由三视图还原成实物图教学设计说明
由三视图还原成实物图
由三视图还原成实物图
难点
由三视图还原成实物图
教法
学
法
教具
个人主页
教
学
过
程
一.知识回顾
回顾上节课知识内容—引出课题
二.研探新知
(一)本课学习目标解读
>学会由三视图还原成实物图.
>体验学习过程,提高自己的想象能力.
(二)自主学习点评
>练习册学案“预习自查”.
>活页学案“自主学习”部分.
1.下面给出的三视图表示的几何体是( )
富县高级中学高一年级数学科目集体备课教案
中心发言人:白治军授课人:
课题
§3.2由三视图还原成实物图
第课时
三
维
目
标
知识与技能
掌握由三视图还原成实物图的方法.
过程与方法
培养学生的空间概念,提高学生空间想象力,掌握画三视图的基本技能.
情感态度与价值观
认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步的人类理性思考的作用,培养学生热爱数学的情感.
A、圆锥B、正三棱柱C、正三棱锥D、圆柱
2.一个几何体的三视图如下图所示,这个几何体是( )
A、球B、圆柱C、长方体D、圆锥
3.如图是一个几何体的三视图,则这个几何体是( )
A、圆锥B、圆柱C、长方体D、球体
(三)课堂互动探究
课本例6、例7
三.本课小结
四.课堂训练
五.布置作业与练习
教后反思
备课组长签字:
2012年月日
29.2三视图(复原几何体)教案
4.创新意识:鼓励学生在复原几何体的过程中,发挥想象力和创造力,探索不同解题方法,培养创新意识。
三、教学难点与重点
1.教学重点
(1)掌握三视图的基本概念及相互关系:主视图、左视图、俯视图分别从物体的正面、左面和上面观察得到,它们之间具有相互补充的关系。
在新课讲授环节,我采用了理论介绍、案例分析和重点难点解析相结合的方式,希望能够让学生更好地掌握知识。但从学生的反馈来看,对于三视图绘制规则这个难点,部分学生仍然存在一定的困难。我想在接下来的课程中,可以增加一些绘制练习,让学生在实际操作中逐步掌握绘制技巧。
实践活动和小组讨论环节,学生们表现出了很高的热情,积极投入到讨论和实验操作中。但在成果展示环节,我发现有些小组的展示不够清晰,可能是由于他们在讨论过程中没有充分整理自己的思路。为了提高学生的表达能力和逻辑思维,我计划在下一节课增加一些关于如何清晰表达自己观点的指导。
29.2三视图(复原几何体)教案
一、教学内容
本节课选自《数学》八年级下册第29章“几何体的三视图”,主要内容为29.2节“三视图(复原几何体)”。教学重点包括以下内容:
1.熟悉三视图(主视图、左视图、俯视图)的基本概念和特点;
2.学会从三视图中复原出简单的几何体;
3.能够根据给定的三视图正确绘制出相应的几何体;
突破方法:引导学生通过观察、分析和推理,发现几何体的性质和视图之间的规律,培养学生逻辑推理能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《三视图(复原几何体)》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要根据图纸来想象物体形状的情况?”(例如:看到家具的组装图纸,想象最终的家具样子。)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三视图的奥秘。
由三视图还原成实物图教学设计
《由三视图还原成实物图》教学设计一.教学理念设计新课程下教学的基本理念是倡导合作探究性学习,培养学生的创新精神和实践能力,更加贴近素质教育,更加人性化、信息化、多元化。
根据这一理念,本节是以实际问题的出现通过自主探究的方式掌握数学知识,以交流合作的模式发展数学能力,以理论是为实践服务的宗旨解决实际问题,最后升华为培养数学精神为理念。
“学起于思,思源于疑”。
学生有了疑问才会去进一步思考问题,才会有所发展,有所创造,二.教材分析本节是北师大版必修2第1章第3节的教学内容.在学完组合体的三视图后,教材从逆向思维的角度给出了本节内容.这两节内容的有机结合,使学生认图,识图的空间想象能力有了一定的提高, 为后面立体几何的学习做了一个很好的铺垫.同时它也是许多知识的载体,如计算几何体的体积或面积等。
从我们的教学经验可知:该节内容在整个立体几何中起到了承上启下的巨大作用,三.学情分析三视图是教材新增内容,在高考中一般总与几何体的体积(或面积)相结合来命题.但由于学生目前还没有学几何体的体积(或面积)内容,因此本节的教学只局限于如何由三视图还原成实物图. 但由于高一学生刚刚接触到立体几何,而立体几何则要求学生要有较强的空间想象能力,因此初学起来具有一定的难度,为了突破这个“瓶颈”,本节课特采用多媒体辅助教学,这既能充分发挥学生主观能动性,又能达到预期的教学目的.四.教学目标1. 知识目标①了解由实物图到三视图与由三视图还原成实物图之间的关系②掌握由三视图还原成实物图的方2. 教学重、难点教学重点:由三视图如何还原成实物图及其方法教学难点:复杂的组合体如何由三视图还原成实物图.3.能力目标①提高学生的空间想象能力和对所学知识的整合能力.②培养学生的动手动脑的习惯,培养学生的团队合作精神五.情感、态度与价值观通过师生共同探究,体会数学知识的形成过程,培养学生的空间想象能力,培养学生的团队合作精神,自觉养成动手、动脑及勤学严谨的良好学习习惯.六.教学方法探究式与启发式相结合.充分体现学生的主体地位和教师的主导作用七.授课类型:新授课( 1课时)八.教学过程设计一.教学程序与环节设计从教材的【思考交流】(奖杯的形状)引入新通过师生双边互动来组织课堂教学二.教学过程1.复习旧课此环节为两个部分:一部分是复习知识点,另一部分是一个及时巩固练习题设计的意图是:复习知识点是温故知新.加个习题一是为了及时巩固二是为了照顾基础弱的同学教学方法是:教师设问,学生齐答的形式.后再用多媒体给出答案2 课题提出为了表彰我校篮球赛中表现优秀的班级,学生会设计了一个如下图所示“大力神”奖杯.假设你是一个工艺加工店的老板, 你能生产出这种奖杯吗?这是教材上的一个素材.引用意图是:从实际问题出发激发学生的学习兴趣,同时也根据更好的处理了教材.3 例题讲解例题1下面是一些立体图形的三视图,请根据视图说出立体图形的名称.例题1由两个小题组成.此两题是基础题.设计意图是从基础入手,树立学生的信心.教学方法是:学生稍思考后提问例题2:根据三视图想像物体原形,并画出物体的实物草图?此题是个简单组合体的三视图.比上题稍难.设计意图是满足学生的挑战心教学方法是:师生共同探讨后得出结果.体现师生互动变式训练 根据三视图想像物体原形,并画出物体的实物草图此题与例2很相似,但不完全一样.设计意图:一是及时课堂反馈,二是锻炼学生的观察能力和类比能力.三是培养学生的语言表达能力和胆识.教学方法是:学生独立思考后提问,再让学生自己为同伴判断正误.针对学生的疑问再适当点评.体现学生是主体,老师是主导的教学理念.把课堂推向一个小高潮例题3:图1—33是4个三视图和4个实物图,请将三视图与实物图正确配对此例题为课本的例6.设计意图是:处理教材,利用好教材初步涉及到几何体的切和挖.教学方法是:把学生分成四组,每组派个同学来回答,后交互评价.这可以培养学生的团队合作精神,也可以再次推动课堂学习气氛.例题4根据三视图想像物体原形,并画出物体的实物草图此题也是课本上的例题.但和上题的区别在于现在要画出几何体.比上题要设计意图是锻炼学生的动手能力,培养学生的空间想象能力.教学方法是图1由学生独立思考完成,图2在教师的点评基础完成变式训练请由三视图画出实物图,此两题是中等题.难度大些.一个是组合体,一个是几何体的切与挖.设计意图是进一步由三视图还原成实物图该知识点,扩大学生的视野教学方法是,教师一边巡视,一边检查学生实际情况并以指导最后用动画演示验证.思维拓展已知一几何体的三视图如左图,主视图和左视图都是矩形,俯视图为正方形,在该几何体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是_________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为直角三角形,有一个面为等腰三角形的四面体;④每个面都是等腰三角形的四面体;⑤每个面都是直角三角形的四面体.此题是个多选题,难度大,学生可能会做,但不一定选全.设计意图:一是巩固该节所学内容,二是锻炼学生的空间想象和逻辑推理能力,三是为学有余力的同学提供了舞台.教学方法是:小组讨论,多让学生回答.把这节课推向高潮.最后用动画演示各种情况.九. 板书设计十. 教学反思:本节课的主要任务是引导学生完由三视图想象立体图形的复杂过程。
北师大版高中必修23.2由三视图还原成实物图课程设计
北师大版高中必修23.2由三视图还原成实物图课程设计一、课程背景随着工业化与信息化的不断发展,各行各业对于机械工程师、产品设计师、工业工程师等专业人才的需求日益增长,而设计能力是这些专业人才必备的一项基本技能。
因此,学习图学技术成为各个专业的必修课程之一。
在图学课程中,三视图绘制与实物图绘制是重中之重,而将三视图还原成实物图也是提高学生图学能力的难点之一。
本课程旨在通过引导学生从贴近实际的问题出发,通过对三视图的分析,以及图学知识的运用,让学生掌握将三视图还原成实物图的基本方法,提高学生的图学能力。
二、课程内容1. 课程目标•掌握三视图到实物图还原的基本方法;•掌握实物图绘图步骤与技巧;•培养学生的图学思维能力和实际应用能力。
2. 课程大纲(1) 课程导入了解课程目标,提高学生的学习兴趣和主动性。
(2) 三视图分析通过对三视图的分析,逐个绘制图形的主、顶、侧三视图,并通过比较实物图与三视图的差异,理解三视图还原成实物图的基本方法。
(3) 实物图绘制掌握实物图绘制步骤与技巧,了解实物图绘制需要注意的事项,并应用绘图工具进行实物图绘制。
(4) 实物图应用了解实物图在实际应用中的使用,学习实物图的应用范围和作用。
(5) 课程总结总结本次课程的学习内容和要点,巩固学生的知识点,并对下一步学习内容进行介绍。
三、教学方法1. 课堂讲授采用讲述基础知识,介绍实物图绘制方法及其应用,讲解实物图制作中存在的常见问题等方式。
2. 练习演练通过课堂实践、作业布置及作业点评等多种方式,引导学生针对具体问题进行解决,全面提高学生的图学技能。
3. 课堂互动通过课堂提问、答疑及小组讨论等方式,激发学生的学习兴趣和主动性,培养学生的团队协作能力和实际应用能力。
四、教学评价1. 考核方法针对学生的学习情况,采用试卷考核和实物图绘制等方式进行课程评价与考核。
2. 评分标准•三视图绘制准确性•实物图绘制技巧及完成度•实物图应用能力五、教学资源1. 教材教师可根据教学需要选择相应的教材,建议选择与本课程内容配套的北师大版高中必修教材。
三视图还原成实物图PPT教案
第8页/共30页
请思考:
1、 如图某实物的三视图,想一想它实物 样子。
第9页/共30页
二:连一连:
图1-35是4个三视图和4个实物图,请将 三视图和实物图正确配对。
第10页/共30页
分析:
由(1)(2)的三视图都是由二个长方形和 一个正方形及三条对角线组成,可见它们的实物 是由一个长方体割而成。所以(1)(2)的实物图 形是C,D。对照选项确定答案:(1)的实物图是 (C),(2)的实物图是(D),(3)(4)的视图由 俯视图可确定,(3)的实物图是(B),(4)的 实物图是(A)。
3. 同一物体放置的位置不同,所画的三视图可能 不同。
4.清楚简单组合体是由哪几个基本几何体组成的,并 注意它们的组成方式,特别是它们的交线位置。
第6页/共30页
主视图
诗:
横看成岭侧成峰, 远近高低各不同。 不识庐山真面目, 只缘身在此山中。
A.圆柱 C.圆锥
B.三棱柱 D.球体
3:三视图均相同的几何体有( )
A.球 C.正四面体
B.正方体 D.以上都对
第23页/共30页
练习 根据三视图画出几何体
第24页/共30页
练习 画出下列几何体的三视图
第25页/共30页
练习 画出下列几何体的三视图
第26页/共30页
课堂小结:
第27页/共30页
作业
第28页/共30页
第29页/共30页
三视图还原成实物图
会计学
1
导入新课:
2008年我国北京举办了第29届夏季奥运会,在这届 奥运会上我国运动健儿取得了骄人的成绩,为祖国赢 得了荣誉。下面请同学根据下列的运动图标,猜一猜 这是什么运动项目。
空间几何体的三视图教案
空间几何体的三视图教案空间几何体的三视图教案作为一位不辞辛劳的人民教师,时常会需要准备好教案,编写教案助于积累教学经验,不断提高教学质量。
教案应该怎么写呢?以下是小编为大家整理的空间几何体的三视图教案,欢迎阅读与收藏。
教学目标(1)了解两种投影方法,中心投影与平行投影。
(2)掌握三视图的画法规则,能画出简单空间几何体的三视图,能由三视图还原成实物图。
过程与方法通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。
◆情感态度与价值观欣赏空间图形反映的数学美,培养学生大胆创新、勇于探索、互相合作的精神。
教学重点画出空间几何体的三视图。
教学难点识别三视图所表示的空间几何体。
教学方法问题探索和启发引导式相结合教具准备多媒体教学设备教学过程(一)创设情境,引入新课活动1.(多媒体播放手影表演图片,组织学生欣赏)1.导入:同学们在感受这些形象逼真的图形时,是否思考一下,这些图形是怎样形成的呢?它们形成的原理又是什么呢?这就是我们本节课所要探讨的第一个问题——中心投影和平行投影.设计意图引入生活情境,激发学生的学习欲望,自然导入新课,同时又弘扬了中国传统文化,增强文化意识.活动2.多媒体播放演示中心投影和平行投影的相关知识.1.投影的概念①投影:由于光的照射,在不透明物体后面的屏幕上留下这个物体的影子,这种现象叫做投影.其中,光线叫做投影线,屏幕叫做投②中心投影:把光由一点向外散射形成的投影叫做中心投影.③平行投影:把在一束平行光线照射下形成的投影称为平行投影.平行投影分为斜投影与正投影.讲解原则:配以多媒体动画,让学生思考,抽象或概括出相应定义,教师加以修正.设计意图通过动画演示投影的形成过程,使学生直观、生动地感悟,使抽象问题具体化,加速学生对概念的理解.2.中心投影和平行投影的区别和用途中心投影的投影线交于一点,形成的投影图能非常逼真地反映原来的物体,主要运用于绘画领域.平行投影的投影线相互平行,形成的投影图则能比较精确地反映原来物体的形状和特征.因此更多应用于工程制图或技术图样.活动3.直观感知形成概念--三视图①欣赏图片;图片说明从不同的角度看同一物体视觉的'效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这就是本节课我们要探讨的第二个问题——空间几何体的三视图.②欣赏飞机、轿车的三视图图片;设计意图引入生活情境激发学生的学习欲望,自然引入新课,同时与其它学科相联系,拓宽学生思维,发展他们联想、类比能力.(二)动手作图掌握技能在初中,我们已经学习了长方体、正方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),下面我们就以长方体为例,结合刚刚学过的投影知识,进一步了解空间几何体的三视图。
高中数学新北师大版精品教案《3.2由三视图还原成实物图》
三视图还原几何体(切割法)西安市长安区第六中学赵宝教材分析:本节是北师大版必修二第一章第三节的教学内容.本节课是建立在学生学习了简单几何体,以及学习了简单几何体的三视图后,从逆向思维的角度通过三视图还原几何体.本节课的学习为后面立体几何的学习做铺垫.是培养学生空间想象能力非常重要的载体,对学生学习整个立体几何有重重大影响。
学期分析:于高一学生刚刚接触到立体几何,而立体几何则要求学生要有较强的空间想象能力,本节课是建立在学生学习了简单几何体,以及学习了简单几何体的三视图后,但是对学生有一定的难度,为了突破这个“瓶颈”,本节课特采用多媒体辅助教学,这既能充分发挥学生主观能动性,又能达到预期的教学目的。
教学目标:①了解由实物图与三视图还之间的方位与位置的对应关系。
②掌握利用切割法还原三视图。
③提高学生的空间想象能力和对所学知识的整合能力。
④培养学生的动手动脑的习惯,培养学生的团队合作精神。
教学重难点:重点:利用三视图对应几何体方位进行切割,逐步形成满足要求的几何体。
难点:①切割过程中对不同切割结果的判断、选择与调整。
②体积最小问题。
教学过程:【一】复习旧知,引入新知通过展示前面学习的简单几何体,引入本节课,让学生加强对常见几何体的直观印象,通过一段“微课”快速复习前面学习的有关三视图的基本知识。
【二】提出问题,探究规律要求学生画出长方体的三视图,并在图中标出与几何体方位(上下左右前后)的对应关系。
探究例1中三视图还原几何体,体验切割法还原几何体的要点和流程。
师生互动探求规律。
【三】学生活动,自主探究开放的问题,有利于调动学生的积极性和主动性,分小组探究结果,动手操作,相互讨论,组内合作,探究结果。
【四】变式训练,提高拓展如图,正方形边长为1,则该几何体的体积最小值为( ).A.36B.63/2C.18D.45/4不同切割方法的尝试,判断、选择与调整。
提升学生空间想象能力。
【五】小结归纳,作业布置1.小结切割法还原几何体的要点2.布置作业已知一几何体的三视图如左图,主视图和左视图都是矩形,俯视图为正方形,在该几何体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是_________(画出相应的立体图).①矩形;②不是矩形的平行四边形;③有三个面为直角三角形,有一个面为等腰三角形的四面体;④每个面都是等腰三角形的四面体;⑤每个面都是直角三角形的四面体.。
由三视图还原成实物图
由三视图还原成实物图【学习目标】1.学会根据物体的三视图描述出几何体的基本形状或实物原型;2.经历探索简单的几何体的三视图的还原,进一步发展空间想象能力。
【学习重点】根据物体的三视图描述出几何体的基本形状或实物原型【学习难点】根据物体的三视图描述出几何体的基本形状或实物原型【课前预习案】预习问题设置1.(1)正方体的三视图都是。
(2)圆柱的三视图中有两个是,另一个是。
(3)圆锥的三视图中有两个是,另一个是和。
(4)四棱锥的三视图中有两个是,另一个是。
(5)球体的三视图都是。
2.根据下面的三视图说出立体图形的名称.分析:由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后再综合起来考虑整体图形。
(1)由主视图可知,物体正面是;由俯视图可知,由上向下看物体是;由左视图知,物体的侧面是。
综合视图可知,物体是.(2)由主视图可知,物体正面是;由俯视图可知,由上向下看物体是;由左视图知,物体的侧面是。
综合各视图可知,物体是.3.根据物体的三视图(如下图)描述物体的形状.分析:由主视图可知,物体正面是;由俯视图可知,由上向下看物体是,且有一条棱(中间的实线)可见到,两条棱(虚线)被遮挡;由左视图知,物体的侧面是,且有一条棱〔中间的实线)可见到。
综合各视图可知,物体是 .【课堂探究案】1.说出下列图中两个三视图分别表示的几何体.2.下图是一几何体的三视图,想象该几何体的几何结构特征,画出该几何体的形状.3.某几何体的三视图如下所示,则该几何体可以是()【课后检测案】1.下图是由一些相同的小正方形构成的几何体的三视图,这样些相同的小正方形的个数是( )2.如下图所示,甲、乙、丙是三个立体图形的三视图,甲、乙、丙对应的标号正确的是( )甲 乙 丙①长方体 ②圆锥 ③三棱锥 ④圆柱3.请写出三种视图都相同的两种几何体是 .4.根据下列物体的三视图,填出几何体的名称:(1)如图7所示的几何体是______.(2)如图8所示的几何体是______.主视图 左视图 俯视图A. B. CD.图7图8。
§1.3.2由三视图还原成实物图【最新】
简单几何体简单旋转体直观图 三视图简单多面体§1.3.2由三视图还原成实物图 设计:周洪刚 审核:周大毛一、教学目标 1、知识与技能:(1)能根据简单几何体的三视图画出相应的实物草图或直观图,从而进一步熟悉简单几何体的结构特征;(2)能识别三视图表示的简单组合体的立体模型,丰富学生的空间想象力。
2、过程与方法:通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。
3、情感、态度与价值观:感受数学就在身边,提高学生学习立体几何的兴趣,培养学生大胆创新、勇于探索、互相合作的精神。
二、教学的重点和难点重点:由简单几何体的三视图画出相应的实物草图或直观图。
难点:识别三视图所表示的空间几何体。
三、教学方法:结合教材特点,采取“问题探究式”的教学方法。
四、教学手段:多媒体辅助教学,增强直观性,增大课堂容量。
五、授课类型:新授课 六、课时安排:1课时 七、教学过程设计:Ⅰ、复习回顾加深印象:Ⅱ、创设情境激发兴趣:上节我们已经可以由实物图画出它的三视图,但在实际生产中,工人要根据三视图加工零件,因此需要由三视图还原成实物,也就要求我们由三视图想象它的空间实物形状。
这正是我们这节课要研究的问题。
(引入课题)探索与思考:一块木板上有三个孔(方孔、圆孔、三角孔),请设计这样一个几何体,使它能沿三个不同方向不留空隙地通过这三个孔?并画出该几何体的三视图,和实物草图。
Ⅲ、新课探究直观感知探究1:简单旋转体的三视图探究2:简单多面体的三视图-----正棱锥探究3:自主探究正棱台,正棱柱的三视图的共同特征,并总结规律:正棱台的三视图中主视图和左视图的外围边界图形是等腰梯形,俯视图中含有两个相似的底面多边形,因此三视图中出现了外围边界图形是梯形的其组合体中可能含有台体;正棱柱的三视图中主视图和左视图的外围边界图形是矩形,俯视图的外围边界图形是其底面多边形,因此三视图中出现了外围边界图形是矩形的其组合体中可能含有柱体探究4:简单组合体的三视图还原成实物图例1:请根据三视图说出立体图形的名称,并画出相应的立体图形.(1) (2)正视图左视图正视图左视图俯视图俯视图变式1.说出下面的三视图表示的几何体的结构特征,并画出实物草图.例2.下列两图分别是两个简单组合体的三视图,想象它们表示的组合体的结构特征,并画出其示意图.Ⅳ、巩固应用,培养能力课本 P18 练习:T1 P20习题1-3 A组 T7变式2.下列两图分别是两个简单组合体的三视图,想象它们表示的组合体的结构特征,并作适当描述练习2:探索与思考:一块木板上有三个孔(方孔、圆孔、三角孔),请设计这样一个几何体,使它能沿三个不同方向不留空隙地通过这三个孔?并画出该几何体的三视图,和实物草图。
3.2由三视图还原成实物图-北师大版必修2教案
3.2 由三视图还原成实物图 - 北师大版必修2教案一、教学目标1.了解三视图的概念和作用;2.掌握如何用三视图进行还原;3.熟练掌握使用手绘或CAD绘制三视图的技能;4.能够根据三视图还原出模型的实物图;5.提高学生的观察、思考和表达能力。
二、教学重点和难点教学重点1.三视图的理解与应用;2.三视图与实物图之间的转换。
教学难点1.如何将三视图转换为实物图;2.如何进行实物图的手绘或CAD绘制。
三、教学过程3.1 三视图的概念和作用1.向学生讲解三视图的概念和作用,引导学生认识到:–三视图是指一个物体在三个相互垂直的方向上的投影,包括主视图、俯视图和左视图;–三视图是机械制图的一种重要表现方式,在工程设计和加工中有着广泛的应用;–通过三视图,设计者可以将想法转化为具体的图形模型,方便对设计进行评估和进一步修改。
2.引导学生进行举例说明,加深对三视图的理解。
3.2 三视图还原成实物图的过程1.向学生讲解如何将三视图还原成实物图:–首先,通过三视图确定物体在空间中的位置、形状、大小等特征;–其次,根据这些特征,用手绘或CAD绘制出物体的底面图、侧面图和正面图;–最后,将这些视图拼合在一起,形成物体的实物图。
2.通过示例演示三视图还原成实物图的过程,以加强学生的理解和记忆。
3.3 手绘或CAD绘制三视图的技能1.向学生讲解手绘或CAD绘制三视图的技能:–手绘方法:使用铅笔、尺子、三角板等工具,根据原始图形逐步绘制出各视图;–CAD绘制方法:利用计算机辅助设计软件,通过绘制基本构图、旋转、复制、裁剪等方式生成三视图。
2.通过实践演习,提高学生手绘或CAD绘制三视图的能力。
3.4 根据三视图还原出模型的实物图1.向学生讲解如何根据三视图还原出模型的实物图:–首先,根据三视图确定物体几何形状和大小;–其次,绘制出物体的轮廓和细节,以形成完整的实物图。
2.通过示例演示,让学生理解如何根据模型的几何特性进行绘制。
三视图还原直观图教案
三视图还原直观图教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如学习资料、英语资料、学生作文、教学资源、求职资料、创业资料、工作范文、条据文书、合同协议、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays, such as learning materials, English materials, student essays, teaching resources, job search materials, entrepreneurial materials, work examples, documents, contracts, agreements, other essays, etc. Please pay attention to the different formats and writing methods of the model essay!三视图还原直观图教案本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这部分知识是立体几何的基础之一,一起看看三视图还原直观图教案!欢迎查阅!三视图还原直观图教案1一、教材的地位和作用本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这部分知识是立体几何的基础之一,一方面它是对上一节空间几何体结构特征的再一次强化,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间概念的基础和训练学生几何直观能力的有效手段。
湘教版九年级数学下册3.3三视图第2课时由三视图还原几何体说课稿
湘教版九年级数学下册3.3三视图第2课时由三视图还原几何体说课稿一. 教材分析湘教版九年级数学下册3.3三视图第2课时,主要讲述了由三视图还原几何体的方法。
这一节课是在学生已经掌握了主视图、左视图、俯视图的基础上进行的,目的是让学生能够通过三个视图来想象和还原出几何体的形状,提高学生的空间想象能力和抽象思维能力。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和抽象思维能力,对于主视图、左视图、俯视图的概念和绘制方法也已经有所了解。
但是,由于学生之间的差异,一部分学生在空间想象能力上还有一定的不足,对于复杂的几何体,可能还不能很好地通过三视图来还原出其形状。
因此,在教学过程中,需要关注这部分学生的学习情况,通过一些具体的教学手段,帮助学生提高空间想象能力和抽象思维能力。
三. 说教学目标1.知识与技能目标:通过本节课的学习,使学生能够理解由三视图还原几何体的方法,并能够运用这一方法来解决一些实际问题。
2.过程与方法目标:通过观察、思考、交流等活动,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 说教学重难点1.教学重点:由三视图还原几何体的方法。
2.教学难点:对于复杂的几何体,如何通过三视图来还原出其形状。
五. 说教学方法与手段在本节课的教学过程中,我将采用讲授法、讨论法、实践法等多种教学方法,并结合多媒体教学手段,帮助学生更好地理解和掌握由三视图还原几何体的方法。
六. 说教学过程1.导入新课:通过一个简单的实例,引导学生思考如何通过三个视图来还原出一个几何体,激发学生的学习兴趣。
2.讲解新课:讲解由三视图还原几何体的方法,并通过一些具体的例子来说明这一方法的应用。
3.实践操作:让学生自己尝试通过三视图来还原一些复杂的几何体,培养学生的空间想象能力和抽象思维能力。
4.总结提高:对所学内容进行总结,引导学生思考如何更好地理解和运用由三视图还原几何体的方法。
用由三视图还原实物图学习教案
主视图
左视图
由三视图还原(huán yuán)实物图为:
俯视图
第26页/共50页
第二十七页,共50页。
三 、还原(huán yuán)组合体的 三视图
正视图
侧视图
由三视图还原(huán yuán)实物图为:
俯视图
第27页/共50页
第二十八页,共50页。
三 、还原(huán yuán)组合体的 三视图
三、三视图出现直角时规律总结:
以本题为例,三视图如图: (1)当正视图中出现了直角(zhíjiǎo),说明左侧面与底面垂直; (2)当侧视图中出现了直角(zhíjiǎo),说明后侧面与底面垂直; (3)当俯视图中出现了直角(zhíjiǎo),说明左侧面与底面垂直,后侧面与底面垂直; (4)当正视图、侧视图在同一点处都出现直角(zhíjiǎo)时,则此点处的侧棱与底面垂直. (5)当正视图、侧视图、俯视图在同一点处都出现直角(zhíjiǎo)时,则交于此点的三条棱两 两互相垂直,交于此点的三个面两两互相垂直.
侧视 图
注意(zhù yì): 能看见的轮廓线和棱用实线表示, 不能看见的轮廓线和棱用虚线表示.
第13页/共50页
第十四页,共50页。
二 、还原(huán yuán)柱、锥、台、球的三视图
正视图
侧视 图
由三视图还原(huán yuán)实物图为三棱柱, 如图:
俯视图 正视图
由三视图还原(huán yuán)实物图为三棱 柱,如图:
由三视图还原(huán yuán)实物图为:
正视图
侧视图
俯视图
第28页/共50页
第二十九页,共50页。
三 、还原(huán yuán)组合体的 三视图
由三视图还原(huán yuán)实物图为:
《由三视图还原成实物图》 导学案
《由三视图还原成实物图》导学案一、学习目标1、理解三视图的概念,掌握三视图的投影规律。
2、学会根据三视图还原实物图的基本方法和步骤。
3、培养空间想象能力和逻辑思维能力,提高对几何图形的认知水平。
二、学习重难点1、重点(1)掌握三视图的投影规律。
(2)能够准确地根据三视图还原出实物图。
2、难点(1)如何从复杂的三视图中提取关键信息。
(2)对于不规则物体的三视图还原。
三、知识回顾1、投影的概念在光线的照射下,物体在某个平面上留下的影子叫做物体的投影。
2、三视图的定义(1)主视图:从物体的前面向后面投射所得的视图称为主视图。
(2)俯视图:从物体的上面向下面投射所得的视图称为俯视图。
(3)左视图:从物体的左面向右面投射所得的视图称为左视图。
3、三视图的投影规律(1)主视图和俯视图:长对正。
(2)主视图和左视图:高平齐。
(3)俯视图和左视图:宽相等。
四、新课导入在我们的日常生活和生产中,经常需要根据物体的三视图来还原出实物图,以便更好地了解物体的形状和结构。
比如,工程师在设计机械零件时,会先画出三视图,然后根据三视图来制造零件;建筑设计师在设计房屋时,也会先画出三视图,然后根据三视图来建造房屋。
那么,如何根据三视图准确地还原出实物图呢?这就是我们今天要学习的内容。
五、方法探究1、观察分析三视图首先,仔细观察三视图,注意每个视图的形状、大小和位置关系。
分析主视图、俯视图和左视图分别反映了物体的哪些特征。
2、确定物体的基本形状根据三视图的投影规律,先确定物体的大致形状。
比如,如果主视图是一个长方形,俯视图也是一个长方形,那么可以初步判断物体是一个长方体。
3、逐步构建实物图从最明显的特征开始,逐步构建实物图。
比如,如果主视图中有一个突出的部分,那么在还原实物图时,要先把这个突出部分构建出来。
4、检查核对在还原实物图的过程中,要不断地检查核对三视图,确保还原的实物图符合三视图的要求。
六、例题讲解例 1:已知一个物体的三视图如下,还原出实物图。
由三视图还原成实物图教学设计(同名22664)
《由三视图复原成实物图》教课方案高安二中龙跃文一、教材剖析本课教课内容是一般高中课程实验教科书(北师大版)必修 2 第一章立体几何初步§《由三视图复原成实物图》。
三视图是新课标新增内容之一,在整个高中课程和高考取都据有重要地位。
中学生在初中阶段对三视图有了初步认识,高中阶段则在初中的基础之上,进一步掌握简单空间图形(柱体,锥体,球体和台体以及它们的简单组合或许切割)三视图的画法,并能够辨别三视图表示的立体模型。
本节第一课时已经学习了依据立体图形画出三视图和三视图的画法例则,学生们对简单几何体的三视图有了一些认识。
别的,《由三视图复原成实物图》的知识与我们平时生活、生产、科学研究等领域有着亲密的联系,所以学习这部分内容有着宽泛的现实意义。
并且,由三视图复原成实物图是培育学生空间想象能力的重要载体,对整个立体几何的学习有深刻影响,要惹起足够重视。
二、教课目的知识目标:能依据三视图想象出几何体的大概形状并画出几何体的直观草图,从而进一步熟习简单几何体的构造特点。
能力目标:培育和发展学生剖析问题的能力和作图能力,侧重培育其空间想象能力;经过直观感知,操作确认,培育学生的应企图识。
感情目标:感觉数学就在身旁,提升学生的学习立体几何的兴趣,培育学生勇敢创新、勇于研究、相互合作的精神。
三、教课重难点教课重点:依据三视图想象对应基本几何体形状教课难点:依据三视图想象几何体的组合状况或许切割状况四、教课手段和教课方法教课手段:多媒体教课( Smart Board)与传统教课相联合教课方法:直观教课、启迪式教课联合自主-合作 -研究的教课形式。
在教课中利用强盛的信息技术教课手段,化抽象为详细,由静到动,增强直观性和启迪性。
使学生简单理解并印象深刻 ,利用多媒体课件 ,精心建立学生自主研究的教课平台 ,启迪指引学生察看 ,想象 ,思虑 ,实践 ,从而发现规律、获取悉识 ,体验成功。
五、教课过程设计教课环节师生活动知识回首:三视图的画法(指引学生归纳重点)1.剖析物体的基本形体构成及其形状、大小、地点关系复2.确立主视方向(最能反应物体的主要形状特点)一般习先画出主视图3. 依据实物图画出俯视图和侧视图(分界限和可见轮廓旧线用实线画出,不行见轮廓线用虚线画出 ) 使每个部知分切合“长对正、高平齐、宽相等”的投影规律。
最新版初中数学教案《由三视图还原几何体》精品教案(2022年创作)
第2课时由三视图复原几何体1.进一步明确三视图的意义,由三视图想象出原型;(重点)2.由三视图得出实物原型并进行简单计算.(重点)一、情境导入同学们独立完成以下几个问题:1.画三视图的三条规律,即______视图、______视图长对正;______视图、______视图高平齐;______视图、______视图宽相等.2.如下列图,分别是由假设干个完全相同的小正方形组成的一个几何体的主视图和俯视图,那么组成这个几何体的小正方体的个数是多少?二、合作探究探究点一:由三视图描述几何体【类型一】由三视图确定几何体根据图①②的三视图,说出相应的几何体.解析:根据三视图想象几何体的形状,关键要熟练掌握直棱柱、圆锥、球等几何体的根本三视图.解:图①是直三棱柱,图②是圆锥和圆柱的组合体.方法总结:先根据各个视图想象从各个方向看到的几何体形状,再来确定几何体的形状.变式训练:见《》本课时练习“课堂达标训练〞第1题【类型二】由三视图确定正方体的个数一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图、左视图如下列图,要摆成这样的图形,最少需用________个小正方体.解析:根据主视图、左视图是分别从物体正面、左面看,所得到的图形,结合此题进行分析即可.根据三视图可得第二层有2个小正方体,根据主视图和左视图可得第一层最少有4个小正方体,故最少需用7个小正方体.故答案为7.方法总结:由三视图判断几何体由多少个立方体组成时,先由俯视图判断底面的行列组成;再从主视图判断每列的高度(有几个立方体),并在俯视图中按照左、中、右的顺序用数字标出来;然后由左视图判断行的高度,在俯视图中按照上、中、下的顺序用数字标出来;最后把俯视图中的数字加起来.变式训练:见《》本课时练习“课堂达标训练〞 第5题探究点二:三视图的相关计算如图是某工件的三视图,其中圆的半径是10cm ,等腰三角形的高是30cm ,那么此工件的体积是( )A .1500πcm 3B .500πcm 3C .1000πcm 3D .2000πcm 3解析:由三视图可知该几何体是圆锥,底面半径和高.解:∵底面半径为10cm ,高为30cm.∴体积V =13π×102×30=1000π(cm 3).应选C. 方法总结:依据三视图“长对正,高平齐,宽相等〞的原那么,正确识别几何体,再进行有关计算.变式训练:见《》本课时练习“课堂达标训练〞第8题三、板书设计本节课是在学习了简单几何体的三视图的根底上,反过来几何体的三视图想象出几何体,既是对三视图知识的完善,又是三视图知识的简单应用,培养了学生的空间想象能力,使学生初步体会到由平面图形到立体图形的转化也是一种数学方法.2.1 圆的对称性1.理解圆的有关概念及圆的对称性;(重点)2.掌握点与圆的位置关系的性质与判定.(重点)一、情境导入在我们日常生活中常常可以看到有许多圆形物体,例如茶碗的碗口、锅盖、太阳、车轮、射击用的靶子等都是圆的,怎样画出一个圆呢?木工师傅是用一根黑线来画圆的,给你一根细绳、一个图钉和一支铅笔,你能画出一个圆吗?二、合作探究探究点一:圆的相关概念(2021-2021·临清期末)以下说法,正确的选项是( )A .弦是直径B .弧是半圆C .半圆是弧D .过圆心的线段是直径解析:A.弦是连接圆上任意两点的线段,只有经过圆心的弦才是直径,不是所有的弦都是直径.故本选项错误;B.弧是圆上任意两点间的局部,只有直径的两个端点把圆分成的两条弧是半圆,不是所有的弧都是半圆.故本选项错误;C.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.所以半圆是弧是正确的;D.过圆心的弦才是直径,不是所有过圆心的线段都是直径,故本选项错误.应选C.方法总结:此题考查的是对圆的认识,根据弦,弧,半圆和直径的概念对每个选项进行判断,然后作出选择.变式训练:见《》本课时练习“课堂达标训练〞第1题探究点二:点与圆的位置关系在Rt △ABC 中,∠C =90°,BC =3cm ,AC =4cm ,以B 为圆心,以BC 为半径作⊙B ,问点A 、C 及AB 、AC 的中点D 、E 与⊙B 有怎样的位置关系?解析:此题关键是先求出A ,C ,D ,E 与圆心B 的距离,再与半径BC 的长度相比较. 解:如右图所示,在Rt △ABC 中,∠C =90°,BC =3cm ,AC =4cm ,∴AB =AC 2+BC 2=5cm.∵⊙B 的半径为3cm ,AB =5cm>3cm ,∴点C 在⊙B 上,点A 在⊙B 外.又∵DB =12×5=52cm<3cm ,∴点D 在⊙B 内.连接EB ,∵EB >BC =3cm ,∴点E 在⊙B 外. 方法总结:要确定某一点与圆的位置关系,只需计算该点与圆心的距离,再与半径的大小作比较.假设半径为r,点到圆心的距离为d,那么有:当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.变式训练:见《》本课时练习“课堂达标训练〞第4题探究点三:圆的对称性观察以下列图形:请问以上三个图形中是轴对称图形的有______,是中心对称图形的有______(分别用以上三个图形的代号填空).解析:依据轴对称图形和中心对称图形的定义解答题目.解:①②③①③方法总结:圆有无数条对称轴,圆的对称轴是过圆心的每一条直线,即直径所在的直线,而不是圆的直径.变式训练:见《》本课时练习“课堂达标训练〞第7题三、板书设计教学过程中,应鼓励学生自己动手画圆,探究圆形成的过程,同时小组讨论、交流各自发现的圆的有关性质,使学生成为课堂的主人,进一步提升学生独立思考问题的能力及探究能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《由三视图还原成实物图》教学设计
一.教学理念设计
新课程下教学的基本理念是倡导合作探究性学习,培养学生的创新精神和实践能力,更加贴近素质教育,更加人性化、信息化、多元化。
根据这一理念,本节是以实际问题的出现通过自主探究的方式掌握数学知识,以交流合作的模式发展数学能力,以理论是为实践服务的宗旨解决实际问题,最后升华为培养数学精神为理念。
“学起于思,思源于疑”。
学生有了疑问才会去进一步思考问题,才会有所发展,有所创造,
二.教材分析
本节是北师大版必修2第1章第3节的教学容.在学完组合体的三视图后,教材从逆向思维的角度给出了本节容.这两节容的有机结合,使学生认图,识图的空间想象能力有了一定的提高, 为后面立体几何的学习做了一个很好的铺垫.同时它也是许多知识的载体,如计算几何体的体积或面积等。
从我们的教学经验可知:该节容在整个立体几何中起到了承上启下的巨大作用,
三.学情分析
三视图是教材新增容,在高考中一般总与几何体的体积(或面积)相结合来命题.但由于学生目前还没有学几何体的体积(或面积)容,因此本节的教学只局限于如何由三视图还原成实物图. 但由于高一学生刚刚接触到立体几何,而立体几何则要求学生要有较强的空间想象能力,因此初学起来具有一定的难度,为了突破这个“瓶颈”,本节课特采用多媒体辅助教学,这既能充分发挥学生主观能动性,又能达到预期的教学目的.
四.教学目标
1. 知识目标
①了解由实物图到三视图与由三视图还原成实物图之间的关系
②掌握由三视图还原成实物图的方
2. 教学重、难点
教学重点:由三视图如何还原成实物图及其方法
教学难点:复杂的组合体如何由三视图还原成实物图.
3.能力目标
①提高学生的空间想象能力和对所学知识的整合能力.
②培养学生的动手动脑的习惯,培养学生的团队合作精神
五.情感、态度与价值观
通过师生共同探究,体会数学知识的形成过程,培养学生的空间想象能力,培养学生的团队合作精神,自觉养成动手、动脑及勤学严谨的良好学习习惯.
六.教学方法
探究式与启发式相结合.充分体现学生的主体地位和教师的
主导作用
七.授课类型: 新授课( 1课时)
八.教学过程设计
一.教学程序与环节设计
二.教学过程
1.复习旧课
此环节为两个部分:一部分是复习知识点,另一部分是一个及时巩固练习
题
设计的意图是:复习知识点是温故知新.加个习题一是为了及时巩固二是为了照顾基础弱的同学
教学方法是:教师设问,学生齐答的形式.后再用多媒体给出答案
2 课题提出
为了表彰我校篮球赛中表现优秀的班级,学生会设计了一个如下图所
示“大力神”奖杯.假设你是一个工艺加工店的老板, 你能生产出这
种奖杯吗?
这是教材上的一个素材.引用意图是:从实际问题出发激发学生的学习兴
趣,同时也根据更好的处理了教材.
3 例题讲解
引入新课 组织探究
探索发现 尝试练习 作业回馈 从教材的【思考交流】(奖杯的形状)引入新通过师生双边互动来组织课堂教学 A 组和B 组
例题1下面是一些立体图形的三视图,请根据视图说出立体图形的名称.
例题1由两个小题组成.此两题是基础题.设计意图是从基础入手,树立学生的信心.
教学方法是:学生稍思考后提问
例题2:?
此题是个简单组合体的三视图.比上题稍难.设计意图是满足学生的挑战心
教学方法是:师生共同探讨后得出结果.体现师生互动
变式训练根据三视图想像物体原形,并画出物体的实物草图
此题与例2很相似,但不完全一样.
设计意图:一是及时课堂反馈,二是锻炼学生的观察能力和类比能力.三是培养学生的语言表达能力和胆识.
教学方法是:学生独立思考后提问,再让学生自己为同伴判断正误.针对学生的疑问再适当点评.体现学生是主体,老师是主导的教学理念.把课
堂推向一个小高潮
例题3:图1—33是4个三视图和4个实物图,请将三视图与实物图正确配对
此例题为课本的例6.
设计意图是:处理教材,利用好教材初步涉及到几何体的切和挖.
教学方法是:把学生分成四组,每组派个同学来回答,后交互评价.这可
以培养学生的团队合作精神,也可以再次推动课堂学习气氛.
例题4根据三视图想像物体原形,并画出物体的实物草图
此题也是课本上的例题.但和上题的区别在于现在要画出几何体.比上题要设计意图是锻炼学生的动手能力,培养学生的空间想象能力.
教学方法是图1由学生独立思考完成,图2在教师的点评基础完成
变式训练请由三视图画出实物图,
此两题是中等题.难度大些.一个是组合体,一个是几何体的切与挖.
设计意图是进一步由三视图还原成实物图该知识点,扩大学生的视野
教学方法是,教师一边巡视,一边检查学生实际情况并以指导最后用动画演示验证.
思维拓展
已知一几何体的三视图如左图,主视图和左视图都是
矩形,俯视图为正方形,在该几何体上任意选择4个
顶点,它们可能是如下各种几何形体的4个顶点,这
些几何形体是_________(写出所有正确结论的编号).
①矩形;
②不是矩形的平行四边形;
③有三个面为直角三角形,有一个面为等腰三角形的四面体;
④每个面都是等腰三角形的四面体;
⑤每个面都是直角三角形的四面体.
此题是个多选题,难度大,学生可能会做,但不一定选全.
设计意图:一是巩固该节所学容,二是锻炼学生的空间想象和逻辑推理能力,三是为学有余力的同学提供了舞台.
教学方法是:小组讨论,多让学生回答.把这节课推向高潮.最后用动画演示各种情况.
九. 板书设计
十. 教学反思:本节课的主要任务是引导学生完由三视图想象立体图形的复杂过程。
直观感知操作确认是新课程几何课堂的一个突出特点,采用直观感受、启导发现、交流合作探究的学习方式,教师通过创设学习情景、平等融洽的人际环境,激发学生的学习积极性。
通过大量的多媒体直观,学生获得了由三视图到实物图的感性认识,通过学生的观察思考,动手实践,操作练习,实现认知从感性认识上升为理性认识,培养了学生的空间想象能力象.当然对于教学来说,没有任何单一的策略能够适应所有的情况,而有效的教学必须要有可供选择的各种策略因素来达到不同的教学目标。
只有掌握了较多的不同的策略,才能根据实际情况制定出良好的教学方案。