1.3.2由三视图还原成实物图
由三视图还原成实物图
由三视图还原成实物图
难点
由三视图还原成实物图
教法
学
法
教具
个人主页
教
学
过
程
一.知识回顾
回顾上节课知识内容—引出课题
二.研探新知
(一)本课学习目标解读
>学会由三视图还原成实物图.
>体验学习过程,提高自己的想象能力.
(二)自主学习点评
>练习册学案“预习自查”.
>活页学案“自主学习”部分.
1.下面给出的三视图表示的几何体是( )
富县高级中学高一年级数学科目集体备课教案
中心发言人:白治军授课人:
课题
§3.2由三视图还原成实物图
第课时
三
维
目
标
知识与技能
掌握由三视图还原成实物图的方法.
过程与方法
培养学生的空间概念,提高学生空间想象力,掌握画三视图的基本技能.
情感态度与价值观
认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步的人类理性思考的作用,培养学生热爱数学的情感.
A、圆锥B、正三棱柱C、正三棱锥D、圆柱
2.一个几何体的三视图如下图所示,这个几何体是( )
A、球B、圆柱C、长方体D、圆锥
3.如图是一个几何体的三视图,则这个几何体是( )
A、圆锥B、圆柱C、长方体D、球体
(三)课堂互动探究
课本例6、例7
三.本课小结
四.课堂训练
五.布置作业与练习
教后反思
备课组长签字:
2012年月日
1.3.2三视图还原实物
回答以下问题: 回忆画简单组合体的三视图的原则以 及注意的问题都有哪些?
从三视图还原实物图
从三视图还原实物图是对给定的 视图进行分析,想象出形体的实 际形状,还原实物图是绘制三视 图的逆过程。
阅读教材16页例6,体会这种互 逆的过程。演示
绘制实物图
基本思路是根据已知视图,将图 形分解成若干组成部分,然后按 照投影规律和各视图间的联系, 分析出各组成部分所代表的空间 形状及所在位置,最终想像出整 体形状。 步骤:分解视图→确定投影关系 →单个想象→组合几何体
分解视图:从主视图着手,将图形分解成若干部分。 投影关系:根据视图间投影规律,找出分解后各组 成部分在各视图中的投影。 单个想象:根据分解后各组成部分的视图想象出各 自的空间形状,如下图所示。
(a) 图6-6 视图间投影联系
(b)
自主探究
根据还原的步骤,完成教材第17 页的三视图的还原。演示 思路点拨:先确定组合体是由那 些基本几何体组成的,组成方式 如何,然后想象出实物图的模型, 最后画出其实物图(或直观图).
思考交流
小组讨论教材18页思考交流(奖 杯的还原),然后在全班进行展 示讨论成果。演示
作业布置
习题1-3 A组第7题(绘制实物图 或者直观图)
ห้องสมุดไป่ตู้
由三视图还原立体图形-PPT课件
例1:根据三视图中主视图、俯视图和左视图, 说出立体图形的名称。
隐藏主视图 隐藏俯视图
隐藏左视图
隐藏圆柱
隐藏三棱柱
隐藏长方体
三视图
隐藏主视图 隐藏点
隐藏左视图
隐藏俯视图
隐藏圆锥
隐藏三棱锥
三视图
圆柱无中轴
三视图
隐藏几何体
三视图
隐藏几何体
三视图
隐藏几何体 显示对象
H
例2:根据物体的三视图,描述物体的形状.
移动点 移动点 还原系列2个动作
三视图
移动点 移动点 线段系列2个动作
隐藏对象
移动隐藏几何体
三视图
隐藏对象
A
B
C
三视图
A
B
C
隐藏几何体
显示对象
三视图
隐藏几何体
根据下面的三视图,说出这个几何体是由几个正方体怎么组合而成的.
建筑物的形状
某建筑物模型的三视图如图所示,请你描述建造的建筑物是什么样 子的?共有几层?模型一共需要多少个小正方体?
反馈练习
隐藏对象
显示点 移动点 移动点 系列2个动作
高中数学 1.2.2空间几何体的三视图(二)由三视图还原成示意图教案数学教案
§1.2.2 空间几何体的三视图(二)由三视图还原成示意图一、教学内容分析本节课是《普通高中课程标准实验教科书·数学必修二》(人教A版)第一章第二节第二课《§1.2.2空间几何体的三视图》。
三视图是空间几何体的一种表示形式,是立体几何的基础之一。
学好三视图为学习直观图奠定基础,同时有利于培养学生空间想象能力,几何直观能力的,有利于培养学生学习立体几何的兴趣。
由于三视图与人们的实际生活有着紧密的联系,对指导人们从事社会生产、生活具有十分重要的意义,所以这一内容也成了近几年新课程高考的一个热点。
二、学生学习情况分析学生在义务教育阶段已经学习过三视图的基本作法,但只要求能作简单几何体的三视图,如长方体、正方体以及一些正方体的组合等,主要停留在形的认识上,而对于三视图的概念还不清晰。
学生在义务教育阶段只接触了从空间几何体到三视图的单向转化,还无法准确将三视图还原成实物模型。
对于三视图的学习,复习回顾三视图,让学生体会作三视图刻画空间几何体的必要性,然后由学生自己动手画三视图,在学生原有知识的基础上进行新知识的建构,引出三视图的作图方法与规范要求引入新课。
三、设计思想参照《新课程实施标准》,在本课的教学中我努力实践以下两点:1、教学中,通过对实物模型及多媒体课件所呈现的空间几何体(由简单到复杂,逐步变化)的整体观察,帮助学生认识其结构特征,巩固和提高义务教育阶段有关三视图的学习和理解。
采用多媒体的教学手段,加强直观性和启发性,增大课堂容量,提高课堂效率。
2、本节课是以理论是为实践服务的宗旨掌握数学知识、交流合作的模式发展数学能力、自主探究的方式解决数学问题为教学模式,学生在教师营造的“可探索”环境里,积极参与、通过自己的观察,想象,思考,实践,主动发现规律、获得知识,体验成功。
四、教学目标(一)知识与技能::①巩固和提高有关三视图的学习和理解,进一步掌握三视图画法规则②能正确通过简单组合体的三视图还原物体的示意图,能识别三视图所表示的空间几何体(二)过程与方法目标:① 通过学生自己动手画几何体的三视图、观察各种三视图间的关系,进一步培养学生的空间想象能力,画图能力。
2020版人教A数学必修2:1.3.2 球的体积和表面积
(2)如图为某几何体的三视图,则该几何体的体积为
.
解析:(2)由三视图可知该几何体是一个组合体,上半部分是半径为 1 的球的
(D)3 倍
解析:设小球半径为 1,则大球的表面积 S 大=36π,S 小+S 中=20π, 36π = 9 . 20π 5
解得 R= 6 ;所以外接球的体积为 V = 外接球 4π ×( 6 )3=8 6 π.故选 B
答案:(1)B
3
(2)(2018·广东靖远县高一期末)在三棱锥 S-ABC 中,SA=BC= 41 ,SB=AC=5,
SC=AB= 34 ,则三棱锥 S-ABC 外接球的表面积为
.
解析:(2)将三棱锥补成一个长、宽、高分别为a,b,c的长方体,
以AB,BD和CD为棱,把三棱锥A-BCD补充为长方体, 则该长方体的外接球即为三棱锥的外接球,且长方体的对角线是外接球 的直径; 所以(2R)2=AB2+BD2+CD2=1+2+1=4,所以外接球O的表面积为4πR2=4π. 故选D. 答案:(1)D
(2)(2018·安徽六安高一期末)球内切于正方体的六个面,正方体的棱长为
(A) 9 π +12 2
(C)9π +42
(B) 9 π +18 2
(D)36π +18
解析:(1)由三视图可得这个几何体是由上面一个直径为 3 的球,下面一个底 面为正方形且边长为 3,高为 2 的长方体所构成的几何体,则其体积为:
三视图还原成实物图PPT教案
第8页/共30页
请思考:
1、 如图某实物的三视图,想一想它实物 样子。
第9页/共30页
二:连一连:
图1-35是4个三视图和4个实物图,请将 三视图和实物图正确配对。
第10页/共30页
分析:
由(1)(2)的三视图都是由二个长方形和 一个正方形及三条对角线组成,可见它们的实物 是由一个长方体割而成。所以(1)(2)的实物图 形是C,D。对照选项确定答案:(1)的实物图是 (C),(2)的实物图是(D),(3)(4)的视图由 俯视图可确定,(3)的实物图是(B),(4)的 实物图是(A)。
3. 同一物体放置的位置不同,所画的三视图可能 不同。
4.清楚简单组合体是由哪几个基本几何体组成的,并 注意它们的组成方式,特别是它们的交线位置。
第6页/共30页
主视图
诗:
横看成岭侧成峰, 远近高低各不同。 不识庐山真面目, 只缘身在此山中。
A.圆柱 C.圆锥
B.三棱柱 D.球体
3:三视图均相同的几何体有( )
A.球 C.正四面体
B.正方体 D.以上都对
第23页/共30页
练习 根据三视图画出几何体
第24页/共30页
练习 画出下列几何体的三视图
第25页/共30页
练习 画出下列几何体的三视图
第26页/共30页
课堂小结:
第27页/共30页
作业
第28页/共30页
第29页/共30页
三视图还原成实物图
会计学
1
导入新课:
2008年我国北京举办了第29届夏季奥运会,在这届 奥运会上我国运动健儿取得了骄人的成绩,为祖国赢 得了荣誉。下面请同学根据下列的运动图标,猜一猜 这是什么运动项目。
由三视图还原成实物图sk
正视图
侧视图
俯视图
变式训练一: 变式训练一:
正视图
侧视图
俯视图
A
B
2、如图是一个物体的三视图,试说出物体 、如图是一个物体的三视图, 的形状。 的形状。
侧 正 视 视 图 图
俯 视 图
例2:说出下面的三视图表示的几何体的 :
结构特征,并画出其示意图 结构特征,并画出其示意图.
正视图
侧视图
将一个长方体挖去两个
复习回顾: 复习回顾:
一、三视图: 三视图
1、从正面看到的图形叫做主视图;从左面看到的图形 、从正面看到的图形叫做主视图; 叫左视图;从上面看到的图形叫俯视图。这三张图, 叫左视图;从上面看到的图形叫俯视图。这三张图, 称为三视图. 称为三视图 2、形体可见轮廓线画粗实线,不可见轮廓线画虚线 、形体可见轮廓线画粗实线,
俯视图
小长方体后剩余的部分
变式训练二: 变式训练二:
1.一个零件的主视图和俯视图如图 请描述 一个零件的主视图和俯视图如图,请描述 一个零件的主视图和俯视图如图 这个零件的形状,并补画出它的左视图 并补画出它的左视图. 这个零件的形状 并补画出它的左视图
主视图
球的一部分与圆柱的组 左视图同主视图. 合体,左视图同主视图 合体 左视图同主视图
请找出下列三视图对应的几何体 第
一
a
b c
组
A
B
C
第
二
e
俯
f
俯 俯
g
左 左 左
组
正三棱锥 长方体 正四三视图如下, 一个几何体的三视图如下,你能说出它是什么 立体图形吗? 立体图形吗?
正视图 侧视图
俯视图
与上一张三视图有何区别与联系? 与上一张三视图有何区别与联系?
三视图还原实物图PPT课件
2
2
2
2
1 主视图
1
1
俯视图
2
1 左视图
动画演示
21 1
18
7.[2012·北京卷] 某三棱锥的三视图如图 1-4 所示,
该三棱锥的表面积是( )
A.28+6 5 C.56+12 5
B.30+6 5 D.60+12 5
19
多面体P-ABCD的直观图及三视图如下 图所示,E、F分别为PC、BD的中点。
三视图还原实物图
1
下面所给的三视图表示什么几何体?
圆锥
2
例. 根据三视图说出立体图形的名称
3
例. 根据物体的三视图,描述物体的形状.
4
由三视图描述几何体(或实物原型),一般步 骤为: ① 想象:根据各视图想象从各个方向看 到的几何体形状; ② 定形:综合确定几何体(或实物原型) 的形状; ③ 定大小位置:根据三个视图“长对正,高 平齐,宽相等”的关系,确定轮廓线的位置, 以及各个方向的尺寸.
⒈根据图1、图2、图3的视图,你能分别想 像出物体的大致形状吗?
主 视 图
图1
主 视 图
图2
主 视 图
图3
13
⒉根据图4、图5的视图,你能分别想像出物 体的大致形状吗?
主 视 图
俯 视 图
图4
主
左
视
视
图
图
图5
14
3.下列是一个物体的三视图,请描述出它的形 状
主视图 左视图 俯视图
三棱锥
15
小结4:基本几何体的三视图
A.5
B.6C.7D.811 12 21
8
3.下列是一个物体的三视图,请描述出它的形 状
x32由三视图还原成实物图共32页文档
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
SUMMER TEMPLATE
x32由三视图还原成实物图
复习引入
1.柱、锥、台、球是最基本、最简单的 几何体,由这些几何体可以组成各种各 样的组合体,怎样画简单组合体的三视 图就成为研究的课题.
2.另一方面,将几何体的三视图还原几 何体的结构特征,也是我们需要研究的 问题.
画简单几何体的三视图 思考1:在简单组合体中,从正视、侧视、 俯视等角度观察,有些轮廓线和棱能看 见,有些轮廓线和棱不能看见,在画三 视图时怎么处理?
思考2:如图所示,将一 个长方体截去一部分, 这个几何体的三视图是 什么?
正视图
侧视图
正视
俯视图
思考3:观察下列两个实物体,它们的结 构特征如何?你能画出它们的三视图吗?
正视图 侧视图 俯视图
正视图 侧视图 俯视图
思考4:如图,桌子上放着一个长方体和 一个圆柱,若把它们看作一个整体,你 能画出它们的三视图吗?
正视
正视图
侧视图
俯视图
3.2由三视图还原成实物图
我们由实物图可以画出它的三视图, 实际生产中,工人要根据三视图加工零 件,需要由三视图还原成实物。这就要 求我们能由三视图想象它的空间实物形 状
思考1:下列两图分别是两个简单组合体 的三视图,想象它们表示的组合体的结 构特征,并画出其示意图.
正视图 侧视图
俯视图
正视图 侧视图 俯视图
思考2:下图是简单组合体的三视图,想 象它们表示的组合体的结构特征,并作 适当描述.
正视图
侧视图
俯视图
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
由三视图还原成实物图ppt课件
正四棱锥的三视图(尺寸不作严格要求)
正四棱锥
侧视图
正视图
俯视图
*
一、热身训练
1.(2017·温州模拟)若某几何体的三视图如图所示,则此几何体的直观图是( )
*
*
*
★状元笔记★ 由三视图还原直观图的方法—想象法 (1)一般情况下,根据正视图、俯视图确定是柱体、锥体还是组合体. (2)根据俯视图确定是否为旋转体,确定柱体、锥体类型、确定几何体摆放位置. (3)综合三视图特别是在俯视图的基础上想象判断几何体. (4)常见三视图对应的几何体: ①三视图为三个三角形,对应三棱锥; ②三视图为两个三角形,一个四边形,对应四棱锥; ③三视图为两个三角形,一个圆,对应圆锥; ④三视图为一个三角形,两个四边形,对应三棱柱; ⑤三视图为两个四边形,一个圆,对应圆柱.
*
*
*
*
*
★状元笔记★ 三视图还原直观图的方法—提点连线法 提点:1、在长方体(或正方体)出俯视图; 2、将三视图中的点分为左、中、右三部分; 3、观察主视图、左视图,确定被提起的点个数,高度,是否垂直提起. 连线:A点为母点,被提起为B点,B点的原则为 1、B点要与A点连接; 2、俯视图中与A点共线的点,都要与B点连接; 3、若与A点连接的点也被提起,B点要与新提起得点连接;若A点不是被垂直提起为B点,按上述规则连线后,去掉A点及其所有连线.
*
二、典例分析
*
*
★状元笔记★ 由三视图还原直观图的方法—长方体法 (1)把每个视图分解为基本图形(如三角形、矩形、圆等) (2)结合对应部分的三视图想象对应的基本几何体; (3)将几何体放在长方体中还原.先从俯视图出发确定几何体顶点的大概位置,然后结合正、左视图确定顶点的具体位置。
(必考题)高中数学必修二第一章《立体几何初步》测试卷(有答案解析)(3)
一、选择题1.某几何体的三视图如图所示(单位:cm ),则该几何体的外接球的表面积(单位:2cm )是( )A .36πB .54πC .72πD .90π2.现有一个三棱锥形状的工艺品P ABC -,点P 在底面ABC 的投影为Q ,满足12QABQAC QBC PABPACPBCS S S S S S ===△△△△△△,22222213QA QB QC AB BC CA ++=++,93ABCS =,若要将此工艺品放入一个球形容器(不计此球形容器的厚度)中,则该球形容器的表面积的最小值为( )A .42πB .44πC .48πD .49π3.大摆锤是一种大型游乐设备(如图),游客坐在圆形的座舱中,面向外,通常大摆锤以压肩作为安全束缚,配以安全带作为二次保险,座舱旋转的同时,悬挂座舱的主轴在电机的驱动下做单摆运动.假设小明坐在点A 处,“大摆锤”启动后,主轴OB 在平面α内绕点O 左右摆动,平面α与水平地面垂直,OB 摆动的过程中,点A 在平面β内绕点B 作圆周运动,并且始终保持OB β⊥,B β∈.设4OB AB =,在“大摆锤”启动后,下列结论错误的是( )A .点A 在某个定球面上运动;B .β与水平地面所成锐角记为θ,直线OB 与水平地面所成角记为δ,则θδ+为定值;C .可能在某个时刻,AB//α;D .直线OA 与平面α所成角的正弦值的最大值为17. 4.已知三棱锥A BCD -的各棱长都相等,E 为BC 中点,则异面直线AB 与DE 所成角的余弦值为( ) A .13 B .36C .33 D .1165.一个几何体的三视图如图所示,则该几何体的外接球的表面积是( )A .2πB .3πC .4πD .16π6.如图,在四棱锥P ABCD -中,底面ABCD 是矩形.其中3AB =,2AD =,PAD △是以A ∠为直角的等腰直角三角形,若60PAB ∠=︒,则异面直线PC 与AD 所成角的余弦值是( )A .2211B .2211-C 27D .11117.如图,正方形ABCD 的边长为4,点E ,F 分别是AB ,B C 的中点,将ADE ,EBF △,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若点G 及四面体A DEF '的四个顶点都在同一个球面上,则以FDE 为底面的三棱锥G -DEF 的高h 的最大值为( )A.263+B.463+C.4263-D.2263-8.某几何体的三视图如图所示,该几何体的体积为V,该几何体所有棱的棱长之和为L,则()A.8,14253V L==+B.8,1425V L==+C.8,16253V L==+D.8,1625V L==+9.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.23D.210.在四棱锥P -ABCD 中,//AD BC ,2AD BC =,E 为PD 中点,平面ABE 交PC 于F ,则PFFC=( ) A .1B .32C .2D .311.平行六面体1111ABCD A B C D -的六个面都是菱形,那么点1A 在面11AB D 上的射影一定是11AB D 的________心,点1A 在面1BC D 上的射影一定是1BC D 的________心( )A .外心、重心B .内心、垂心C .外心、垂心D .内心、重心12.如图(1),Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,沿AD 将ACD △折起到AC D ',使得C '在平面ABD 上的射影H 落在AB 上,如图(2),则以下结论正确的是( )A .AC BD '⊥B .AD BC '⊥ C .BD C D ⊥' D .AB C D ⊥'二、填空题13.已知直三棱柱111ABC A B C -,14AB BC AA ===,42AC =,若点P 是上底面111 A B C 所在平面内一动点,若三棱锥P ABC -的外接球表面积恰为41π,则此时点P 构成的图形面积为________.14.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中A C B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.15.已知正四棱锥的体积为18,侧棱与底面所成的角为45,则该正四棱锥外接球的表面积为___________.16.已知一个几何体的三视图如图所示,俯视图为等腰三角形,则该几何体的外接球表面积为_________.17.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =,1cos 3BAC ∠=,若三棱锥D ABC -的体积为27,则此三棱锥的外接球的表面积为______18.已知棱长为4的正方体ABCD -A 1B 1C 1D 1中,点M 是棱AD 的中点,点N 是棱AA 1的中点,P 是侧面四边形ADD 1A 1内一动点(含边界),若C 1P ∥平面CMN ,则线段C 1P 长度的取值范围是________.19.如图,在直角梯形ABCD 中,//,,2,3,60AB CD AB AD CD AB ABC ⊥==∠=°,将此梯形以AD 所在直线为轴旋转一周,所得几何体的表面积是_________________.20.将底面直径为8,高为23为______.三、解答题21.如图,在直三棱柱111ABC A B C -中,1,2AC BC AC BC CC ⊥===.(1)求三棱柱111ABC A B C -的体积; (2)求异面直线1CB 与1AC 所成角的大小; (3)求二面角1B AC C --的平面角的余弦值.22.如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BCD ∠=,已知2PB PD ==,6PA =,E 为PA 的中点.(1)求证:PC BD ⊥;(2)求二面角B PC E --的余弦值; (3)求三棱锥P BCE -的体积.23.如图,在多面体ABCDEF 中,底面ABCD 为菱形,且∠DAB =π3,AB =2,EF //AC ,EA =ED =3,BE =5.(1)求证:平面EAD ⊥平面ABCD ; (2)求三棱锥F -BCD 的体积.24.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.25.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为梯形,//AD BC ,6BC =,2PA AD CD ===,E 是BC 上一点且23BE BC =,PB AE ⊥.(1)求证:AB ⊥平面PAE ; (2)求点C 到平面PDE 的距离.26.如图,在直角梯形ABED 中,//BE AD ,DE AD ⊥,BC AD ⊥,4AB =,23BE =.将矩形BEDC 沿BC 翻折,使得平面ABC ⊥平面BCDE .(1)若BC BE =,证明:平面ABD ⊥平面ACE ;(2)当三棱锥A BCE -的体积最大时,求平面ADE 与平面ABC 所成的锐二面角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积. 【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆, 且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-,222(3)3R R ∴=-+, 解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.2.D解析:D 【分析】作QM AB ⊥,连接PM ,易证AB PM ⊥,由112122QAB PABAB QMS S AB PM ⨯⨯==⨯⨯△△,得到2PM QM=,再根据12 QAB QACQBCPAB PAC PBCS S SS S S===△△△△△△,由对称性得到AB BC AC==,然后根据22222213QA QB QCAB BC CA++=++,93ABCS=,求得6,23AB AQ==,在AOQ△中,由222AO OQ AQ=+求解半径即可.【详解】如图所示:作QM AB⊥与M,连接PM,因为PQ⊥平面ABC,所以PQ AB⊥,又QM PQ Q⋂=,所以AB⊥平面PQM,所以AB PM⊥,所以112122QABPABAB QMSS AB PM⨯⨯==⨯⨯△△,2PM QM=,因为12QAB QAC QBCPAB PAC PBCS S SS S S===△△△△△△,由对称性得AB BC AC==,又因为22222213QA QB QCAB BC CA++=++,93ABCS=所以21sin60932ABCS AB=⨯⨯=解得6,3AB AQ==所以3,23,3QM PM PQ===,设外接球的半径为r,在AOQ △中,222AO OQ AQ =+,即()()222323r r =-+, 解得72r =, 所以外接球的表面积为2449S r ππ==, 即该球形容器的表面积的最小值为49π. 故选:D 【点睛】关键点点睛:本题关键是由12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△得到三棱锥是正棱锥,从而找到外接球球心的位置而得解..3.C解析:C 【分析】利用已知条件确定OA 是定值,即得A 选项正确;作模型的简图,即得B 正确;依题意点B 在平面α内,不可能AB//α,得C 错误;设AB a ,结合题意知AB α⊥时,直线OA 与平面α所成角最大,计算此时正弦值,即得D 正确. 【详解】因为点A 在平面β内绕点B 作圆周运动,并且始终保持OB β⊥,所22OA OB AB =+,又因为OB ,AB 为定值,所以OA 也是定值,所以点A 在某个定球面上运动,故A 正确;作出简图如下,OB l ⊥,所以2πδθ+=,故B 正确;因为B α∈,所以不可能有AB//α,故C 不正确; 设AB a ,则4OB a =,2217OA AB OB a =+,当AB α⊥时,直线OA 与平面α所成角最大,此时直线OA 与平面α1717a=,故D 正确. 故选:C. 【点睛】本题解题关键在于认真读题、通过直观想象,以实际问题为背景构建立体几何关系,再运用立体几何知识突破难点.4.B解析:B 【分析】取AC 中点F ,连接,EF DF ,证明FED ∠是异面直线AB 与DE 所成角(或其补角),然后在三角形中求得其余弦值即可得. 【详解】取AC 中点F ,连接,EF DF ,∵E 是BC 中点,∴//EF AB ,12EF AB =, 则FED ∠是异面直线AB 与DE 所成角(或其补角), 设1AB =,则12EF =,32DE DF ==, ∴在等腰三角形DEF 中,11324cos 63EF FED DE ∠===. 所以异面直线AB 与DE 所成角的余弦值为36. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.5.C解析:C 【分析】由三视图还原出原几何体,确定其结构,再求出外接球的半径得球的表面积. 【详解】由三视图,知原几何体是一个四棱锥P ABCD -,如图,底面ABCD 是边长为1的正方形,PB ⊥底面ABCD ,由PB ⊥底面ABCD ,AD ⊂面ABCD ,得PB AD ⊥,又AD AB ⊥,AB PB B ⋂=,,AB PB ⊂平面PAB ,所以AD ⊥平面PAB ,而PA ⊂平面PAB ,所以AD PA ⊥,同理DC PC ⊥,同样由PB ⊥底面ABCD 得PB BD ⊥,所以PD 中点O 到四棱锥各顶点距离相等,即为其外接球球心,PD 为球直径,222222PD PB BD PA AD AB =+=++=,∴外接球半径为12ADr ==, 表面积为2414S ππ=⨯=. 故选:C .【点睛】关键点点睛:本题考查由三视图还原几何体,考查棱锥的外接球表面积.解题关键是确定外接球的球心.棱锥的外接球球心在过各面外心(外接圆圆心)且与该面垂直的直线上.6.D解析:D 【分析】在图形中找到(并证明)异面直线所成的角,然后在三角形中计算. 【详解】因为//AD BC ,所以PCB ∠是异面直线PC 与AD 所成角(或其补角), 又PA AD ⊥,所以PA BC ⊥,因为AB BC ⊥,AB PA A ⋂=,,AB PA ⊂平面PAB ,所以BC ⊥平面PAB , 又PB ⊂平面PAB ,所以PB BC ⊥. 由已知2PA AD ==,所以22222cos 23223cos607PB PA AB PA AB PAB =+-⋅∠=+-⨯⨯︒=22211cos 11(7)2BC PCB PC ∠===+, 所以异面直线PC 与AD 所成角的余弦值为21111. 故选:D . 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.7.A解析:A 【分析】先求出'A FDE -外接球的半径和外接圆的半径,再利用勾股定理求出外接球的球心到外接圆的圆心的距离,可得高h 的最大值. 【详解】因为A ,B ,C 三点重合于点A ',原来A B C ∠∠∠、、都是直角,所以折起后三条棱'''A F A D A E 、、互相垂直,所以三棱锥'A FDE -可以看作一个长方体的一个角,它们有相同的外接球,外接球的直径就是长方体的体对角线,即为'2'2'22441626R AF AD AE =++=++6R =2241625DE DF AD AE ==++=2222EF BE BF =+= 在DFE △中,22210cos 222522DE EF DF DEF DE EF +-∠===⨯⨯⨯, 所以DEF ∠为锐角,所以2310sin 1cos DEF DEF ∠=-∠=,DEF的外接圆的半径为552 2sin310DFrDEF===∠,则球心到DEF外心的距离为2223R r-=,以FDE为底面的三棱锥G-DEF的高h的最大值为1R OO+的距离为263+.故选:A.【点睛】本题考查了翻折问题和外接球的问题,关键点翻折前后量的变化及理解外接球和三棱锥的关系,考查了学生的空间想象力和计算能力.8.A解析:A【分析】由三视图还原几何体,由棱锥的体积公式可得选项.【详解】在如图所示的正方体1111ABCD A B C D-中,P,E分别为11,B C BC的中点,该几何体为四棱锥P ABCD-,且PE⊥平面ABCD.由三视图可知2AB=,则5,3PC PB PD PA====,则21825681425,2233L V=++=+=⨯⨯=.故选:A.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.9.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112 =221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.10.C解析:C【分析】首先通过延长直线,DC AB,交于点G,平面BAE变为GAE,连结PG,EG交于点F,再根据三角形中线的性质,求PFFC的值.【详解】延长,DC AB,交于点G,连结PG,EG交PC于点F,//AD BC ,且2AD BC =,可得点,B C 分别是,AG DG 的中点,又点E 是PD 的中点,PC ∴和GE 是△PGD 的中线,∴点F 是重心,得2PFFC=故选:C 【点睛】关键点点睛:本题的关键是找到PC 与平面BAE 的交点,即将平面BAE 转化为平面GAE 是关键. 11.C解析:C 【分析】将三棱锥111A AB D -、三棱锥11A BC D -分离出来单独分析,根据线段长度以及线线关系证明1A 的射影点分别是11AB D 和1BC D 的哪一种心. 【详解】三棱锥111A AB D -如下图所示:记1A 在面11AB D 上的射影点为O ,连接11,,AO B O D O ,因为11111AA A D A B ==,又1A O ⊥平面11AB D , 所以222222*********1,,AA AO AO A D AO OD A B AO OB =+=+=+ 所以11AO OB OD ==,所以O 为11AB D 的外心;三棱锥11A BC D -如下图所示:记1A 在面1BC D 上的射影点为1O ,连接1111,,BO C O DO ,因为11//BC AD ,且四边形11ADD A 是菱形,所以11AD A D ⊥,所以11BC A D ⊥, 又因为11A O ⊥平面1BC D ,所以1111111,AO BC AO A D A ⊥=,所以1BC ⊥平面11AO D ,又因为1DO ⊂平面11AO D ,所以11DO BC ⊥, 同理可知:1111,BO DC C O DB ⊥⊥,所以1O 为1BC D 的垂心, 故选:C. 【点睛】关键点点睛:解答本题的关键是通过1A 的射影点去证明线段长度的关系、线段位置的关系,借助线面垂直的定义和判定定理去分析解答问题.12.C解析:C 【分析】设AH a =,则3BH a =,由线面垂直的性质和勾股定理可求得DH a AH ==,由等腰三角形的性质可证得BD ⊥DH ,再根据线面垂直的判定和性质可得选项. 【详解】设AH a =,则3BH a =,因为'C H ⊥面ABD ,AB 面ABD ,DH ⊂面ABD ,所以'C H ⊥AB ,'C H ⊥DH ,'C H ⊥DB , 又Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,所以'1,6C D BD B DAB π==∠=∠=,所以在'Rt AC H 中,()2''221C H AC AHa =-=-Rt C HD ’中,()2'222'211DH C D C H a a =-=--=,所以DH a AH ==,所以6ADH DAB π∠=∠=,又23ADB π∠=,所以2HDB π∠=,所以BD ⊥DH ,又'C HDH H =,所以BD ⊥面'C DH ,又'C D ⊂面'C DH ,所以BD ⊥'C D , 故选:C. 【点睛】关键点点睛:在解决折叠问题时,关键在于得出折叠的前后中,线线、线面、面面之间的位置关系的不变和变化,以及其中的边的长度、角度中的不变量和变化的量.二、填空题13.【分析】确定是等腰直角三角形的中点分别是和的外心由直棱柱性质得的外接球的球心在上外接球面与平面的交线是圆是以为圆心为半径的圆求出可得面积【详解】则设分别是的中点则分别是和的外心由直三棱柱的性质得平面 解析:4π【分析】确定ABC 是等腰直角三角形,11,AC A C 的中点1,D D 分别是ABC 和111A B C △的外心,由直棱柱性质得P ABC -的外接球的球心O 在1DD 上,外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,求出1PD 可得面积. 【详解】4,AB BC AC ===90ABC ∠=︒,设1,D D 分别是11,AC A C 的中点,则1,D D 分别是ABC 和111A B C △的外心,由直三棱柱的性质得1DD ⊥平面ABC , 所以P ABC -的外接球的球心O 在1DD 上,如图,24()41OA ππ=,则2OP OA ==,32OD ===, 所以11135422OD DD OD AA OD =-=-=-=,12PD ===, P ABC -的外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,其面积为224S ππ=⨯=. 故答案为:4π.【点睛】关键点点睛:本题考查立体几何中动点轨迹问题的求解,重点考查了几何体的外接球的有关问题的求解,关键是根据外接球的性质确定球心位置,结合勾股定理得出动点所满足的具体条件,结论:三棱锥的外接球的球心在过各面外心且与此面垂直的直线上.14.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:82【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可. 【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABCSBC AO =⋅=⨯⨯= 故答案为:2【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.15.【分析】作出图形计算出正四棱锥的高与底面边长设底面的中心为计算得出为正四棱锥的外接球球心可求得该正四棱锥的外接球半径即可得解【详解】如下图所示设正四棱锥的底面的中心为连接设正四棱锥的底面边长为则由于解析:36π【分析】作出图形,计算出正四棱锥P ABCD -的高与底面边长,设底面ABCD 的中心为E ,计算得出E 为正四棱锥P ABCD -的外接球球心,可求得该正四棱锥的外接球半径,即可得解. 【详解】如下图所示,设正四棱锥P ABCD -的底面ABCD 的中心为E ,连接PE 、AC 、BD ,设正四棱锥P ABCD -的底面边长为a ,则2AC BD a ==,由于E 为正四棱锥P ABCD -的底面ABCD 的中心,则PE ⊥平面ABCD , 由于正四棱锥P ABCD -的侧棱与底面所成的角为45,则45PAC PCA ∠=∠=, 所以,PAC △是以APC ∠为直角的等腰直角三角形, 同理可知,PBD △是以BPD ∠为直角的等腰直角三角形,E 为AC 的中点,1222PE AC a ==,2ABCD S a =正方形, 231122183326P ABCD ABCD V S PE a a a -=⋅=⨯⨯==正方形,解得32a =,232PE a ==,由直角三角形的性质可得1122PE AC BD ==,即PE AE BE CE DE ====,所以,E 为正四棱锥P ABCD -外接球的球心, 球E 的半径为3r PE ==,该球的表面积为2436r ππ=. 故答案为:36π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.16.【分析】首先把三视图转换为直观图进一步求出几何体的外接球的半径最后求出球的表面积【详解】根据几何体的三视图可知该几何体是底面为等腰三角形高为2的三棱锥体如图所示:设底面外接圆的半径为t 圆心为H 则解得 解析:414π 【分析】首先把三视图转换为直观图,进一步求出几何体的外接球的半径,最后求出球的表面积.【详解】根据几何体的三视图可知该几何体是底面为等腰三角形,高为2的三棱锥体.如图所示:设底面外接圆的半径为t ,圆心为H ,则2221(2)t t =+-,解得54t =, 设外接球的半径r ,球心为O ,则OH ⊥底面,且1OH =, 则22541()144r =+=所以41414().164S ππ=⨯⨯= 故答案为:414π 【点睛】 关键点点睛:球心与底面外接圆圆心连线垂直底面,且OH 等于棱锥高的一半,利用勾股定理求出球的半径,由面积公式计算即可.17.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案.【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC 中,由正弦定理得172sin 22BC r BAC ==∠,解得334r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =. 所以1122sin 3442223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△. 因为112742333D ABC ABC V S AD AD -=⋅⋅=⨯⨯=△,所以144AD =.连接1OO ,又1//OO AD ,所以四边形1EAO O 为平行四边形,111428EA OO AD ===,所以22221114324588R OO AO ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭. 所以该三棱锥的外接球的表面积()224π4π520πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.18.【分析】分别取棱的中点连接易证平面平面由题意知点必在线段上由此可判断在或处时最长位于线段中点处时最短通过解直角三角形即可求得【详解】如下图所示连分别为所在棱的中点则又平面平面平面四边形为平行四边形又 解析:[32,25]【分析】分别取棱1BB 、11B C 的中点M 、N ,连接MN ,易证平面1//A MN 平面AEF ,由题意知点P 必在线段MN 上,由此可判断P 在M 或N 处时1A P 最长,位于线段MN 中点处时最短,通过解直角三角形即可求得.【详解】如下图所示,连MN ,EF ,1A D ,EMM ,N ,E ,F 分别为所在棱的中点,则1//MN A D ,1//EF A D ,//EF MN ∴,又MN ⊂平面1C EF ,EF ⊂平面1C EF ,//MN ∴平面1C EF .11//,C C EM C C EM =,∴四边形1C CME 为平行四边形,1//C E CM ,又CM ⊄平面1C EF ,1C E ⊂平面1C EF ,//CM ∴平面1C EF ,又NM CM M =, ∴平面//NMC 平面1C EF .P 是侧面四边形ADD 1A 1内一动点,且C 1P ∥平面CMN ,∴点P 必在线段EF 上.在Rt △11C D E 中,222211114225C E C D D E =+=+=同理,在Rt △11C D F 中,可得125C F =, ∴△1C EF 为等腰三角形.当点P 为EF 中点O 时,1C P EF ⊥,此时1C P 最短;点P 位于,E F 处时,1C P 最长. ()222211(25)232C O C E OE =-=-=1125C E C F ==∴线段1C P长度的取值范围是.故答案为:【点睛】本题考查点、线、面间的距离问题,考查学生的运算能力及推理转化能力,属中档题,解决本题的关键是通过构造平行平面寻找P点位置.19.【分析】此梯形以AD所在直线为轴旋转一周得到的是圆台然后根据圆台的侧面积和表面积公式进行计算【详解】将此梯形以AD所在直线为轴旋转一周得到的是圆台其中圆台的上底半径为r=CD=2下底半径为R=AB=解析:23π【分析】此梯形以AD所在直线为轴旋转一周,得到的是圆台,然后根据圆台的侧面积和表面积公式进行计算.【详解】将此梯形以AD所在直线为轴旋转一周,得到的是圆台,其中圆台的上底半径为r=CD=2,下底半径为R=AB=3,母线BC=2,∴圆台的上底面积为πr2=4π,下底面积为πR2=9π,圆台的侧面积为(πr+πR)•BC=π(2+3)×2=10π,∴圆台的表面积为4π+9π+10π=23π,故答案为23π.【点睛】本题考查圆台表面积的计算,利用旋转体的定义确定该几何体是圆台是解决本题的关键.20.【分析】欲使圆柱侧面积最大需使圆柱内接于圆锥设圆柱的高为h底面半径为r用r表示h从而求出圆柱侧面积的最大值【详解】欲使圆柱侧面积最大需使圆柱内接于圆锥;设圆柱的高为h底面半径为r则解得;所以;当时取解析:【分析】欲使圆柱侧面积最大,需使圆柱内接于圆锥,设圆柱的高为h,底面半径为r,用r表示h,从而求出圆柱侧面积的最大值.【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥;设圆柱的高为h ,底面半径为r , 23423r =,解得33h r =; 所以()23222334S rh r r r πππ⎛⎫===- ⎪ ⎪⎝⎭圆柱侧; 当2r 时,S 圆柱侧取得最大值为43π 故答案为:3π.【点睛】本题考查了求圆柱侧面积的最值,考查空间想象能力,将问题转化为函数求最值,属于中档题.三、解答题21.(1)4;(2)60︒;(3)33. 【分析】(1)根据棱锥的体积公式求解即可;(2)作辅助线,利用平行得出异面直线1CB 与1AC 所成角就是COE ∠,再结合等边三角形的性质得出夹角;(3)过C 作1CF AC ⊥于点F ,连接,CF BF ,由11,CF AC BF AC ⊥⊥结合定义得出二面角1B AC C --的平面角,再由直角三角形的边角关系得出平面角的余弦值.【详解】(1)三棱柱111ABC A B C -的体积1122242ABC V S CC ⎛⎫=⋅=⨯⨯⨯= ⎪⎝⎭(2)记1BC 与1B C 的交点为O ,作AB 的中点E ,连接,OE CE ,异面直线1CB 与1AC 所成角就是COE ∠2CO OE CE ===60COE ︒∴∠=(3)过C 作1CF AC ⊥于点F ,连接,CF BF11,CF AC BF AC BFC ⊥⊥⇒∠为所求角 3tan 2,cos 2BC BFC BFC FC ∠===∠=【点睛】关键点睛:在求异面直线的夹角时,关键是利用中位线定理得出平行,从而得出异面直线的夹角.22.(1)证明见解析;(2)155;(3)12. 【分析】(1)连接AC 交BD 于点O ,连接PO ,推导出BD ⊥平面PAC ,进而可得出PC BD ⊥;(2)过点O 在平面PAC 内作OF PC ⊥,垂足为点F ,连接BF ,推导出OFB ∠为二面角B PC E --的平面角,计算出OF 、BF ,可计算出cos OFB ∠,即可得解; (3)计算出PCE 的面积,利用锥体的体积公式可得出13P BCE B PCE PCE V V S OB --==⋅△,即可得解. 【详解】证明:(1)连接AC 交BD 于O 点,连接PO ,∵四边形ABCD 是菱形,AC BD ∴⊥,则O 是BD 的中点,PB PD =,PO BD ∴⊥,又AC PO O =,AC 、OP ⊂平面PAC ,BD ∴⊥平面PAC ,又PC ⊂平面PAC ,PC BD ∴⊥;(2)由(1)知BO ⊥平面PAC ,PC ⊂平面PAC ,则OB PC ⊥,过O 在平面PAC 内作OF PC ⊥于F ,连接BF ,由OB OF O ⋂=,则PC ⊥平面OBF ,BF ⊂平面OBF ,得BF PC ⊥,故OFB ∠为二面角B PC E --的平面角, 四边形ABCD 是菱形,60BAD ∠=,ABD ∴为等边三角形,2BD AB AD ∴===,112OB BD ∴==,223OC OA AB OB ==-= OB ⊥平面PAC ,OP ⊂平面PAC ,OP OB ∴⊥,223OP PB OB ∴-= 3OA =3OP =6PA =222OP PA OA +∴=,即OA OP ⊥,即PO AC ⊥,3366PO OC OF PC ⋅⨯∴===,222261012BF BO OF ⎛⎫=+=+= ⎪ ⎪⎝⎭, 故615cos 510OF OFB BF ∠===,即二面角B PC E --的余弦值是155; (3)E 为PA 的中点,11333222PCE PAC POA S S S ∴====△△△, 又OB ⊥平面PAC ,113113322P BCE B PCE PCE V V S OB --∴==⋅=⨯⨯=△. 【点睛】方法点睛:求二面角常用的方法:(1)几何法:二面角的大小常用它的平面角来度量,平面角的作法常见的有: ①定义法;②垂面法,注意利用等腰三角形的性质;(2)空间向量法:分别求出两个平面的法向量,然后通过两个平面法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求二面角是锐角还是钝角.。
最新审定鲁教版数学六年级上册132由三视图还原实物图(名校资料)
课时教案班级:初一年级科目:数学周次教学时间2016年11月日月教案序号课题 1-3-2 由三视图还原成实物图课型新授教学目标(识记、理解应用、分析、创见)知识目标:了解空间几何体的表现形式;理解画三视图应遵循的规则;掌握空间几何体的三视图的画法以及应用,能由三视图还原成几何体的实物图.能力目标:主要通过自亲身实践,动手作图,体会三视图的作用。
情感目标:提高学生空间想象力;体会三视图的作用。
教学重点及难点重点:画出简单组合体的三视图。
难点:组合体三视图的画法,由三视图还原成实物图.教学方法学法:观察、思考、交流、讨论、概括。
教法:探析讨论法。
教学反馈板书设计1-3-2 由三视图还原直观图1、三视图的概念1、主视图;2、左视图;3、主视图.2、三视图的特点1、主视图与俯视图的长一样长;2、主视图与左视图的宽一样长;3、左视图与俯视图的高一样长。
3、画三视图时的注意事项1、虚实线要分开;2、确定组合体是由几种基本几何体组成。
一、自主学习,合作探究1、三视图的特点,绘制三视图的原则:①主、俯视图____________; ②主、左视图____________; ③左、俯视图_____________,前后照应.2、在画组合体的三视图时,看不到的边界轮廓线是否需要画出?3、画简单组合体的三视图的注意事项:①首先,确定主视,俯视,左视的方向,同一物体放置的位置不同,所画的三视图____________.②注意简单组合体是由那几个____________组成的,并注意它们的组成方式,特别是它们的_______位置.4、若某一物体的三视图完全一样,那么此物体一定是球吗?二、典型例题1、画简单几何体的三视图例1、看课本14页例1、例2、例3、例4、例5并做课本16页练习1、2.【课堂检测】画出如图所示的几何体的三视图2、由三视图还原成实物图例1、见课本17页例6、例7并且做课本18页练习2,A组1、7.三、巩固练习四棱锥C 三棱锥 D左视图左视图俯视图主视图左视图主视图左视图俯视图俯视图四、作业布置课本18页A组2、3、4、5、6及B组2题.俯视图。
1.3.2由三视图还原成实物图
三视图对于认识空间几何体有何作用?
你有何体会?
由三视图可以还原成实物模型, 它是表示空间几何体的一种方法,是 观察者分别从正面、侧面和上面观察 同一个几何体所画出的空间几何体的 图形。作三视图时,应注意图形之间 “长对正,高平齐,宽相等”.
图形吗?
Байду номын сангаас
四棱锥
例7
图1-35是4个三视图和4个实物图,请将三视图和实
物图正确配对.
解
(1)的实物图形是C;由(3)和(4)的俯视图可以
看出:(3)(4)分别对应 B,A,于是(2)对应D.
2、根据三视图判断几何体
主 视 图
左 视 图
四 棱 柱
俯视图
3、想象下图所表示的实际物体.
三通水管
例:下面的三视图表示的几何体是什么?
主视图
左视图
俯视图
圆锥
例:下面的三视图表示的几何体是什么?
主视图
左视图
俯视图
长方体
例:下面的三视图表示的几何体是什么?
主视图
左视图
俯视图
球体
例:下面的三视图表示的几何体是什么?
主视图
左视图
圆柱 俯视图
练习:还原实物图:
主视图 主视图 左视图 俯视图 左视图
俯视图
三棱柱 三棱柱
练习:还原实物图:
3.2 由三视图还原成实物图
由三视图还原成实物图的基本思路(逆向思维): (1)分别由主视图、左视图、俯视图想象直观图的 正面、侧面和底面及侧棱的形状; (2)由主视图、左视图、俯视图所对应的高来想象 侧面和底面的位置关系; (3)注意“长对正,高平齐,宽相等”的基本特征及 三视图中的虚线.
例6 一个几何体的三视图如下,你能说出它是什么立体
三视图还原实物图“五步走”
三视图还原直观图“五步走”石门县第一中学415300陈锦鑫三视图是高中立体几何中的一个重要知识点,也是今后进一步学习机械制图、建筑制图等的必修课,三视图也是近几年高考必考的知识点。
主要题型就是给出几何体的三视图,计算几何体的面积和体积等相关量。
学生丢分的主要原因是不能由三视图还原为几何体,画出相应的直观图。
本文通过一道例题介绍一种将三视图还原成实物图的方法。
如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,将该三视图还原成实物图第一步:根据三视图中三种视图的长与宽,作一个与正视图等长等高,与俯视图等宽的长方体。
例如本例中需要作一个边长为2的正方体ABCD-A’B’C’D’,如图。
第二步:根据三视图中的正视图对长方体切割。
例如本例中由正视图知道,原几何体只能在三棱柱ADD’-BCC’范围内,因此将三棱柱AA’D’-BB’C’部分截掉,如图。
第三步:根据三视图中的侧视图对剩余几何体切割。
例如本例中由侧视图知道,原几何体只能在四棱锥C’-ABCD范围内,因此将三棱锥D’-ADC’部分截掉,如图。
第四步:根据三视图中的俯视图对剩余几何体切割。
,同时结合三种视图需要将例如本例中由俯视图知道,原几何体在底面上的投影为BCD三棱锥C’-ABDC部分截掉,得到三棱锥C’-BCD,如图。
第五步:根据三种视图多边形内部的实线或虚线对剩余几何体切割。
例如本例中正视图、俯视图中均有一条虚线,三视图的虚线表示虚线所在的位置有立体图形的轮廓线,只是在观察者所在的位置看不到。
根据正视图、俯视图中知点E为三棱锥C’-BCD 中BC边的中点,连接ED、EC’,ED、EC’是立体图形的轮廓线,因此我们需要将截掉三棱锥C’-ECD,得到三棱锥C’-BDE即为三视图所对应的实物图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②如果一个几何体的主视图和俯视图都 是矩形,则这个几何体是长方体。 ③如果一个几何体的三视图都是矩形, 则这个几何体是长方体。 ④如果一个几何体的主视图和左视图都 是等腰梯形,则这个几何体是圆台。
第
一 组
a
b
c
A
B
C
第
二
e
俯
g
f
俯 俯
左பைடு நூலகம்左
组
正三棱锥 长方体
左
正四棱 台
E
F
G
练习:还原实物图:
主视图
左视图
俯视图
六棱柱
一个几何体的三视图如下,你能说出它是什么 立体图形吗?
正视图 侧视图
俯视图
思考1:下列两图分别是两个简单组合体 的三视图,想象它们表示的组合体的结 构特征,并画出其示意图.
正视图
侧视图
俯视图
练习:1还原实物图:
主视图 主视图 左视图 俯视图 左视图
俯视图
三棱柱 三棱柱
2、说出下面的三视图表示的几何体的结构特征
一: 说出下面的三视图表示的几何 体的结构特征.
正视图
侧视图
俯视图
主视图
左视图
俯视图
课外思考题
主视图
左视
俯视图 答案:两个圆台组合
而成的简单组合体。
③
三、 基本几何体的三视图 正方形 (1)正方体的三视图都是——— 长方形 (2)圆柱的三视图中有两个是——— 圆 另一个是—— 三角形 (3)圆锥的三视图中有两个是———,另 圆和一个点 一个是—————。 圆 (4)球的三视图都是——
一个空间几何体都对应一组三视图, 若已知一个几何体的三视图,我们如何 去想象这个几何体的原形结构,并画出 其示意图呢?
例1:
主视图
左视图
俯视图
答案:一个四棱柱和 一个球组成的简单组 合体。
例2:
主视图
左视图
俯视图
答案:一个四棱柱和 一个圆柱体组成的简 单组合体。
正视图
侧视图
俯视图
正视图
侧视图
俯视图
思考2:下分别是两个简单组合体的三视 图,想象它们表示的组合体的结构特征, 并作适当描述.
六棱锥与六棱柱 的组合体
简单组合体的三视图
将三视图还原成几何体
复习回顾:
一、三视图:
1、从正面看到的图形叫做主视图;从左面看到的图形 叫左视图;从上面看到的图形叫俯视图。这三张图, 称为三视图.
2.画物体的三视图时,要符合如下原则: (1).位置:主视图 左视图 俯视图 (2).大小:长对正(主、俯一样长) 高平齐(主、左一样高) 宽相等(俯、左一样宽) (3).实(虚)线:看得见的轮廓线用实线; 看不见的轮廓线用虚线。