六年级数学工程问题(附例题)
六年级上册数学工程问题

六年级上册数学工程问题六年级上册数学工程问题有8个,这8个工程问题如下:1.工程队修一条公路,计划每天修100米,40天完成.实际2天就修了800米,照这样的速度,多少天可以完成?2.一批零件,甲独做6小时完成,乙独做8小时完成。
现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?3.一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。
现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?4.小玲12分钟打960个字,小芳18分钟打1170个字。
(1)她们俩谁打字的速度快?(2)一篇2000字的文章谁能在半个小时打完?5.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?6.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5,这批零件共有多少个?7.一条水渠全长5312米.已经修了8天,还剩456米没修,平均每天修多少米?8.修筑一条高速公路;若甲、乙、丙合作,90天可以完工;若甲、乙、丁合作,120天可以完工;若丙、丁合作,l80天可以完工;若甲、乙合作36天后,剩下的工作由甲、乙、丙、丁合作。
还需要多少天?参考答案1.10天2.168个3.5小时4.(1)80字/分>65字/分,所以小玲的打字速度快。
(2)因为2400>2000,1950<2000,所以小玲可以在半小时内打完。
5.10天6.300个7.607米8.60天。
六年级数学工程问题(附例题答案)

二、典型例题例1. 一件工作,甲做9天可以完成,乙做8天可以完成,.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?例2.有一工程,甲队单独做24天完成,乙队单独做30天完成,甲、乙两队合做8天后,余下的由丙队做,又做了10天才完成。
这个工程由丙队单独做需几天完成?例3.某工程先由甲单独做63天,再由乙单独做28天即可完成,若由甲乙两人合作,需48天完成,现在甲先单独做12天,然后由乙来单独完成,那么还需要多少天?例3.一项工程,甲乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1 30,甲乙单独做这项工程各需要多少天?例4.一项工程,甲队单独做20天完成,乙队单独做30天完成,.现在他们两队一起做,其间甲队休息了4天,乙队休息了若干天.从开始到完成共用了17天.问乙队休息了多少天?例6.有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?例7.甲、乙合做一件工作要15天才能完成,现在甲、乙合做10天后,再由乙独做6天,还剩下这件工作的1/10,甲单独完成这件工作要多少天?例8.一项工程甲队单独做15天可以完成,乙队独坐10天可以完成。
现在开始两队合作,但中间乙队因另有任务调走,从开始到完成任务,甲队工作了9天,乙队比甲队少工作了多少天?例9.甲、乙合做一件工作,合作8天后,乙又独做5天,还剩下这件工作的1/6。
已知乙单独完成这件工作要30天,那么甲单独完成这件工作要多少天?例10.甲、乙合做一件工作,每天能完成全部工作的1/12,甲单独做6天,乙又单独做10天后,还剩下全部工作的11/30没有完成,甲单独完成全部工作要多少天?例11..一项工程,甲单独完成需12天,乙单独完成需9天。
若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?例11.一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?例12.一份稿件,甲、乙、丙三人单独打字需要的时间分别是20小时、24小时、30小时,现在三人合打,但甲因中途另有任务提前撤出,结果用12小时完成,甲只打了多少小时?例13.一项工程甲单独完成要30天,乙单独完成要45天,丙单独完成要90天。
小学六年级数学工程问题例题详解及练习【优秀版】

小学六年级数学工程问题例题详解及练习【优秀版】(可以直接使用,可编辑优秀版资料,欢迎下载)工程问题(一)分析与解:以全部工程量为单位1。
甲队单独干需100天,甲的工作效例2 分析:将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两队合干需多少天?”这样一来,问题就简单多了。
答:甲队干了12天。
例3 分析与解:乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的,所以甲队实际工作了例4 分析与解:这道题可以分三步。
首先求出两人合作完成需要的时间,例5例6 分析:这道题看起来像行程问题,但是既没有路程又没有速度,所以不能用时间、路程、速度三者的关系来解答。
甲出发5分钟后返回,路上耽误10分钟,再加上取东西的5分钟,等于比乙晚出发15分钟。
我们将题目改述一下:完成一件工作,甲需60分钟,乙需40分钟,乙先干15分钟后,甲、乙合干还需多少时间?由此看出,这道题应该用工程问题的解法来解答。
答:甲再出发后15分钟两人相遇。
答案与提示练习22.14天。
3.120天。
4.350棵。
5.6000米。
6.8时。
提示:甲管12时都开着,乙管开7.280千米。
工程问题(二)分析与解:本题没有直接给出工作效率,为了求出甲、乙的工作效率,我们先画出示意图:从上图可直观地看出:甲15天的工作量和乙12天的工作量相等,即甲5天的工作量等于乙4天的工作量。
于是可用“乙工作4天”等量替换题中“甲工作5天”这一条件,通过此替换可知乙单独做这一工程需用20+4=24(天)甲、乙合做这一工程,需用的时间为例2分析与解:题中没有告诉甲、乙两队单独的工作效率,只知道他们合作们把“乙先做7天,甲再做4天”的过程转化为“甲、乙合做4天,乙再单独例3 分析与解:乙单独做要超过3天,甲、乙合做2天后乙继续做,刚好按时完成,说明甲做2天等于乙做3天,即完成这件工作,乙需要的时间是甲的,乙需要10+5=15(天)。
甲、乙合作需要例4 分析与解:同时打开1,2,3号阀门1分钟,再同时打开2,3,4号阀门1分钟,再同时打开1,3,4号阀门1分钟,再同时打开1,2,4号阀门1分钟,这时,1,2,3,4号阀门各打开了3分钟,放水量等于一例5 分析与解:与例4类似,可求出一、二、三、四小队的工作效率之和是例6分析与解:把甲、乙、丙三人每人做一天称为一轮。
六年级数学工程问题附例题答案

第七讲工程问题一、知识要点在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作总量、工作效率、工作时间这三个量,它们之间的基本数量关系是工作总量=工作效率×工作时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”.举一个简单例子:一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成?一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位,因此甲的工作效率是,乙的工作效率是,我们想求两人合作所需时间,就要先求两人合作的工作效率,再根据基本数量关系式,得到所需时间=工作量÷工作效率=6(天).两人合作需要6天.这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的.为了计算整数化(尽可能用整数进行计算),可把工作量多设份额.如上题,10及15的最小公倍数是30.设全部工作量为30份.那么甲每天完成3份,乙每天完成2份.两人合作所需天数是30÷(3+ 2)= 6(天)实际上我们把这个算式,先用30乘了一下,都变成整数计算,就方便些.10天及15天,体现了甲、乙两人工作效率之间比例关系.或者说“工作量固定,工作效率及时间成反比例”.甲、乙工作效率的比是15∶10=3∶2.当知道了两者工作效率之比,从比例角度考虑问题,也是非常实用的.根据,两人合作时,甲应完成全部工作的,所需时间是(天).因此,在下面例题的讲述中,我们可以采用“把工作量设为整体1”的做法,也可以“整数化”或“从比例角度出发”、“列方程”等,这样会使我们的解题思路更灵活一些.二、典型例题例1. 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?解析:甲的工效:1÷9=1/9 乙的工效:1÷6=1/6 甲三天做了的:1/9 × 3=1/3余下的工作:1 - 1/3 =2/3 乙需做的天数:2/3 ÷ 1/6=4(天)例2. 有一工程,甲队单独做24天完成,乙队单独做30天完成,甲、乙两队合做8天后,余下的由丙队做,又做了6天才完成。
小学数学 工程问题 完整版 带答案

甲开满10小时,共完成的工作量:1/12×10=5/6
剩下乙完成的工作量:1-5/6=1/6
乙开的时间:1/6÷1/24=4(小时)
即甲乙要同时开放4小时。
8、一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?
调来16人后,工效:1/10
调来4人后,工效:1/20
每人的效率:(1/10-1/20)÷(16-4)=1/240
调走2人后效率:1/10-1/240×(16+2)=1/40
需要时间:1÷1/40=40(天)
二:拔高题型
1、甲、乙两队合作挖一条水渠要30天完成,若甲队先挖4天后,再由乙队单独挖16天,共挖了这条水渠的2/5.如果这条水渠由甲、乙两队单独挖,各需要多少天?
可以看作甲乙丙三人都一直在合作,合作的工作量为:1+1=2
合作的效率为:1/6+1/7+1/14=8/21
合作的时间为:2÷8/21=21/4(小时)
甲在第一个仓库完成的工作量:21/4×1/6=7/8
丙帮助甲的工作量:1-7/8=1/8
丙帮助甲的时间:1/8÷1/14=7/4(小时)
丙帮助乙的时间:21/4-7/4=7/2(小时)
丙帮助乙的时间:18-3=15(小时)
8、甲、乙、丙三人同时分别在3个条件和工作量相同的仓库工作,搬完货物甲用10小时,乙用12小时,丙用15小时.第二天三人又到两个大仓库工作,这两个仓库的工作量相同.甲在A仓库,乙在B仓库,丙先帮甲后帮乙,用了16个小时将两个仓库同时搬完.丙在A仓库搬了多长时间?
六年级数学工程问题专项练习(含参考答案)

六年级数学工程问题专项练习(含参考答案)1.一件工作,甲独做需要2天,乙单独做需要4天,两人合做几小时,可以完成这件工作的?2.一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?3.一水池装有一个进水管和一个排水管。
如果单开进水管,5小时可将空池灌满;如果单开排水管,7小时可将整池水排完。
现在先打开进水管,2小时后打开排水管。
请问:再过多长时间池内将恰好存有半池水?4.蓄水池有甲、乙两个进水管,单开甲管需12小时注满水,单开乙管需18小时注满水。
现要求10小时注水池,那么甲、乙两管至少要合开多长时间?5.修一条路,甲队每天修8小时,5天完成;乙队每天修10小时,6天完成。
两队合作,每天工作6小时,几天可以完成?6.甲、乙、丙三人同时分别在3个条件和工作量相同的仓库工作,搬完货物甲用10小时,乙用12小时,丙用15小时.第二天三人又到两个大仓库工作,这两个仓库的工作量相同.甲在A仓库,乙在B仓库,丙先帮甲后帮乙,用了16个小时将两个仓库同时搬完.丙在A仓库搬了多长时间?7.甲、乙合作一件工程,由于配合得好,甲的工作效率比单独做时提高,乙的工作效率比单独做时提高.甲、乙两人合作6小时,完成全部工作的,第二天乙又单独做了6小时,还留下这件工作的尚未完成,如果这件工作始终由甲一人单独来做,需要多少小时?8.有甲乙两个工程,张三单独做完甲工程需要12天,单独做完乙工程需要15天;李四单独做完甲工程需要8天,单独做完乙工程20天.张三李四二人共同完成这个工程最少需要多少天?9.单独完成一件工程,甲需要24天,乙需要32天.若甲先独做若干天后乙单独做,则共用26天完成工作.问甲做了多少天?10.一项工程,甲队单独做需30天完成,乙队单独做需40天完成。
甲队单独做若干天后,由乙队接着做,共用35天完成了任务。
甲、乙两队各做了多少天?11.甲、乙两人合作加工一批零件,8天可以完成。
六年级数学工程问题(附例题答案)

第七讲 工程问题一、知识要点在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作总量、工作效率、工作时间这三个量,它们之间的基本数量关系是工作总量=工作效率×工作时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”.举一个简单例子:一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成?一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位,因此甲的工作效率是101,乙的工作效率是151,我们想求两人合作所需时间,就要先求两人合作的工作效率151101+,再根据基本数量关系式,得到所需时间=工作量÷工作效率 =6(天).两人合作需要6天.这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的.为了计算整数化(尽可能用整数进行计算),可把工作量多设份额.如上题,10与15的最小公倍数是30.设全部工作量为30份.那么甲每天完成3份,乙每天完成2份.两人合作所需天数是30÷(3+ 2)= 6(天) 实际上我们把111()1015÷+这个算式,先用30乘了一下,都变成整数计算,就方便些. 10天与15天,体现了甲、乙两人工作效率之间比例关系11:3:21015=.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是15∶10=3∶2.当知道了两者工作效率之比,从比例角度考虑问题,也是非常实用的.根据3:2,两人合作时,甲应完成全部工作的33325=+,所需时间是31065⨯=(天). 因此,在下面例题的讲述中,我们可以采用 “把工作量设为整体1”的做法,也可以“整数化”或“从比例角度出发”、“列方程”等,这样会使我们的解题思路更灵活一些.二、典型例题例1. 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?解析: 甲的工效:1÷9=1/9 乙的工效:1÷6=1/6 甲三天做了的:1/9 × 3=1/3余下的工作:1 - 1/3 =2/3 乙需做的天数:2/3 ÷ 1/6=4(天)例2. 有一工程,甲队单独做24天完成,乙队单独做30天完成,甲、乙两队合做8天后,余下的由丙队做,又做了6天才完成。
(完整)六年级数学工程问题(附例题答案)

第七讲 工程问题一、知识要点在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作总量、工作效率、工作时间这三个量,它们之间的基本数量关系是工作总量=工作效率×工作时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”.举一个简单例子:一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成?一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位,因此甲的工作效率是101,乙的工作效率是151,我们想求两人合作所需时间,就要先求两人合作的工作效率151101+,再根据基本数量关系式,得到所需时间=工作量÷工作效率=6(天).两人合作需要6天.这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的.为了计算整数化(尽可能用整数进行计算),可把工作量多设份额.如上题,10与15的最小公倍数是30.设全部工作量为30份.那么甲每天完成3份,乙每天完成2份.两人合作所需天数是30÷(3+ 2)= 6(天) 实际上我们把111()1015÷+这个算式,先用30乘了一下,都变成整数计算,就方便些. 10天与15天,体现了甲、乙两人工作效率之间比例关系11:3:21015=.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是15∶10=3∶2.当知道了两者工作效率之比,从比例角度考虑问题,也是非常实用的.根据3:2,两人合作时,甲应完成全部工作的33325=+,所需时间是31065⨯=(天). 因此,在下面例题的讲述中,我们可以采用 “把工作量设为整体1”的做法,也可以“整数化”或“从比例角度出发”、“列方程”等,这样会使我们的解题思路更灵活一些.二、典型例题例1. 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?解析:甲的工效:1÷9=1/9 乙的工效:1÷6=1/6 甲三天做了的:1/9 ×3=1/3余下的工作:1 -1/3 =2/3 乙需做的天数:2/3 ÷1/6=4(天)例2.有一工程,甲队单独做24天完成,乙队单独做30天完成,甲、乙两队合做8天后,余下的由丙队做,又做了6天才完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七讲 工程问题一、知识要点在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作总量、工作效率、工作时间这三个量,它们之间的基本数量关系是工作总量=工作效率×工作时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”.举一个简单例子:一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成?一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位,因此甲的工作效率是101,乙的工作效率是151,我们想求两人合作所需时间,就要先求两人合作的工作效率151101+,再根据基本数量关系式,得到所需时间=工作量÷工作效率=6(天).两人合作需要6天.这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的.为了计算整数化(尽可能用整数进行计算),可把工作量多设份额.如上题,10与15的最小公倍数是30.设全部工作量为30份.那么甲每天完成3份,乙每天完成2份.两人合作所需天数是30÷(3+ 2)= 6(天) 实际上我们把111()1015÷+这个算式,先用30乘了一下,都变成整数计算,就方便些. 10天与15天,体现了甲、乙两人工作效率之间比例关系11:3:21015=.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是15∶10=3∶2.当知道了两者工作效率之比,从比例角度考虑问题,也是非常实用的.根据3:2,两人合作时,甲应完成全部工作的33325=+,所需时间是31065⨯=(天). 因此,在下面例题的讲述中,我们可以采用 “把工作量设为整体1”的做法,也可以“整数化”或“从比例角度出发”、“列方程”等,这样会使我们的解题思路更灵活一些.二、典型例题例1. 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?解析:甲的工效:1÷9=1/9 乙的工效:1÷6=1/6 甲三天做了的:1/9 ×3=1/3余下的工作:1 -1/3 =2/3 乙需做的天数:2/3 ÷1/6=4(天)例2.有一工程,甲队单独做24天完成,乙队单独做30天完成,甲、乙两队合做8天后,余下的由丙队做,又做了6天才完成。
这个工程由丙队单独做需几天完成?解析:1-(1/24+1/30)×8=2/5 6÷2/5=15天例3.某工程先由甲单独做63天,再由乙单独做28天即可完成,若由甲乙两人合作,需48天完成,现在甲先单独做42天,然后由乙来单独完成,那么还需要多少天?解析:某工程先由甲单独做63天,再由乙单独做28天可以完成,可看成甲乙合作28天,甲再另外做了35天所以甲的工效为(1-28/48)/35=1/84,乙的工效为1/48-1/84=1/112甲先单独做42天,然后由乙接着做,还需(1-42*1/84)/(1/112)=56天另一个方法:令甲每天做工程的百分比为x,乙每天做工程的百分比为y则63x+28y=1 48(x+y)=1求得x=1/84 y=1/112若甲独做42天,则完成工程的42/84,即1/2,剩下1/2由乙完成,需要1/2÷1/112=56天例4.一项工程,甲乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1 30,甲乙单独做这项工程各需要多少天?甲单独做需X天,乙单独做需y天4*(1/X + 1/Y)+5/Y=1 1/x -1/y=1/30 X=10 Y=15甲单独做需10天,乙单独做需15天设甲单独做需X天,那么甲平均每天完成工程的1/X;因为甲比乙每天多完成这项工程的30分之一,就是说,乙平均每天完成1/X-1/30;按照已知条件,甲乙合作4天,4/X+4*(1/x-1/30),随后,乙单独做了5天,5*(1/x-1/30),加在一起,完成了这项工程,即,4/X+4*(1/x-1/30) + 5*(1/x-1/30) =1x=10乙每天完成1/10-1/30=1/15,即,乙单独做需15天例5. 一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天?16天中甲实际休息了16-3=13天甲完成了13/20乙完成了1-13/20=7/20需要时间:7/20÷1/30=10.5天所以乙休息了16-10.5=5.5天例6. 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?解析1:先让张某单独完成乙,李某单独完成甲。
乙还剩1-8/15=7/15两人合作时间为:7/15/(1/15+1/20)=4 所以至少要工作:8+4=12(天)解析2:小李做甲工效高小李先做甲,小张先做乙,小李完成甲以后再和小张一起做乙至少需要:(1-8/15)÷(1/15+1/20)+8=12天例7.甲、乙合做一件工作要15天才能完成,现在甲、乙合做10天后,再由乙独做6天,还剩下这件工作的1/10,甲单独完成这件工作要多少天?解析:甲乙合作10天,完成了:10×1/15=2/3 乙独做6天完成了:1-2/3-1/10=7/30 乙每天完成:7/30÷6=7/180 甲独做需要:1÷(1/15-7/180)=36(天)例8. 一项工程甲队单独做15天可以完成,乙队独坐10天可以完成。
现在开始两队合作,但中间乙队因另有任务调走,从开始到完成任务,甲队工作了9天,乙队比甲队少工作了多少天?解析:甲独做一天的工效为1/15,乙独做一天的工效为1/10。
合做分想:这项工程甲做了9天,剩下的都是由乙队完成的。
可以用工作总量减去甲队9天的工作量,求出乙队工作量,再根据乙队的工作量和工效求出乙队的工作时间:(1-1/15×9)÷1/10=4(天)。
所以乙队比甲队少工作天数为:9-4=5例9. 甲、乙合做一件工作,合作8天后,乙又独做5天,还剩下这件工作的1/6。
已知乙单独完成这件工作要30天,那么甲单独完成这件工作要多少天?解析:1-1/30×(8+5)-1/6=12/30=2/5 2/5÷8=1/20 所以需要20天例10. 甲、乙合做一件工作,每天能完成全部工作的1/12,甲单独做6天,乙又单独做10天后,还剩下全部工作的11/30没有完成,甲单独完成全部工作要多少天?解析:6*1/12=1/2 1-11/30-1/2=2/15 (2/15)/(10-6)=1/30 1/(1/12-1/30)=20例11..一项工程,甲单独完成需12天,乙单独完成需9天。
若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?解析1:当做鸡兔同笼问题处理,如果10天都是乙做,能完成:1/9×10=10/9,超出了:10/9-1=1/9,每天,甲比乙少做:1/9-1/12=1/36,甲做了:1/9÷1/36=4天解析2:设甲做了X天X×1/12+(10-X)×1/9=1,得出X=4甲做了4天例12. 一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?解析:设甲做了x天,则乙做了3x天,丙做了6x天,所以x/12+3x/18+6x/24=1,x/2=1x=2,所以总共用了2+3*2+6*2=20天例13. 一份稿件,甲、乙、丙三人单独打字需要的时间分别是20小时、24小时、30小时,现在三人合打,但甲因中途另有任务提前撤出,结果用12小时完成,甲只打了多少小时?解析1:甲、乙、丙每小时单独打出稿件的1/20,1/24,1/30,打了12小时,则乙和丙分别打了全部稿件的12/24,12/30,12/24+12/30=9/10,则甲打了稿件的十分之一,(1/10)除以(1/20)=2甲打了2小时解析2:方程法:设甲打x小时。
则:x/20+12*(1/24+1/30)=1,可解出X=2例14. 一项工程甲单独完成要30天,乙单独完成要45天,丙单独完成要90天。
现在由甲、乙、丙合作完成此工程,在工作过程中甲休息了2天,乙休息了3天,丙没有休息,最后把工程完成了,问完成这项工程前后一共用了多少天?解析1:方程法设是第x 天完成的,(x-2)/30 +(x-3)/45 +x/90=1整理,得x=17解析2:(1+2/30+3/45)/(1/30+1/45+1/90)=17(天)解释:假若甲、乙没休息,那么应该完成总工程的1+2/30 +3/45例15. 一项工程,甲、乙两人合做4天后,再由甲单独做6天才完成全部任务。
已知甲比乙每天多完成这项工程的1/80,则甲、乙单独完成各需多少天?解析1:思路同第四题,设乙每天完成的工作占整个工作的x ,4(x+x+1/80)+6(x+1/80)=1x=1/16,x+1/80=3/40,所以甲40/3天完成,乙16天完成解析2:甲比乙多完成全部任务的:1/80*(4+6)=1/8(4+6表示甲一共做了10天)1-1/8=7/8(相当于两人均以乙的工效完成的工作量)4+4+6=14(天)乙每天完成:7/8÷14=1/16,甲每天完成:1/16+1/80=3/40,单独完成甲要:1÷3/40=13又1/3(天)例16. 一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成?解析:甲乙合作的效率=1÷36=1/36,乙丙合作的效率=1÷45=1/45,甲丙合作的效率=1÷60=1/60,甲乙丙三人合作的效率=(1/36+1/45+1/60)÷2=1/30甲工作的效率=1/30-1/45=1/90三、练习题1. 某工程甲单独干10天完成,乙单独干15天完成,他们合干多少天才可完成工程的一半? 解:3)151101(21=+÷天 2. 某工程甲队单独做需48天,乙队单独做需36天。
甲队先干了6天后转交给乙队干,后来甲队重新回来与乙队一起干了10天,将工程做完。
求乙队在中间单独工作的天数。