三角函数特殊数值表完整版

合集下载

(完整版)三角函数特殊角值表

(完整版)三角函数特殊角值表

角度 函数 0 30 45 60 90 120 135 150 180 270 360 角a 的弧度0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 3π/2 2π sin 0 1/2 √2/2 √3/2 1 √3/2 √2/2 1/2 0 -1 0 cos 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -1 0 1 tan√3/31√3-√3-1-√3/31、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°=21,sin45°=cos45°=22, tan30°=cot60°=33, tan 45°=cot45°=1正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y2、列表法:说明:正弦值随角度变化,即0˚ 30˚ 45˚ 60˚ 90˚变化;值从02122 23 1变化,其余类似记忆.3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律:① 有界性:(锐角三角函数值都是正值)即当0°<α<90°时,则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。

②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ; cos A >cos B ;cot A >cot B ;特别地:若0°<α<45°,则sin A <cos A ;tan A <cot A 若45°<A <90°,则sin A >cos A ;tan A >cot A . 4、口决记忆法:观察表中的数值特征 正弦、余弦值可表示为2m 形式,正切、余切值可表示为3m 形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七.30˚ 123145˚ 1212 60˚ 3函数名正弦余弦正切余切正割余割符号sin cos tan cot sec csc正弦函数sin(A)=a/c余弦函数cos(A)=b/c正切函数tan(A)=a/b余切函数cot(A)=b/a其中a为对边,b为邻边,c为斜边三角函数对照表三角函数SIN COS TAN 三角函数SIN COS TAN 0°0 1 0 90° 1 0 无1°0.0174 0.9998 0.0174 89°0.9998 0.0174 57.2899 2°0.0348 0.9993 0.0349 88°0.9993 0.0348 28.6362 3°0.0523 0.9986 0.0524 87°0.9986 0.0523 19.0811 4°0.0697 0.9975 0.0699 86°0.9975 0.0697 14.3006 5°0.0871 0.9961 0.0874 85°0.9961 0.0871 11.4300 6°0.1045 0.9945 0.1051 84°0.9945 0.1045 9.5143 7°0.1218 0.9925 0.1227 83°0.9925 0.1218 8.1443 8°0.1391 0.9902 0.1405 82°0.9902 0.1391 7.1153 9°0.1564 0.9876 0.1583 81°0.9876 0.1564 6.3137 10°0.1736 0.9848 0.1763 80°0.9848 0.1736 5.6712 11°0.1908 0.9816 0.1943 79°0.9816 0.1908 5.1445 12°0.2079 0.9781 0.2125 78°0.9781 0.2079 4.7046 13°0.2249 0.9743 0.2308 77°0.9743 0.2249 4.3314 14°0.2419 0.9702 0.2493 76°0.9702 0.2419 4.0107 15°0.2588 0.9659 0.2679 75°0.9659 0.2588 3.7320二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin 22sin cos cos 2cos 2sin 22cos 2112sin 2αααααααα==-=-=-2tan tan 21tan 2ααα=--sin 33sin 4sin 3cos34cos33cos .3tan tan 3tan 313tan 2αααααααααα=-=--=--三角函数的和差化积公式 三角函数的积化和差公式sin sin 2sincos 22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=⋅+--=⋅+-+=⋅+--=-⋅[][][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ⋅=++-⋅=+--⋅=++-⋅=-+--化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)22sin cos sin()a x b x a b x φ±=+±其中φ角所在的象限由a 、b 的符号确定,φ角的值由tan ba φ=确定六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

三角函数特殊角值表

三角函数特殊角值表
若45°<A<90°,则sinA>cosA;tanA>cotA.
3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律:
1有界性:(锐角三角函数值都是正值)即当0°< <90°时,
则0<sin <1;0<cos <1;tan >0;cot >0。
②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A<B<90°时,则sinA<sinB;tanA<tanB;cosA>cosB;cotA>cotB;特别地:若0°< <45°,则sinA<cosA;tanA<cotA
三角函数
角度
函数030 Nhomakorabea4560
90
120
135
150
180
270
360
角a的弧度
0
π/6
π/4
π/3
π/2
2π/3
3π/4
5π/6
π
3π/2

sin
0
1/2
√2/2
√3/2
1
√3/2
√2/2
1/2
0
-1
0
cos
1
√3/2
√2/2
1/2
0
-1/2
-√2/2
-√3/2
-1
0
1
tan
0
√3/3
1
√3
-√3
-1
-√3/3
0
0
1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出:
sin30°=cos60°= sin45°=cos45°=
tan30°=cot60°= tan 45°=cot45°=1
2、列表法:

三角函数特殊角值表

三角函数特殊角值表

三角函数特殊角函数值
只想上传这一个表 下面的都是无用的话 不用看了。

1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°=
2
1
sin45°=cos45°=22
tan30°=cot60°=3
3
tan 45°=cot45°=1
2、列表法:
说明:正弦值随角度变化,即0? 30? 45? 60? 90?变化;值从0
30? 1
2
3 1
45? 1
2 1
2 60? 3
变化,其余类似记忆.
3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律:
①有界性:(锐角三角函数值都是正值)即当0°<α<90°时,
则0<sinα<1; 0<cosα<1 ; tanα>0 ; cotα>0。

②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A<B<90°时,则sin A<sin B;tan A<tan B; cos A>cos B;cot A>cot B;特别地:若0°<α<45°,则sin A<cos A;tan A<cot A
若45°<A<90°,则sin A>cos A;tan A>cot A.
4、口决记忆法:观察表中的数值特征
正弦、余弦值可表示为
2
m形式,正切、余切值可表示为
3
m形式,有关m的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七.。

三角函数特殊角值表

三角函数特殊角值表

角度函数0 30 45 60 90 120 135 150 180 270 360 角a 的弧度0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π3π/2 2πsin 0 1/2 √2/2 √3/2 1 √3/2 √2/2 1/2 0 -1 0 cos 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -1 0 1 tan 0 √3/3 1 √3 -√3 -1 -√3/3 0 01、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出:sin30 =°cos60 °=12,sin45 °=cos45°=22,tan30°=cot60 °=33,tan 45 °=cot45 °=122 21 3130?60?45?3 1 1正弦函数sin θ=y/r余弦函数cosθ=x/r 正切函数tan θ=y/x 余切函数cot θ=x/y正割函数secθ=r/x余割函数cscθ=r/y2、列表法:说明:正弦值随角度变化,即0? 30? 45? 60? 90?变化;值从01 222321 变化,其余类似记忆.3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律:①有界性:(锐角三角函数值都是正值)即当0°<<90°时,则0<sin <1;0<cos <1 ;tan >0 ;cot >0。

②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A<B<90°时,则sinA<sin B;tanA<tan B;cosA>cosB;cotA>cotB;特别地:若0°<<45°,则sinA<cosA;tanA<cotA若45°<A<90°,则sinA>cosA;tanA>cotA.4、口决记忆法:观察表中的数值特征正弦、余弦值可表示为m2形式,正切、余切值可表示为m3形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七.函数名正弦余弦正切余切正割余割符号sin cos tan cot sec csc正弦函数sin(A)=a/c余弦函数cos(A )=b/c正切函数tan(A)=a/b余切函数cot(A)=b/a其中 a 为对边,b 为邻边, c 为斜边三角函数对照表三角函数SIN COS TAN 三角函数SIN COS TAN 0°0 1 0 90° 1 0 无1°0.0174 0.9998 0.0174 89°0.9998 0.0174 57.2899 2°0.0348 0.9993 0.0349 88°0.9993 0.0348 28.6362 3°0.0523 0.9986 0.0524 87°0.9986 0.0523 19.0811 4°0.0697 0.9975 0.0699 86°0.9975 0.0697 14.3006 5°0.0871 0.9961 0.0874 85°0.9961 0.0871 11.4300 6°0.1045 0.9945 0.1051 84°0.9945 0.1045 9.5143 7°0.1218 0.9925 0.1227 83°0.9925 0.1218 8.1443 8°0.1391 0.9902 0.1405 82°0.9902 0.1391 7.1153 9°0.1564 0.9876 0.1583 81°0.9876 0.1564 6.3137 10°0.1736 0.9848 0.1763 80°0.9848 0.1736 5.6712 11°0.1908 0.9816 0.1943 79°0.9816 0.1908 5.1445 12°0.2079 0.9781 0.2125 78°0.9781 0.2079 4.7046 13°0.2249 0.9743 0.2308 77°0.9743 0.2249 4.3314 14°0.2419 0.9702 0.2493 76°0.9702 0.2419 4.0107 15°0.2588 0.9659 0.2679 75°0.9659 0.2588 3.732016°0.2756 0.9612 0.2867 74°0.9612 0.2756 3.4874 17°0.2923 0.9563 0.3057 73°0.9563 0.2923 3.2708 18°0.3090 0.9510 0.3249 72°0.9510 0.3090 3.0776 19°0.3255 0.9455 0.3443 71°0.9455 0.3255 2.9042 20°0.3420 0.9396 0.3639 70°0.9396 0.3420 2.7474 21°0.3583 0.9335 0.3838 69°0.9335 0.3583 2.6050 22°0.3746 0.9271 0.4040 68°0.9271 0.3746 2.4750 23°0.3907 0.9205 0.4244 67°0.9205 0.3907 2.3558 24°0.4067 0.9135 0.4452 66°0.9135 0.4067 2.2460 25°0.4226 0.9063 0.4663 65°0.9063 0.4226 2.1445 26°0.4383 0.8987 0.4877 64°0.8987 0.4383 2.0503 27°0.4539 0.8910 0.5095 63°0.8910 0.4539 1.9626 28°0.4694 0.8829 0.5317 62°0.8829 0.4694 1.8807 29°0.4848 0.8746 0.5543 61°0.8746 0.4848 1.8040 30°0.5000 0.8660 0.5773 60°0.8660 0.5000 1.7320 31°0.5150 0.8571 0.6008 59°0.8571 0.5150 1.6642 32°0.5299 0.8480 0.6248 58°0.8480 0.5299 1.6003 33°0.5446 0.8386 0.6494 57°0.8386 0.5446 1.5398 34°0.5591 0.8290 0.6745 56°0.8290 0.5591 1.4825 35°0.5735 0.8191 0.7002 55°0.8191 0.5735 1.4281 36°0.5877 0.8090 0.7265 54°0.8090 0.5877 1.3763 37°0.6018 0.7986 0.7535 53°0.7986 0.6018 1.3270 38°0.6156 0.7880 0.7812 52°0.7880 0.6156 1.2799 39°0.6293 0.7771 0.8097 51°0.7771 0.6293 1.2348 40°0.6427 0.7660 0.8390 50°0.7660 0.6427 1.1917 41°0.6560 0.7547 0.8692 49°0.7547 0.6560 1.1503 42°0.6691 0.7431 0.9004 48°0.7431 0.6691 1.1106 43°0.6819 0.7313 0.9325 47°0.7313 0.6819 1.0723 44°0.6946 0.7193 0.9656 46°0.7193 0.6946 1.0355 45°0.7071 0.7071 1 45°0.7071 0.7071 1同角基本关系式倒数关系商的关系平方关系tan cot1 sin csc1 cos sec1sin sectancos csccos csccotsin sec22sin cos1221tan sec221cot csc诱导公式sin()sin cos()cos tan()tan cot()cotsin( ) cos 2 sin( ) sincos( ) cos3sin( ) cos2sin(2 ) sincos(2 ) coscos( ) sin2 t an( ) tancot( ) cot3cos( ) sin2t an(2 ) tancot(2 ) cottan( ) cot2cot( ) tan23tan( ) cot23cot( ) tan2(其中k∈Z)sin( ) cos 2cos( ) sin2 sin( ) sin3sin( ) cos2s in(2 ) sintan( ) cot 2 cos( ) costan( ) tan3cos( ) sin2cos(2 ) costan(2 ) tancot( ) tan 2 c ot( ) cot 3tan( ) cot23cot( ) tan2c ot(2 ) cot两角和与差的三角函数公式万能公式sin( ) sin cos cos sin sin( ) sin cos cos sin sin2 tan( / 2)1 tan 2( / 2)cos( ) cos cos sin sincos( ) cos cos sin sin cos 1 tan 2( / 2)1 tan 2( / 2)tan( )tan tan1 tan tantan2 tan( / 2)1 tan 2( / 2)tan( )tan tan 1 tan tan半角的正弦、余弦和正切公式三角函数的降幂公式1 cos sin( )2 22sin1 cos 221 cos cos( )2 22cos1 cos 221 cos 1 cos sintan( )2 1 cos sin 1 cos二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin33sin4sin3 sin22sin coscos34cos33cos. cos2cos2sin22cos2112sin2tan22tan1tan2tan33tan tan313tan2三角函数的和差化积公式三角函数的积化和差公式sin sin2sin cos221sin cos sin()sin()2sin sin2cos sin221cos sin sin()sin()2cos cos2cos cos221cos cos cos()cos()2cos cos2sin sin221sin sin cos()cos()2化asinα±bco为sα一个角的一个三角函数的形式(辅助角的三角函数的公式)22a sin xb cosx a b sin(x)其中角所在的象限由a、b的符号确定,角的值由b tana确定六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

特殊三角函数值表汇总

特殊三角函数值表汇总

特殊三角函数值表汇总在数学中,三角函数是一类常见且重要的函数,其中包括正弦函数、余弦函数和正切函数等。

这些函数在数学运算、物理学、工程学等领域都有着广泛的应用。

本文将汇总一些特殊三角函数值表,让读者更方便地查阅和应用这些函数的数值。

正弦函数值表正弦函数(Sine Function)是三角函数中最基本的函数之一,通常用符号$\\sin$表示。

下表列出了常见角度对应的正弦函数值:角度(度)角度(弧度)正弦函数值00030$\\frac{\\pi}{6}$$\\frac{1}{2}$45$\\frac{\\pi}{4}$$\\frac{\\sqrt{2}}{2}$60$\\frac{\\pi}{3}$$\\frac{\\sqrt{3}}{2}$90$\\frac{\\pi}{2}$1余弦函数值表余弦函数(Cosine Function)是另一种常见的三角函数,一般用符号$\\cos$表示。

下表展示了一些常见角度对应的余弦函数值:角度(度)角度(弧度)余弦函数值00130$\\frac{\\pi}{6}$$\\frac{\\sqrt{3}}{2}$45$\\frac{\\pi}{4}$$\\frac{\\sqrt{2}}{2}$60$\\frac{\\pi}{3}$$\\frac{1}{2}$90$\\frac{\\pi}{2}$0正切函数值表正切函数(Tangent Function)是正弦函数和余弦函数的比值,通常用符号$\\tan$表示。

下表列出了一些常见角度对应的正切函数值:角度(度)角度(弧度)正切函数值00030$\\frac{\\pi}{6}$$\\frac{\\sqrt{3}}{3}$45$\\frac{\\pi}{4}$160$\\frac{\\pi}{3}$$\\sqrt{3}$90$\\frac{\\pi}{2}$不存在总结通过上述特殊三角函数值表的汇总,我们可以更方便地查阅常见角度对应的正弦、余弦和正切函数值。

三角函数特殊角值表

三角函数特殊角值表

只想上传这一个表 下面的都是无用的话 不必看了.
1.图示法:借助于下面三个图形来记忆,即使有所遗忘也可依据图形从新推出:
sin30°=cos60°=2
1
sin45°=cos45°=
22
3
解释:正弦值随角度变更,即0˚ 30˚ 45˚ 60˚ 90˚变更;值从0
1
变更,其余相似记忆.
3.纪律记忆法:不雅察表中的数值特点,可总结为下列记忆纪
律:
① 有界性:(锐角三角函数值都是正值)即当
0°<α<90°时,
则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0. ②增减性:(锐角的正弦.正切值随角度的增大而增大;余弦.余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ; cos A >cos B ;cot A >cot B ;特殊地:若0°<α<45°,则sin A <cos A ;tan A <cot A
若45°<A <90°,则sin A >cos A ;tan A >cot A . 4.口决记忆法:不雅察表中的数值特点 正弦.余弦值可暗示为
2
m 情势,正切.余切值可暗示为
3
m 情势,有
关m 的值可归纳成顺口溜:一.二.三;三.二.一;三九二十七.。

特殊三角函数数值表

特殊三角函数数值表

特殊三角函数数值表 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)sin3A = 3sinA-4(sinA)^3;cos3A = 4(cosA)^3 -3cosAtan3a = tan a · tan(π/3+a)· tan(π/3-a)公式sin(A/2) = √{(1--cosA)/2}cos(A/2) = √{(1+cosA)/2}tan(A/2) = √{(1--cosA)/(1+cosA)}cot(A/2) = √{(1+cosA)/(1-cosA)}tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA) sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosBsin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA万能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}a·sin(a)+b·cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a]a·sin(a)-b·cos(a) = [√(a^2+b^2)]*co s(a-c) [其中,tan(c)=a/b]1+sin(a) = [sin(a/2)+cos(a/2)]^2;1-sin(a) = [sin(a/2)-cos(a/2)]^2;;这是高考用的正割函数与余割函数正割函数在y=secx中,以x的任一使secx有意义的值与它对应的y值作为(x,y).在直角坐标系中作出的图形叫正割函数的图像,也叫正割曲线.y=secx的性质:(1)定义域,{x|x≠π/2+kπ,k∈Z}(2)值域,|secx|≥1.即secx≥1或secx≤-1;(3)y=secx是偶函数,即sec(-x)=secx.图像对称于y轴;(4)y=secx是周期函数.周期为2kπ(k∈Z,且k≠0),最小正周期T=2π.并附上很难找到的正割图像.(正割函数图像中值域在-1到1之间的图像不包括。

三角函数特殊角值表

三角函数特殊角值表

角度函数0 30 45 60 90 120 135 150 180 270 360 角a 的弧度0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π3π/2 2πsin 0 1/2 √2/2 √3/2 1 √3/2 √2/2 1/2 0 -1 0 cos 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -1 0 1 tan 0 √3/3 1 √3 -√3 -1 -√3/3 0 01、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出:sin30 =°cos60 °=12,sin45 °=cos45°=22,tan30°=cot60 °=33,tan 45 °=cot45 °=122 21 3130?60?45?3 1 1正弦函数sin θ=y/r余弦函数cosθ=x/r 正切函数tan θ=y/x 余切函数cot θ=x/y正割函数secθ=r/x余割函数cscθ=r/y2、列表法:说明:正弦值随角度变化,即0? 30? 45? 60? 90?变化;值从01 222321 变化,其余类似记忆.3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律:①有界性:(锐角三角函数值都是正值)即当0°<<90°时,则0<sin <1;0<cos <1 ;tan >0 ;cot >0。

②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A<B<90°时,则sinA<sin B;tanA<tan B;cosA>cosB;cotA>cotB;特别地:若0°<<45°,则sinA<cosA;tanA<cotA若45°<A<90°,则sinA>cosA;tanA>cotA.4、口决记忆法:观察表中的数值特征正弦、余弦值可表示为m2形式,正切、余切值可表示为m3形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七.函数名正弦余弦正切余切正割余割符号sin cos tan cot sec csc正弦函数sin(A)=a/c余弦函数cos(A )=b/c正切函数tan(A)=a/b余切函数cot(A)=b/a其中 a 为对边,b 为邻边, c 为斜边三角函数对照表三角函数SIN COS TAN 三角函数SIN COS TAN 0°0 1 0 90° 1 0 无1°0.0174 0.9998 0.0174 89°0.9998 0.0174 57.2899 2°0.0348 0.9993 0.0349 88°0.9993 0.0348 28.6362 3°0.0523 0.9986 0.0524 87°0.9986 0.0523 19.0811 4°0.0697 0.9975 0.0699 86°0.9975 0.0697 14.3006 5°0.0871 0.9961 0.0874 85°0.9961 0.0871 11.4300 6°0.1045 0.9945 0.1051 84°0.9945 0.1045 9.5143 7°0.1218 0.9925 0.1227 83°0.9925 0.1218 8.1443 8°0.1391 0.9902 0.1405 82°0.9902 0.1391 7.1153 9°0.1564 0.9876 0.1583 81°0.9876 0.1564 6.3137 10°0.1736 0.9848 0.1763 80°0.9848 0.1736 5.6712 11°0.1908 0.9816 0.1943 79°0.9816 0.1908 5.1445 12°0.2079 0.9781 0.2125 78°0.9781 0.2079 4.7046 13°0.2249 0.9743 0.2308 77°0.9743 0.2249 4.3314 14°0.2419 0.9702 0.2493 76°0.9702 0.2419 4.0107 15°0.2588 0.9659 0.2679 75°0.9659 0.2588 3.732016°0.2756 0.9612 0.2867 74°0.9612 0.2756 3.4874 17°0.2923 0.9563 0.3057 73°0.9563 0.2923 3.2708 18°0.3090 0.9510 0.3249 72°0.9510 0.3090 3.0776 19°0.3255 0.9455 0.3443 71°0.9455 0.3255 2.9042 20°0.3420 0.9396 0.3639 70°0.9396 0.3420 2.7474 21°0.3583 0.9335 0.3838 69°0.9335 0.3583 2.6050 22°0.3746 0.9271 0.4040 68°0.9271 0.3746 2.4750 23°0.3907 0.9205 0.4244 67°0.9205 0.3907 2.3558 24°0.4067 0.9135 0.4452 66°0.9135 0.4067 2.2460 25°0.4226 0.9063 0.4663 65°0.9063 0.4226 2.1445 26°0.4383 0.8987 0.4877 64°0.8987 0.4383 2.0503 27°0.4539 0.8910 0.5095 63°0.8910 0.4539 1.9626 28°0.4694 0.8829 0.5317 62°0.8829 0.4694 1.8807 29°0.4848 0.8746 0.5543 61°0.8746 0.4848 1.8040 30°0.5000 0.8660 0.5773 60°0.8660 0.5000 1.7320 31°0.5150 0.8571 0.6008 59°0.8571 0.5150 1.6642 32°0.5299 0.8480 0.6248 58°0.8480 0.5299 1.6003 33°0.5446 0.8386 0.6494 57°0.8386 0.5446 1.5398 34°0.5591 0.8290 0.6745 56°0.8290 0.5591 1.4825 35°0.5735 0.8191 0.7002 55°0.8191 0.5735 1.4281 36°0.5877 0.8090 0.7265 54°0.8090 0.5877 1.3763 37°0.6018 0.7986 0.7535 53°0.7986 0.6018 1.3270 38°0.6156 0.7880 0.7812 52°0.7880 0.6156 1.2799 39°0.6293 0.7771 0.8097 51°0.7771 0.6293 1.2348 40°0.6427 0.7660 0.8390 50°0.7660 0.6427 1.1917 41°0.6560 0.7547 0.8692 49°0.7547 0.6560 1.1503 42°0.6691 0.7431 0.9004 48°0.7431 0.6691 1.1106 43°0.6819 0.7313 0.9325 47°0.7313 0.6819 1.0723 44°0.6946 0.7193 0.9656 46°0.7193 0.6946 1.0355 45°0.7071 0.7071 1 45°0.7071 0.7071 1同角基本关系式倒数关系商的关系平方关系tan cot1 sin csc1 cos sec1sin sectancos csccos csccotsin sec22sin cos1221tan sec221cot csc诱导公式sin()sin cos()cos tan()tan cot()cotsin( ) cos 2 sin( ) sincos( ) cos3sin( ) cos2sin(2 ) sincos(2 ) coscos( ) sin2 t an( ) tancot( ) cot3cos( ) sin2t an(2 ) tancot(2 ) cottan( ) cot2cot( ) tan23tan( ) cot23cot( ) tan2(其中k∈Z)sin( ) cos 2cos( ) sin2 sin( ) sin3sin( ) cos2s in(2 ) sintan( ) cot 2 cos( ) costan( ) tan3cos( ) sin2cos(2 ) costan(2 ) tancot( ) tan 2 c ot( ) cot 3tan( ) cot23cot( ) tan2c ot(2 ) cot两角和与差的三角函数公式万能公式sin( ) sin cos cos sin sin( ) sin cos cos sin sin2 tan( / 2)1 tan 2( / 2)cos( ) cos cos sin sincos( ) cos cos sin sin cos 1 tan 2( / 2)1 tan 2( / 2)tan( )tan tan1 tan tantan2 tan( / 2)1 tan 2( / 2)tan( )tan tan 1 tan tan半角的正弦、余弦和正切公式三角函数的降幂公式1 cos sin( )2 22sin1 cos 221 cos cos( )2 22cos1 cos 221 cos 1 cos sintan( )2 1 cos sin 1 cos二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin33sin4sin3 sin22sin coscos34cos33cos. cos2cos2sin22cos2112sin2tan22tan1tan2tan33tan tan313tan2三角函数的和差化积公式三角函数的积化和差公式sin sin2sin cos221sin cos sin()sin()2sin sin2cos sin221cos sin sin()sin()2cos cos2cos cos221cos cos cos()cos()2cos cos2sin sin221sin sin cos()cos()2化asinα±bco为sα一个角的一个三角函数的形式(辅助角的三角函数的公式)22a sin xb cosx a b sin(x)其中角所在的象限由a、b的符号确定,角的值由b tana确定六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

特殊三角函数数值表

特殊三角函数数值表

两角和公式sinA+B = sinAcosB+cosAsinBsinA-B = sinAcosB-cosAsinBcosA+B = cosAcosB-sinAsinBcosA-B = cosAcosB+sinAsinBtanA+B = tanA+tanB/1-tanAtanBtanA-B = tanA-tanB/1+tanAtanBcotA+B = cotAcotB-1/cotB+cotAcotA-B = cotAcotB+1/cotB-cotAsin3A = 3sinA-4sinA^3;cos3A = 4cosA^3 -3cosAtan3a = tan a · tanπ/3+a· tanπ/3-a 公式sinA/2 = √{1--cosA/2}cosA/2 = √{1+cosA/2}tanA/2 = √{1--cosA/1+cosA}cotA/2 = √{1+cosA/1-cosA}tanA/2 = 1--cosA/sinA=sinA/1+cosAsina+sinb = 2sina+b/2cosa-b/2sina-sinb = 2cosa+b/2sina-b/2 cosa+cosb = 2cosa+b/2cosa-b/2 cosa-cosb = -2sina+b/2sina-b/2 tanA+tanB=sinA+B/cosAcosBsinasinb = -1/2cosa+b-cosa-b cosacosb = 1/2cosa+b+cosa-b sinacosb = 1/2sina+b+sina-b cosasinb = 1/2sina+b-sina-b诱导公式sin-a = -sinacos-a = cosasinπ/2-a = cosacosπ/2-a = sinasinπ/2+a = cosacosπ/2+a = -sinasinπ-a = sinacosπ-a = -cosasinπ+a = -sinacosπ+a = -cosatgA=tanA = sinA/cosA万能公式sina = 2tana/2 / {1+tana/2^2}cosa = {1-tana/2^2} / {1+tana/2^2}tana = 2tana/2/{1-tana/2^2}a·sina+b·cosa = √a^2+b^2sina+c 其中;tanc=b/aa·sina-b·cosa = √a^2+b^2cosa-c 其中;tanc=a/b1+sina = sina/2+cosa/2^2;1-sina = sina/2-cosa/2^2;;这是高考用的正割函数与余割函数正割函数在y=secx中;以x的任一使secx有意义的值与它对应的y值作为x;y.在直角坐标系中作出的图形叫正割函数的图像;也叫正割曲线. y=secx的性质:1定义域;{x|x≠π/2+kπ;k∈Z}2值域;|secx|≥1.即secx≥1或secx≤-1;3y=secx是偶函数;即sec-x=secx.图像对称于y轴;4y=secx是周期函数.周期为2kπk∈Z;且k≠0;最小正周期T=2π.并附上很难找到的正割图像.正割函数图像中值域在-1到1之间的图像不包括..更好的图像请参考正割与余弦互为倒数;余割与正弦互为倒数..正割函数无限趋向于直线x=π/2+kπ ..正割函数是无界函数正割函数的导数:secx'=secxtanx正割函数的不定积分:∫secxdx=㏑|secx+tanx|+C余割函数对于任意一个实数x;都对应着唯一的角弧度制中等于这个实数;而这个角又对应着唯一确定的余割值cscx与它对应;按照这个对应法则建立的函数称为余割函数..记作fx=cscx 余割函数的性质1、定义域:{x|x≠kπ;k∈Z}2、值域:{y|y<-1或y>1}3、奇偶性:奇函数4、周期性:最小正周期为2π5、图像:图像渐近线为:x=kπ ;k∈Z余割函数与正弦函数互为倒数HM2761EAENT0018DD7844。

特殊三角函数数值表

特殊三角函数数值表

两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)三倍角公式sin3A = 3sinA-4(sinA)^3;cos3A = 4(cosA)^3 -3cosAtan3a = tan a · tan(π/3+a)· tan(π/3-a)半角公式sin(A/2) = √{(1--cosA)/2}cos(A/2) = √{(1+cosA)/2}tan(A/2) = √{(1--cosA)/(1+cosA)}cot(A/2) = √{(1+cosA)/(1-cosA)}tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA) 和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA万能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}a·sin(a)+b·cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a]a·sin(a)-b·cos(a) = [√(a^2+b^2)]*cos(a-c) [其中,tan(c)=a/b]1+sin(a) = [sin(a/2)+cos(a/2)]^2;1-sin(a) = [sin(a/2)-cos(a/2)]^2;;这是高考用的正割函数与余割函数正割函数在y=secx中,以x的任一使secx有意义的值与它对应的y值作为(x,y).在直角坐标系中作出的图形叫正割函数的图像,也叫正割曲线. y=secx的性质:(1)定义域,{x|x≠π/2+kπ,k∈Z}(2)值域,|secx|≥1.即secx≥1或secx≤-1;(3)y=secx是偶函数,即sec(-x)=secx.图像对称于y轴;(4)y=secx是周期函数.周期为2kπ(k∈Z,且k≠0),最小正周期T=2π.并附上很难找到的正割图像.(正割函数图像中值域在-1到1之间的图像不包括。

特殊三角函数数值表

特殊三角函数数值表

特殊三角函数数值表两角和公式sin(A+B = sinAcosB+cosAsinBsin(A-B = sinAcosB-cosAsinBcos(A+B = cosAcosB-sinAsinB cos(A-B = cosAcosB+sinAsinBtan(A+B = (tanA+tanB/(1-tanAtanB tan(A-B = (tanA-tanB/(1+tanAtanB cot(A+B = (cotAcotB-1/(cotB+cotA cot(A-B = (cotAcotB+1/(cotB-cotA三倍角公式sin3A = 3sinA-4(sinA^3;cos3A = 4(cosA^3 -3cosAtan3a = tan a · tan(π/3+a· tan(π/3-a半角公式sin(A/2 = √{(1--cosA/2}cos(A/2 = √{(1+cosA/2}tan(A/2 = √{(1--cosA/(1+cosA}cot(A/2 = √{(1+cosA/(1-cosA}tan(A/2 = (1--cosA/sinA=sinA/(1+cosA 和差化积sin(a+sin(b = 2sin[(a+b/2]cos[(a-b/2] sin(a-sin(b = 2cos[(a+b/2]sin[(a-b/2] cos(a+cos(b = 2cos[(a+b/2]cos[(a-b/2] cos(a-cos(b = -2sin[(a+b/2]sin[(a-b/2] tanA+tanB=sin(A+B/cosAcosB积化和差sin(asin(b = -1/2*[cos(a+b-cos(a-b] cos(acos(b = 1/2*[cos(a+b+cos(a-b] sin(acos(b = 1/2*[sin(a+b+sin(a-b]cos(asin(b = 1/2*[sin(a+b-sin(a-b]诱导公式sin(-a = -sin(acos(-a = cos(asin(π/2-a = cos(acos(π/2-a = sin(asin(π/2+a = cos(acos(π/2+a = -sin(asin(π-a = sin(acos(π-a = -cos(asin(π+a = -sin(acos(π+a = -cos(atgA=tanA = sinA/cosA万能公式sin(a = [2tan(a/2] / {1+[tan(a/2]^2}cos(a = {1-[tan(a/2]^2} / {1+[tan(a/2]^2}tan(a = [2tan(a/2]/{1-[tan(a/2]^2}a·sin(a+b·cos(a = [√(a^2+b^2]*sin(a+c [其中,tan(c=b/a]a·sin(a-b·cos(a = [√(a^2+b^2]*cos(a-c [其中,tan(c=a/b]1+sin(a = [sin(a/2+cos(a/2]^2;1-sin(a = [sin(a/2-cos(a/2]^2;;这是高考用的正割函数与余割函数正割函数在y=secx中,以x的任一使secx有意义的值与它对应的y值作为(x,y.在直角坐标系中作出的图形叫正割函数的图像,也叫正割曲线. y=secx的性质:(1定义域,{x|x≠π/2+kπ,k∈Z}(2值域,|secx|≥1.即secx≥1或secx≤-1;(3y=secx是偶函数,即sec(-x=secx.图像对称于y轴;(4y=secx是周期函数.周期为2kπ(k∈Z,且k≠0,最小正周期T=2π.并附上很难找到的正割图像.(正割函数图像中值域在-1到1之间的图像不包括。

三角函数特殊角值表

三角函数特殊角值表

只想上传这一个表 下面的都是无用的话 不用看了。

1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°=
2
1
sin45°=cos45°=22
tan30°=cot60°=3
3
tan 45°=cot45°=1
2说明:正弦值随角度变化,即0? 30? 45? 60? 90?变化;值从0 23 1变化,其余类似记忆.
3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律:
① 有界性:(锐角三角函数值都是正值)即当0°<α<90°时,
30? 1
2
3 1
45? 1
2 1
2 60? 3
则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。

②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ; cos A >cos B ;cot A >cot B ;特别地:若0°<α<45°,则sin A <cos A ;tan A <cot A 若45°<A <90°,则sin A >cos A ;tan A >cot A . 4、口决记忆法:观察表中的数值特征 正弦、余弦值可表示为
2m 形式,正切、余切值可表示为3
m 形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七.。

三角函数特殊角值表

三角函数特殊角值表

角度 函数 0 30 45 60 90 120 135 150 180 270 360 角a 的弧度0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 3π/2 2π sin 0 1/2 √2/2 √3/2 1 √3/2 √2/2 1/2 0 -1 0 cos 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -1 0 1 tan√3/31√3-√3-1-√3/31、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°=21,sin45°=cos45°=22, tan30°=cot60°=33, tan 45°=cot45°=1正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y2、列表法:说明:正弦值随角度变化,即0˚ 30˚ 45˚ 60˚ 90˚变化;值从02122 23 1变化,其余类似记忆.3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律:① 有界性:(锐角三角函数值都是正值)即当0°<α<90°时,则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。

②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ; cos A >cos B ;cot A >cot B ;特别地:若0°<α<45°,则sin A <cos A ;tan A <cot A 若45°<A <90°,则sin A >cos A ;tan A >cot A . 4、口决记忆法:观察表中的数值特征 正弦、余弦值可表示为2m 形式,正切、余切值可表示为3m 形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七.30˚ 123145˚ 1212 60˚ 3函数名正弦余弦正切余切正割余割符号sin cos tan cot sec csc正弦函数sin(A)=a/c余弦函数cos(A)=b/c正切函数tan(A)=a/b余切函数cot(A)=b/a其中a为对边,b为邻边,c为斜边三角函数对照表三角函数SIN COS TAN 三角函数SIN COS TAN 0°0 1 0 90° 1 0 无1°0.0174 0.9998 0.0174 89°0.9998 0.0174 57.2899 2°0.0348 0.9993 0.0349 88°0.9993 0.0348 28.6362 3°0.0523 0.9986 0.0524 87°0.9986 0.0523 19.0811 4°0.0697 0.9975 0.0699 86°0.9975 0.0697 14.3006 5°0.0871 0.9961 0.0874 85°0.9961 0.0871 11.4300 6°0.1045 0.9945 0.1051 84°0.9945 0.1045 9.5143 7°0.1218 0.9925 0.1227 83°0.9925 0.1218 8.1443 8°0.1391 0.9902 0.1405 82°0.9902 0.1391 7.1153 9°0.1564 0.9876 0.1583 81°0.9876 0.1564 6.3137 10°0.1736 0.9848 0.1763 80°0.9848 0.1736 5.6712 11°0.1908 0.9816 0.1943 79°0.9816 0.1908 5.1445 12°0.2079 0.9781 0.2125 78°0.9781 0.2079 4.7046 13°0.2249 0.9743 0.2308 77°0.9743 0.2249 4.3314 14°0.2419 0.9702 0.2493 76°0.9702 0.2419 4.0107 15°0.2588 0.9659 0.2679 75°0.9659 0.2588 3.7320二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin 22sin cos cos 2cos 2sin 22cos 2112sin 2αααααααα==-=-=-2tan tan 21tan 2ααα=--sin 33sin 4sin 3cos34cos33cos .3tan tan 3tan 313tan 2αααααααααα=-=--=--三角函数的和差化积公式 三角函数的积化和差公式sin sin 2sincos 22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=⋅+--=⋅+-+=⋅+--=-⋅[][][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ⋅=++-⋅=+--⋅=++-⋅=-+--化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)22sin cos sin()a x b x a b x φ±=+±其中φ角所在的象限由a 、b 的符号确定,φ角的值由tan ba φ=确定六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档