(-5a2b)·(-3a)等于()A.15a3b B.-15a2b C.-15a3b D.-8a2b答案:A解析:解答:(-5a2b)·(-3a)=15a3b,故A项正确.分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题.2.(2a)3·(-5b2)等于()A.10a3b B.-40a3b2C.-40a3b D.-40a2b答案:B解析:解答:(2a)3·(-5b2)=-40a3b2,故B项正确.分析:先由积的乘方法则得(2a)3=8a3,再由单项式乘单项式法则可完成此题.3.(2a3b)2·(-5ab2c)等于()A.-20a6b4c B.10a7b4c C.-20a7b4c D.20a7b4c答案:C解析:解答:(2a3b)2·(-5ab2c)=-20a7b4c,故C项正确.分析:先由积的乘方法则得(2a3b)2=-4a6b2,再由单项式乘单项式法则与同底数幂的乘法可完成此题.4.(2x3y)2·(5xy2)·x7 等于()A.-20x6y4B.10x y y4C.-20x7y4D.20x14y4答案:D解析:解答:(2x3y)2·(5xy2)·x7 =-20x14y4,故D项正确.分析:先由积的乘方法则得(2x3y)2=-4x6y2,再由单项式乘单项式法则与同底数幂的乘法法则可完成此题.5.2a3·(b2-5ac)等于()A.-20a6b2c B.10a5b2c C.2a3b2-10a4c D.a7b4c-10a4c答案:C解析:解答:2a3·(b2-5ac)=2a3b2-10a4c,故C项正确.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.6.x3y·(xy2+z)等于()A.x4y3+xyz B.xy3+x3yz C.z x14y4 D.x4y3+x3yz答案:D解析:解答:x3y·(xy2+z)=x4y3+x3yz,故D项正确.分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题.7.(-x7)2·(x3y+z)等于()A.x17y+x14z B.-xy3+x3yz C.-x17y+x14z D.x17y+x3yz答案:A解析:解答:(-x7)2·(x3y+z)=x17y+x14z,故A项正确.分析:先由幂的乘方法则得(-x7)2=x14,再由单项式乘多项式法则与同底数幂的乘法法则可完成此题.8.[(-6)3]4 .(b2-ac)等于()A.-612b2-b2c B.10a5-b2c C.612b2-612ac D.b4c-a4c答案:C解析:解答:[(-6)3]4 .(b2-ac)=612b2-612ac,故C项正确.分析:先由幂的乘方法则得[(-6)3]4=612,再由单项式乘多项式法则与同底数幂的乘法法则可完成此题.9.(2x)3.(x3y+z)等于()A.8x6y+x14z B.-8x6y+x3yz C.8x6y+8x3z D.8x6y+x3yz答案:C解析:解答:(2x)3.(x3y+z)=8x6y+8x3z,故C项正确.分析:先由积的乘方法则得(2x)3=8x3,再由单项式乘多项式法则与同底数幂的乘法法则可完成此题.10.(2x)2.[(-y2)2+z]等于()A.4xy4+xz B.-4x2y4+4x2z C.2x2y4+2x2z D.4x2y4+4x2z答案:D解析:解答:(2x)2.[(-y2)2+z]=4x2y4+4x2z,故D项正确.分析:先由积的乘方法则得(2x)2=4x2,由幂的乘方法则得(-y2)2=y4再由单项式乘多项式法则与同底数幂的乘法法则可完成此题.11.x2.x5.(y4+z)等于()A.x7y4+x7z B.-4x2y4+4x2z C.2x2y4+2x2z D.4x2y4+4x2z答案:A解析:解答:x2.x5.(y4+z)=x7y4+x7z,故A项正确.分析:先由同底数幂的乘法法则得x2.x5=x7,再由单项式乘多项式法则可完成此题. 12.x2·(x y2+z)等于()A.xy+xz B.-x2y4+x2z C.x3y2+x2z D.x2y4+x2z答案:C解析:解答:x2.(x y2+z)=x3y2+x2z,故C项正确.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.13.(a3+b2)·(-5ac)等于()A.-5a6b2-c B.5a5-b2c C.5a3b2-10a4c D.-5a4c-5ab2c答案:D解析:解答:(a3+b2)·(-5ac)=-5a4c-5ab2c,故D项正确.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.14.(x2+y5)·(y2+z)等于()A.x2y2+x2z+y7+y5z B.2x2y2+x2z+y5z C.x2y2+x2z+y5z D.x2y2+y7+y5z 答案:A解析:解答:(x2+y5).(y2+z)=x2y2+x2z+y7+y5z,故A项正确.分析:由多项式乘多项式法则与同底数幂的乘法法则可完成此题.15.2(a2+b5)·a2等于()A.a2c+b5c B.2a4+2b5a2C.a4+2b5a2D.2a4+ba2答案:B解析:解答:2(a2+b5)·a2=2a4+2b5a2,故B项正确.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.二、填空题16.5x2·(xy2+z)等于;答案:5x3y2+5x2z解析:解答:5x2·(xy2+z)=5x2·xy2+5x2·z=5x3y2+5x2z分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题17.2a2·(ab2+4c)等于;答案:2a3b2+8a2c解析:解答:2a2·(ab2+4c)=2a2·ab2+2a2·4c=2a3b2+8a2c分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题18.2a2·(3ab2+7c)等于;答案:6a3b2+14a2c解析:解答:2a2·(3ab2+7c=2a2·3ab2+2a2·7c=6a3b2+14a2c分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题19.(-2a2)·(3a+c)等于;答案:-6a3-2a2c解析:解答:-2a2·(3a+c)=(-2a2)·3a+(-2a2)·c=-6a3-6a2c分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题20.(-4x2)·(3x+1)等于;答案:-12x3-4x2解析:解答:(-4x2)·(3x+1)=(-4x2)·3x+(-4x2)·1=-12x3-4x2分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题三、计算题21.(-10x2y)·(2xy4z)答案:-20 x3 y5 z解析:解答:解:(-10x2y)·(2xy4z)= -20 x2+1·y4+1·z=-20 x3 y5 z分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题22.(-2 x y2)·(-3 x2y4)·(- x y)答案:-6 x4 y7解析:解答:解:(-2 x y2)·(-3 x2y4)·(- x y)= -6 x1+2+1·y2+4+1=-6 x4 y7分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题23.2a·(a+1)- a(3a-2)+2a2 (a2-1)答案:2a4 -3a2+4a解析:解答:解:2a·(a+1)- a(3a-2)+2a2(a2-1) =2a2+2a-3a2+2a+2a4-2a2=2a4-3a2+4a 分析:先由单项式乘多项式法则与同底数幂的乘法法则计算,再合并同类项可完成此题. 24.3ab·(a2b+ ab2-ab)答案:3a3b2+3 a2b3- 3 a2b2解析:解答:解:3ab·(a2b+ ab2-ab)=3ab·a2b+3ab·ab2- 3ab·ab=3a3b2+3 a2b3- 3 a2b2分析:由单项式乘多项式法则与同底数幂的乘法法则计算可完成题.25.(x-8y)·(x-y)答案:x2-9xy +8y2解析:解答:解:(x-8y)·(x-y)= x1+1-xy-8xy+8y1+1= x2-9xy +8y2分析:先由多项式乘多项式法则与同底数幂的乘法法则计算,再合并同类项可完成此题.。

北师大版(2024)七年级上册《2.3_有理数的乘除运算1》2024年同步练习卷+答案解析

北师大版(2024)七年级上册《2.3_有理数的乘除运算1》2024年同步练习卷+答案解析

北师大版(2024)七年级上册《2.3有理数的乘除运算1》2024年同步练习卷一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.用简便方法计算:,其结果是()A.2B.1C.0D.2.下列算式中,积为负数的是()A. B.C.D.3.下列选项错误的是()A. B.C.D.4.下面计算的过程正确的是()A. B.C.D.5.下列各式中,m 和n 互为倒数的是()A.B.C.D.6.一个数的相反数的倒数是,则这个数为()A. B.C.D.7.式子中用的运算律是()A.乘法交换律及乘法结合律B.乘法交换律及乘法对加法的分配律C.乘法结合律及乘法对加法的分配律D.乘法对加法的分配律及加法结合律8.的倒数是()A.B.C. D.9.下列计算正确的是()A.原式B.原式C.原式D.原式10.运用了()A.加法交换律B.乘法结合律C.乘法分配律D.乘法交换律和结合律11.如图所示,数轴上点A,B,C分别表示有理数a,b,c,若a,b,c三个数的乘积为正数,这三个数的和与其中一个数相等,则下列正确的是()A. B. C. D.12.如果两个有理数的积是正数,那么这两个有理数()A.同号,且均为负数B.异号C.同号,且均为正数D.同号二、填空题:本题共6小题,每小题3分,共18分。

13.写出下列各数的倒数.的倒数是______;的倒数是______;的倒数是______;的倒数是______;的倒数是______.14.两数相乘,同号______异号______,并把______相乘;任何数与0相乘都得______.15.填空题.______;______;______;______;______;______.16.若a、b互为倒数,则______.17.一个有理数的倒数等于它本身,则这个数只能是______判断对错18.已知有理数,我们把为a的差倒数,如:2的差倒数是,的差倒数是如果,是的差倒数,是的差倒数,是的差倒数……依此类推,那么…的值是______三、计算题:本大题共1小题,共6分。

北师大版七年级数学下册第一章第2节幂的乘方与积的乘方练习题(附答案)

北师大版七年级数学下册第一章第2节幂的乘方与积的乘方练习题(附答案)

北师大版七年级数学下册第一章第2节幂的乘方与积的乘方练习题(附答案)班级________姓名________学号________评价等次________一、选择题1. 计算(23)2015×(32)2016的结果是( )A. 23B. −23C. 32D. −322. (−a 5)2+(−a 2)5的结果是( )A. 0B. −2a 7C. 2a 10D. −2a 10 3. 如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A. a >b >cB. c >b >aC. b >a >cD. b >c >a4. 已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系不成立的是( ) A. c =2b −1 B. c =a +bC. b =a +1D. c =ab5. 下列运算错误的是( )A.B. (x 2y 4)3=x 6y 12C. (−x)2·(x 3y)2=x 8y 2D.6. 下列各式中:(1)−(−a 3)4=a 12;(2)(−a n )2=(−a 2)n ;(3)(−a −b)3=(a −b)3;(4)(a −b)4=(−a +b)4正确的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个 7. 下列运算正确的是( )A. a 2⋅a 3=a 6B. (−a 2)3=−a 5C. a 10÷a 9=a(a ≠0)D. (−bc)4÷(−bc)2=−b 2c 2 8. 下列运算正确的是( )A. x 2+x 3=x 5B. (−2a 2)3=−8a 6C. x 2⋅x 3=x 6D. x 6÷x 2=x 39. 计算(x 2y)3的结果是( )A. x 6y 3B. x 5y 3C. x 5yD. x 2y 310. 已知a =96,b =314,c =275,则a 、b 、c 的大小关系是( )A. a >b >cB. a >c >bC. c >b >aD. b >c >a 11. 下列运算中,正确的是( )A. 3x 3⋅2x 2=6x 6B. (−x 2y)2=x 4yC. (2x 2)3=6x 6D. x 5÷12x =2x 4 12. 下列运算正确的是( )A. a 3⋅a 3=2a 6B. a 3+a 3=2a 6C. (a 3)2=a 6D. a 6⋅a 2=a 3 13. 已知32m =8n ,则m 、n 满足的关系正确的是( ) A. 4m =n B. 5m =3n C. 3m =5n D. m =4n 14. 化简(2x)2的结果是( )A. x 4B. 2x 2C. 4x 2D. 4x 15. 已知5x =3,5y =2,则52x−3y =( )A. 34 B. 1 C. 23 D. 98 16. 计算3y 3⋅(−y 2)2⋅(−2y)3的结果是( )17.计算:(−2)2015⋅(12)2016等于()A. −2B. 2C. −12D. 1218.计算(−513)3×(−135)2所得结果为()A. 1B. −1C. −513D. −13519.计算(−x3y)2的结果是()A. −x5yB. x6yC. −x3y2D. x6y220.下列运算错误的是()A. −m2⋅m3=−m5B. −x2+2x2=x2C. (−a3b)2=a6b2D. −2x(x−y)=−2x2−2xy二、计算题21.计算: (1)(−a3)4⋅(−a)3(2)(−x6)−(−3x3)2+8[−(−x)3]2(3)(m2n)3⋅(−m4n)+(−mn)2三、解答题22.已知272=a6=9b,求2a2+2ab的值.23.若x=2m+1,y=3+4m.(1)请用含x的代数式表示y;(2)如果x=4,求此时y的值.答案和解析1.【答案】C【解析】【分析】将原式拆成(23)2015×(32)2015×32=(23×32)2015×32即可得出答案. 【解答】解:原式=(23)2015×(32)2015×32=(23×32)2015×32=32.故选C . 2.【答案】A【解析】【分析】此题主要考查了幂的乘方运算和合并同类项,幂的乘方法则是:底数不变,指数相乘. 直接利用幂的乘方运算法则计算出结果,然后再合并同类项即可. 【解答】解:(−a 5)2+(−a 2)5 =a 10−a 10 =0. 故选A . 3.【答案】C【解析】【分析】本题考查了幂的乘方,关键是掌握a mn =(a n )m .根据幂的乘方得出指数都是11的幂,再根据底数的大小比较即可. 【解答】解:a =355=(35)11=24311, b =444=(44)11=25611, c =533=(53)11=12511, ∵256>243>125, ∴b >a >c . 故选C . 4.【答案】D【解析】【分析】本题考查了幂的乘方和积的乘方、同底数幂的乘法,解答本题的关键是掌握各知识点的运算法则.根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,依此即可得到a 、b 、c 之间的关系. 【解答】解:∵22b−1=102÷2=50=2c , ∴2b −1=c ,故A 正确; ∵2a =5,2b =10,∴2a ×2b =2a+b =5×10=50, ∵2c =50,∴a +b =c ,故B 正确; ∵2a+1=5×2=10=2b , ∴a +1=b ,故C 正确; ∴错误的为D . 故选D . 5.【答案】D【解析】【分析】本题考查积的乘方与幂的乘方运算法则以及单项式乘以单项式的法则,掌握这些法则是解决问题的关键.运用这些法则逐一判断即可.解:A.(−2a2b)3=−8a6b3,本选项正确,不符合题意;B.(x2y4)3=x6y12,本选项正确,不符合题意;C.(−x)2⋅(x3y)2=x2⋅x6y2=x8y2,本选项正确,不符合题意;D.(−ab)7=−a7b7,本选项错误,符合题意.故选D.6.【答案】A【解析】解:(1)−(−a3)4=−a12,故本选项错误;(2)(−a n)2=(a2)n,故本选项错误;(3)(−a−b)3=−(a+b)3,故本选项错误;(4)(a−b)4=(−a+b)4,正确.所以只有(4)一个正确.故选A.根据幂的运算性质对各选项进行逐一计算即可判断.本题主要利用:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数以及幂的乘方的性质,需要熟练掌握并灵活运用.7.【答案】C【解析】【分析】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【解答】解:A、a2⋅a3=a5,故A错误;B、(−a2)3=−a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(−bc)4÷(−bc)2=b2c2,故D错误;故选C.8.【答案】B【解析】【分析】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.根据同类项的定义,幂的乘方以及积的乘方,同底数的幂的乘法与除法法则即可作出判断.【解答】解:A.不是同类项,不能合并,故选项错误;B.正确;C.x2⋅x3=x5,故选项错误;D.x6÷x2=x4,故选项错误.故选B.9.【答案】A【解析】【分析】本题考查了积的乘方和幂的乘方,属于基础题.积的乘方等于积中各个因式分别乘方,然后再将所得的幂相乘,解答此题根据积的乘方的法则计算即可.解:(x2y)3=(x2)3y3=x6y3.故选A.10.【答案】C【解析】解:∵a=96=(32)6=312,b=314,c=275=(33)5=315,∴a<b<c,故选:C.根据幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)分别计算得出即可.此题主要考查了幂的乘方计算,熟练掌握运算法则是解题关键.11.【答案】D【解析】解:A、3x3⋅2x2=6x5,故选项错误;B、(−x2y)2=x4y2,故选项错误;C、(2x2)3=8x6,故选项错误;x=2x4,故选项正确.D、x5÷12故选:D.根据整式的除法,幂的乘方与积的乘方,以及单项式乘单项式的方法,逐项判定即可.此题主要考查了整式的除法,幂的乘方与积的乘方,以及单项式乘单项式,解答此题的关键是熟练掌握整式的除法法则:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.12.【答案】C【解析】【分析】此题主要考查了同底数幂的乘法,幂的乘方,合并同类项等知识,正确掌握运算法则是解题关键.分别利用同底数幂的乘法运算法则,幂的乘方运算法则,合并同类项法则对各选项进行运算,即可判断结果.【解答】解:A.a3·a3=a3+3=a6,故此选项错误;B.a3+a3=2a3,故此选项错误;C.(a3)2=a 2×3=a6,故此选项正确;D.a6·a2=a6+2=a8,故此选项错误.故选C.13.【答案】B【解析】解:∵32m=8n,∴(25)m=(23)n,∴25m=23n,∴5m=3n.故选:B.直接利用幂的乘方运算法则将原式变形,进而得出答案.此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.14.【答案】C【解析】解:(2x)2=4x2,故选:C.利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.此题主要考查了积的乘方,关键是掌握计算法则.15.【答案】D【解析】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x−3y=52x53y =98.故选:D.首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x−3y的值为多少即可.此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.16.【答案】A【解析】【分析】此题考查了积的乘方和幂的乘方以及单项式乘以单项式,熟练掌握运算法则是解本题的关键.原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以单项式法则计算即可得到结果.【解答】解:原式=3y3×y4×(−8y3)=−24y10.故选A.17.【答案】C【解析】解:(−2)2015⋅(12)2016=[(−2)2015⋅(12)2015]×12=−12.故选:C.直接利用同底数幂的乘法运算法则将原式变形进而求出答案.此题主要考查了积的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.18.【答案】C【解析】解:(−513)3×(−135)2=[(−513)×(−135)]2×(−513)=1×(−5 13 )5故选:C .首先根据积的乘方的运算方法:(ab)n =a n b n ,求出[(−513)×(−135)]2的值是多少;然后用它乘−513,求出计算(−513)3×(−135)2所得结果为多少即可.此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m,n 是正整数);②(ab)n =a n b n (n 是正整数). 19.【答案】D【解析】解:(−x 3y)2=x 6y 2. 故选:D .首先利用积的乘方运算法则化简求出答案.此题主要考查了积的乘方运算,正确掌握运算法则是解题关键. 20.【答案】D【解析】【分析】本题考查同底数幂的乘法、合并同类项、积的乘方、单项式乘以多项式,解题的关键是明确它们各自的计算方法.计算出各个选项中式子的正确结果,然后对照,即可解答本题. 【解答】解:∵−m 2⋅m 3=−m 5,故选项A 正确, ∵−x 2+2x 2=x 2,故选项B 正确, ∵(−a 3b)2=a 6b 2,故选项C 正确,∵−2x(x −y)=−2x 2+2xy ,故选项D 错误, 故选D .21.【答案】解:(1)原式=a 12⋅(−a 3)=−a 15; (2)原式=−x 6−9x 6+8x 6=−2x 6; (3)原式=−m 10n 4+m 2n 2.【解析】(1)原式利用幂的乘方与积的乘方运算法则计算即可求出值; (2)原式利用幂的乘方与积的乘方运算法则计算,合并即可求出值; (3)原式利用幂的乘方与积的乘方运算法则计算即可求出值.此题考查了单项式乘单项式,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.22.【答案】解:由272=a 6, 得36=a 6, ∴a =±3; 由272=9b , 得36=32b , ∴2b =6, 解得b =3;(1)当a =3,b =3时,2a 2+2ab =2×32+2×3×3=36. (2)当a =−3,b =3时,2a 2+2ab =2×(−3)2+2×(−3)×3=18−18=0. 所以2a 2+2ab 的值为36或0.【解析】先把已知条件转化成以3为底数的幂,求出a、b的值,再代入代数式计算即可.根据幂的乘方的性质把已知条件转化为以3为底数的幂求出a、b的值是解题的关键;需要注意,a=−3容易被同学们漏掉而导致求解不完全.23.【答案】解:(1)∵4m=22m=(2m)2,x=2m+1,∴2m=x−1,∵y=4m+3,∴y=(x−1)2+3,即y=x2−2x+4;(2)把x=4代入y=x2−2x+4=12.【解析】(1)将4m变形,转化为关于2m的形式,然后再代入整理即可;(2)把x=4代入解得即可.本题考查幂的乘方的性质,解决本题的关键是利用幂的乘方的逆运算,把含m的项代换掉.。

北师大版七年级数学下册1 4整式的乘法 同步练习 (word版 含解析)

北师大版七年级数学下册1 4整式的乘法 同步练习 (word版 含解析)

北师大版 1.4 整式的乘法一、选择题(共9小题)1. 2ab⋅a2的计算结果是( )A. 2abB. 4abC. 2a3bD. 4a3b2. 若等式2a2⋅a+▫=3a3成立,则▫填写单项式可以是( )A. aB. a2C. a3D. a43. 多项式x2−2x+3与x2+2x−a的积不含一次项,则a的值为( )A. 3B. −3C. 4D. −44. 下列计算正确的是( )A. x(x2−x−1)=x3−x−1B. ab(a+b)=a2+b2C. 3x(x2−2x−1)=3x3−6x2−3xD. −2x(x2−x−1)=−2x3−2x2+2x5. 若(x−2)(x+3)=x2+ax+b,则a,b的值分别是( )A. a=5,b=6B. a=1,b=−6C. a=1,b=6D. a=5,b=−66. 以下计算正确的是( )A. (−2ab2)3=8a3b6B. 3ab+2b=5abC. (−x2)⋅(−2x)3=−8x5D. 2m(mn2−3m2)=2m2n2−6m37. 若(x−2)(x+3)=x2+ax+b,则a,b的值分别为( )A. a=5,b=−6B. a=5,b=6C. a=1,b=6D. a=1,b=−68. 下列运算正确的是( )A. m+2m=3m2B. 2m3⋅3m2=6m6C. (2m)3=8m3D. m6÷m2=m39. 若(x2+ax+1)(−6x3)的展开式中不含x4项,则a=( )D. −1A. −6B. 0C. 16二、填空题(共6小题)10. 单项式乘单项式法则:单项式与单项式相乘,把它们的,分别相乘的积作为,其余字母连同它的不变,也作为积的因式.11. 单项式乘多项式法则:单项式与多项式相乘,用乘以的每一项,再把所得的积;即:m(a+b+c)=.12. (a+b)⋅(c+d)=.13. 单项式与单项式相乘的法则,对于三项以上的单项式也适用.14. 单项式与多项式的乘积仍是一个,结果在没有化简前项数与原多项式的相同.15. 计算:(a−10)(a−7)=.三、解答题(共6小题)16. 已知一个长方体的长为3a,宽为2a,高为ℎ.(1)用a,ℎ的代数式来表示该长方体的体积与表面积.(2)当a=2,ℎ=12时,求相应长方体的体积与表面积.17. 小明在计算一个多项式乘−3x2时,因抄错运算符号,写成了加上−3x2,结果算成x2−4x+1,那么原题正确的计算结果是什么?请计算出正确的结果.18. 如图,现有一块长为(3a+b)米,宽为(a+2b)米的长方形地块,规划将阴影部分进行绿化,中间预留部分是边长为a米的正方形.(1)求绿化的面积(用含a,b的代数式表示);(2)若a=3,b=1,绿化成本为50元/平方米,则完成绿化共需要多少元?19. 计算:(1)2x(12x2−1)−3x(13x2+23);(2)(−2a2)⋅(ab+b2)−5a(a2b−ab2).20. 若(a m+1b n+2)⋅(a2n−1b2m)=a3b5,求m2+n2的值.21. 贾宪三角(如图1)最初于11世纪被发现,原图记载于我国北宋时期数学家贾宪的《黄帝九章算法细草》一书中,原名“开方作法本源图”,用来作开方运算,在数学史上占有领先地位.我国南宋时期数学家杨辉对此有着记载之功,他于1261年写下的《详解九章算法》一书中记载着这一图表.因此,后人把这个图表称作贾宪三角或杨辉三角.施蒂费尔的二项式乘方后展开式的系数规律如图 2 所示.在贾宪三角中,第三行的三个数恰好对应着两数和的平方公式 (a +b )2=a 2+2ab +b 2 展开式的系数.再如,第四行的四个数恰好对应着两数和的立方公式 (a +b )3=a 3+3a 2b +3ab 2+b 3 展开式的系数,第五行的五个数恰好对应着两数和的四次方公式 (a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4 展开式的系数,等等.由此可见,贾宪三角可以看成是对我们现在学习的两数和的平方公式的推广而得到的,根据以上材料解决下列问题:(1)(a+b)n展开式中项数共有项;(2)写出(a+b)7的展开式:(a+b)7=;(3)计算:25−5×24+10×23−10×22+5×2−1(4)若(2x−1)2019=a1x2019+a2x2018+⋯+a2018x2+a2019x+a2020,求a1+a2+a3+⋯+a2018+a2019的值.答案1. C【解析】2ab⋅a2=2a3b.2. C【解析】∵等式2a2⋅a+▫=3a3成立,∴2a3+▫=3a3,∴▫填写单项式可以是:3a3−2a3=a3.3. B4. C5. B6. D【解析】(−2ab2)3=−8a3b6,A计算错误;3ab与2b不能合并,B项计算错误;(−x2)⋅(−2x)3=8x5,C项计算错误.故选D.7. D8. C【解析】因为m+2m=3m,所以选项A不符合题意;因为2m3⋅3m2=6m5,所以选项B不符合题意;因为(2m)3=23⋅m3=8m3,所以选项C符合题意;因为m6÷m2=m6−2=m4,所以选项D不符合题意.9. B【解析】(x2+ax+1)(−6x3)=−6x5−6ax4−6x3,∵不含x4,∴−6a=0,∴a=0,故选:B.10. 系数,同底数幂,积的因式,指数11. 单项式,多项式,相加,ma+mb+mc12. ac+ad+bc+bd13. 相乘14. 多项式,项数15. a2−17a+7016. (1)V体=6a2ℎ;S表=12a2+10aℎ.(2)V体=12;S表=58.17. 原多项式=x2−4x+1+3x2=4x2−4x+1,所以正确的结果为−3x2(4x2−4x+1)=−12x4+12x3−3x2.18. (1)长方形的面积=(3a+b)(a+2b)=3a2+7ab+2b2,预留部分面积=a2,则绿化的面积=3a2+7ab+2b2−a2=2a2+7ab+2b2【解析】略(2)当a=3,b=1时,绿化的面积=2×9+7×3×1+2=41(平方米),41×50=2050(元).【解析】略19. (1)2x(12x2−1)−3x(13x2+23) =x3−2x−x3−2x=−4x.(2)原式=−2a2⋅ab−2a2⋅b2−5a⋅a2b+5a⋅ab2 =−2a3b−2a2b2−5a3b+5a2b2=(−2a3b−5a3b)+(−2a2b2+5a2b2)=−7a3b+3a2b2.20. 221. (1)n+1(2)a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7(3)原式=25−5×24×(−1)+10×23×(−1)2+10×22×(−1)3+5×2×(−1)4+(−1)5 =(2−1)5=1(4)当x=0时,a2020=−1,当x=1时,a1+a2+a3+⋯+a2018+a2019+a2020=1,∴a1+a2+a3+⋯+a2018+a2019=2.、。

北师大版初中数学七年级下册《1.4 整式的乘法》同步练习卷(含答案解析

北师大版初中数学七年级下册《1.4 整式的乘法》同步练习卷(含答案解析

北师大新版七年级下学期《1.4 整式的乘法》同步练习卷一.选择题(共13小题)1.若(2x﹣a)(x+5)的积中不含x的一次项,则a的值为()A.﹣5B.0C.5D.102.若(x+a)(x﹣2)的计算结果中不含x的一次项,则a的值是()A.B.﹣C.2D.﹣23.下列算式中,正确的是()A.a2•a3=a6B.(﹣3a)6•(b)3=a6b3C.3a﹣2=D.(a﹣1+b﹣1)﹣1=a+b4.下列各式中,计算正确的是()A.(﹣5a n+1b)•(﹣2a)=10a n+1bB.(﹣4a2b)•(﹣a2b2)•cC.(﹣3xy)•(﹣x2z)•6xy2=3x3y3zD.5.若(x﹣3)(x+2)=x2+px+q,那么p、q的值是()A.p=1,q=﹣6B.p=﹣1,q=6C.p=﹣1,q=﹣6D.p=1,q=6 6.计算(x3)2(x2+2x+1)的结果是()A.x4+2x3+x2B.x5+2x4+x3C.x8+2x7+x6D.x8+2x4+x3 7.若(x﹣3)(x+8)=x2+mx+n,则m、n的值是()A.m=5,n=﹣24B.m=﹣5,n=﹣24C.m=5,n=24D.m=﹣5,n=24 8.已知A=﹣4x2,B是多项式,在计算B+A时,小马虎同学把B+A看成了B•A,结果得32x5﹣16x4,则B+A为()A.﹣8x3+4x2B.﹣8x3+8x2C.﹣8x3D.8x39.若(y+3)(y﹣2)=y2+my+n,则m+n的值为()A.5B.﹣6C.6D.﹣510.已知x(x﹣2)=3,则代数式2x2﹣4x﹣7的值为()A.6B.﹣4C.13D.﹣111.下列计算结果正确的是()A.3a﹣2=B.2a2•3a3=6a5C.a6÷a2=a3D.(﹣2a2b3)3=﹣6a6b912.若x+y+3=0,则x(x+4y)﹣y(2x﹣y)的值为()A.3B.9C.6D.﹣913.已知(x﹣m)(x+n)=x2﹣3x﹣4,则m﹣n的值为()A.1B.﹣3C.﹣2D.3二.填空题(共7小题)14.计算:(﹣3x3)2•xy2=15.已知a,b,m均为正整数,且(x+a)(x+b)=x2+mx+36,那么m的取值有个.16.已知多项式x2+nx+3与多项式x2﹣3x+m的乘积中不含x2和x3项,则m=,n=.17.计算(x﹣2)﹣3(yz﹣1)3=.18.已知a、b都是不为零的常数,如果多项式(x+a)(x+b)的乘积中不含x项,则a+b=.19.若(x+3)(x﹣4)=ax2+bx+c,则abc=.20.已知2m﹣3n=﹣5,则代数式m(n﹣4)﹣n(m﹣6)的值为.三.解答题(共20小题)21.如图所示,长方形ABCD是“阳光小区”内一块空地,已知AB=(2a+6b)米,BC=(8a+4b)米.(1)该长方形ABCD的面积是多少平方米?(2)若E为AB边的中点,DF=BC,现打算在阴影部分种植一片草坪,这片草坪的面积是多少平方米?22.计算:2x2﹣x(2x﹣5y)+y(2x﹣y).23.计算:a2•(﹣ab3)2•(﹣2b2)3.24.计算(1)(﹣2x2)3+(﹣3x3)2+(x2)2•x2(2)(﹣2xy2)3+(xy3)2•x25.如图,某小区规划在长(3x+4y)米,宽(2x+3y)米的长方形的场地上,修建1横2纵三条宽为x米的甬道,其余部分为绿地,求:(1)甬道的面积;(2)绿地的面积(结果化简)26.如图,某校有一块长为(5a+b)米,宽为(3a+b)米的长方形空地,中间是边长(a﹣b)米的正方形草坪,其余为活动场地,学校计划将活动场地(阴影部分)进行硬化.(1)用含a,b的代数式表示需要硬化的面积并化简;(2)当a=5,b=2时,求需要硬化的面积.27.计算:(1)(a﹣2)(a2+2a+22);(a﹣2)(a3+2a2+22a+23).(2)猜测(a﹣2)(a n﹣1+2a n﹣2+22a n﹣3+…+2n﹣2a+2n﹣1)=;(3)运用(2)的结论计算:3n﹣1+2•3n﹣2+22•3n﹣3+…+2n﹣2•3+2n﹣128.小明与小乐两人共同计算(2x+a)(3x+b),小明抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;小乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x ﹣6.(1)式子中的a,b的值各是多少?(2)请计算出原题的答案.29.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值.(2)求x2+3xy+y2的值.30.若(x2+nx+3)(x2﹣3x+m)的乘积中不含x2项和x3项,求m,n的值.31.已知(x3+mx+n)(x2﹣3x+1)展开后的结果中不含x3、x2项.求m+n的值.32.探究应用:(1)计算:(x+1)(x2﹣x+1)=;(2x+y)(4x2﹣2xy+y2)=.(2)上面的乘法计算结果很简洁,你发现了什么规律(公式)?用含a、b的字母表示该公式为:.(3)下列各式能用第(2)题的公式计算的是.A.(m+2)(m2+2m+4)B.(m+2n)(m2﹣2mn+2n2)C.(3+n)(9﹣3n+n2)D.(m+n)(m2﹣2mn+n2)33.如图,在某住房小区的建设中,为了提高业主的宜居环境,小区准备在一个长为(4a+3b)米,宽为(2a+3b)米的长方形草坪上修建两条宽为b米的通道.(1)通道的面积是多少平方米?(2)剩余草坪的面积是多少平方米?34.已知(x+my)(x+ny)=x2+2xy﹣6y2,求﹣(m+n)•mn的值.35.欢欢与乐乐两人共同计算(2x+a)(3x+b),欢欢抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;乐乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x ﹣6.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.36.已知(x2+px+8)(x2﹣3x+q)的展开式中不含x2项和x3项,求p+q的值.37.甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x﹣10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣9x+10.请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果.38.已知,求M?39.千年古镇赵化的桂香池院内是一长为(3a+b)米,宽为(2a+b)米(a>b)的长方形地;现在赵化镇的相关部门计划将桂香池的周围进行绿化(如图阴影部分),中间部分就是桂香池(见图最中间的长方形,其“长宽”见图中的标注).(1)绿化的面积是多少平方米?(列式化简)(2)并求出当a=3,b=2时的绿化面积.40.若一个正方形的一组对边分别减少3cm,另一组对边分别增加3cm,所得的长方形的面积与这个正方形的每条边都减少1cm后所得的正方形的面积相等,则原来正方形的边长为多少cm?北师大新版七年级下学期《1.4 整式的乘法》同步练习卷参考答案与试题解析一.选择题(共13小题)1.若(2x﹣a)(x+5)的积中不含x的一次项,则a的值为()A.﹣5B.0C.5D.10【分析】根据多项式与多项式相乘的法则计算,根据题意列方程,解方程即可.【解答】解:(2x﹣a)(x+5)=2x2+10x﹣ax﹣5a=2x2+(10﹣a)x﹣5a由题意得,10﹣a=0,解得,a=10,故选:D.【点评】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.2.若(x+a)(x﹣2)的计算结果中不含x的一次项,则a的值是()A.B.﹣C.2D.﹣2【分析】根据多项式与多项式相乘的法则计算,根据题意列方程,解方程即可.【解答】解:(x+a)(x﹣2)=x2+ax﹣2x﹣2a=x2+(a﹣2)x﹣2a由题意得,a﹣2=0,解得,a=2,故选:C.【点评】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.3.下列算式中,正确的是()A.a2•a3=a6B.(﹣3a)6•(b)3=a6b3C.3a﹣2=D.(a﹣1+b﹣1)﹣1=a+b【分析】直接利用负指数幂的性质以及单项式乘以单项式分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(﹣3a)6•(b)3=a6b3,正确;C、3a﹣2=,故此选项错误;D、(a﹣1+b﹣1)﹣1==,故此选项错误;故选:B.【点评】此题主要考查了负指数幂的性质以及单项式乘以单项式,正确掌握相关运算法则是解题关键.4.下列各式中,计算正确的是()A.(﹣5a n+1b)•(﹣2a)=10a n+1bB.(﹣4a2b)•(﹣a2b2)•cC.(﹣3xy)•(﹣x2z)•6xy2=3x3y3zD.【分析】单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.依此即可求解.【解答】解:A、(﹣5a n+1b)•(﹣2a)=10a n+2b,此选项错误;B、(﹣4a2b)•(﹣a2b2)•c,此选项正确;C、(﹣3xy)•(﹣x2z)•6xy2=18x4y3z,此选项错误;D、(2a n b3)(﹣ab n﹣1)=﹣a n+1b n+2,此选项错误.故选:B.【点评】考查了单项式乘单项式,单项式乘多项式,关键是熟练掌握计算法则正确进行计算.5.若(x﹣3)(x+2)=x2+px+q,那么p、q的值是()A.p=1,q=﹣6B.p=﹣1,q=6C.p=﹣1,q=﹣6D.p=1,q=6【分析】先根据多项式乘以多项式法则展开,再得出答案即可.【解答】解:(x﹣3)(x+2)=x2+2x﹣3x﹣6=x2﹣x﹣6,∵(x﹣3)(x+2)=x2+px+q,∴p=﹣1,q=﹣6,故选:C.【点评】本题考查了多项式乘以多项式法则,能熟练地运用多项式乘以多项式法则进行计算是解此题的关键.6.计算(x3)2(x2+2x+1)的结果是()A.x4+2x3+x2B.x5+2x4+x3C.x8+2x7+x6D.x8+2x4+x3【分析】先计算幂的乘方,再利用单项式乘多项式的运算法则计算可得.【解答】解:原式=x6(x2+2x+1)=x8+2x7+x6,故选:C.【点评】本题主要考查单项式乘多项式,解题的关键是熟练掌握幂的乘方和单项式乘多项式的运算法则.7.若(x﹣3)(x+8)=x2+mx+n,则m、n的值是()A.m=5,n=﹣24B.m=﹣5,n=﹣24C.m=5,n=24D.m=﹣5,n=24【分析】首先根据运算法则去括号,进而得出对应的m与n的值.【解答】解:∵(x﹣3)(x+8)=x2+5x﹣24,而(x﹣3)(x+8)=x2+mx+n,∴x2+5x﹣24=x2+mx+n,∴m=5,n=﹣24.故选:A.【点评】此题主要考查了整式的乘法运算,熟练掌握运算法则是解题关键.8.已知A=﹣4x2,B是多项式,在计算B+A时,小马虎同学把B+A看成了B•A,结果得32x5﹣16x4,则B+A为()A.﹣8x3+4x2B.﹣8x3+8x2C.﹣8x3D.8x3【分析】根据整式的运算法则即可求出答案.【解答】解:由题意可知:﹣4x2•B=32x5﹣16x4,∴B=﹣8x3+4x2∴A+B=﹣8x3+4x2+(﹣4x2)=﹣8x3故选:C.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.9.若(y+3)(y﹣2)=y2+my+n,则m+n的值为()A.5B.﹣6C.6D.﹣5【分析】先根据多项式乘以多项式的法则计算(y+3)(y﹣2),再根据多项式相等的条件即可求出m、n的值.【解答】解:(y+3)(y﹣2)=y2﹣2y+3y﹣6=y2+y﹣6,∵(y+3)(y﹣2)=y2+my+n,∴m=1、n=﹣6,则m+n=﹣5,故选:D.【点评】本题主要考查多项式乘以多项式的法则:(a+b)(m+n)=am+an+bm+bn.注意不要漏项,漏字母,有同类项的合并同类项.10.已知x(x﹣2)=3,则代数式2x2﹣4x﹣7的值为()A.6B.﹣4C.13D.﹣1【分析】将x(x﹣2)=3代入原式=2x(x﹣2)﹣7,计算可得.【解答】解:当x(x﹣2)=3时,原式=2x(x﹣2)﹣7=2×3﹣7=6﹣7=﹣1,故选:D.【点评】本题主要考查单项式乘多项式,解题的关键是掌握整体代入思想的运用.11.下列计算结果正确的是()A.3a﹣2=B.2a2•3a3=6a5C.a6÷a2=a3D.(﹣2a2b3)3=﹣6a6b9【分析】根据单项式的乘法与除法和积的乘方进行解答即可.【解答】解:A、,错误;B、2a2•3a3=6a5,正确;C、a6÷a2=a4,错误;D、(﹣2a2b3)3=﹣8a6b9,错误;故选:B.【点评】此题考查单项式的乘法与除法,关键是根据法则进行解答.12.若x+y+3=0,则x(x+4y)﹣y(2x﹣y)的值为()A.3B.9C.6D.﹣9【分析】直接利用单项式乘以多项式的运算法则计算,进而把已知代入求出答案.【解答】解:∵x+y+3=0,∴x+y=﹣3,∴x(x+4y)﹣y(2x﹣y)=x2+4xy﹣2xy+y2=(x+y)2=9.故选:B.【点评】此题主要考查了单项式乘以多项式以及完全平方公式,正确将原式变形是解题关键.13.已知(x﹣m)(x+n)=x2﹣3x﹣4,则m﹣n的值为()A.1B.﹣3C.﹣2D.3【分析】把原式的左边利用多项式乘多项式展开,合并后与右边对照即可得到m﹣n的值.【解答】解:(x﹣m)(x+n)=x2+nx﹣mx﹣mn=x2+(n﹣m)x﹣mn,∵(x﹣m)(x+n)=x2﹣3x﹣4,∴n﹣m=﹣3,则m﹣n=3,故选:D.【点评】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.二.填空题(共7小题)14.计算:(﹣3x3)2•xy2=9x7y2【分析】直接利用积的乘方运算法则化简,再利用单项式乘以单项式运算法则计算得出答案.【解答】解:(﹣3x3)2•xy2=9x6•xy2=9x7y2.故答案为:9x7y2.【点评】此题主要考查了积的乘方运算以及单项式乘以单项式,正确掌握相关运算法则是解题关键.15.已知a,b,m均为正整数,且(x+a)(x+b)=x2+mx+36,那么m的取值有5个.【分析】根据多项式与多项式相乘的法则计算,根据题意分析即可.【解答】解:(x+a)(x+b)=x2+(a+b)x+ab,则a+b=m,ab=36,∵a,b,m均为正整数,∴a=1,b=36,a=2,b=18,a=3,b=12,a=4,b=9,a=6,b=6,则m取的值有5个,故答案为:5.【点评】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.16.已知多项式x2+nx+3与多项式x2﹣3x+m的乘积中不含x2和x3项,则m=6,n=3.【分析】根据多项式与多项式相乘的法则计算,根据题意列出方程组,解方程组即可.【解答】解:(x2+nx+3)(x2﹣3x+m)=x4﹣3x3+mx2+nx3﹣3nx2+mnx+3x2﹣9x+3m=x4﹣(3﹣n)x3+(m﹣3n+3)x2+(mn﹣9)x+3m由题意得,,解得,m=6,n=3,故答案为:6;3.【点评】本题考查的是多项式乘多项式,掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.17.计算(x﹣2)﹣3(yz﹣1)3=x6y3z﹣3.【分析】根据同底数幂的运算法则即可求出答案.【解答】解:原式=x6y3z﹣3故答案为:x6y3z﹣3【点评】本题考查同底数幂的运算,解题的关键是熟练运用同底数幂的运算,本题属于基础题型.18.已知a、b都是不为零的常数,如果多项式(x+a)(x+b)的乘积中不含x项,则a+b=0.【分析】根据多项式乘以多项式法则展开,根据多项式不含x项即可得出.【解答】解:(x+a)(x+b)=x2+(a+b)x+ab,∵多项式(x+a)(x+b)的乘积中不含x项,∴a+b=0,故答案为:0.【点评】本题考查了多项式乘以多项式法则,能正确根据多项式乘以多项式法则展开是解此题的关键.19.若(x+3)(x﹣4)=ax2+bx+c,则abc=12.【分析】先根据多项式乘以多项式法则展开,再求出a、b、c的值,代入求即可.【解答】解:(x+3)(x﹣4)=x2﹣4x+3x﹣12=x2﹣x﹣12,∵(x+3)(x﹣4)=ax2+bx+c,∴a=1,b=﹣1,c=﹣12,∴abc=1×(﹣1)×(﹣12)=12,故答案为:12.【点评】本题考查了多项式乘以多项式,能熟练地运用法则进行化简是解此题的关键.20.已知2m﹣3n=﹣5,则代数式m(n﹣4)﹣n(m﹣6)的值为10.【分析】先化简m(n﹣4)﹣n(m﹣6),再整体代入计算即可.【解答】解:原式=mn﹣4m﹣mn+6n=﹣4m+6n=﹣2(2m﹣3n),∵2m﹣3n=﹣5,∴原式=﹣2×(﹣5)=10,故答案为10.【点评】本题考查了单项式乘以多项式,掌握运算法则以及整体思想是解题的关键.三.解答题(共20小题)21.如图所示,长方形ABCD是“阳光小区”内一块空地,已知AB=(2a+6b)米,BC=(8a+4b)米.(1)该长方形ABCD的面积是多少平方米?(2)若E为AB边的中点,DF=BC,现打算在阴影部分种植一片草坪,这片草坪的面积是多少平方米?【分析】(1)根据长方形的面积公式,多项式与多项式相乘的法则计算;(2)根据题意分别求出AE,AF,根据多项式与多项式相乘的法则计算.【解答】解:(1)长方形ABCD的面积=AB×BC=(2a+6b)(8a+4b)=16a2+56ab+24b2;(2)由题意得,AF=AD﹣DF=BC﹣BC=(8a+4b)﹣(8a+4b)=(6a+3b),AE=(2a+6b)=a+3b,则草坪的面积=×AE×AF=×(a+3b)(6a+3b)=3a2+ab+b2.【点评】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.22.计算:2x2﹣x(2x﹣5y)+y(2x﹣y).【分析】直接利用单项式乘以多项式运算法则计算得出答案.【解答】解:原式=2x2﹣2x2+5xy+2xy﹣y2=7xy﹣y2.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.23.计算:a2•(﹣ab3)2•(﹣2b2)3.【分析】先计算单项式的乘方,再计算单项式乘单项式可得.【解答】解:原式=a2•a2b6•(﹣8b6)=﹣8a4b12.【点评】本题主要考查单项式乘单项式,解题的关键是掌握单项式乘单项式的运算法则.24.计算(1)(﹣2x2)3+(﹣3x3)2+(x2)2•x2(2)(﹣2xy2)3+(xy3)2•x【分析】(1)直接利用积的乘方运算法则以及同底数幂的乘法运算法则分别化简得出答案;(2)直接利用积的乘方运算法则以及同底数幂的乘法运算法则分别化简得出答案.【解答】解:(1)(﹣2x2)3+(﹣3x3)2+(x2)2•x2=﹣8x6+9x6+x6=2x6;(2)(﹣2xy2)3+(xy3)2•x=﹣8x3y6+x3y6=﹣7x3y6.【点评】此题主要考查了积的乘方运算以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.25.如图,某小区规划在长(3x+4y)米,宽(2x+3y)米的长方形的场地上,修建1横2纵三条宽为x米的甬道,其余部分为绿地,求:(1)甬道的面积;(2)绿地的面积(结果化简)【分析】(1)直接利用长方形面积求法得出甬道的面积;(2))直接利用矩形面积﹣甬道面积进而得出答案.【解答】解:(1)甬道的面积为:2x(2x+3y)+x(3x+4y)﹣2x2=5x2+10xy;(2)绿地的面积为:(3x+4y)(2x+3y)﹣(5x2+10xy)=6x2+17xy+12y2﹣5x2﹣10xy=x2+7xy+12y2.【点评】此题主要考查了多项式乘以多项式,正确计算出甬道面积是解题关键.26.如图,某校有一块长为(5a+b)米,宽为(3a+b)米的长方形空地,中间是边长(a﹣b)米的正方形草坪,其余为活动场地,学校计划将活动场地(阴影部分)进行硬化.(1)用含a,b的代数式表示需要硬化的面积并化简;(2)当a=5,b=2时,求需要硬化的面积.【分析】(1)根据题意和长方形面积公式即可求出答案.(2)将a与b的值代入即可求出答案.【解答】解:(1)硬化总面积为(5a+b)(3a+b)﹣(a﹣b)2=15a2+8ab+b2﹣a2+2ab﹣b2=14a2+10ab;(2)当a=5、b=2时,14a2+10ab=14×52+10×5×2=450,答:需要硬化的面积为450米2.【点评】本题考查代数式求值,解题的关键是根据题意列出代数式,本题属于基础题型.27.计算:(1)(a﹣2)(a2+2a+22);(a﹣2)(a3+2a2+22a+23).(2)猜测(a﹣2)(a n﹣1+2a n﹣2+22a n﹣3+…+2n﹣2a+2n﹣1)=a n﹣2n;(3)运用(2)的结论计算:3n﹣1+2•3n﹣2+22•3n﹣3+…+2n﹣2•3+2n﹣1【分析】(1)依据多项式与多项式相乘的法则进行计算即可;(2)依据(1)中的计算结果,即可猜想计算结果;(3)运用(2)的结论计算(3﹣2)(3n﹣1+2•3n﹣2+22•3n﹣3+…+2n﹣2•3+2n﹣1)的值即可.【解答】解:(1)(a﹣2)(a2+2a+22)=a3+2a2+22a﹣2a2﹣22a﹣23=a3﹣23=a3﹣8;(a﹣2)(a3+2a2+22a+23)=a4+2a3+22a2+23a﹣2a3﹣22a2﹣23a﹣24=a4﹣24=a4﹣16;(2)猜测(a﹣2)(a n﹣1+2a n﹣2+22a n﹣3+…+2n﹣2a+2n﹣1)=a n﹣2n;故答案为:a n﹣2n;(3)3n﹣1+2•3n﹣2+22•3n﹣3+…+2n﹣2•3+2n﹣1=(3﹣2)(3n﹣1+2•3n﹣2+22•3n﹣3+…+2n﹣2•3+2n﹣1)=3n﹣2n.【点评】本题主要考查了多项式乘多项式,多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.28.小明与小乐两人共同计算(2x+a)(3x+b),小明抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;小乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x ﹣6.(1)式子中的a,b的值各是多少?(2)请计算出原题的答案.【分析】(1)根据两人出错的结果列出关于a与b的方程组,求出方程组的解即可得到a与b的值;(2)将a与b的值代入计算即可求出正确的结果.【解答】解:(1)∵(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,∴2b﹣3a=﹣13①,∵(2x+a)(x+b)=2x2+(2b+a)x+ab=2x2﹣x﹣6,∴2b+a=﹣1②,联立方程①②,可得,解得:;(2)(2x+a)(3x+b)=(2x+3)(3x﹣2)=6x2+5x﹣6.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.29.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值.(2)求x2+3xy+y2的值.【分析】(1)根据多项式与多项式的乘法法则即可求就出答案.(2)根据配方法即可求出答案.【解答】解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.【点评】本题考查多项式乘以多项式的法则,解题的关键是求出xy与x+y的值,本题属于基础题型.30.若(x2+nx+3)(x2﹣3x+m)的乘积中不含x2项和x3项,求m,n的值.【分析】将已知的式子利用多项式乘以多项式的法则变形,合并后根据乘积中不含x2和x3项,得到这两项系数为0,列出关于m与n的方程,求出方程的解即可得到m与n的值.【解答】解:(x2+nx+3)(x2﹣3x+m)=x4+nx3+3x2﹣3x3﹣3nx2﹣9x+mx2+mnx+3m=x4+(n﹣3)x3+(3﹣3n+m)x2+(mn﹣9)x+3m,∵乘积中不含x2和x3项,∴n﹣3=0,3﹣3n+m=0,解得:m=6,n=3.【点评】本题主要考查多项式的乘法,运用不含某一项就是该项的系数等于0是解本题的关键,熟练掌握运算法则也很重要.31.已知(x3+mx+n)(x2﹣3x+1)展开后的结果中不含x3、x2项.求m+n的值.【分析】原式利用多项式乘以多项式法则计算,根据结果中不含x3和x2项,求出m与n的值即可.【解答】解:(x3+mx+n)(x2﹣3x+1)=x5﹣3x4+x3+mx3﹣3mx2+mx+nx2﹣3nx+n=x5﹣3x4+(1+m)x3+(﹣3m+n)x2+(m﹣3n)x+n因为展开后的结果中不含x3、x2项所以1+m=0﹣3m+n=0所以m=﹣1 n=﹣3 m+n=﹣1+(﹣3 )=﹣4.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.32.探究应用:(1)计算:(x+1)(x2﹣x+1)=x3+1;(2x+y)(4x2﹣2xy+y2)=8x3+y3.(2)上面的乘法计算结果很简洁,你发现了什么规律(公式)?用含a、b的字母表示该公式为:(a+b)(a2﹣ab+b2)=a3+b3.(3)下列各式能用第(2)题的公式计算的是C.A.(m+2)(m2+2m+4)B.(m+2n)(m2﹣2mn+2n2)C.(3+n)(9﹣3n+n2)D.(m+n)(m2﹣2mn+n2)【分析】根据多项式乘以多项式的法则即可计算出答案.【解答】解:(1)(x+1)(x2﹣x+1)=x3﹣x2+x+x2﹣x+1=x3+1,(2x+y)(4x2﹣2xy+y2)=8x3﹣4x2y+2xy2+4x2y﹣2xy2+y3=8x3+y3,(2)(a+b)(a2﹣ab+b2)=a3+b3;(3)由(2)可知选(C);故答案为:(1)x3+1;8x3+y3;(2)(a+b)(a2﹣ab+b2)=a3+b3;(3)(C)【点评】本题考查多项式乘以多项式,同时考查学生的观察归纳能力,属于基础题型.33.如图,在某住房小区的建设中,为了提高业主的宜居环境,小区准备在一个长为(4a+3b)米,宽为(2a+3b)米的长方形草坪上修建两条宽为b米的通道.(1)通道的面积是多少平方米?(2)剩余草坪的面积是多少平方米?【分析】(1)根据通道的面积=两个长方形面积﹣中间重叠部分的正方形的面积计算即可.(2)根据剩余草坪的面积=大长方形面积﹣通道的面积计算即可.【解答】解:(1)b(2a+3b)+b(4a+3b)﹣b2=2ab+3b2+4ab+3b2﹣b2=6ab+5b2(平方米).答:通道的面积是(6ab+5b2)平方米.(2)(4a+3b)(2a+3b)﹣(6ab+5b2)=8a2+6ab+12ab+9b2﹣6ab﹣5b2=8a2+12ab+4b2(平方米),答:剩余草坪的面积是(8a2+12ab+4b2)平方米.【点评】本题考查多项式与多项式的乘法法则,解题的关键是学会用分割法求面积,熟练掌握多项式的混合运算法则,属于中考常考题型.34.已知(x+my)(x+ny)=x2+2xy﹣6y2,求﹣(m+n)•mn的值.【分析】先利用多项式乘法得到(x+my)(x+ny)=x2+(m+n)xy+mny2,再与已知条件对比得到m+n=2,mn=﹣6,然后利用整体代入的方法计算﹣(m+n)•mn的值.【解答】解:∵(x+my)(x+ny)=x2+nxy+mxy+mny2=x2+(m+n)xy+mny2,而(x+my)(x+ny)=x2+2xy﹣6y2,∴m+n=2,mn=﹣6,∴﹣(m+n)•mn=﹣2×(﹣6)=12.【点评】本题考查了多项式乘多项式:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.35.欢欢与乐乐两人共同计算(2x+a)(3x+b),欢欢抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;乐乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x ﹣6.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.【分析】(1)根据由于欢欢抄错了第一个多项式中的a符号,得出的结果为6x2﹣13x+6,可知(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,于是2b ﹣3a=﹣13①;再根据乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣x﹣6,可知常数项是﹣6,可知(2x+a)(x+b)=2x2﹣x﹣6,可得到2b+a=﹣1②,解关于①②的方程组即可求出a、b的值;(2)把a、b的值代入原式求出整式乘法的正确结果.【解答】解:(1)根据题意可知,由于欢欢抄错了第一个多项式中的a的符号,得到的结果为6x2﹣13x+6,那么(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,可得2b﹣3a=﹣13 ①乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣x﹣6,可知(2x+a)(x+b)=2x2﹣x﹣6即2x2+(2b+a)x+ab=2x2﹣x﹣6,可得2b+a=﹣1 ②,解关于①②的方程组,可得a=3,b=﹣2;(2)正确的式子:(2x+3)(3x﹣2)=6x2+5x﹣6【点评】本题主要是考查多项式的乘法,正确利用法则是正确解决问题的关键.36.已知(x2+px+8)(x2﹣3x+q)的展开式中不含x2项和x3项,求p+q的值.【分析】首先利用多项式乘多项式法则进而得出原式的展开式的x2项和x3项,进而组成方程组得出答案.【解答】解:∵(x2+px+8)(x2﹣3x+q)=x4﹣3x3+qx2+px3﹣3px2+pqx+8x2﹣24x+8q=x4+(﹣3+p)x3+(q﹣3p+8)x2+(pq﹣24)x+8q,∴原式的展开式的x2项和x3项分别是(q﹣3p+8),(﹣3+p)x3,依据题意得:,解得:,∴p+q=4.【点评】此题主要考查了多项式乘多项式,正确展开多项式是解题关键.37.甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x﹣10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣9x+10.请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果.【分析】先按乙错误的说法得出的系数的数值求出a,b的值,再把a,b的值代入原式求出整式乘法的正确结果.【解答】解:∵甲得到的算式:(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2+11x ﹣10对应的系数相等,2b﹣3a=11,ab=10,乙得到的算式:(2x+a)(x+b)=2x2+(2b+a)x+ab=2x2﹣9x+10对应的系数相等,2b+a=﹣9,ab=10,∴,解得:.∴正确的式子:(2x﹣5)(3x﹣2)=6x2﹣19x+10.【点评】此题考查了多项式乘多项式;解题的关键是根据多项式乘多项式的运算法则分别进行计算,是常考题型,解题时要细心.38.已知,求M?【分析】根据题意列出算式M=(a4b﹣a3)÷(﹣a)3,再利用多项式除以单项式的运算法则计算可得.【解答】解:根据题意可知M=(a4b﹣a3)÷(﹣a)3=(a4b﹣a3)÷(﹣a3)=﹣8ab+2.【点评】本题主要考查单项式乘以多项式,解题的关键是掌握乘除互逆运算的关系及多项式除以单项式的运算法则.39.千年古镇赵化的桂香池院内是一长为(3a+b)米,宽为(2a+b)米(a>b)的长方形地;现在赵化镇的相关部门计划将桂香池的周围进行绿化(如图阴影部分),中间部分就是桂香池(见图最中间的长方形,其“长宽”见图中的标注).(1)绿化的面积是多少平方米?(列式化简)(2)并求出当a=3,b=2时的绿化面积.【分析】(1)根据矩形的面积公式,可得长方形地、桂香池的面积,根据面积的和差,可得答案.(2)将a与b的值代入计算即可求出值.【解答】解:(1)(3a+b)(2a+b)﹣(2a+b)(a+b)=6a2+5ab+b2﹣2a2﹣3ab﹣b2=4a2+2ab.故绿化的面积是(4a2+2ab)平方米;(2)当a=3,b=2时,4a2+2ab=4×32+2×3×2=48.答:绿化面积是48平方米.【点评】本题考查了多项式成多项式,利用了多项式乘多项式法则.40.若一个正方形的一组对边分别减少3cm,另一组对边分别增加3cm,所得的长方形的面积与这个正方形的每条边都减少1cm后所得的正方形的面积相等,则原来正方形的边长为多少cm?【分析】设原来正方形的边长为xcm,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设原来正方形的边长为xcm,根据题意得:(x﹣3)(x+3)=(x﹣1)2,化简得:x2﹣9=x2﹣2x+1,解得:x=5,则原来正方形的边长为5cm.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.。

新北师大版七年级数学下册第一章《整式的乘除》单元练习题含答案解析 (9)

新北师大版七年级数学下册第一章《整式的乘除》单元练习题含答案解析 (9)

一、选择题(共10题)的值为( )1.已知a2+b2=6ab,且ab≠0,则(a+b)2abA.2B.4C.6D.82.如图,有三种规格的卡片共9张,其中边长为a的正方形卡片4张,边长为b的正方形卡片1张,长,宽分别为a,b的长方形卡片4张,现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A.2a+b B.4a+b C.a+2b D.a+3b3.计算(−p)8⋅(−p2)3⋅[(−p)3]2的结果是( )A.−p20B.p20C.−p18D.p184.小方将4张长为a,宽为b(a>b)的长方形纸片先按图(1)所示方式拼成一个边长为(a+b)的正方形,然后按图(2)所示连接了四条线段,并画出部分阴影图形,若大正方形的面积是图中阴影部分图形面积的3倍,则a,b满足( )A.a=3b B.2a=5b C.a=2b D.2a=3b5.已知(m−53)(m−47)=24.则(m−53)2+(m−47)2的值为( )A.84B.60C.42D.126.2002年5月15日,我国发射的海洋1号气象卫星进入预定轨道后,如果绕地球运行速度为7.9×103 m/s ,那么运行 2×102 s 的路程用科学记数法表示为 ( ) A . 15.8×105 m B . 1.58×105 m C . 0.158×107 m D . 1.58×106 m7. 下列运算错误的是 ( ) A . (−2a 2b )3=−8a 6b 3 B . (x 2y 4)3=x 6y 12 C . (−x )2⋅(x 3y )2=x 8y 2D . (−ab )7=−ab 78. 计算 −3x 2⋅(4x −3) 等于 ( ) A . −12x 3+9x 2 B . −12x 3−9x 2 C . −12x 2+9x 2 D . −12x 2−9x 29. 有 4 张长为 a ,宽为 b (a >b ) 的长方形纸片,按如图的方式拼成一个边长为 (a +b ) 的正方形,图中阴影部分的面积为 S 1,空白部分的面积为 S 2.若 S 1=12S 2,则 a ,b 满足 ( )A . 2a =3bB . 2a =5bC . a =2bD . a =3b10. 已知 a =2019x +2020,b =2019x +2021,c =2019x +2022,则多项式 a 2+b 2+c 2−ab −bc −ca 的值为 ( ) A . 0 B . 1 C . 2 D . 3二、填空题(共7题)11. 已知等式 a 2−3a +1=0 可以有不同的变形:即可以变形为:a 2−3a =−1,a 2=3a −1,a 2+1=3a ,也可以变形为:a +1a =3,等等.那么: (1)代数式 a 3−8a 的值为 ; (2)代数式 a 2a 2+1 的值 .12. 我们学习的平方差公式不但可以使运算简便,也可以解决一些复杂的数学问题.尝试计算(1+12)(1+122)(1+124)(1+128)+1215 的值是 .13. 若多项式 x 2−12x +k 2 恰好是另一个整式的平方,则 k 的值是 .14. 已知实数 a ,b ,定义运算:a ∗b ={a b ,a >b,a ≠0a −b ,a ≤b,a ≠0,若 (a −2)∗(a +1)=1,则 a = .15. 已知 a +1a =3,则 a 2+1a 2 的值是 .16. 计算:(3x +4y −5z )(3x −4y +5z )= .17. 已知 a 2−2a −3=0,则代数式 3a (a −2) 的值为 .三、解答题(共8题)18. 先化简、再求值:(2a +b )2−4(a +b )(a −b )−b (3a +5b ),其中 a =−1,b =2. 19.(1) 计算下列各式,并用幂的形式表示结果:(24)3= ,(23)4= ; (x 5)2= ,(x 2)5= ; [(−2)4]3= ,[(−2)3]4= ; [(a +b )3]5= ,[(a +b )5]3= .(2) 观察第(1)题的计算结果,你有什么发现?把你的发现用适当的数学符号表示出来. (3) 根据第(2)题的结论计算 [(√2)3]2的值.20. 本学期我们学习了“有理数乘方”运算,知道乘方的结果叫做“幂”,下面介绍一种有关“幂”的新运算.定义:a m 与 a n (a ≠0,m ,n 都是正整数)叫做同底数幂,同底数幂除法记作 a m ÷a n . 运算法则如下: a m ÷a n ={m >n,a m ÷a n =a m−n m =n,a m ÷a n =1m <n,a m ÷a n=1an−m.根据“同底数幂除法”的运算法则,回答下列问题: (1) 填空:(12)5÷(12)2= ,43÷45= . (2) 如果 3x−1÷33x−4=127,求出 x 的值.(3) 如果 (x −1)2x+2÷(x −1)x+6=1,请直接写出 x 的值.21. 规定:a ★b =10a ×10b ,如:2★3=102×103=105.(1) 求12★3和4★8的值;(2) (a★b)★c是否与a★(b★c)(a,b,c均不相等)相等?并说明理由.22.乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为a、宽为b的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1) 观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(2) 若要拼出一个面积为(a+2b)(a+b)的矩形,则需要A号卡片1张,B号卡片2张,C号卡片张.(3) 根据(1)题中的等量关系,解决问题:已知:a+b=5,a2+b2=13,求ab的值.23.对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个关于整式乘法的数学等式,例如图1可以得到完全平方公式(a+b)2=a2+2ab+b2,请利用这一方法解决下列问题:(1) 观察图2,写出所表示的数学等式:;(2) 观察图3,写出所表示的数学等式:;(3) 已知(2)的等式中的三个字母可以取任何数,若a=7x−5,b=−4x+2,c=−3x+4,且 a 2+b 2+c 2=37,请利用(2)中的结论求 ab +bc +ac 的值.24. 请回答:(1) 已知 a m =3,a n =2,求 a m+2n 的值; (2) 已知 a 2n+1=5,求 a 6n+3 的值.25. 请回答:(1) (−2)2−(12)−1+20170.(2) (−a 3)2+a 2⋅a 4−(2a 4)2÷a 2.答案一、选择题(共10题)1. 【答案】D【解析】(a+b)2=a2+b2+2ab=6ab+2ab=8ab,∵ab≠0,∴(a+b)2ab =8abab=8.故选:D.【知识点】完全平方公式2. 【答案】A【解析】大正方形的面积S=4a2+b2+4ab=(2a+b)2.∴大正方形的边长为2a+b.选A.【知识点】完全平方公式3. 【答案】A【知识点】积的乘方、同底数幂的乘法4. 【答案】B【知识点】完全平方公式5. 【答案】A【解析】设a=m−53,b=m−47,则ab=24,a−b=−6,∴a2+b2=(a−b)2+2ab=(−6)2+48=84,∴(m−53)2+(m−47)2=84.【知识点】完全平方公式6. 【答案】D【知识点】单项式乘单项式7. 【答案】D【解析】A.(−2a2b)3=−8a6b3;故A正确;B.(x2y4)3=x6y12;故B正确;C.(−x)2⋅(x3y)2=x8y2;故C正确;D.(−ab)7=−a7b7,故D错误.故选D.【知识点】单项式乘单项式、积的乘方8. 【答案】A【解析】提示:−3x2⋅(4x−3)=−12x3+9x2.【知识点】单项式乘多项式9. 【答案】C【解析】由题意可得:S2=12b(a+b)×2+12ab×2+(a−b)2=ab+b2+ab+a2−2ab+b2=a2+2b2,S1=(a+b)2−S2=(a+b)2−(a2+2b2)=2ab−b2,∵S1=12S2,∴2ab−b2=12(a2+2b2),∴4ab−2b2=a2+2b2,∴a2+4b2−4ab=0,∴(a−2b)2=0,∴a−2b=0,∴a=2b.【知识点】完全平方公式10. 【答案】D【解析】∵a=2019x+2020,b=2019x+2021,c=2019x+2022,∴a−b=−1,b−c=−1,a−c=−2,∴ a2+b2+c2−ab−bc−ca=2a2+2b2+2c2−2ab−2bc−2ca2=(a−b)2+(b−c)2+(a−c)22=(−1)2+(−1)2+(−2)22=1+1+42= 3.【知识点】完全平方公式二、填空题(共7题)11. 【答案】−3;17【解析】(1)a3−8a=a(a2−8)=a(3a−1−8)(将a2=3a−1代入)=a(3a−9)=3a2−9a=3(a2−3a)(将a2−3a=−1代入)=3×(−1)=−3.故答案为:−3;(2)由题意得:a≠0,∵a2−3a+1=0,∴a+1a=3,∴(a+1a )2=9,∴a2+1a2+2=9,即a2+1a2=7,∴a2a4+1=1a2+1a2=17.故答案为:17.【知识点】完全平方公式12. 【答案】2【解析】原式=2⋅(1−12)(1+12)(1+122)(1+124)(1+128)+1215 =2(1−122)(1+122)(1+124)(1+128)+1215=⋯=2(1−1216)+1215=2−1215+1215=2.【知识点】平方差公式13. 【答案】±6【解析】由两数和(差)的平方公式的结构特点,应根据2ab来求公式中的b.∵±2xk=−12x,∴k=±6.【知识点】完全平方公式14. 【答案】3或1或−1【解析】∵a+1>a−2,∴(a−2)∗(a+1)=(a−2)−(a+1)=1,即(a−2)a+1=1,则a−2=1或a−2=−1或a+1=0,解得,a =3 或 a =1 或 a =−1. 【知识点】零指数幂运算15. 【答案】 7【解析】 ∵a +1a =3, ∴a 2+2+1a 2=9,∴a 2+1a 2=9−2=7.【知识点】完全平方公式16. 【答案】 9x 2−16y 2+40yz −25z 2【知识点】平方差公式17. 【答案】 9【解析】解方程 a 2−2a −3=0 得:(a +1)(a −3)=0. ∴a =−1 或 a =3,当 a =−1 时,3a (a −2)=3×(−1)×(−1−2)=9, 当 a =3 时,3a (a −2)=3×3×(3−2)=9. 【知识点】单项式乘多项式三、解答题(共8题)18. 【答案】 (2a +b )2−4(a +b )(a −b )−b (3a +5b )=4a 2+4ab +b 2−4a 2+4b 2−3ab −5b 2=ab.当 a =−1,b =2 时,原式=−2.【知识点】完全平方公式19. 【答案】(1) 212,212,x 10,x 10,212,212,(a +b )15,(a +b )15.(2) (a m )n =(a n )m . (3) 8.【知识点】幂的乘方20. 【答案】(1) 18;116(2) 3x−1÷33x−4=127, 3x−1−(3x−4)=3−3,x −1−(3x −4)=−3, x =3.(3) x =4,x =0,x =2. 【解析】(1) (12)5÷(12)=(12)5−2=(12)3=18.43÷45=145−3=142=116.(3) ∵(x −1)2x+2÷(x −1)x+6=1, ∴(x −1)2x+2−(x+6)=1.即 (x −1)x−4=1.①当 x −4=0 时,满足题意, ∴x =4.②当 x −1=1 时,满足题意, ∴x =2.【知识点】同底数幂的除法21. 【答案】(1) 12★3=1012×103=1015,4★8=104×108=1012. (2) 不相等.理由如下:(a ★b )★c =(10a ×10b )★c =10a+b ★c =1010a+b×10c =1010a+b +c , a ★(b ★c )=a ★(10b ×10c )=a ★10b+c =10a ×1010b+c=10a+10b+c,因为 a ,b ,c 均不相等, 所以 1010a+b+c ≠10a+10b+c, 所以 (a ★b )★c ≠a ★(b ★c ). 【知识点】同底数幂的乘法22. 【答案】(1) (a +b )2=a 2+b 2+2ab(2) 3(3) ∵(a +b )2=a 2+b 2+2ab ,a +b =5,a 2+b 2=13, ∴25=13+2ab , ∴ab =6. 答:ab 的值为 6. 【解析】(1) 大正方形的面积可以表示为:(a +b )2,或表示为:a 2+b 2+2ab ;因此有(a+b)2=a2+b2+2ab.(2) ∵(a+2b)(a+b)=a2+3ab+2b2,∴需要A号卡片1张,B号卡片2张,C号卡片3张.【知识点】完全平方公式、多项式乘多项式、公式的变形23. 【答案】(1) (a+2b)(a+b)=a2+2b2+3ab(2) (a+b+c)2=a2+b2+c2+2ab+2ac+2bc(3) 由(2)得(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,(a+b+c)2=(7x−5−4x+2−3x+4)2=1,1=a2+b2+c2+2ab+2ac+2bc,1=37+2(ab+bc+ac),2(ab+bc+ac)=−36,ab+bc+ac=−18.【知识点】其他公式、多项式乘多项式24. 【答案】(1) ∵a m=3,a n=2,∴a m+2n=a m⋅a2n=a m⋅(a n)2=3×22=12.(2) ∵a2n+1=5,∴a6n+3=a3(2n+1)=(a2n+1)3=53=125.【知识点】幂的乘方25. 【答案】(1) 原式=4−2+1=3.(2) 原式=a 6+a6−4a6=−2a6.【知识点】负指数幂运算、单项式除以单项式11。

整式的乘法练习题含解析答案

整式的乘法练习题含解析答案

北师大版数学七年级下册第一章1.4整式的乘法课时练习一、选择题2b)·(-3a)等于(1.(-5a )3232b -8a DC.-15a.b 15a b B.-15a b A.答案:A23b,故A项正确15a. b)·(-3a)解析:解答:(-5a=分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题.32)等于()-5b.(2a)·(233232ba D.-40a40b B.-40a b C.A.10a-b答案:B3232,故B项正确.b )=-40a解析:解答:(2a)b·(-533,再由单项式乘单项式法则可完成此题a). =8分析:先由积的乘方法则得(2a322c)等于(ab)b)·(-3.(2a564747474c bD.C .-20a20bacA.-20a b c B.10a b c答案:C32274c,故C项正确20a.)b·(-5ab c)=-解析:解答:(2ab3262,再由单项式乘单项式法则与同底数幂的乘法=-4aab)b分析:先由积的乘方法则得(2可完成此题.3227 等于())·2xxy)·(5xy4.(6y4y474144 y20 D20x.yx B.10x y C.-20A.-x答案:D3227 144,故D项正确y.)·x =-解析:解答:(2x20y)·(5xyx3262,再由单项式乘单项式法则与同底数幂的乘法y=-4分析:先由积的乘方法则得(2xxy)法则可完成此题.32-5ac)等于(a)·(b 5.26252324744c 0ac .Da.10a2b c C.a-1bb-10acaA.-20Bbc答案:C32324c,故C项正确.2ab -10解答:解析:2aa·(b-5ac)=分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.32 等于()(xy)+zx6. y·4333144 433yz y.+x yz Czxy+x xD.xyB xA.y+xyz .答案:D32 433yz ,故D项正确xz(x解析:解答:y·xy+)=y+x.分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题.1 / 4723 等于()x)y+7.(-xz)·(1714331714 173yz xy+x z yx+z B.-xyx+xDyz C.-xA.x.y+答案:A723 1714z ,故xA项正确y+z.)=x 解析:解答:(-xy)+·(x7214,再由单项式乘多项式法则与同底数幂的乘法法则可-x=)x分析:先由幂的乘方法则得(完成此题.34 2-ac)等于(.(b8.[(-6))]1222521221244c -bac ac -b c C.6DbA.-6.b--bc B.10a6答案:C34 212212ac ,故C项正确6ac)=.b解析:解答:[(-6)]-.(b6-3412,再由单项式乘多项式法则与同底数幂的乘法法)=]6分析:先由幂的乘方法则得[(-6则可完成此题.33y+z)等于()(2x).(x9.6146363 63yz x D..8x8y+8xxz 8A.x y+xyz B.-8xy+x+yz C 答案:C3363z,故C项正确.x y+x)8.(xxy+z)=8解析:解答:(233,再由单项式乘多项式法则与同底数幂的乘法法则可=8先由积的乘方法则得(2x)x分析:完成此题.222+z]等于((-y ))10.(2x).[4242242 242z +4xD.4xxz C.2x yy+2xz xA.4xyxz+B.-4 y +4答案:D222242z ,故D项正确.]=4x y4解析:解答:(2x).[(-y+)x+z22224再由单项式乘多项y=x))=4xy,由幂的乘方法则得(-分析:先由积的乘方法则得(2式法则与同底数幂的乘法法则可完成此题.254+z)等于().x .(yx11.747242242 242z +4xD.4x4xy2+4xz C.x yy+2xz .Ax y+xz B.-答案:A254747z ,故A项正确=z)x.y 解析:解答:x+.x.(yx+257,再由单项式乘多项式法则可完成此题xx. x分析:先由同底数幂的乘法法则得=.22x+z)等于(x)·(y 12.242322 242zy+.Cxxy+xz .Dx xB +.Axyxz .-y+xz答案:C22322x z ,故C项正确x)(解答:解析:x.y+z=y+x.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.2 / 432)·(-5acb)等于()13.(a +625232442c 5aabc - c D-b.c C.5a-b5-10A.-5aabc-B.5a 答案:D3242c,故D项正确-5ab.(-5ac)=-5a 解析:解答:(ac+b )·分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.252+z)等于(·(y14.(x)+y )2227522252225 2275z y D.xy++xyz +y zxz +y +y z B.2xyy+x+z +y z C.Ax.yx+答案:A25222275z ,故A项正确+y(y.+z)=x+yy+x 解析:解答:(xz+y.)分析:由多项式乘多项式法则与同底数幂的乘法法则可完成此题.252等于()·(aa+b )15.225452452 42+ba D C.a.+2b2A.aac+bac B.2a+2b a答案:B252452,故B项正确.+2ab+b )·aa=2a解析:解答:2(分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.二、填空题22+z)等于16.5x ·(xy;322z xy +5答案:5x22222322zxx+yxy+5x5·x解析:解答:5z·(xy=+z)=5x5·分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题22+4c)等于·(ab ;17.2a322c +8答案:2aab22222322c +c=2a)=2a8·abb+2aa·2解析:解答:a4·(abc+4分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题22+7c)等于.182a ·(3ab;322c 14aab +答案:622222322cab +a=·7c6a解答:2a·(3abc+7=2a14·3ab+2解析:分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题2)·(3a+c)等于(-19.2a ;32c 2a答案:-6a -22232c -6·)c=-6a2a(+·(3ac)=-2a)·3+(-aaa-解析:解答:2分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题2)·(3x+1)等于x(-20.4 ;32 412答案:-x-x3 / 422232 4xxx-)·1=-+1)=(-4x12)·3x+(-4解析:解答:(-4x3)·(x分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题三、计算题24z)(210xxyy)·21.(-35 z20 x y答案:-242+14+135 z 20 x·y y··(2xyzz)= -20 x=-解析:解答:解:(-10x)y分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题224)·(- x y3 x)y22.(-2 x y )·(-47y-答案:6 x2241+2+12+4+147y=-6 x)·(- x y)= -6 x解析:解答:解:(-2 x y()·-3 xyy·分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题22-1) (a 23a- 2)+a·23.2a(a+1)- a(42+4a3a答案:2a -22224242+4aa2a a+2a- -2a3)(3a-2+2a= (a-1) =2a+2a - 3a+2)(解答:解:解析:2a·a+1- a分析:先由单项式乘多项式法则与同底数幂的乘法法则计算,再合并同类项可完成此题.22- ab b+ ab)ab24.3·(a322322- b3a abb+3 a 3 答案:2222322322--- b ab ab·ab =3a 3b a+a(解答:解:解析:3ab·a+b ab= ab )3ab·3b+ab·ab3 3分析:由单项式乘多项式法则与同底数幂的乘法法则计算可完成题.25.(x-8y)·(x-y)22y89xy +答案:x-1+11+122y+8xy x8xy- x)yx·y-(解析:解答:解:x8)(- =-xy8+y=-9分析:先由多项式乘多项式法则与同底数幂的乘法法则计算,再合并同类项可完成此题.4 / 4。

北师大版 七年级数学 整式的乘法

北师大版 七年级数学 整式的乘法

整式的乘法课前测试【题目】课前测试已知代数式(mx2+2mx﹣1)(x m+3nx+2)化简以后是一个四次多项式,并且不含二次项,请分别求出m,n的值,并求出一次项系数【答案】8.75【解析】解:(mx2+2mx﹣1)(x m+3nx+2)=mx m+2+3mnx3+2mx2+2mx m+1+6mnx2+4mx﹣x m﹣3nx﹣2,因为该多项式是四次多项式,所以m+2=4,解得:m=2,原式=2x4+(6n+4)x3+(3+12n)x2+(8﹣3n)x﹣2∵多项式不含二次项∴3+12n=0,解得:n=,所以一次项系数8﹣3n=8.75.总结:本题考查了多项式乘以多项式,解决本题的关键是明确化简后是一个四次多项式,所以x的最高指数m+2=4;不含二次项,即二次项的系数为0,即可解答.【难度】 3【题目】课前测试在(x2+ax+b)(2x2﹣3x﹣1)的积中,x3项的系数为﹣5,x2项的系数为﹣6,求a,b的值。

【答案】a=﹣1,b=﹣4【解析】解:(x2+ax+b)(2x2﹣3x﹣1)=2x4﹣3x3﹣x2+2ax3﹣3ax2﹣ax+2bx2﹣3bx﹣b=2x4+(2a﹣3)x3+(2b﹣3a﹣1)x2﹣(a+3b)x﹣b,根据题意得:2a﹣3=﹣5,2b﹣3a﹣1=﹣6,解得:a=﹣1,b=﹣4.总结:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.【难度】 3知识定位适用范围:北师大版,七年级知识点概述:本节是整式的乘除中的重要章节,是后来学习的平方差公式和完全平方公式的基础,通过本节内容的学习可以将一些复杂的整式进行化简,然后再求值,所以本节的学习有着举足轻重的作用。

适用对象:成绩中等偏上的学生注意事项:在学习本节内容前,应适当复习幂、指数、底数等概念。

重点选讲:①先化简,再求值②令系数为0③实际应用知识梳理知识梳理1:单项式乘单项式单项式与单项式相乘:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

北师大版七年级数学下册(乘法公式)专项训练

北师大版七年级数学下册(乘法公式)专项训练

乘法公式专题训练(第五周)一、选择题1.平方差公式(a+b )(a -b )=a 2-b 2中字母a ,b 表示( )A .只能是数B .只能是单项式C .只能是多项式D .以上都可以 2. (abc+1)(-abc+1)(a 2b 2c 2+1)的结果是( )。

A. a 4b 4c 4-1B. 1-a 4b 4c 4C. -1-a 4b 4c 4D. 1+a 4b 4c 4 3.下列计算中,错误的有( )①(3a+4)(3a -4)=9a 2-4; ②(2a 2-b )(2a 2+b )=4a 2-b 2; ③(3-x )(x+3)=x 2-9;④(-x+y )(x+y )=-(x -y )(x+y )=-x 2-y 2.A .1个B .2个C .3个D .4个 4.若x 2-y 2=30,且x -y=-5,则x+y 的值是( )A .5B .6C .-6D .-5 二、填空题5.(-2x+y )(-2x -y )=____ __. 6.(-3x 2+2y 2)(___ ___)=9x 4-4y 4. 7.(a+b -1)(a -b+1)=(____ _)2-(__ ___)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是___ __. 9.利用平方差公式计算:2023×2113= 10.多项式912x +加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是__________ __( 考虑所有的可能情况)。

三、计算题11.计算:(1)(a+2b -c )(a -2b+c ) (2)(a+2)(a 2+4)(a 4+16)(a -2).(3)(3+1)(32+1)(34+1)…(332+1). (4) 2009×2007-20082.(5) 22007200720082006-⨯. (6)22007200820061⨯+.(7)(a +4b -3c )(a -4b -3c ) (8)(3x +y -2)(3x -y +2)(9)()()x y z x y z +-++26 (10)()()32513251x y z x y z +-+-+--(11)()()()()111124-+++a a a a (12)()()57857822a b c a b c +---+(13)(a -2b +3c )2-(a +2b -3c )2 (14)(2a +3b )2-2(2a +3b )(5b -4a )+(4a -5b )2(15)19982-1998×3994+19972; (16) 11211311411102222-⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪…12.(1)已知a b ab -==45,,求a b 22+的值(2)已知x -y=2,y -z=2,x+z=14。

北师大版七下数学第一章各节练习题含答案

北师大版七下数学第一章各节练习题含答案

北师大版七年级下册数学1.1同底数幂的乘法同步测试一、单选题1.若a m=5,a n=3,则a m+n的值为()A. 15B. 25C. 35D. 452.计算(﹣4)2×0.252的结果是()A. 1B. ﹣1C. ﹣D.3.计算a2•a5的结果是()A. a10B. a7C. a3D. a84.计算a•a•a x=a12,则x等于()A. 10B. 4C. 8D. 95.下列计算错误的是()A. (﹣2x)3=﹣2x3B. ﹣a2•a=﹣a3C. (﹣x)9+(﹣x)9=﹣2x9D. (﹣2a3)2=4a66.下列计算中,不正确的是()A. a2•a5=a10B. a2﹣2ab+b2=(a﹣b)2C. ﹣(a﹣b)=﹣a+bD. ﹣3a+2a=﹣a7.计算x2•x3的结果是()A. x6B. x2C. x3D. x58.计算的结果是()A. B. C. D.9.计算3n· ( )=—9n+1,则括号内应填入的式子为( )A. 3n+1B. 3n+2C. -3n+2D. -3n+110.计算(-2)2004+(-2)2003的结果是()A. -1B. -2C. 22003D. -22004二、填空题(共5题;共5分)11.若a m=2,a m+n=18,则a n=________.12.计算:(﹣2)2n+1+2•(﹣2)2n=________。

13.若x a=8,x b=10,则x a+b=________.14.若x m=2,x n=5,则x m+n=________.15.若a m=5,a n=6,则a m+n=________。

三、计算题(共4题;共35分)16.计算:(1)23×24×2.(2)﹣a3•(﹣a)2•(﹣a)3.(3)m n+1•m n•m2•m.17.若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.18.已知a3•a m•a2m+1=a25,求m的值.19.计算。

北师大版七年级数学下册题第一章_整式的乘除 (1.1——1.7) 随堂练习(附答案)

北师大版七年级数学下册题第一章_整式的乘除 (1.1——1.7) 随堂练习(附答案)

1.1同底数幂的乘法一、单选题1.计算3()()x y x y -⋅-=( ).A.4()x y -B.3()x y -C.4()x y --D.4()x y +2.下列计算过程正确的是( )A.2358x x x x ⋅⋅=B.347x y xy ⋅=C.57(9)(3)3-⋅-=-D.56()()x x x --= 3.下列各式的计算结果为7a 的是( )A.25()()a a -⋅-B.25()()a a -⋅- C.25()()a a -⋅- D.6()()a a -⋅- 4.当0,a n <为正整数时,52()()n a a -⋅-的值 ( )A.正数B.负数c.非正数 D.非负数 5.10,10x ya b ==,则210x y ++等于( )A.2abB.a b +C.2a b ++D.100ab6.已知2,3,m n x x ==则m n x +的值是( )A.5B. 6C. 8D. 97.计算·53a a 正确的是( ) A. 2aB. 8aC. 10aD.15a8.在等式3211()a a a ⋅⋅=中,括号里面的代数式是( ).A.7aB.8aC.6aD.3a9.已知m n 34a a ==,,则m+n a 的值为( ).A.12B.7 二、解答题10.求下列各式中x 的值.(1)21381243;x +=⨯(2)3141664 4.x -⨯=⨯三、填空题11.已知34x =,则23x += .12.计算34x x x ⋅+的结果等于________.13.已知1428m +=,则4m = .14.若2m 5x x x ⋅=,则m =_____.参考答案1.答案:A解析:2.答案:D解析:选项A 中,2351359x x x x x ++⋅⋅==,故本选项错误;选项B 中,3x 与4y 不是同底数幕,不能运算,故本选项错误;选项C 中,5257(9)(3)3(3)3-⋅-=-⋅-=,故本选项错误;选项D 中,5516()()()x x x x +--=-=,故本选项正确.故选D3.答案:C解析:选项A 中,275()()a a a -⋅-=-,故此选项错误;选项B 中,257()()a a a -⋅-=-,故此选项错误;选项C 中,275()()a a a -⋅-=,故此选项正确;选项D 中,67()()a a a ⋅-=--.故此选项错误.4.答案:A解析:5225()()(),n n a a a +-⋅-=-∴当0,a n <为正整数,即0a ->时,25()0,n a +->是正数5.答案:D解析:2210101010100x y x y ab ++=⨯⨯=.6.答案:B解析:2,3,23 6.m n m n m n x x x x x +==∴=⋅=⨯=7.答案:B解析:8.答案:C解析:9.答案:A解析:10.答案:解(1)21381243x +=⨯2145333x +=⨯则219x +=解得4x =(2)31416644x -⨯=⨯3124444x -⨯=314x +=则1x =解得解析:11.答案:36解析:223334936x x +=⋅=⨯=.12.答案:42x解析:13.答案:7解析:因为11444m m +=⨯,所以4428m ⨯=,所以47.m =14. 答案:3 1.2幂的乘方与积的乘法一、单选题1.下列运算正确的是( )A.326x x x ⋅=11=C.224+=x x xD.()22436x x = 2.计算(-2x 2)3的结果是( )A.-8x 6B.-6x 6C.-8x 5D.-6x 53.下列各式计算正确的是( )A. 235ab ab ab +=B. ()22345a ba b -=C. =D. ()2211a a +=+4.计算(-xy 2)3的结果是( )A.-x 3y 6B.x 3y 6C.x 4y 5D.-x 4y 55.下列运算正确的是( )A.x 2·x 3=x 6B.x 3+x 2=x 5C.(3x 3)2=9x 5D.(2x)2=4x 26.计算正确的是( )A.a 3-a 2=aB.(ab 3)2=a 2b 5C.(-2)0=0D.3a 2·a -1=3a 7.下列计算正确的是( )A.a 3·a 2=a 6B.3a+2a 2=5a 2C.(3a)3=9a 3D.(-a 3)2=a 6 8.计算(-x 2)3的结果是( )A.-x 5B.x 5C.x 6D.-x 6 9.计算(-a 2)5的结果是( )A.a 7B.-a 7C.a 10D.-a 10 二、解答题10.已知 333,2,m n a b ==求()()332242m n m n m n a b a b a b ⋅+-的值 。

北师大版七上数学有理数的乘法练习题

北师大版七上数学有理数的乘法练习题

北师大版七上数学有理数的乘法练习题(带答案)1.有理数的乘法法则(1)乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,积仍为0.①两个有理数相乘,积的符号是由两个因数的符号确定:同号(+,+或-,-)得正,异号(+,-或-,+)得负;②0与任何数相乘,积都是0;③1乘任何数得原数,-1乘任何数得原数的相反数.(2)两个有理数相乘的步骤①先确定积的符号;②再求出积的绝对值.(3)多个有理数的乘法①几个不等于0的有理数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个有理数相乘,有一个因数为0,结果就是0;反之,若几个数的积为0,则至少有一个因数为0.释疑点有理数相乘的方法①几个有理数相乘,先确定积的符号,再把绝对值相乘;②当几个因数中有一个为0时,不用再判断符号,直接得0.【例1】计算:(1)(+4)×(-5);(2)(-0.75)×(-1.2);(3)-29×0.3;(4)0×-17;(5)-112×113×-114×-115×116.分析:按照乘法法则运算,先确定符号,再将绝对值相乘.解:(1)(+4)×(-5)=-(4×5)=-20;(2)(-0.75)×(-1.2)=+(0.75×1.2)=0.9;(3)-29×0.3=-29×310=-115;(4)0×-17=0;(5)-112×113×-114×-115×116=-32×43×54×65×76=-72.2.倒数如果两个有理数的乘积为1,那么称其中的一个数是另一个数的倒数,也称这两个数互为倒数.若a≠0,则a的倒数是1a.谈重点对倒数的理解①0没有倒数;②互为倒数的两个数的符号相同,即正数的倒数是正数,负数的倒数是负数;③若两个数互为倒数,则它们的乘积为1;④倒数等于它本身的数是1和-1.【例2】填空:(1)-76的倒数是__________;0.2的倒数是__________;(2)倒数是4的数是__________.解析:乘积是1的两个数互为倒数.答案:(1)-67 5 (2)143.有理数的乘法运算律(1)乘法交换律:两个数相乘,交换因数的位置,积不变.用字母表示为:a×b=b×a.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.用字母表示为:(a×b)×c=a×(b×c).(3)乘法对加法的分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.用字母表示为:a×(b+c)=a×b+a×c.谈重点乘法运算律的运用方法①交换因数的位置时,要连同符号一起交换;②公式中的字母a,b,c可以是正数,也可以是负数和0;③乘法的交换律和结合律对多个因数的乘法也适用;④为了能简便运算,也可以逆用乘法对加法的分配律,即a×b+a×c=a×(b+c).【例3】计算:(1)(-8)×9×(-1.25)×-19;(2)114-56+12×(-12);(3)-5.372×(-3)+5.372×(-17)+5.372×4;(4)-243435×2.5×(-8);(5)1112-79-518×36-6×1.43+3.93×6.分析:运用乘法的运算律进行简化计算.(1)用乘法交换律和结合律;(2)用乘法对加法的分配律;(3)因各乘积中都有因数5.372,故可逆用乘法对加法的分配律进行简便计算;(4)将带分数拆成整数与分数的和或差,再运用乘法结合律和乘法对加法的分配律;(5)算式的前半部分可直接正向运用乘法对加法的分配律,后半部分可逆用乘法对加法的分配律,从而可省去通分和繁杂的计算.解:(1)(-8)×9×(-1.25)×-19=[(-8)×(-1.25)]×9×-19=10×(-1)=-10;(2)114-56+12×(-12)=114×(-12)+-56×(-12)+12×(-12)=-15+10+(-6)=-11;(3)-5.372×(-3)+5.372×(-17)+5.372×4=5.372×3+5.372×(-17)+5.372×4=5.372×[3+(-17)+4]=5.372×(-10)=-53.72;(4)-243435×2.5×(-8)=243435×2.5×8=25-135×20=25×20-135×20=500-47=49937.(5)1112-79-518×36-6×1.43+3.93×6=1112×36-79×36-518×36+6×(-1.43+3.93)=33-28-10+6×2.5=-5+15=10.4.与绝对值、相反数、倒数有关的混合运算根据已知的与绝对值、相反数、倒数有关的条件,进行有关的综合计算,其步骤是:(1)利用条件,先求出有关字母的数值或有关式子的数值;(2)将所求的式子变形,使其符合上述条件;(3)将条件代入变形后的式子,按照规定的运算进行计算.【例4】已知a与b互为倒数,c与d互为相反数,m的绝对值是4,求m×(c+d)+a×b -3×m的值.分析:互为倒数的两个数的积是1,互为相反数的两个数的和是0,绝对值是4的数是±4,所以本题要分情况计算.解:因为a与b互为倒数,c与d互为相反数,m的绝对值是4,所以a×b=1,c+d=0,m=±4.当m=4时,m×(c+d)+a×b-3×m=4×0+1-3×4=-11;当m=-4 时,m×(c+d)+a×b-3×m=(-4)×0+1-3×(-4)=13.5.运用有理数乘法运算律进行简便运算有理数的乘法中的简便运算主要是运用乘法的交换律、乘法的结合律和乘法对加法的分配律进行运算.(1)乘法交换律和结合律的运用运用乘法交换律、结合律的情况:①一般将互为倒数的先结合;②将容易约分的先结合.(2)乘法对加法的分配律的运用运用乘法对加法的分配律时注意以下几点:①要把括号外面的因数连同符号与括号内的每一项相乘,它是以后要学的去括号的理论依据.②乘法对加法的分配律可以逆用,即a×b+a×c=a×(b+c).③乘法对加法的分配律可以推广为:a×(b+c+d+e)=a×b+a×c+a×d+a×e,各字母为任意有理数.运用乘法对加法的分配律时,可以先确定符号,再进行计算,或者先利用分配律,再确定符号.有时可逆用乘法分配律:a×b+a×c=a×(b+c),使计算简便._________________________________________________________________________________________________ ___________________________________________________________________________________________________________________________【例5-1】学习了有理数的乘法运算律之后,老师出示了下面的一道题目:计算:-36×12-59+56-712.刘洋:原式=-36×12-59+56-712=-36×12-36×59+36×56-36×712=-(18-20+30-21)=-7.吕征:原式=-36×12-36×59-36×56-36×712=-18-20-30-21=89.你认为刘洋和吕征同学的解法都正确吗?若有错误,请你按其思路改正过来.分析:本题是一个整数与多个分数的和相乘,可利用乘法对加法的分配律简化运算.运用乘法对加法的分配律时,要注意符号.解:刘洋的解答是正确的,而吕征的解答是错误的.改正:原式=-36×12-(-36) ×59+(-36)×56-(-36)×712=-18-(-20)+(-30)-(-21)=-7.【例5-2】用简便方法计算:-3.14×35.2+6.28×(-23.3)-1.57×36.4.分析:通过观察,可以发现3.14,6.28,1.57之间成倍数关系,故可以将式子进行变形,使式子里每一项中都含有1 .57,再逆用乘法对加法的分配律,可避免复杂的计算.解:-3.14×35.2+6.28×(-23.3)-1.57×36.4=-1.57×2×35.2+1.57×4×(-23.3)-1.57×36.4=1.57×[-2×35.2+4×(-23.3)-36.4]=1.57×(-70.4-93.2-36.4)=1.57×(-200)=-314.6.有理数的乘法运算的实际应用有理数的乘法运算的应用,主要是利用有理数的乘法解决生活中的实际问题.其步骤是:①分析题意;②列出算式;③运用有理数的乘法法则或运算律进行计算;④写出答案.【例6】一天,小刚和小明利用温差测量山峰的高度,小明在山顶测得的温度是-2 ℃,小刚在山脚测得的温度是4 ℃.已知该地区的高度每增加100 m,气温大约下降0.6 ℃,求这个山峰的高度大约是多少.解:4-(-2)0.6×100=10×100=1 000(m).答:这个山峰的高度大约为1 000 m.。

专题1.3 乘法公式【十大题型】(举一反三)(北师大版)(解析版)

专题1.3 乘法公式【十大题型】(举一反三)(北师大版)(解析版)

专题1.3 乘法公式【十大题型】【北师大版】【题型1 判断运用乘法公式计算的正误】 (1)【题型2 利用完全平方式确定系数】 (3)【题型3 乘法公式的计算】 (5)【题型4 利用乘法公式求值】 (8)【题型5 利用面积法验证乘法公式】 (10)【题型6 乘法公式的应用】 (13)【题型7 平方差公式的几何背景】 (17)【题型8 完全平方公式的几何背景】 (22)【题型9 乘法公式中的新定义问题】 (28)【题型10 乘法公式的规律探究】 (31)【知识点乘法公式】平方差公式:(a+b)(a-b)=a2-b2。

两个数的和与这两个数的差的积,等于这两个数的平方差。

这个公式叫做平方差公式。

完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。

两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍。

这两个公式叫做完全平方公式。

【题型1判断运用乘法公式计算的正误】【例1】(2023春·贵州毕节·七年级统考期末)计算(x−y+3)(x+y−3)时,下列变形正确的是()A.[(x−y)+3][(x+y)−3]B.[(x+3)−y][(x−3)+y]C.[x−(y+3)][x+(y−3)]D.[x−(y−3)][x+(y−3)]【答案】D【分析】将(y−3)看做一个整体,则x是相同项,互为相反项的是(y−3),对照平方差公式变形即可求解.【详解】解:(x−y+3)(x+y−3)=[x−(y−3)][x+(y−3)],故选:D.【点睛】本题考查了平方差公式,解题的关键是找出相同项和相反项.【变式1-1】(2023春·浙江杭州·七年级校考期中)下列运算正确的是()A .(x +y )(−y +x )=x 2−y 2B .(−x +y )2=−x 2+2xy +y 2C .(−x−y )2=−x 2−2xy−y 2D .(x +y )(y−x )=x 2−y 2【答案】A【分析】根据平方差公式和完全平方公式,逐个进行判断即可.【详解】解:A 、(x +y )(−y +x )=x 2−y 2,故A 正确,符合题意;B 、(−x +y )2=x 2−2xy +y 2,故B 不正确,不符合题意;C 、(−x−y )2=x 2+2xy +y 2,故C 不正确,不符合题意;D 、(x +y )(y−x )=y 2−x 2,故D 不正确,不符合题意;故选:A .【点睛】本题主要考查根据平方差公式和完全平方公式,解题的关键是掌握平方差公式(a +b )(a−b )=a 2−b 2和完全平方公式(a ±b )2=a 2±2ab +b 2.【变式1-2】(2023春·天津滨海新·七年级统考期末)在下列多项式的乘法中,不可以用平方差公式计算的是( )A .(x +y)(x−y)B .(−x +y)(x +y)C .(−x−y)(−x +y)D .(x−y)(−x +y)【答案】D【分析】根据平方差公式是两个数的和与这两个数的差相乘等于这两个数的平方差,由此进行判断即可.【详解】A 、B 、C 选项都是两个数的和与这两个数的差相乘,可以使用平方差公式,D 选项变形后为−(x−y)2,不能使用平方差公式;故选:D .【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.【变式1-3】(2023春·广东茂名·七年级统考期中)下列多项式不是完全平方式的是( ).A .x 2−4x−4B .14+m 2+mC .a 2+2ab +b 2D .t 2+4t +4【答案】A【分析】根据a 2±2ab +b 2的形式判断即可;【详解】x 2−4x−4不是完全平方公式,故A 符合题意;14+m 2+m =+m 2,故B 不符合题意;a 2+2ab +b 2=(a +b )2,故C 不符合题意;t2+4t+4=(t+2)2,故D不符合题意;故选:A.【点睛】本题主要考查了完全平方公式的判断,准确分析是解题的关键.【题型2利用完全平方式确定系数】【例2】(2023春·江苏扬州·七年级统考期末)若将多项式4a2−2a+1加上一个单项式成为一个完全平方式,则这个单项式可以是.(只要写出符合条件的一个)【答案】−2a,6a,−34,−3a2.【分析】根据完全平方公式的特点分情况讨论:若把4a2和1看成两个平方项,则该完全平方式可以;是(2a−1)2或(2a+1)2;②若把4a2看成一个平方项,把−2a看成二倍两项积,则该完全平方式可以是(2a−12)2;③若把1看成一个平方项,把−2a看成二倍两项积,则该完全平方式可以是(a−1)2.分别算出所需添加的单项式即可.【详解】①若把4a2和1看成两个平方项,则该完全平方式可以是(2a−1)2或(2a+1)2,∵(2a−1)2=4a2−4a+1=4a2−2a+1+(−2a),∴这个单项式可以是−2a;∵(2a+1)2=4a2+4a+1=4a2−2a+1+6a,∴这个单项式可以是6a;②若把4a2成一个平方项,把−2a看成二倍两项积,则该完全平方式可以是(2a−12)2,∵(2a−12)2=4a2−2a+14=4a2−2a+1+(−34),∴这个单项式可以是−34;③若把1成一个平方项,把−2a看成二倍两项积,则该完全平方式可以是(a−1)2,∵(a−1)2=a2−2a+1=4a2−2a+1+(−3a2),∴这个单项式可以是−3a2.综上,添加的这个单项式可以是−2a,6a,−34,−3a2.故答案为:−2a,6a,−34,−3a2.【点睛】本题主要考查了完全平方公式,熟练掌握完全平方公式的特点,进行分类讨论是解题的关键.【变式2-1】(2023春·四川达州·七年级校考期中)若x2+2(m−3)x+1是完全平方式,x+n与x+2的乘积中不含x的一次项,则n m的值为.【答案】4或16【分析】利用完全平方公式,以及多项式乘以多项式法则确定出m 与n 的值,代入原式计算即可求出值.【详解】解:∵x 2+2(m−3)x +1是完全平方式,∴m−3=±1,∴m =4或m =2,∵x +n 与x +2的乘积中不含x 的一次项,(x +n )(x +2)=x 2+(n +2)x +2n ,∴n +2=0,∴n =−2,当m =4,n =−2时,n m =(−2)4=16;当m =2,n =−2时,n m =(−2)2=4,则n m =4或16,故答案为:4或16.【点睛】本题考查了完全平方式,以及多项式乘多项式,熟练掌握公式及法则是解本题的关键.【变式2-2】(2023春·七年级课时练习)若9x 2−(k−1)xy +25y 2是关于x 的完全平方式,则k =.【答案】31或−29/−29或31【分析】由9x 2−(k−1)xy +25y 2是关于x 的完全平方式,得出9x 2−(k−1)xy +25y 2=(3x ±5y )2,进而得出−(k−1)=±30,即可求出k 的值.【详解】解:∵9x 2−(k−1)xy +25y 2是关于x 的完全平方式,∴9x 2−(k−1)xy +25y 2=(3x ±5y )2,∴−(k−1)=±30,解得:k =31或−29,故答案为:31或−29【点睛】本题考查了完全平方式,掌握完全平方式的特点,考虑两种情况是解决问题的关键.【变式2-3】(2023春·福建泉州·七年级晋江市季延中学校考期中)已知B 是含字母x 的单项式,要使x 2+B +14是完全平方式,那么B = .【答案】±x 或x 4.【分析】分类讨论:①当x 2+B +14是完全平方式时和当B +x 2+14是完全平方式时,再根据完全平方式的特点即可得出答案.【详解】解:分类讨论:①当x 2+B +14是完全平方式时.∵x 2+B +14=x 2+B +,∴B =±2×x ×12=±x ;②当B +x 2+14是完全平方式时.∵B +x 2+14=B +2×x 2×12+,∴B =x 4.综上可知,B =±x 或x 4.故答案为:±x 或x 4.【点睛】本题考查完全平方式.掌握完全平方式的结构特征和利用分类讨论的思想是解题关键.【题型3 乘法公式的计算】【例3】(2023春·云南昭通·七年级校考期末)计算:(1)(2m−n +3p)(2m +3p +n);(2)化简求值:(x−3)(x +3)−(x 2−2x +1),其中x =12.【答案】(1)4m 2+12mp +9p 2−n 2(2)2x−10,−9【分析】(1)先把原式化为[(2m +3p)−n ][(2m +3p)+n ],再利用平方差公式和完全平方公式计算即可;(2)先利用平方差公式和去括号法则展开,再合并同类项,最后求值即可.【详解】(1)解:原式=[(2m +3p)−n ][(2m +3p)+n ]=(2m +3p)2−n 2=4m 2+12mp +9p 2−n 2;(2)原式=x 2−9−x 2+2x−1=2x−10,当x =12时,原式=1−10=−9.【点睛】本题考查了整式的混合运算以及平方差公式,熟练掌握整式的混合运算法则是解本题的关键.【变式3-1】(2023春·山东东营·六年级统考期末)利用整式乘法公式计算.(1)1002−98×102;(2)(a+b+3)(a+b−3);(3)(−2m+3)(−2m−3);x−2y 2.【答案】(1)4(2)a2+2ab+b2−9(3)4m2−9(4)14x2−2xy+4y2【分析】(1)首先把98×102转化为(100−2)×(100+2),然后再根据平方差公式计算即可;(2)利用平方差公式变形,然后再根据完全平方公式计算即可;(3)根据平方差公式计算即可;(4)根据完全平方公式计算即可.【详解】(1)解:1002−98×102=1002−(100−2)×(100+2)=1002−(1002−22)=1002−1002+22=4;(2)解:(a+b+3)(a+b−3)=[(a+b)+3][(a+b)−3]=(a+b)2−32=a2+2ab+b2−9;(3)解:(−2m+3)(−2m−3)=(−2m)2−32=4m2−9;(4x−2y2=14x2−2xy+4y2.【点睛】本题考查了平方差公式和完全平方公式,解本题的关键在熟练掌握整式的乘法公式进行计算.【变式3-2】(2023春·湖南永州·七年级校联考期中)1−1−=.【答案】1528【分析】根据平方差公式得,1−=1−+...1−+=12×32×23×43×34×54...×1314×1514,然后计算求解即可.【详解】解:1−==12×32×23×43×34×54...×1314×1514=12×1514=1528,故答案为:1528.【点睛】本题考查了平方差公式的应用.解题的关键在于对知识的熟练掌握与灵活运用.【变式3-3】(2023春·江西抚州·七年级校联考期中)运用乘法公式计算:(1)(2m−3n)(−2m−3n)−(2m−3n)2(2)1002−992+982−972+…+22−12.【答案】(1)−8m2+12mn(2)5050【分析】(1)原式第一项利用平方差是化简,第二项利用完全平方公式展开,去括号合并即可得到结果;(2)原式结合后,利用平方差公式化简,计算即可得到结果.【详解】(1)原式=9n2−4m2−4m2+12mn−9n2=−8m2+12mn;(2)原式=(100+99)×(100−99)+(98+97)×(98−97)+…+(2+1)×(2−1)=100+99+98+97+96+……+1=5050.【点睛】本题考查了平方差公式和完全平方公式的应用,熟练掌握运算法则是解题的关键.【题型4利用乘法公式求值】【例4】(2023春·山东济南·七年级统考期末)设a=x−2022,b=x−2024,c=x−2023.若a2+b2=16,则c2的值是( )A.5B.6C.7D.8【答案】C【分析】根据完全平方公式得出ab=6,a−b=2,进而根据已知条件得出c2=(a−1)(b+1),进而即可求解.【详解】∵a=x−2022,b=x−2024,c=x−2023,∴a−1=x−2023=c=b+1,a−b=2,∵a2+b2=16,∴(a−b)2+2ab=16,∴ab=6,∴c2=(a−1)(b+1)=ab+a−b−1=6+2−1=7,故选:C.【点睛】本题考查了完全平方公式变形求值,根据题意得出c2=(a−1)(b+1)是解题的关键.【变式4-1】(2023春·广西贵港·七年级校考期末)若x−y−7=0,则代数式x2−y2−14y的值为.【答案】49【分析】先计算x−y的值,再将所求代数式利用平方差公式分解前两项后,将x−y的值代入化简计算,然后再代入计算即可求解.【详解】解:∵x−y−7=0,∴x−y=7,∴x2−y2−14y=(x+y)(x−y)−14y=7(x+y)−14y=7x +7y−14y =7(x−y )=49.故答案为:49.【点睛】本题主要考查因式分解的应用,通过平方差公式分解因式后整体代入是解题的关键.【变式4-2】(2023春·湖南永州·七年级校考期中)(1)已知a +1a =3,求a 2+1a 2的值;(2)已知(a−b )2=9,ab =18,求a 2+b 2的值.【答案】(1)7;(2)45【分析】(1)根据完全平方和公式恒等变形后,代值求解即可得到答案;(2)根据完全平方差公式,代值求解即可得到答案.【详解】解:(1)∵ a 2+1a 2=a−2,a +1a =3,∴原式=32−2=9−2=7;(2)∵(a−b )2=a 2−2ab +b 2,(a−b )2=9,ab =18,∴ 9=a 2−2×18+b 2,解得a 2+b 2=9+2×18=45.【点睛】本题考查代数式求值,涉及完全平方公式,熟记完全平方和与完全平方差公式是解决问题的关键.【变式4-3】(2023春·陕西西安·七年级校考期中)已知m 满足(3m−2015)2+(2014−3m )2=5.(1)求(2015−3m )(2014−3m )的值.(2)求6m−4029的值.【答案】(1)−2(2)±3【分析】(1)原式利用完全平方公式化简,计算即可确定出原式的值;(2)原式利用完全平方公式变形,计算即可得到结果.【详解】(1)解:设a =3m−2015,b =2014−3m ,可得a +b =−1,a 2+b 2=5,∵(a+b)2=a2+b2+2ab,∴1=5+2ab,即ab=−2,则(2015−3m)(2014−3m)=(3m−2015)(2014−3m)=−ab=2;(2)解:设a=3m−2015,b=2014−3m,可得6m−4029=(3m−2015)−(2014−3m)=a−b,∵(a−b)2=a2+b2−2ab,∴(6m−4029)2=(a−b)2=a2+b2−2ab=5+4=9,则6m−4029=±3.【点睛】此题考查了完全平方公式,熟练掌握公式及运算法则是解本题的关键.【题型5利用面积法验证乘法公式】【例5】(2023春·七年级课时练习)如图,阴影部分是在边长为a的大正方形中剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形.给出下列2种割拼方法,其中能够验证平方差公式的是()A.①B.②C.①②D.①②都不能【答案】C【分析】分别在两个图形中表示出阴影部分的面积,继而可得出验证公式,即可得到答案.【详解】解:在图①中,左边的图形中阴影部分的面积为:a2−b2,右边图形中的阴影部分的面积为:(a+b)(a−b),故可得:a2−b2=(a+b)(a−b),可验证平方差公式,符合题意;在图②中,左边的图形中阴影部分的面积为:a2−b2,右边图形中的阴影部分的面积为:(a+b)(a−b),故可得:a2−b2=(a+b)(a−b),可验证平方差公式,符合题意;故能够验证平方差公式的是:①②,故选:C.【点睛】本题主要考查了平方差公式,运用不同方法表示阴影部分的面积是解题的关键.【变式5-1】(2023春·山东烟台·六年级统考期末)在下面的正方形分割方案中,可以验证(a+b)2=(a−b)2 +4ab的图形是()A.B.C.D.【答案】C【分析】用面积公式和作差法求小正方形、长方形的面积,令其与大正方形相等.【详解】A、不能验证公式,该选项不符合题意;B、可以验证(a+b)2=a2+2ab+b2,该选项不符合题意;C、可以验证(a+b)2=(a−b)2+4ab,该选项符合题意;D、可以验证a2=(a−b)2+2ab−b2,即(a−b)2=a2−2ab+b2,该选项不符合题意.故选:C.【点睛】本题考查了完全平方公式的几何验证,解题的关键在于对知识的熟练掌握与灵活运用.【变式5-2】(2023春·福建宁德·七年级校联考期中)下列等式不能用如图所示的方形网格验证的是()A.(a+b)2=a2+2ab+b2B.(a+b)(b+c)=ab+ac+b2+bcC.(a+b+c)2=a2+b2+c2+2ab+2ac+2bcD.(a+b)(a−b)=a2−b2【答案】D【分析】利用图形面积直接得出等式,从而可选择.【详解】解:等式(a+b)2=a2+2ab+b2是由边长为(a+b)的正方形推导而出,故A可验证,不符合题意;等式(a+b)(b+c)=ab+ac+b2+bc是由长为(b+c),宽为(a+b)的长方形推导而出,故B可验证,不符合题意;等式(a+b+c)2=a2+b2+c2+2ab+2ac+2bc是由边长为(a+b+c)的正方形推导而出,故C可验证,不符合题意;等式(a+b)(a−b)=a2−b2,图中找不到有关于a−b的面积,故D不可验证,符合题意.故选D.【点睛】本题考查多项式的乘法与图形面积.利用数形结合的思想是解题关键.【变式5-3】(2023春·江西抚州·七年级统考期末)(1)课本再现:如图1,2是“数形结合”的典型实例,应用“等积法”验证乘法公式.图1验证的是______,图2验证的是______;(2)应用公式计算:①已知x+y=5,xy=−1,求x2+y2的值;②求20222−2021×2023的值.【答案】(1)(a+b)2=a2+b2+2ab,a2−b2=(a+b)(a−b);(2)①27;②1【分析】(1)根据图1中大正方形的面积为两个小正方形的面积与两个长方形的面积之和得到完全平方公式,根据图2中左右两边阴影部分的面积相等得到平方差公式;(2)①利用x2+y2=(x+y)2−2xy进行计算即可;②利用平方差公式将2021×2023=(2022−1) (2022+1)=20222−1化简即可.【详解】解:(1)图1中,边长为a的正方形的面积为a2,边长为b的正方形的面积为b2,长为a宽为b的长方形的面积为ab,大正方形的边长为(a+b),面积为(a+b)2,∵大正方形的面积为两个小正方形的面积与两个长方形的面积之和,∴(a+b)2=a2+b2+2ab图2中,左边阴影部分的面积为:a2−b2,右边阴影部分的面积为:(a+b)(a−b),∵左右两边的阴影部分面积相等,∴a2−b2=(a+b)(a−b),故答案为:(a+b)2=a2+b2+2ab,a2−b2=(a+b)(a−b);(2)①∵x+y=5,xy=−1,∴x2+y2=(x+y)2−2xy=52−2×(−1)=27;②20222−2021×2023=20222−(2022−1)(2022+1)=20222−(20222−1)=1.【点睛】本题主要考查了完全平方公式和平方差公式,熟练掌握(a+b)2=a2+b2+2ab,a2−b2=(a+b) (a−b)是解题的关键.【题型6乘法公式的应用】【例6】(2023春·浙江宁波·七年级校考期中)如图,为了美化校园,某校要在面积为30平方米长方形空地ABCD中划出长方形EBKR和长方形QFSD,若两者的重合部分GFHR恰好是一个边长为3米的正方形,现将图中阴影部分区域作为花圃,若长方形空地ABCD的长和宽分别为m和n,m>n,花圃区域AEGQ和HKCS 总周长为14米,则m-n的值为()A.4米B.7米C.5米D.3.5米【答案】B【分析】根据长方形的周长及面积计算公式,可找出关于m,n的方程组,变形后可得出(m−n)2=49,解之取其正值即可得出结论.【详解】解:依题意得:2(m−3)+2(n−3)=14①mn=30②,由①可得:m+n=13,∵(m−n)2=(m+n)2−4mn,∴(m−n)2=49,∴m−n=7或m−n=−7(不合题意,舍去).故选:B.【点睛】本题考查了完全平方公式的几何背景,牢记(a±b)2=a2±2ab+b2是解题的关键.【变式6-1】(2023春·陕西西安·七年级校考期中)我们知道,将完全平方公式(a±b)2=a2±2ab+b2适当的变形,可以解决很多数学问题.请你观察、思考,并解决以下问题:(1)若m+n=9,mn=10,求m2+n2的值;(2)如图,一农家乐准备在原有长方形用地(即长方形ABCD)上进行装修和扩建,先用长为120m的装饰性篱笆围起该长方形院子,再以AD、CD为边分别向外扩建正方形ADGH、正方形DCEF的空地,并在两块正方形空地上建造功能性花园,该功能性花园面积和为2000m2,求原有长方形用地ABCD的面积.【答案】(1)61(2)800m2【分析】(1)利用完全平方公式代入计算即可;(2)设CD=x m,AD=y m,由周长可得x+y=60, 由两块正方形的面积和为2000平方米,x²+y²=2000,求xy即可.【详解】(1)∵(m+n)²=m²+n²+2mn,m+n=9,mn=10,∴m²+n²=(m+n)²−2mn=92−2×10=61,(2)设CD=x m,AD=y m,∵长方形ABCD的周长是120米,∴2(x+y)=120,即x+y=60,又∵两块正方形的面积和为2000平方米,∴x²+y²=2000,=800,∴xy=602−20002答: 长方形ABCD的面积为800平方米.【点睛】本题考查完全平方公式的几何背景,掌握完全平方公式的结构特征是正确应用的前提,适当的等式变形是解决问题的的关键.【变式6-2】(2023春·湖南邵阳·七年级统考期中)如图,某校一块边长为2a m的正方形空地是七年级四个班的清洁区,其中分给七年级(1)班的清洁区是一块边长为(a−2b)m的正方形.(0<2b<a)(1)分别求出七年级(2)班、七年级(3)班的清洁区的面积.(2)七年级(4)班的清洁区的面积比七年级(1)班的清洁区的面积多多少?【答案】(1)七年级(2)班、七年级(3)班的清洁区的面积均为(a+2b)(a−2b)=(a2−4b2)(m2)(2)多8ab m2【分析】(1)根据图形可知:七年级(2)班、七年级(3)班的清洁区为长方形,通过2a−(a−2b)=(a+2b) (m),可求出对应的长,(a+2b)(a−2b)=(a2−4b2)(m2),即可解答此题.(2)由正方形的面积公式可得到:(a+2b)2−(a−2b)2=a2+4ab+4b2−(a2−4ab+4b2)=8ab(m2),从而解答此题.【详解】(1)解:(1)因为2a−(a−2b)=(a+2b)(m),所以七年级(2)班、七年级(3)班的清洁区的面积均为(a+2b)(a−2b)=(a2−4b2)(m2).(2)因为(a+2b)2−(a−2b)2=a2+4ab+4b2−(a2−4ab+4b2)=8ab(m2),所以七年级(4)班的清洁区的面积比七年级(1)班的清洁区的面积多8ab m2.【点睛】本题考查了整式的乘法,熟练掌握完全平方公式、平方差公式是解本题的关键.【变式6-3】(2023春·浙江温州·七年级期中)学校为迎接艺术节,准备在一个正方形空地ABCD上搭建一个表演舞台,如图所示,正中间是“红五月”三个正方形平台.其中“五”字正方形和“月”字正方形边长均为a 米,“红”字正方形边长为b米.Ⅰ号区域布置造型背景,Ⅱ号区域设置为乐队演奏席.(1)用含a,b的代数式表示阴影部分的面积(即Ⅰ和Ⅱ面积之和)并化简;(2)若阴影部分的面积(即Ⅰ和Ⅱ面积之和)为288平方米,且a+b=20米,求“红”字正方形边长b的值.【答案】(1)2a2+4ab(2)16【分析】(1)根据题意,分别表示出正方形空地ABCD的面积和“红五月”三个正方形平台的面积,相减即为阴影部分的面积;(2)根据阴影部分的面积求出a2+2ab=144,再根据a+b=20,得到a2+2ab+b2=400,进而求得b2 =256,即可求出正方形边长b的值.【详解】(1)解:由题意可知,正方形空地ABCD的边长为2a+b,∴正方形空地ABCD的面积为(2a+b)2,∵“红五月”三个正方形平台的面积为a2+b2+a2=2a2+b2,∴阴影部分的面积为(2a+b)2−(2a2+b2)=4a2+4ab+b2−2a2−b2=2a2+4ab;(2)解:阴影部分的面积为288平方米,∴2a2+4ab=288,∴a2+2ab=144,∵a+b=20,∴(a+b)2=a2+2ab+b2=400,∴b2=400−144=256,∵b>0,∴b=16.【点睛】本题考查了正方形的面积公式,列代数式,完全平方公式,平方根知识,根据题意正确得出阴影部分的面积是解题关键.【题型7平方差公式的几何背景】【例7】(2023春·安徽安庆·七年级统考期中)将边长为a的正方形的左上角剪掉一个边长为b的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,将①和②两部分拼成一个长方形(如图2),解答下列问题:(1)设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2,请用含a,b的式子表示:S1=______ ,S2=______ ;(不必化简)(2)由(1)中的结果可以验证的乘法公式是______ ;(3)利用(2)中得到的公式,计算:20232−2022×2024.【答案】(1)a2−b2,(a+b)(a−b)(2)(a+b)(a−b)=a2−b2(3)1【分析】(1)根据图形的和差关系表示出S1,根据长方形的面积公式表示出S2;(2)由(1)中的结果可验证的乘法公式是(a+b)(a−b)=a2−b2;(3)由(2)中所得公式,可得2022×2024=(2023+1)(2023−1)=20232−1,从而简便计算出该题结果.【详解】(1)解:由题意得,S1=a2−b2,S2=(a+b)(a−b).故答案为:a2−b2,(a+b)(a−b);(2)解:由(1)中的结果可验证的乘法公式为(a+b)(a−b)=a2−b2.故答案为:(a+b)(a−b)=a2−b2;(3)解:由(2)中所得乘法公式(a+b)(a−b)=a2−b2可得,20232−2021×2023=20232−(2023+1)×(2023−1)=20232−(20232−1)=20232−20232+1=1.【点睛】本题考查了平方差公式几何背景的应用能力,掌握图形准确列式验证平方差公式,并能利用所验证公式解决相关问题是关键.【变式7-1】(2023春·全国·七年级期末)如图1的两个长方形可以按不同的形式拼成图2和图3两个图形.(1)在图2中的阴影部分的面积S1可表示为;(写成多项式乘法的形式);在图3中的阴影部分的面积S2可表示为;(写成两数平方差的形式);(2)比较图2与图3的阴影部分面积,可以得到的等式是;A.(a+b)2=a2+2ab+b2B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2(3)请利用所得等式解决下面的问题:①已知4m2﹣n2=12,2m+n=4,则2m﹣n=;②计算(2+1)(22+1)(24+1)(28+1)×…×(232+1)+1的值,并直接写出该值的个位数字是多少.【答案】(1)(a+b)(a﹣b),a2﹣b2;(2)B(3)①3,②264,6【分析】(1)根据长方形和正方形的面积公式即可求解即可;(2)根据两个阴影部分的面积相等由(1)的结果即可解答.(3)①利用(2)得到的等式求解即可;②可以先把原式乘上一个(2﹣1),这样可以和(2+1)凑成平方差公式,以此逐步解答即可.【详解】(1)解:图2中长方形的长为(a+b),宽为(a﹣b),因此面积为(a+b)(a﹣b),图3中阴影部分的面积为两个正方形的面积差,即a2﹣b2.故答案为:(a+b)(a﹣b),a2﹣b2.(2)解:由(1)得(a+b)(a﹣b)=a2﹣b2;故选B.(3)解:①因为4m2﹣n2=12,所以(2m+n)(2m﹣n)=12,又因为2m+n=4,所以2m﹣n=12÷4=3.故答案为:3;②(2+1)(22+1)(24+1)(28+1)×…×(232+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)+…+(232+1)+1=(22﹣1)(22+1)(24+1)(28+1)+…+(232+1)+1=(24﹣1)(24+1)(28+1)+…+(232+1)+1=……=264﹣1+1=264,而21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256……,其个位数字2,4,8,6,重复出现,而64÷4=16,于是“2、4、8、6”经过16次循环,因此264的个位数字为6.答:其结果的个位数字为6.【点睛】本题主要考查了平方差公式的应用和数字类规律,灵活应用平方差公式成为解答本题的关键.【变式7-2】(2023春·陕西咸阳·七年级咸阳市秦都中学校考阶段练习)【知识生成】(1)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式,例如:从边长为a的正方形中剪掉一个边长为b的正方形如图1,然后将剩余部分拼成一个长方形如图2.图1中剩余部分的面积为______,图2的面积为______,请写出这个代数恒等式;【知识应用】(2)应用(1)中的公式,完成下面任务:若m是不为0的有理数,已知P=(a+2m)(a−2m),Q=(a+m) (a−m),比较P、Q大小;【知识迁移】(3)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图3表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图3中图形的变化关系,通过计算写出一个代数恒等式.【答案】(1)−3m2;(2)P<Q;(3)x(x+1)(x−1)=x3−x.【分析】(1)分别用代数式表示图1,图2的面积即可;(2)利用(1)中得到的等式计算P−Q的值即可;(3)分别用代数式表示图3中左图和右图的体积即可.【详解】解:(1)图1中剩余部分的面积为a2−b2,图2的面积为(a+b)(a−b),所以代数恒等式为(a+b)(a−b)=a2−b2;(2)∵P=(a+2m)(a−2m),Q=(a+m)(a−m),∴P−Q=(a+2m)(a−2m)−(a+m)(a−m)=a2−4m2−(a2−m2)=−3m2因为m是不为0的有理数,所以−3m2<0,即P−Q<0,所以P<Q;(3)图3中左图的体积为x⋅x⋅x−1×1×x=x3−x,图3中右图是长为x+1,宽为x,高为x−1的长方体,因此体积为(x+1)⋅x⋅(x−1),所以有x(x+1)(x−1)=x3−x.【点睛】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是正确应用的前提,利用代数式表示图形的面积和体积是正确解答的关键.【变式7-3】(2023春·山西大同·七年级统考期中)【实践操作】(1)如图①,在边长为a的大正方形中剪去一个边长为b的小正方形(a>b),把图①中L形的纸片按图②剪拼,改造成了一个大长方形如图③,请求出图③中大长方形的面积;(2)请写出图①、图②、图③验证的乘法公式为:.【应用探究】(3)利用(2)中验证的公式简便计算:499×501+1;(4)计算:1−×1−×1−×…×1−×1−【知识迁移】(5)类似地,我们还可以通过对立体图形进行变换得到代数恒等式如图④,将一个棱长为a的正方体中去掉一个棱长为b的正方体,再把剩余立体图形切割分成三部分如图⑤,利用立体图形的体积,可得恒等式为:a3−b3=.(结果不需要化简);(5)(a−b)a2+(a−b)b2+(a−b)ab或【答案】(1)a2−b2;(2)(a−b)(a+b)=a2−b2;(3)250000;(4)20234044(a−b)(a2+b2+ab)【分析】(1)利用长方形的面积等于长乘以宽即可.(2)图③中大长方形的面积等于图①的阴影部分面积,分别计算即可得出:(a−b)(a+b)=a2−b2(3)观察(2)的的乘法公式的特点是两数之和乘以两数之差,故将499拆成500−1,将501拆成500+1即可.(4)利用a2−b2=(a+b)(a−b)将各个因其进行因式分解后,再将各因式通分相加,发现每相邻两个的乘积为0,故答案为第一个因式乘以最后一个因式.(5)将立体图形分割成三部分,分别为:a2(a−b)、b2(a−b)、ab(a−b),其和为a2(a−b)+b2(a−b)+ab (a−b),恰等于a3−b3.【详解】解:(1)长方形的面积为:2(a−b)(a−b2+b)=(a−b)(a−b+2b)=(a−b)(a+b)=a2−b2;(2)图③整个大长方形的面积等于图①阴影部分的面积:∴(a−b)(a+b)=a2−b2;(3)原式=(500−1)×(500+1)+1=5002-12+1=250000;(4)原式=1−1−=12×32×23×43×34×45×⋯×20202021×20222021×20212022×20232022=12×20232022=20234044;(5)将立体图形分割成三部分,分别为:a2(a−b)、b2(a−b)、ab(a−b),其和为a2(a−b)+b2(a−b)+ab(a−b)=a3−b3.故答案为:a2(a−b)+b2(a−b)+ab(a−b).【点睛】本题考查了“数形结合”中的乘法公式及其灵活运用,解题的关键是善于发现规律并总结规律.【题型8完全平方公式的几何背景】【例8】(2023春·浙江温州·七年级校联考期中)图1,是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的面积为;(2)观察图2,三个代数式(m+n)2,(m−n)2,mn之间的等量关系是;(3)若x+y=−6,xy=11,则x−y=;(直接写出答案)4【答案】(1)(m−n)2(2)(m+n)2−4mn=(m−n)2(3)±5【分析】(1)根据阴影部分的面积等于右边大正方形的面积减去左边矩形的面积进而得出答案;(2)由(1)中计算过程可得答案;(3)根据(2)中的等式可得答案.【详解】(1)解:图2中的阴影部分为正方形,边长为(m−n),则面积为(m−n)2.故答案为:(m−n)2;(2)解:左边图形的面积=2m×2n=4mn,右边的大正方形面积=(m+n)2,则阴影部分的面积=(m+n)2−4mn,因此三个代数式(m+n)2,(m−n)2,mn之间的等量关系为:(m+n)2−4mn=(m−n)2;故答案为:(m+n)2−4mn=(m−n)2;(3)解:由(2)得(x+y)2−4xy=(x−y)2,=25,∴(x−y)2=(−6)2−4×114∴x−y=±=±5,故答案为:±5.【点睛】本题考查了完全平方公式的背景知识以及完全平方公式的变形,解题的关键是认真观察图形,用不同的形式表示图形的面积.【变式8-1】(2023春·七年级课时练习)完全平方公式:(a±b)2=a2±2ab+b2适当的变形,可以解决很多的数学问题.例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,所以(a+b)2=9,即:a2+2ab+b2=9,又因ab=1,所以a2+b2=7根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,则xy的值为______;(2)拓展:若(4−x)x=3,则(4−x)2+x2=______.(3)应用:如图,在长方形ABCD中,AB=20,BC=12,点E、F是BC、CD上的点,且BE=DF=x,分别以FC、CE为边在长方形ABCD外侧作正方形CFGH和正方形CEMN,若长方形CEPF的面积为160,求图中阴影部分的面积和.【答案】(1)12(2)10(3)384【分析】(1)利用完全平方公式进行计算,即可解答;(2)设4−x=a,x=b,则a+b=4,ab=3,然后完全平方公式进行计算,即可解答;(3)根据题意可得FC=20−x,CE=12−x,然后设FC=20−x=a,CE=12−x=b,则a−b=8,ab=160,最后利用完全平方公式进行计算,即可解答.【详解】(1)解:∵x+y=8,x2+y2=40,∴2xy=(x+y)2−(x2+y2)=82−40=64−40=24,∴xy=12.(2)解:设4−x=a,x=b,∴a+b=4−x+x=4,∵(4−x)x=3,∴ab=3,∴(4−x)2+x2=a2+b2=(a+b)2−2ab=42−2×3=16−6=10.(3)解:∵四边形ABCD是长方形,∴AB=CD=20,AD=BC=12,∵BE=DF=x,∴FC=DC−DF=20−x,CE=BC−BE=12−x,设FC=20−x=a,CE=12−x=b,∴a−b=20−x−(12−x)=8,∵长方形CEPF的面积为160,∴FC⋅CE=(20−x)(12−x)=ab=160,∴正方形CFGH的面积+正方形CEMN的面积=CF2+CE2=(20−x)2+(12−x)2=a2+b2=(a−b)2+2ab=82+2×160=64+320=384,∴图中阴影部分的面积和为384.【点睛】本题考查了整式的混合运算−化简求值,完全平方公式的几何背景,熟练掌握完全平方公式变形的计算是解题的关键.【变式8-2】(2023春·江苏·七年级期中)【知识生成】通常情况下,通过用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.如图1,在边长为a的正方形中剪掉一个边长为b的小正方形(a>b).把余下的部分沿虚线剪开拼成一个长方形(如图2).图1中阴影部分面积可表示为:a2-b2,图2中阴影部分面积可表示为(a+b)(a-b),因为两个图中的阴影部分面积是相同的,所以可得到等式:a2-b2=(a+b)(a-b);【拓展探究】图3是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图4的形状拼成一个正方形.(1)用两种不同方法表示图4中阴影部分面积:方法1:,方法2:;(2)由(1)可得到一个关于(a+b)2、(a-b)2、ab的的等量关系式是;(3)若a+b=10,ab=5,则(a-b)2=;【知识迁移】(4)如图5,将左边的几何体上下两部分剖开后正好可拼成如右图的一个长方体.根据不同方法表示它的体积也可写出一个代数恒等式:.【答案】(1)(a-b)2,(a+b)2-4ab;(2)(a+b)2-4ab=(a-b)2;(3)80;(4)x3-x=x(x+1)(x-1)【分析】(1)利用直接和间接的方法表示出阴影部分面积;(2)由阴影部分面积相等可得结果;(3)直接根据(2)的结论代入求值即可;(4)分别求得图中几何体的体积,然后根据原图形与新图形体积相等列出恒等式即可.【详解】解:(1)方法1:直接根据正方形的面积公式得,(a-b)2,方法2:大正方形面积减去四种四个长方形的面积,即(a+b)2-4ab;(2)由阴影部分面积相等可得(a+b)2-4ab=(a-b)2;(3)由(a+b)2-4ab=(a-b)2,可得:102-4×5=(a-b)2,∴(a-b)2=80;(4)∵原几何体的体积=x3-1×1•x=x3-x,新几何体的体积=x(x+1)(x-1),∴恒等式为x3-x=x(x+1)(x-1).【点睛】本题考查完全平方公式的几何意义;能够由面积相等,过渡到利用体积相等推导公式是解题的关键.【变式8-3】(2023春·江苏·七年级期中)【知识生成】用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b(a>b)的四个相同的长方形拼成的一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a−b)2、(a+b)2、ab三者之间的等量关系式:________﹔【知识迁移】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:(a+b)3=a3+b3+3ab(a+b).利用上面所得的结论解答下列问题:(1)已知x+y=6,xy=11,求(x−y)2的值;4(2)已知a+b=6,ab=7,求a3+b3的值.【答案】[知识生成](a+b)2-4ab=(a-b)2;[知识迁移](1)25;(2)90。

北师大版2019七年级数学下册乘法公式培优训练题二(含答案)

北师大版2019七年级数学下册乘法公式培优训练题二(含答案)

北师大版2019七年级数学下册乘法公式培优训练题二(含答案)1.若4x 2+kx+16是一个完全平方式,则k 的值等于( )A .8B .±8C .﹣16D .±162.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪开后拼成一个长方形,上述操作能验证的等式是( )A .(a +b)(a -b)=a 2-b 2B .(a -b)2=a 2-2ab +b 2C .(a +b)2=a 2+2ab +b 2D .a 2+ab =a(a +b)3.小明在计算一个二项式的平方时,得到的正确结果是4x 2+12xy+■,但最后一项不慎被污染了,这一项应是( )A .3y 2B .6y 2C .9y 2D .±9y 24.下列多项式乘法中,不能运用平方差公式进行计算的是( )A .B .C .D . 5.直角三角形两直角边和为7,面积为6,则斜边长为( )A .5BC .7D 6.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )A .4 或-6B .4C .6 或4D .-67.下列计算或运算中,正确的是()A .B .C .D . 8.三种不同类型的长方形地砖长宽如图所示,现有A 类1块,B 类4块,C 类5块. 小明在用这些地砖拼成一个正方形时,多出其中1块地砖,那么小明拼成正方形的边长是( )A .m+n B .2m+2n C .2m+n D .m+2n9.计算: ()()()2412525x x x ⨯+-+-=_________.10.若(a +b)2=17,(a -b)2=11,则a 2+b 2=____.11.如果关于x 的多项式是一个完全平方式,那么m =_______. 12.若m+n=2,且m-n=3,则22m n -=_______.13.(x -2y )2等于_______;14.若代数式14x 2-kxy+9y 2是完全平方式,则k 的值为_______. 15.若x 2+(m ﹣3)x+16是完全平方式,则m=__________.16.(5-x 2)2等于_______;17.计算或化简:(1)()-3- 20160 - |-5|; (2)(-3a 2)2-a 2·2a 2+(a 3)2÷a 2.18.计算:(1)﹣(﹣2)2+(﹣0.1)0; (2)(x+1)2﹣(x+2)(x ﹣2).19.已知x+y=5,xy=1.(1)求x 2+y 2的值.(2)求(x ﹣y )2的值.20.如果一个正整数能表示成两个连续偶数的平方差,那么称这个正整数为神秘数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是神秘数.(1)52和200这两个数是神秘数吗?为什么?(2)设两个连续偶数为2n 和2n ﹣2(其中n 取正整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数(取正整数)的平方差是神秘数吗?为什么.21.已知a+b=1,ab=-1.设(1)计算S 2;(2)请阅读下面计算S 3的过程: ()()33332222a b a b b a-b a a b-a b +=+++ =()()()323222a b a b a b b a a b +++-+=()()()2222a b a a b b ab a b +++-+=()()()22a b a b ab a b ++-+ ∵a+b=1,ab=-1,∴()()()()33223221111S a b a b a b ab a b S S =+=++-+=⨯--⨯=+=_______. 你读懂了吗?请你先填空完成(2)中S 3的计算结果;再计算S 4;(3)猜想并写出2n S -, 1n S -, n S 三者之间的数量关系(不要求证明,且n 是不小于2的自然数),根据得出的数量关系计算S 3.22.(1)填空:(a﹣b)(a+b)=__;(a﹣b)(a2+ab+b2)=__;(a﹣b)(a3+a2b+ab2+b3)=__.(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=__(其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29+28+27+26+25+24+23+22+2.23.我们在解题时,经常会遇到“数的平方”,那么你有简便方法吗?这里,我们以“两位数的平方”为例,请观察下列各式的规律,回答问题:请根据上述规律填空:____________;我们知道,任何一个两位数个数上数字n十位上的数字为都可以表示为,根据上述规律写出:______,并用所学知识说明你的结论的正确性.24.如图,根据图中信息解答下列问题:(1)用代数式表示图中阴影部分的面积;(2)当a=4,b=3时,求阴影部分的面积.答案1.D 解:∵(2x±4)2=4x 2±16x+16=4x 2+kx+16,∴k=±16.故选:D.2.A解:大正方形的面积﹣小正方形的面积=a 2﹣b 2,矩形的面积=(a +b )(a ﹣b ),故(a +b )(a ﹣b )=a 2﹣b 2. 故选A .3.C 解:∵()2242x x =,12xy=2×2x×b ,∴b=3y , ∴()2239y y =, 故选C . 4.B解: A 、(x+a )(x-a )=x 2-a 2,能用平方差计算;B 、(a+b )(-a-b )=-(a+b )2,用完全平方公式计算;C 、(-x-b )(x-b )=(-b )2-x 2=b 2-x 2,能用平方差计算;D 、(b+m )(m-b )=m 2-b 2,能用平方差计算; 故选:B.5.A解:设直角三角形的两直角边分别为:a,b ,斜边长为c,由题意可得:a+b =7,162ab =,因为()()22222721225a b a b ab +=+-=-⨯=,根据勾股定理得: 22225a b c +==,所以c =5,故选A.6.A解:∵x 2+2(m+1)x+25是一个完全平方式,∴△=b 2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m 2+2m-24=0,解得m 1=4,m 2=-6,所以m 的值为-2或8. 故选A.7.C解:A 、a 6÷a 2=a 4,此选项错误;B 、(−2a 2)3=−8a 6,此选项错误;C 、(a−3)(3+a )=a 2−9,此选项正确;D 、(a−b )2=a 2−2ab +b 2,此选项错误;故选:C .8.D解:1块A 的面积为m 2;4块B 的面积为4mn ;5块C 的面积为5n 2;那么这三种类型的砖的总面积应该是m 2+4mn +5n 2=m 2+4mn +4n 2+n 2=(m +2n )2+n 2,因此,多出了一块C 型地砖,拼成的正方形的面积为(m +2n )2=m 2+4mn +4n 2,正方形的边长为m +2n .故选D .9.829x +解:原式=()()22421425x x x ++-- =22484425x x x ++-+=8x+4+25=8x+29,故答案为:8x+29.10.14解:(a +b )2=a 2+b 2+2ab =17 ①,(a ﹣b )2=a 2+b 2﹣2ab =11②,①+②得:2(a 2+b 2)=28,∴a 2+b 2=14.故答案为:14.11.9 解:由x 2﹣6x +m 是一个完全平方式,得:m =(﹣3)2=9.故答案为:9. 12.6 解:∵m+n=2,m-n=3,∴原式=(m+n )(m-n )=6.故答案是:6.13.x 2-8xy +4y 2 解:根据完全平方公式可得:(x -2y )2=x 2-8xy +4y 2.14.±3 解:∵()22221119323422x kxy y x y x y ⎛⎫-+=+±⨯⨯ ⎪⎝⎭,∴k =±3.故答案为:±3.15.11或-5解:∵x 2+(m ﹣3)x +16是完全平方式,∴m -3=±8,∴m =11或-5.16.25-10x 2+x 4解:根据完全平方公式可得:(5-x 2)2=25-10x 2+x 4.17.(1)2 ;(2)8a 4解:(1)原式=8-1-5 =2 ;(2)原式 =9a 4-2a 4+a 4 = 8a 4.18.(1) 0; (2) 2x+5解:(1)原式=3-4+1=0;(2)原式===2x+5.19.(1)23;(2)21.解:(1)∵x+y=5,xy=1,∴原式=(x+y )2﹣2xy=25﹣2=23;(2)∵x+y=5,xy=1,∴原式=(x+y)2﹣4xy=25﹣4=21.20.(1)52是“神秘数”;200不是神秘数;(2)是;(3)两个连续的奇数的平方差不是神秘数.解:(1)设设这两个连续偶数分别为2m,2m+2,则根据题意得:(2m+2)2-(2m)2=52,8m+4=52,m=6,∴2m=12,2m+2=14,即142-122=52,∴52是“神秘数”.(2m+2)2-(2m)2=200,8m+4=200,m=2.5,∴2m=5∴200不是“神秘数”.(2)是;理由如下:∵(2n)2-(2n-2)2=4(2n-1),∴由这两个连续偶数构造的神秘数是4的倍数.(3)由(2)可知“神秘数”可表示为4(2n-1),∵2n-1是奇数,∴4(2n-1)是4的倍数,但一定不是8的倍数,设两个连续的奇数为2n-1和2n+1,则(2n+1)2-(2n-1)2=8n.∴连续两个奇数的平方差是8的倍数,∴连续两个奇数的平方差不是“神秘数”.21.(1)S2=3;(2)4,S4=7;(3)Sn-2+Sn-1=Sn, S8= 47.解:(1)S2=a2+b2=(a+b)2-2ab=12-2×(-1)=3;(2)S3=S2+1=3+1=4,故答案为:4;∵S4=a4+b4=( a2+b2)2-2a2b2=( a2+b2)2-2(ab)2,又∵a 2+b 2═3,ab =-1,∴S 4=32-2×1=7;(3)∵S 1=1,S 2=3,S 3=4,S 4=7,∴S 1+S 2=S 3,S 2+S 3=S 4.猜想:S n -2+S n -1=S n .∵S 3=4,S 4=7,∴S 5=S 3+S 4=4+7=11,∴S 6=S 4+S 5=7+11=18,∴S 7=S 5+S 6=11+18=29,∴S 8=S 6+S 7=18+29=47.22. (1)a 2-b 2, a 3-b 3, a 4-b 4; (2)a n -b n ;(3)1022.解:(a ﹣b )(a+b )=a 2-b 2;(a ﹣b )(a 2+ab+b 2)= a 3-b 3;(a ﹣b )(a 3+a 2b+ab 2+b 3)= a 4-b 4;(2)(a ﹣b )(a n ﹣1+a n ﹣2b+…+ab n ﹣2+b n ﹣1)= a n -b n (其中n 为正整数,且n≥2). (3)29+28+27+26+25+24+23+22+2=(2-1)( 29+28+27+26+25+24+23+22+2)=210+29+28+27+26+25+24+23+22-(29+28+27+26+25+24+23+22+2)=210-2=1024-2=1022.23.(1),1444;(2). 解:,故答案为:,1444;, 证明:,,,故答案为:.24.(1)2ab ;(2)24平方单位解:(1)阴影部分的面积=(a+b)2-a2-b2=2ab;(2)当a=4,b=3时,原式=2×3×4=24.即阴影部分的面积为24平方单位.。

北师大数学七年级下14《整式的乘法》习题含详细答案初一数学试卷.doc

北师大数学七年级下14《整式的乘法》习题含详细答案初一数学试卷.doc

《整式的乘法》习题1.列各式中计算结果是?-6x+5的是()A.(x-2) (x-3)B.(x-6) (x+1)C.(x-1) (x-5)D.(x+6) (x-1)2.下列各式计算正确的是()A2Y+3X=5B.2x・3x=6C.(2x) 3=8D.5X6-^X3=5X23.下列各式计算正确的是()A.2r (3x-2) =5x2-4xB.(2y+3x) (3x-2y) =9x2-4y2C.(x+2) 2=?+2X+4D.(x+2) (2x-l) =2r+5x-24.要使多项式(y+/zr+2)Og)展开后不含x的一次项,则“与g的关系是() X.p=q B・/?+g=O C.pq=\ D.pq=25.若(y+3)(y-2)=)^+my+n,则加、"的值分别为( )A J?7=5,n=6B.m=l, n=-6C.m=}, n=6D.w=5, /?=-66.计算:(x-3)(x+4)= _____ .7.若x2+px+6=(x+^)(x-3),则加二_______ .8.先观察下列各式,再解答后面问题:(兀+5)(兀+6)=/+11兀+30; (X-5)(X-6)=X2-1 lx+30; (x-5)(x+6)=?+x-30;(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?(2)根据以上各式呈现的规律,用公式表示出来;(3)试用你写的公式,直接写出下列两式的结果;①@+99)(/100)= ______ ;②0-5OO)Cy-81)= ____ .7 0 io 7 "X9 • (x-y)(x +xy+y)=_____ ;(兀%,+x^y+xy +y)= ____根据以上等式进行猜想,当n是偶数时,可得:(心)({+/》+严),,2+...+巧严2+勺严'+/)= _____ •10.三角形一边长26/4-2/7,这条边上的高为2b-3a,则这个三角形的面积是__________ .11.若(x+4)(x-3)=x2+/7ir-/7,则〃尸______ , n= ______ .12.整式的乘法运算(兀+4)仗+〃7),加为何值时,乘积中不含兀项?加为何值时,乘积中x项的系数为6?你能提岀哪些问题?并求出你提出问题的结论.13.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(d+2b),宽为(Q+b)的大长方形,则需要C类卡片()张.14.计算:(1 )(5mn2-4/n2H)(-2/nn)(2)(x+7)(x-6)-(x-2)(x+l)15•试说明代数A(2x+1)(1 -Zr+4x2)-x(3x-1 )(3x+1 )+(x2+x+1 )(x-1 )-(x-3)的值与x 无关.参考答案1.答案:c解析:【解答】A、(x-2) (x-3) =^-61+6,故本选项错误;B、(x-6) (x+1) *-5x-6,故本选项错误;C、(x-I) (x-5) *-6.1+5,故木选项正确:D、(.v+6) (x-1) =<+5.¥-6,故木选项错误;故选C.【分析】根据多项式乘以多项式的法则,口J表示为(a+b) (m+n) =am+an+bm+bn,进行计算即口J 得出正确答案.2.答案:A解析:【解答】A、2x+3x=5x f故A选项正确;B、2x*3x=6x2,故B选项错误;C、(2%) 3=8?,故C选项错误;D、5xW=5x3,故D选项错误;故选A.【分析】根据整式乘法和幕的运算法则.3.答案:B解析:【解答】A^ 2x (3x-2) =6.¥2-4X,故本选项错误;B、(2y+3x) (3x-2y) =9AT-4y2,故本选项正确;C、(x+2) 2=X2+4X4-4,故木选项错误;D、(x+2) (2.v-1) =2X2+3X-2,故木选项错误.故选B.【分析】根据整式乘法的运算法则、平方差公式、完全平方公式的知识求解,即可求得答案.注总排除法在解选择题屮的应用.4.答案:D解析:【解答】(F+/7X+2) (rq) =X^-qx1+px1-pcix+2x-2c/=^ + (p・q) x2+ (2・pq) x・2q,•・•多项式不含一次项,:.pq・2=0,即pq=2.故选D【分析】利用多项式乘以多项式法则计算,合并同类项得到最简结果,由结果中不含X的一次项,令一次项系数为0即可列出0与q的关系.5.答案:B解析:【解答】T (y+3) (y-2) =y-2y+3y-6=v2+y-6,*.* (y+3) (y-2) =>,2+/W)H-A?,・°・ y^+my+n=y1+y-6,m= 1 > n=-6.故选B.【分析】先根据多项式乘以多项式的法则计算0+3)(才2),再根据多项式相等的条件即可求出m、n 的值.6.答案:F+X・12解析:【解答】(x-3) (x+4) =X2+4X-3X- 12=^+x-12【分析】根据(a+b) (m+n) =am+an+bm+bn展开,再合并同类项即可.7.答案:10解析:【解答】T (x+g) (x-3) =F+ (-3+q) x-3q,.\x2+px+6=j(r+ (-3+q) x-3q,・°・/?=-3+q, 6=-3q,・*./?=-5»q=-2,・°・〃q二10.故答案是10.【分析】等式的右边根据多项式乘以多项式的法则,口J表示为(d+b) (m+n) =ani+an+bm+bn进行计算,再根据等式的性质可得关于#、q的方程组,求解即可.8.答案:①”・a・9900;②〉2・581y+40500.解析:【解答】(1)两因式中常数项的和等于乘积中的一次项系数,常数项的积等于乘积中的常数项;(2)(x+d) (x+b) =;r+ (d+b) x+ab.(3)①(G+99) (r/-100) =^2</-9900;②(y-5()0) (y-81) =y2-581y+40500.【分析】(1)根据乘积式屮的一次项系数、常数项与两因式屮的常数项之间的规律作答;(2)根据(1)屮呈现的规律,列出公式;(3)根据(2)中的公式代入计算.9.答案:A3: X4-/; V1*1-/'1.解析:【解答】原式原式*+.灯2 -与'-才三J-y4;原式之和+好+A严+M严+切丫才右),2畀),2_ /产时_),”+1=右了+1,【分析】根据多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.10.答案:-3/+2ZAab.解析:【解答】•・•三角形一边长2°+2b,这条边上的高为2b・3a,・°•这个三角形的面积为:(2d+2b) (2b・3c) 4-2= (a+b) (2b・3a) =-3a2+2b2-ab.【分析】根据三和形的面积二底x高边列岀表示面积是式子,再根据多项式乘以多项式的法则计算即可.11.答案:L 12.解析:【解答】T(x+4) (x-3) =x^-3x+4x-1 2=X2+X- 12=^+tnx-n,m= 1, -n=-12, Bp m= 1, /?= 12.【分析】将已知等式左边利用多项式乘以多项式法则计算,根据多项式相等的条件得出加与n的值,代入所求式子中计算,即可求出值.12.答案:-4, 2解析:【解答】T (x+4) (x+加)=,+〃X+4X+4〃7若要使乘积中不含x项,则4+加二0/.加二4若要使乘积中x项的系数为6,则/• 4+/??=6/• m=2提出问题为:加为何值时,乘积屮不含常数项?若要使乘积屮不含常数项,则4m=0rn=0【分析】把式子展开,若要使乘积中不含x项,则令含x项的系数为零;若要使乘积中x项的系数为6,则令含兀项的系数为6;根据展开的式子可以提出多个问题.13.答案:3张.解析:【解答】(a+2b) (d+b) =a2+3cib+2b2.则需要C类卡片3张.【分析】拼成的大长方形的面积是(d+2b) (a+b)二/+3“+2从即需要一个边长为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学乘法公式专项练习题
一、精心选一选
1.下列多项式的乘法中能用平方差公式计算的是()
A.
B.
C.
D.
2.下列等式成立的是()
A.
B.
C.
D.
3.等式
( )
中,括号内应填入的是()
A.
B.
C.
D.
4.若
,且
,则
的值是()
A.
B.
C.
D.
5.式子
是由两个整式相乘得到的,那么其中的一个整式可能是()
A.
B.
C.
D.
6.若

,则
的值是()
A.
B.
C.
D.
7.计算
的结果是()
A.
B.
C.
D.
8.已知

,则
的值是()
A.2
B. 3
C.
4 D. 5
二、细心填一填
9.
.
10.
.
11.
.
12.设
,则
(用含
的代数式表示).
13.
.
14.若
是关于
的一个完全平方式,则
.
15.一个正方形的边长是
,则它的面积是______________.
16.
.
三、耐心做一做
17.计算:
.
18.求值:
,其中

.
19. 已知

,求下列各式的值.
(1)
;(2)
20. 已知甲数为
,乙数比甲数的
倍多
,丙数比甲数的
倍少
,求这三个数的积,并
求当
时的积.
21. 某农场为了鼓励学生集体到农场去参加劳动,许诺学生到农场劳动后,每人将得到与参
加劳动人数数量相等的苹果,第一天去农场参加劳动的学生有
人,第二天有
人,第
三天有
人,第四天有
人.请你求出这四天农场共送出多少个苹果?
22. 阅读下列材料,解答下列问题.
利用完全平方公式把一个式子或一个式子的一部分改写为完全平方式或几个完全平方式的和
的形式,这种方法叫做配方法.如

;……
请你给下列两个式子配方:
(1)

(2)
.
七年级数学乘法公式专项练习题参考答案
一、1~4. BCAC; 5~8. DACA.
二、9.
;10.
; 11.
;12.
; 13.
; 14.
; 15.
; 16.
.
三、17.原式
.
18.原式
.当

时,原式
.
19.(1)原式

(2)原式
.
20.由题意,得乙数为
,丙数为
,故这三个数的积是
.当
时,原式
.
21.这四天农场共送出的苹果数:
(个).
22.(1)

(2)
.。

相关文档
最新文档