《分式》复习资料
分式复习题及解析
分式复习题及解析一、填空题1.使分式的值等于零的条件是_________.2.在分式中,当x_____________时有意义,当x_________时分式值为零.3.在括号内填入适当的代数式,使下列等式成立:=;=.4.某农场原计划用m天完成A公顷的播种任务,如果要提前a天结束,那么平均每天比原计划要多播种_________公顷.5.函数y=中,自变量x的取值范围是___________.6.计算的结果是_________.7.已知u=(u≠0),则t=___________.8.当m=______时,方程会产生增根.9.用科学记数法表示:12.5毫克=________吨.10.用换元法解方程,若设x2+3x=y,,则原方程可化为关于y的整式方程为____________.11.计算(x+y)· =____________.12.若a≠b,则方程+=-的解是x=____________;13.当x_____________时,与互为倒数.14.约分:=____________;=_____________.15.当x__________________时,分式-有意义.16.若分式的值为正,则x的取值范围是_______________.17.如果方程有增根,则增根是_______________.18.已知=;则= __________.19.m≠±1时,方程m(mx-m+1)=x的解是x=_____________.20.一个工人生产零件,计划30天完成,若每天多生产5个,则在26 天完成且多生产15个.求这个工人原计划每天生产多少个零件若设原计划每天生产x个,由题意可列方程为____________.二、选择题21.下列运算正确的是()A.x10÷x5=x2; B.x-4·x=x-3; C.x3·x2=x6; D.(2x-2)-3=-8x622.如果m个人完成一项工作需要d天,则(m+n)个人完成这项工作需要的天数为()A.d+n B.d-n C.D.23.化简等于()A.B.C.D.24.若分式的值为零,则x的值是()A.2或-2 B.2 C.-2 D.425.不改变分式的值,把分子、分母中各项系数化为整数,结果是()A.B.C.D.26.分式:①,②,③,④中,最简分式有()A.1个 B.2个 C.3个 D.4个27.计算的结果是()A.B.- C.-1 D.128.若关于x的方程有解,则必须满足条件()A.c≠d B.c≠-d C.bc≠-ad D.a≠b29.若关于x的方程ax=3x-5有负数解,则a的取值范围是()A.a<3 B.a>3 C.a≥3 D.a≤330.一件工作,甲独做a小时完成,乙独做b小时完成,则甲、乙两人合作完成需要()小时.A.B.C.D.三、解答题31.;32..33..34.先化简,再求值:,其中,.35.已知:的值.36.若,求的值.37.阅读下列材料:∵,,,……,∴ = ==.解答下列问题:(1)在和式中,第6项为______,第n项是__________.(2)上述求和的想法是通过逆用________法则,将和式中的各分数转化为两个数之差,使得除首末两项外的中间各项可以_______,从而达到求和的目的.(3)受此启发,请你解下面的方程:.38.甲、乙两个工程队共同完成一项工程,乙队先单独做1天,再由两队合作2天就完成全部工程,已知甲队与乙队的工作效率之比是3:2,求甲、乙两队单独完成此项工程各需多少天39.汶川大地震给我们国家造成巨大损失,有许多人投入了抗震救灾战斗之中,身为医护人员的小刚的父母也投身其中.如图16-1,小刚家、王老师家,学校在同一条路上,小刚家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米.由于小刚的父母战斗在抗震救灾第一线,为了使他能按时到校,王老师每天骑自行车接小刚上学.已知王老师骑自行车的速度是步行的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少40.把金属铜和氧化铜的混合物2克装入试管中,在不断通入氢气的情况下加热试管,待反应不再发生后,停止加热,待冷却后称量,得到1.8克固体物质.请你求一下原混合物中金属铜有多少克参考解析提要:分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一,所以,分式的四则运算是本章的重点.分式的四则混合运算,是整式运算、因式分解和分式运算的综合运用,由于运用了较多的基础知识,运算步骤增多,解题方法多样灵活,又容易产生符号和运算方面的错误,所以是分式的难点.同时列分式方程解应用题和列整式方程解应用题相比较,虽然涉及到的基本数量关系有时是相同的,但由于含有未知数的式子不受整式的限制,所以更为多样而灵活.一、填空题1.x=-且a≠-(点拨:使分式为零的条件是,即,也就是)2.x≠2且x≠-1,x=-23.=;=4.(点拨:按原计划每天播种公倾,实际每天播种公倾,故每天比原计划多播种的公倾数是.结果中易错填了的非最简形式)5.x≥-且x≠,x ≠3 (点拨:根据二次根式,分式和负整数指数幂有意义的条件得不等式组解得)6.-2 (点拨:原式=1+2-5÷1=3-5=-2)7.(点拨:等式两边都乘以(t-1),u(t-1)=s1-s2,ut-u=s1-s2,ut=u+s1-s2,∵u≠0,∴t=.本题是利用方程思想变形等式,要注意“未知数”的系数不能为0)8.-3(点拨:方程两边都乘以公分母(x-3),得:x=2(x-3)-m①,由x-3=0,得x=3,把x=3代入①,得m=-3.所以,当m=-3时,原方程有增根.点拨:此类问题可按如下步骤进行:①确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值)9.1.25×10-8(点拨:∵1吨=103千克=103×103克=103×103×103毫克= 109毫克,∴1毫克=10-9吨,∴12.5毫克=12.5×10-9吨=1.25×10×10-9吨=1.25×10- 8吨)10.2y2-13y-20=0 (点拨:分式方程可变为2(x2+3x)-=13,用y代替x2+3x,得2y-=13,两边都乘以y并移项得2y2-13y-20=0)11.x+y(点拨:原式=)12.x=;13.x<0 14.约分:=;=15.x≠且x≠-2 16.x<17.x=2 18.19.x=20.或26(x+5)-30x=15(点拨:原计划生产30x个,实际生产(30x+15)个,实际生产的个数亦可表示为26(x+5),所以实际生产个数÷实际生产效率=实际生产时间,即=26,或用实际生产个数-原计划生产个数= 实际比原计划多生产的个数,即26(x+5)-30x=15)二、选择题21.B(点拨:x-4·x=x-4+1=x-3.x的指数是1,易错看成0;A错在将指数相除了;C错在将指数相乘了;D中,)22.C(点拨:m个人一天完成全部工作的,则一个人一天完成全部工作的,(m+n)个人一天完成·(m+n)=,所以(m+n)个人完成全部工作需要的天数是)23.A(点拨:原式=)24.C(点拨:由x2-4=0,得x=±2.当x=2时,x2-x-2=22-2-2=0,故x=2不合题意;当x=-2时,x2-x-2=(-2)2-(-2)-2=4≠0,所以x=-2时分式的值为0)25.D(点拨:分式的分子和分母乘以6,原式=.易错选了A,因为在分子和分母都乘以6时,原本系数是整数的项容易漏乘,应特别注意)26.B(点拨:②中有公因式(a-b);③中有公约数4,故②和③不是最简分式)27.B(点拨:原式=)28.B(点拨:方程两边都乘以d(b-x),得d(x-a)=c(b-x),∴dx-da=cb-cx,(d+c)x=cb+da,∴当d+c≠0,即c≠-d时,原方程有解)29.B(点拨:移项,得ax-3x=-5,∴(a-3)x=-5,∴x=,∵<0,∴a-3>0,a>3.解分式不等式应根据有理数除法的负号法则,即,则有或;若,则有或,然后通过解不等式或不等式组得到相关字母的取值范围)30.D(点拨:甲和乙的工作效率分别是,,合作的工作效率是+,所以,合作完成需要的时间是)三、解答题31 解析:原式==.点评:①学习了解分式方程之后,在进行分式的化简计算时,易错将本该通分的运算变成了去分母;②进行分式的化简计算应进行到最简分式为止,本题还易错将当成最后结果.32.解析:原式==.点评:熟练而准确的因式分解是进行分式化简的重要保证,分式的加、减、乘、除混合运算易出现运算顺序方面的错误.33.解析:原方程可变形为.方程两边都乘以最简公分母(x-2),得1+1-x=-3(x-2),解这个整式方程,得x=2,把x=2代入公分母,x-2=2-2=0,x=2是原方程的增根,所以,原方程无实数解.点评:验根是解分式方程的易忽略点.34.,35. 36.37.(1).(2)分式减法,对消(3)解析:将分式方程变形为整理得,方程两边都乘以2x(x+9),得2(x+9)-2x=9x,解得x=2.经检验,x=2是原分式方程的根.点评:此方程若用常规方法来解,显然很难,这种先拆分分式化简后再解分式方程的方法不失是一种技巧.38.解析:设甲队单独完成此项工程需2x天,则乙队需要3x天,由题意,得,解之得x=2,经检验,x=2是所列分式方程的根.∴2x=2×2=4,3x=3×2=6.答:甲队单独完成需4天,乙队需6天.点拨:①本题使用了“参数法”,当题目中出现两个量的比值时,使用这一方法比较简便;②因为效率与时间成反比,所以本题易错设为:“甲单独完成需3x天,乙需2x天”;③验根极易被忽略.39.解析:设王老师步行的速度是x千米/时,则骑自行车的速度是3x千米/时,20分钟=小时,由题意,得,解得x=5.经检验x=5是所列方程的根,∴3x=3×5=15(千米/时).答:王老师步行的速度是5千米/时,骑自行车的速度是15千米/时.点评:①王老师骑自行车接小刚所走路程易错以为是(3+0.5)千米.②行程问题中的单位不统一是个易忽略点.40.解析:根据题意写出化学反应方程式:80 64设原混合物中金属铜有x克,则含有氧化铜(2-x)克结果中新生成氧化铜(1.8-x)克,由题意,列方程为:,解得x=1.经检验x=1是所列方程的根.答:原混合物中金属铜有1克.点评:这是一道数字与化学学科的综合题,本题既考查了化学反应的生成和对元素式量的记忆,也考查了学生利用列分式方程解决问题的能力,这是今后中考命题的趋势,意在考查学生学科间知识的综合应用水平.。
分式复习
4、甲加工180个零件所用的时间,乙可以加 工240个零件,已知甲每小时比乙少加工5个 零件,求两人每小时各加工的零件个数.
5、A,B两地相距135千米,有大,小两辆汽 车从A地开往B地,大汽车比小汽车早出发5小 时,小汽车比大汽车晚到30分钟.已知大、小 汽车速度的比为2:5,求两辆汽车的速度.
A、2 C、 0或-3 B、-3 D、- 3或3
x3 A B 6、已知 2 2 ,求A、B ( x 2) x 27、已知x2-3x+1=0,求 x 2 的值. x
2
1 2x 4 的值 x
4
2m 8. 已知关于x的方程 =3的解是负数, 1 x
6、骑自行车比步行每小时快8千米,乘汽车比 步行每小时快24千米,某人从A地出发步行 4千米,然后乘汽车10千米到达B地,又骑自 行车返回A地,往返所用的时间相同, 求此人步行的速度。
7、甲、乙两班学生植树,原计划6天完成任务, 他们共同劳动了4天后,乙班另有任务调走, 甲班又用6天才种完,求甲、乙两班单独完成 任务各需多少天? 8、甲、乙两个小商贩每次都去同一批发商场买进 白糖。甲进货的策略是:每次买1000元钱的糖; 乙进货的策略是每次买1000斤糖。最近他们共 同买进了两次价格不同的糖,问两人谁的平均 价格低一些?
(C)3个 (D)4个
x2 1 2、分式 ( x 1)( x 3) 有意义的条件 是 x≠1且x≠3 ;
值为零的条件是
1 3.不论x为何值,分式 x 2 2 x m 总有意义, 则m的取值范围是( ) (A)m≥1(B)m>1 (C)m≤1 (D)m<1
x 1
。
分式的基本性质
2、写出一个分母含有两项且能够约分的分 式 。
2024中考数学复习核心知识点精讲及训练—分式(含解析)
2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。
考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。
分式知识点总复习含答案
分式知识点总复习含答案一、选择题1.下列各式从左到右变形正确的是( )A .13(1)223x y x y ++=++ B .0.20.03230.40.0545a b a d c d c d --=++ C .a b b a b c c b--=-- D .22a b a b c d c d --=++ 【答案】C【解析】【分析】依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.【详解】 A 、该式子不是方程,不能去分母,故A 错误;B 、分式中的分子、分母的各项没有同时扩大相同的倍数,故B 错误;C 、a-b b-a =d-c c-d故C 正确; D 、分式中的分子、分母的各项没有同时除以2,故D 错误.故选C .【点睛】本题考查了分式的基本性质,解题的关键是熟练运用性质.2.若2250(0)a ab b ab ++=≠,则b a a b +=( ) A .5B .-5C .5±D .2± 【答案】B【解析】【分析】根据题意,先得到225a b ab +=-,代入计算即可.【详解】解:∵2250(0)a ab b ab ++=≠,∴225a b ab +=-, ∴2255b a a b ab a b ab ab+-+===-; 故选:B.【点睛】本题考查了分式的化简求值,解题的关键是正确得到225a b ab +=-.3.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1B .1C .-1或1D .1或0【答案】B【解析】【分析】 根据分式的值为零的条件可以求出x 的值.【详解】根据题意,得|x|-1=0且x+1≠0,解得,x=1.故选B .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.在等式[]209()a a a ⋅-⋅=中,“[]”内的代数式为( )A .6aB .()7a -C .6a -D .7a【答案】D【解析】【分析】 首先利用零指数幂性质将原式化简为[]29a a ⋅=,由此利用同底数幂的乘除法法则进一步进行分析即可得出答案.【详解】()01a -=Q ,则原式化简为:[]29a a ⋅=,∴[]927a a -==,故选:D .【点睛】本题主要考查了零指数幂的性质与同底数幂的乘除法运算,熟练掌握相关概念是解题关键.5.化简21644m m m+--的结果是( ) A .4m -B .4m +C .44m m +-D .44m m -+ 【答案】B【解析】【分析】根据分式的加减运算法则计算,再化简为最简分式即可.【详解】21644m m m+-- =2164m m -- =(4)(4)4m m m +-- =m+4.故选B.【点睛】 本题考查分式的加减.同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.熟练掌握运算法则是解题关键.6.人的头发直径约为0.00007m ,这个数据用科学记数法表示( )A .0.7×10﹣4B .7×10﹣5C .0.7×104D .7×105【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00007m ,这个数据用科学记数法表示7×10﹣5.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7.若a =-0.22,b =-2-2,c =(-12)-2,d =(-12)0,则它们的大小关系是( ) A .a<c<b<dB .b<a<d<cC .a<b<d<cD .b<a<c<d【答案】B【解析】【分析】根据正整数指数幂、负整数指数幂以及零次幂的意义分别计算出a ,b ,c ,d 的值,再比较大小即可.【详解】∵a =-0.22=-0.04,b =-2-2=14-,c =(-12)-2=4,d =(-12)0=1, -0.25<-0.04<1<4∴b <a <d <c故选B.【点睛】此题主要考查了负整数指数幂,正整数指数幂、零次幂,熟练掌握它们的运算意义是解题的关键.8.生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为( )A .0.432×10-5B .4.32×10-6C .4.32×10-7D .43.2×10-7【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,这里1<a <10,指数n 是由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解: 0.00000432=4.32×10-6,故选B .【点睛】本题考查科学记数法.9.已知24111P Q x x x =+-+-是恒等式,则( ) A . 2, 2P Q ==- B .2, 2P Q =-= C .2P Q == D .2P Q ==- 【答案】B【解析】【分析】 首先利用分式的加减运算法则,求得()()2111Q x x x P Q x Q P P ++-=-++-,可得方程组04P Q Q P +=⎧⎨-=⎩,解此方程组即可求得答案. 【详解】 解:∵()()()()()()22111411111P x Q x P Q x Q P P Q x x x x x x -++++-=+==+-+---, ∴()()4P Q x Q P ++-=,∴04P Q Q P +=⎧⎨-=⎩,解之得:22P Q =-⎧⎨=⎩, 故选:B .【点睛】此题考查了分式的加减运算、二元一次方程的解法以及整式相等的性质,解题的关键是掌握分式的加减运算法则.10.0000005=5×10-7故答案为:B.【点睛】本题考查的知识点是科学计数法,解题的关键是熟练的掌握科学计数法.11.若115a b =,则a b a b -+的值是( ) A .25 B .38 C .35 D .115【答案】B【解析】【分析】直接根据已知用含x 的式子表示出两数,进而代入化简得出答案.【详解】 解:∵115a b = ∴设11a x =,5b x = ∴11531158a b x x a b x x --==++ 故选:B【点睛】 此类化简求值题目,涉及到的字母a 、b 利用第三个未知数x 设出,代入后得到关于x 的式子进行约分化简即可.将两个字母转化为一个字母是解题的关键.12.化简(a ﹣1)÷(1a ﹣1)•a 的结果是( ) A .﹣a 2B .1C .a 2D .﹣1 【答案】A【解析】分析:根据分式的混合运算顺序和运算法则计算可得.详解:原式=(a ﹣1)÷1a a-•a=(a ﹣1)•()1a a --•a =﹣a 2,故选:A . 点睛:本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.13.若代数式1y x =-有意义,则实数x 的取值范围是( ) A .0x ≥B .0x ≥且1x ≠C .0x >D .0x >且1x ≠【答案】B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】 根据题意得:010x x ≥⎧⎨-≠⎩ , 解得:x≥0且x≠1.故选:B .【点睛】此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.14.下列各分式中,是最简分式的是( ).A .22x y x y++ B .22x y x y -+ C .2x x xy + D .2xy y 【答案】A【解析】【分析】 根据定义进行判断即可.【详解】解:A 、22x y x y++分子、分母不含公因式,是最简分式; B 、22x y x y-+=()()x y x y x y +-+=x -y ,能约分,不是最简分式; C 、2x x xy+=(1)x x xy +=1x y +,能约分,不是最简分式;D 、2xy y =x y,能约分,不是最简分式. 故选A .【点睛】本题考查分式的化简,最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.15.计算211a a a ---的正确结果是( ) A .11a -- B .11a - C .211a a --- D .211a a -- 【答案】B【解析】【分析】 先将后两项结合起来,然后再化成同分母分式,按照同分母分式加减的法则计算就可以了.【详解】 原式()211a a a =-+- 22111a a a a -=--- 11a =-. 故选B .【点睛】 本题考查分式的通分和分式的约分的运用,解题关键在于在解答的过程中注意符号的运用及平方差公式的运用.16.一次抽奖活动特等奖的中奖率为150000,把150000用科学记数法表示为( ) A .4510⨯﹣B .5510⨯﹣C .4210⨯﹣D .5210⨯﹣【答案】D【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】150000=0.00002=2×10﹣5. 故选D .【点睛】 本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.已知1112a b -=,则ab a b -的值是 A .12 B .-12 C .2 D .-2 【答案】D【解析】分析:观察已知和所求的关系,容易发现把已知通分后,再求倒数即可. 解答:解:∵, ∴a ab -=, ∴=, ∴=-2.故选D .18.把分式a a b+中的,a b 的值同时扩大为原来的10倍,则分式的值( ) A .不变 B .缩小为原来的110C .扩大为原来的10倍D .扩大为原来的100倍【答案】A【解析】【分析】 根据分式的基本性质,把分式a a b+中的x 、y 的值同时扩大为原来的10倍得:1010=101010()a a a a b a b a b=+++,即可得到答案. 【详解】把分式a a b+中的x 、y 的值同时扩大为原来的10倍得:1010=101010()a a a a b a b a b=+++, 即分式a a b+的值不变, 故选:A .【点睛】 本题考查了分式的基本性质,正确掌握分式的基本性质是解题的关键.19.已知23x y =,那么下列式子中一定成立的是 ( ) A .5x y +=B .23x y =C .32x y =D .23x y = 【答案】D【解析】【分析】 根据比例的性质对各个选项进行判断即可.【详解】A. ∵23x y =,∴3x =2y ,∴ 5x y += 不成立,故A 不正确; B. ∵23x y =,∴3x =2y ,∴ 23x y =不成立,故B 不正确; C. ∵23x y =,∴23x y =y ,∴ 32x y =不成立,故C 不正确; D. ∵23x y =,∴23x y =,∴ 23x y =成立,故D 正确; 故选D.【点睛】本题考查的是比例的性质,掌握内项之积等于外项之积及更比性质是解题的关键. 更比性质:在一个比例里,更换第一个比的后项与第二个比的前项的位置后,仍成比例,或者更换第一个比的前项与第二个比的后项的位置后,仍成比例,这叫做比例中的更比定理.对于实数a ,b ,c ,d ,且有b ≠0,d ≠0,如果a c b d=,则有a b c d =.20.测得某人一根头发的直径约为0.000 071 5米,该数用科学记数法可表示为( ) A .0.715×104B .0.715×10﹣4C .7.15×105D .7.15×10﹣5【答案】D【解析】。
第三章整理《分式》(复习)ppt课件
顺水速=静水速+水流速 逆水速=静水速-水流速
设是水流速为xkm/ h
则 水 为 20 + x)km/ h 顺 速 (
逆 速 (20 - x)km/ h 水 为
72 48 = 20 + x 20 − x
A.扩大3倍 B.扩大9倍C.扩大4倍D.不变 扩大3 扩大9 扩大4
3、 填空: x ( x − y ) = ( x − 2
y)
x + xy
x+y
例1:化简求值 :
a−2 a −1 a−4 ( 2 − 2 )÷ a + 2a a + 4a + 4 a + 2 2 其中a满足:a + 2a − 1 = 0
1. 若分式
A、 A、x≠-1 C、x≠2 、
若有意义, 应满足( 若有意义,则x应满足( B ) 应满足
B、 ≠-1且 B、x ≠-1且x ≠2 D、x ≠-1或x ≠2 、 或
x −4 ( x + 1)( x − 2)
若值为0, 应满足( 若值为 ,则x应满足( B ) 应满足
A、x=2 、 C、 、
1km
中点 18km }
xkm / h
甲 A
乙 B
甲走了总共20km 甲走了总共
设 乙的速度 xkm / h 则 甲的速度( x + 0.5)km / h
20 18 = x + 0.5 x
1、一项工程,若甲队单独做,恰好在规定的日期 、一项工程,若甲队单独做, 完成,若乙队单独做要超过规定日期3天完成 天完成; 完成,若乙队单独做要超过规定日期 天完成;现 在先由甲、乙合做2天 在先由甲、乙合做 天,剩下的工程再由乙队单独 也刚好在规定日期完成, 做,也刚好在规定日期完成,问规定的日期是多 少天? 少天? 1 甲每天的工作量 x 设 天 甲x
《分式》复习课
《分式》复习课一.基础知识1. 分式的概念:如果A 、B 表示两个整式,且B 中 ,那么式子A B 叫做分式. 2. 分式有意义:分式的 不能为0,即AB 中, 时,分式有意义.3. 分式的值为0的条件:( )为0,且( )不为0,对于A B ,即00=≠⎫⎬⎭( )( )时,0A B =. 4. 分式的基本性质分式的分子、分母都乘以(或除以)同一个 的整式,分式的 不变.A B==( )( )(M 为≠0的整式) 5. 分式通分应注意(1)通分的依据是 . (2)通分后的各分式的 相同.(3)通分后的各分式分别与原来的分式 . (4)通分的关键是确定 .6. 分式通分的步骤(1)确定最简公分母①取各分母系数的 ②凡出现的字母(或式子)的因式都要取.③相同字母(或含字母的式子)的幂的因式取指数最 的.④当分母中有多项式时,要先将多项式 .(2)将各分式化成相同分母的分式.7. 分式的约分(1)约分的依据: (2)约分后不改变分式的 .(3)约分的结果:使分子、分母中没有 ,即化为最简分式.8. 分子的变号规则分式的分子、分母及分式本身的符号改变其中任意两个,分式的值不变.用式子表示为:9. 分式的乘除法则(用符号表示)乘法法则: .除法法则: .10. 分式的加减(用符号表示)(1)同分母分式相加减, .(2)异分母分式相加减, .11.分式方程定义:分母中含有 的方程叫分式方程.12. 解分式方程方法二、基础练习㈠、选择题1.在式子1a ,2xy π,2334a b c ,56x +,78x y +,2123x x =-+中,分式的个数是 ( ) A .2 B .3 C .4 D .52.如果把分式2x x y+的x 和y 都扩大2倍,那么分式的值应 ( ) A .扩大2倍 B .不变 C .扩大4倍 D .缩小到原来的 3.下列约分正确的是( )A 、326x x x =;B 、0=++y x y x ;C 、x xy x y x 12=++;D 、214222=y x xy 4.分式233a a b -、222b ab-与3358c a bc -的最简公分母是 ( ) A .24a 2b 2c 2 B .24a 6b 4c 3 C .24a 3b 2c 3 D .24a 2b 3c 35.若分式22325x x -+的值是负数,则x 的取值范围是 ( ) A .23x > B .23x < C .x <0 D .不能确定 6.下列各分式中,最简分式是 ( )A .()()3485x y x y -+B .22y x x y -+C .2222x y x y xy ++ D .()222x y x y -+ 7.已知0≠x ,xx x 31211++等于( ) A 、x 21 B 、x 61 C 、x 65 D 、x611 8.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程 ( )A .9696944x x +=+- B .4848944x x+=+- C .4849x += D .4848944x x +=+- ㈡填空题 9.当≠x 时,分式x -13有意义;分式392--x x 当x __________时分式的值为零. 10.①())0(,10 53≠=a axy xy a ②()1422=-+a a 。
分式章节复习(教师版)
1.先化简,再求值.,其中满足.2.已知,,则的值=________.222142442x x x x x x x x ---⎛⎫-÷ ⎪++++⎝⎭x 2210x x +-=1327m =1162n⎛⎫= ⎪⎝⎭n m知识点一(分式的有关性质和运算)【知识梳理】一、分式的有关概念及性质1.分式:一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子叫做分式.其中A 叫做分子,B 叫做分母.2.分式的基本性质 (M 为不等于0的整式).3.最简分式:分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.二、分式的运算1.约分:利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算;同分母的分式相加减,分母不变,把分子相加减. ;异分母的分式相加减,先通分,变为同分母的分式,再加减.A Ba b a b c c c±±=(2)乘法运算 ,其中是整式,. 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算 ,其中是整式,. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方。
4.零指数.5.负整数指数6.分式的混合运算顺序 先算乘方,再算乘除,最后加减,有括号先算括号里面的.【例题精讲】类型一、分式及其基本性质1.当为任意实数时,下列分式一定有意义的是( C )A.B. C. D.2.不改变分式的值,把下列各式分子与分母中各项的系数都化为最简整数.(1); (2); (3). a c ac b d bd⋅=a b c d 、、、0bd ≠a c a d ad b d b c bc÷=⋅=a b c d 、、、0bcd ≠x 14231134a b a b +-0.30.20.05x y x y +-222230.41010.64x y x y +-类型二、分式运算3.计算:. 解:原式. 类型三、分式条件求值的常用技巧4.已知,求的值.5.设,且,,求的值.【课堂练习】1.计算…. 2411241111x x x x+++-+++224448224448111111x x x x x x =++=+=-++-+-14x x+=2421x x x ++0abc ≠3270a b c +-=74150a b c +-=22222245623a b c a b c --++111(1)(1)(2)(2)(3)a a a a a a ++++++++1(2005)(2006)a a +++2.若0<x <1,且的值.3.已知,且,求的值.知识点二(分式方程)【知识梳理】一、分式方程22230x xy y --=x y ≠-2xxy x y --1.分式方程的概念:分母中含有未知数的方程叫做分式方程. 2.分式方程的解法:关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题:增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.二、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.【例题精讲】类型一、分式方程的解法1.解方程.类型二、分式方程的应用2.某车间计划加工360个零件,由于技术上的改进,提高了工作效率,每天比原计划多加工20%,结果提前10天完成任务,求原计划每天能加工多少个零件?【课堂练习】1.若关于x 的方程﹣=有增根,求增根和k 的值.263525(3)(5)(3)(5)x x x x x =+-+++-2.某项工程限期完成,甲队独做正好按期完成,乙队独做则要误期3天.现两队合做2天后,余下的工程再由乙队独做,也正好在限期内完成,问该工程限期是多少天?1.ba b a b a b a b a b a -+⨯-+÷-+22)()(的结果是( B ) A .b a b a +- B .b a b a -+ C .2)(b a b a -+ D .12.若关于x 的分式方程1322m x x x ++=--有增根,则m 的值是( C ) A .m =﹣1 B .m =2C .m =3D .m =0或m =3 3.某农场挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么下列方程正确的是( A )A .480480420x x -=+B .480480204x x -=+C .480480420x x -=-D .480480204x x-=- 4.甲、乙两人分别从两地同时出发,若相向而行,则经过ah 相遇;若同向而行,则经过bh 甲追上乙.那么甲的速度是乙的( C )A .a b b +倍B .b a b+倍 C .a b b a +-倍 D .b a b a -+倍 5.若2212x y xy -=,且xy >0,则分式yx y x -+23的值为______.1 6.a 个人b 天可做c 个零件(设每人速度一样),则b 个人用同样速度做a 个零件所需天数是________.2a c7.a 为何值时,关于x 的方程223242ax x x x +=--+会产生增根?8.某文化用品商店用2000元购进一批学生书包,上市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?分式:分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式才有意义. 分式方程的增根问题:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.1.(硚口区八上期末)武汉市某区的天然气管道升级工程,若由乙工程队单独完成所需天数是由甲工程队单独完成所需天数的两倍;若甲工程队单独做5天后,再由乙工程队单独做15天,恰好完成该工程的一半,共需施工费28万元,甲工程队每天的施工费用比乙工程队每天的施工费用多8.0万元,(1)单独完成此项工程,甲、乙两工程队各需多少天?(2)甲、乙两工程队每天的施工费各为多少万元?A B。
分式一复习资料
分式(一)复习例1.若代数式1324x x x x ++÷++有意义,则x 的取值范围是 . ①要使分式321-+a a 有意义,则a 的值应是 ;要使分式142--a a 的值为零,则a 的值应为 ②分式x x -1,当 时,其值为0;当 时,分式无意义;当 时,分式的值为正数。
例2.若x 为整数,则分式61x -的值为整数的x 的值有 个. 例3.将分式22x x x+化简得1x x +,则x 应满足的条件是________. 例4.已知234221x A B x x x x +=----+,其中A 、B 为常数,则4A —B 的值为 ①已知2a x +与2b x -的和等于244x x -,则a= ,b= . 例5.已知114a b +=,则434323a ab b a ab b ++-+-= . 例6.若345x y z ==,则分式222xy yz zx x y z ++++的值等于 . 例7.先化简,再求值:①211122x x x -⎛⎫-÷ ⎪++⎝⎭,其中2x =. 练习1.已知111m n m n +=+,则n m m n+等于 2.已知2519970x x --=,则代数式32(2)(1)12x x x ---+-的值是 3.如果32=b a ,且a ≠2,那么51-++-b a b a = 4.分式的乘除法运算 222384xy z z y ⎛⎫⋅- ⎪⎝⎭ 2226934x x x x x +-+⋅-- 2224369a a a a a --÷+++2()xy xy x x y -⋅=- (22611cx b a -)÷(-222218121x c y a )·(-32592x b ay )5.已知x 2+4y 2-4x+4y+5=0,求22442y xy x y x -+-·22y xy y x --÷(y y x 22+)2的值.6.先化简,再求值:(b a ab 22+)3÷2223)b a ab (-·[)(21b a -]2,其中a=-21,b=327.已知::2:3:4x y z =,求23x y z x y z ++-+的值.8.已知:0a b c ++=,求111111a b c b c c a a b ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.9.每天能生产甲种零件a 个或乙种零件b 个,且a ∶b=2∶3.甲、乙两种零件各一个配成一套产品,30天内能生产的产品的最多套数为多少?10.王强到超市买了a 千克香蕉,用了m 元钱,又买了b 千克鲜橙,•也用了m 元钱,若他要买3千克香蕉2千克鲜橙,共需多少钱?(列代数式表示).11.已知实数a 满足:2310a a -+=,求下列各式的值: (1)1a a +的值;(2)21a a ⎛⎫+ ⎪⎝⎭的值;(3)221a a +的值;(4)441a a +的值;。
分式复习大全
分式一、分式的概念定义:一般地,用A 、B 表示两个整式,A ÷B 可以表示成B A 的形式。
如果B 中含有字母,式子BA 叫做分式。
基中A 叫做分式的分子,B 叫做分式的分母。
二、分式的基本性质 一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子: a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)•(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
分式章节复习
未知派教育版权所有 未经允许 请勿外传 第 1 页未知派教育 打造数学补习最高品质 电话:6083301 地址:海沧区嵩屿北一里33号(未来海岸浪琴湾S5)202分式章节复习【知识点一】分式的概念、分式的值为0、分式有无意义的讨论:(1)分式的判断:关键看分母中是否含有字母。
(2)分式的值为0:同时满足两个条件:(1)分母不为0(前提)(2)分子为0.(3)分式有无意义的讨论:关键看分母为不为0.【范例选讲】例1、如果分式23273x x --的值为0,则x 的值应为 . 例2、已知分式235x x x a--+: 当x =2时,分式无意义,则a = ;当a =6时,使分式无意义的x 的值共有 个. 例3、若m 为正实数,且13m m -=,221m m -则= 【对应练习】 1、下列式子是分式的是( ) A .2x B .1+x x C . y x +2 D . 3x 2、已知2111=-b a ,则b a ab -的值是( ) A .21 B .-21 C .2 D .-2 3、设m >n >0,m 2+n 2=4mn ,则22m n mn-的值等于( ) A. BCD . 34、已知当x =-2时,分式a x b x +-无意义,当x =6时,此分式的值为0,则=⎪⎭⎫ ⎝⎛a b a . 【知识点二】分式的基本性质、分式的符号法则:1、分式的基本性质:B A =C B C A ⋅⋅=C B C A ÷÷(0≠c )2、分式的符号法则:B A =B A --=-B A -=-BA -未知派教育版权所有 未经允许 请勿外传 第 2 页未知派教育 打造数学补习最高品质 电话:6083301 地址:海沧区嵩屿北一里33号(未来海岸浪琴湾S5)202例1、化简aa a -+-111=________ 例2、若把分式xyy x +中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍 例3、解分式方程:1233x x x =+--例4、下列等式:①()a b c--=-a b c -;②x y x -+-=x y x -;③a b c -+=-a b c +;④m n m --=-m n m -中,成立的( ) A .①② B .③④ C .①③ D .②④【对应练习】1、填空:() 1932=-+a a 2、将分式yx x +2中的x 、y 的值同时扩大3倍,则 扩大后分式的值( ) A 、扩大3倍; B 、缩小3倍; C 、保持不变; D 、无法确定。
分式复习教案(经典)
分式(一):【知识梳理】 1.分式有关概念(1)分式:分母中含有字母的式子叫做分式。
对于一个分式来说:①当____________时分式有意义。
②当____________时分式没有意义。
③只有在同时满足____________,且____________这两个条件时,分式的值才是零。
(2)最简分式:一个分式的分子与分母______________时,叫做最简分式。
(3)约分:把一个分式的分子与分母的_____________约去,叫做分式的约分。
将一个分式约分的主要步骤是:把分式的分子与分母________,然后约去分子与分母的_________。
(4)通分:把几个异分母的分式分别化成与____________相等的____________的分式叫做分式的通分。
通分的关键是确定几个分式的___________ 。
(5)最简公分母:通常取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
求几个分式的最简公分母时,注意以下几点:①当分母是多项式时,一般应先 ;②如果各分母的系数都是整数时,通常取它们的系数的 作为最简公分母的系数;③最简公分母能分别被原来各分式的分母整除;④若分母的系数是负数,一般先把“-”号提到分式本身的前边。
2.分式性质: (1)基本性质:分式的分子与分母都乘以(或除以)同一个 ,分式的值 .即:(0)A A M A M M BB MB M⨯÷==≠⨯÷其中(2)符号法则:____ 、____ 与__________的符号, 改变其中任何两个,分式的值不变。
即:a a a ab bbb--==-=---3.分式的运算:注意:为运算简便,运用分式的基本性质及分式的符号法则:()nn a b a b c ca c ad bc d bd a c ac d bd a c a d ad dbc bc a a n b⎧±⎧±=⎪⎪⎪⎪⎨±⎪⎪±=⎪⎪⎩⎪⎧⎪⋅=⎪⎪⎪⎨⎨⎪⎪÷=⋅=⎪⎪⎩⎪⎪=⎪⎪⎪⎩n 同分母c 加减异分母b 乘b 分式运算乘除除b 乘方()为整数b①若分式的分子与分母的各项系数是分数或小数时,一般要化为整数。
分式复习
【特别提示】 (1)在分式运算中,有整式时,可将整式看 作是分母为1 的分式,然后依照法则进行运算;(2)如果分 子、分母是多项式,那么先将其因式分解,再进行运算.
ห้องสมุดไป่ตู้
考点2 分式的化简及求值 (6年考查3次)
3.分式化简求值的一般步骤 (1)有括号的先计算括号里的. (2)有乘方,将乘方转化到分子、分母上. (3)除法变乘法,再分别对每个乘式中的分子、分母约分. (4)加减运算:分母通分、分子合并同类项. (5)代入数值,求代数式的值.
x( x 1) x ( x 1)( x 1) x 1
1 1 2 1 当x=- 时,原式= 1 . 2 1 3 2
考查
分式的化简(求值)
2a b b a 2b 2.[2012陕西,17]化简: ( ) . a b a b ab
(2a b)(a b) b(a b) a b 解:原式= (a b)(a b) a 2b
3 2 ( ) 3 2 9 当a=- 时,原式= . 3 10 2 1 2
考点1 分式的相关概念及性质 (6年内未考查)
1.分式满足的条件(两个条件缺一不可) A (1)A÷B可以表示成①________ 的形式(A、B表示两个整 B 式). (2)B中含有字母. 【特别提示】 (1)分式与整式的区别:分母中是否含有 字母;(2)判断分式是否有意义的条件:当分母B≠0时 A A ,分式 有意义;当分母B=0时,分式 没有意义; B B (3)分式值为零的条件是分子A=0,且分母B≠0.
4.分式符号变化法则:
A A A A . B B B B
考点2 分式的化简及求值 (6年考查3次)
1.分式的运算法则
初中数学总复习-分式
2
2.(2018·重庆中考A卷)计算:
x2 x 2 4x 4 ( x 2) . x 3 x 3
ac a d a c bd g ___. b c b d an a ( ) n __. bn b
【自我诊断】(打“√”或“×”)
x 1 x 3 1.若分式 有意义,则x≠-2,-3,-4. ( √ ) x2 x4 2x y 2.将分式 中的x,y值均扩大为原来的10倍, 2 3x y
第三讲
分 式
一、分式的概念和基本性质
整式 1.分式的概念:一般地,如果A,B表示两个_____,
A 字母 并且B中含有_____,那么式子 叫做分式. B
2.分式的基本性质:分式的分子与分母同乘(或除以) 整式 分式的值_____. 不变 同一个不等于0的_____,
AM AM A 用式子表示: =_______=______ B M (其中M为不等于0 B M B
【自主解答】当x+2≠0时,分式 1 有意义,即当
x2
x≠-2时, 1
x2
有意义.
答案:x≠-2
【跟踪训练】 (2018·贵港中考)若分式 2 ________. 【解析】若分式 2 的值不存在,说明分式无意义,因
x 1 x 1
的值不存在,则x的值为
此x+1=0,解得x=-1. 答案:-1
则分式的值不变. ( × )
3.分式
3a 2(a+b), 的分母经过通分后变成 2(a-b) a 2 b2
那么分子应变为6a(a-b).(√ )
4. c c 1 1 1 .
a a a a
(√)
2 x 1 5.当x=-1时,分式 2 的值为.( √ ) 3 2x 1
分式的复习(概念及计算)
x ,则
= 1 y 。 x y 2 2 17.已知 x 4xy 4 y 0 ,那么分式 的值等 x y 于 3 .
x
1 18.已知 a 3 a
1 , 那么 a 2 a
2
=
11
.
1.下列变形正确的是
a a2 A b b2
(
B
2 x x2 C x x
a 1 ab 1 a ab 5 25 D 2a 4a
x 3 4、要使分式 ( x 1)( x 3) 有意义,则x的取值范围是
C
A、 x 1 C、 x 1 且
x3
B、 x 3 D、 x 1 或
x3
n na B. m m a a 0 n na n na a 0 a 0 D. C. m ma m ma y 1 6、下列各分式中,与 分式的值相等的是( C ) 1 x y 1 y 1 y 1 y 1 A. B. C. D. 1 x x 1 x 1 x 1
13. 下列各式中,正确的是( D ) a+b a+m a A. b+m = b B. a-b =0 x-y 1 ab-1 b-1 C. D. = = 2-y2 x+y ac-1 c-1 x
1 3 1 3 2 例1.计算 : x x x x x x 1 例2.化简x x 1 x x 1 1 2 解 : 原式 x x x( x 1) x x x 1 x x 1
1 m 3x 1 2 x 4 1.在代数式 3x , 2 , 2 y , 3 (a b), , x 2 中,分式共有_____个。 3
2
2.当x= - 3 时,则分式
人教版八年级数学《分式》期末复习一
分式复习一1、分式的概念:形如BA ,其中A ,B 都是整式, 且B 中含有字母。
.例1:下列式子:(1)b a b a +- (2)π32-x (3)14-x (4)2x属于分式的有(1)(3} 。
例2:有理式x2,)(31y x +,3-πx ,x a -5,42yx -中,分式有( B )。
(A )1个 (B )2个 (C )3个 (D )4个小练习: 1.下列各式:x 2、22+x 、x xyx -、33yx +、23+πx 、()()1123-++x x x 中,分式有(C )A 、1个 B 、2个 C 、3个 D 、4个 2.下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π中,分式有 。
2、分式是否有意义:对于分式A B来说,当分母B ≠0时,分式A B有意义;当分母B=0时,分式A B无意义。
例3、分式322--x x 有意义,则x 取值为( C )。
(A )2≠x (B )3≠x (C )23≠x (D )23-≠x例4、当x 时,分式42-x x无意义。
小练习:1、当x ≠ 3时,代数式32-x 有意义.当38-时,分式8x 32x +-无意义;2、当x 时分式xx2121-+有意义。
3、使分式24xx -有意义的x 的取值范围是(B) A. 2x = B.2x ≠ C.2x =- D.2x ≠-4、列分式中,一定有意义的是(D )(A )152--x x (B )yy 312+ (C )12+x x (D )112+-y y3、分式A B等于0,则分子A=0,且B ≠0。
例5、若分式xx-+44的值为0,则x 值为( a )。
(A )4-=x (B )4=x (C )0=x (D )0≠x例6、若分式293x x-+的值为0,则x 的值为( B )。
(A )3=x (B )3-=x (C )3x =± (D )不存在小练习:1、若分式112+-x x 的值为0,则x 的取值为( A )A 、1=xB 、1-=xC 、1±=xD 、无法确定2、分式392--x x 当x = -3 时分式的值为零。
分式的复习
同分母分式相加减,分母不变,分子 相加减。
异分母分式加减法法则: 异分母分式相加减,先将它们化为相同 分母的分式,然后进行加减。
计算:
2 3 1 a (1) ; ( 2) 2 ; t 1 t 1 a3 a 9 1 x2 1 1 ( 3) 2 ; ( 4) . x 3 x 5x 6 ax ay bx by
分式的意义 当分式的分母不等于零时,分式才有意义.
1. x取什么值时下列分式才有意义?
x 1 (1) ; x 5
| x | 3 (2) . 2x 5
1 2.什么时候分式 2 有意义 ? x 1
分式的为零的条件
A 若分式 的值为零,则 B
( 1 )当x为何值时,分式
A 0, B 0.
练习:下列各方程中哪些是分式方程:
1 2 (1) x 3; (2) 2; 5 3x 2x 4 2 1 (3) 4; (4) ; x 2 x 1
解分式方程的关键是_________,将其 转化为学过的_________再求解; 一元方程的解也叫方程的______,使 分式方程分母为零的根叫做_____; 解分式方程必须检验,检验的方法只 需看所得的解是否使__________。
的值为零?
x 3 x 3
(2)当x为何值时,分式 2 的值为零? x x2 2 x 1 (3)当x为何值时,分式 的值为零? x 1
x 1
拓展
x2 1) 分式 的值可能等于零吗 ? ( x 2)(x 3)
2) 什么时候分式 1 x 2 xy y
2 2
有意义 ?
3 ) 设x,y是实数,分式
分式的复习
昆明学校 宋佳音老师制作 唐宁转发╮(╯▽╰)╭
分式复习题含答案
分式复习题含答案1. 化简分式 \(\frac{3x^2 - 6x}{2x}\)。
答案:首先提取分子中的公因式,得到 \(\frac{3x(x - 2)}{2x}\)。
然后分子分母同时除以 \(x\)(假设 \(x \neq 0\)),得到\(\frac{3(x - 2)}{2}\)。
2. 将分式 \(\frac{5}{x - 1}\) 与 \(\frac{3}{x + 1}\) 相加。
答案:为了相加,需要找到两个分式的最小公倍数,即 \((x - 1)(x+ 1)\)。
然后将两个分式转换为相同的分母,得到 \(\frac{5(x + 1) + 3(x - 1)}{(x - 1)(x + 1)}\)。
化简分子得到 \(\frac{8x +2}{(x - 1)(x + 1)}\)。
3. 计算分式 \(\frac{2}{x + 1}\) 除以 \(\frac{x - 3}{x^2 - 1}\) 的结果。
答案:除法可以转换为乘法,即 \(\frac{2}{x + 1} \times\frac{x^2 - 1}{x - 3}\)。
注意到 \(x^2 - 1\) 可以分解为 \((x + 1)(x - 1)\),因此原式变为 \(\frac{2}{x + 1} \times \frac{(x + 1)(x - 1)}{x - 3}\)。
分子分母中的 \(x + 1\) 可以约去,得到\(\frac{2(x - 1)}{x - 3}\)。
4. 解分式方程 \(\frac{1}{x - 2} + \frac{1}{x + 2} =\frac{4}{x^2 - 4}\)。
答案:首先将方程两边乘以 \(x^2 - 4\) 以消除分母,得到 \((x + 2) + (x - 2) = 4\)。
化简得到 \(2x = 4\),解得 \(x = 2\)。
但需要检验,将 \(x = 2\) 代入原方程,发现分母为零,因此 \(x = 2\) 是增根,原方程无解。
分式知识点总结及复习
分式知识点总结及复习一、分式的定义如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 A/B 就叫做分式。
其中 A 叫做分子,B 叫做分母。
需要注意的是,分母 B 的值不能为 0,如果 B=0,那么分式 A/B 就没有意义。
例如:1/x ,(x + 2)/(x 1) 等都是分式。
二、分式有意义的条件分式有意义的条件是分母不为 0。
即对于分式 A/B ,B ≠ 0 时,分式有意义。
例如,对于分式 1/(x 2) ,要使其有意义,则x 2 ≠ 0 ,即x ≠ 2 。
三、分式的值为 0 的条件分式的值为 0 时,要同时满足两个条件:1、分子为 0 ,即 A = 0 。
2、分母不为 0 ,即B ≠ 0 。
例如,若分式(x 1)/(x + 2) 的值为 0 ,则 x 1 = 0 且 x +2 ≠ 0 ,解得 x = 1 。
四、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。
用式子表示为:A/B = A×C/B×C ,A/B = A÷C/B÷C (C 为不等于0 的整式)例如:化简分式 2x/(3y) ,分子分母同时乘以 2 ,得到 4x/(6y) ,分式的值不变。
五、约分把一个分式的分子和分母的公因式约去,叫做约分。
约分的关键是确定分子和分母的公因式。
确定公因式的方法:1、系数:取分子和分母系数的最大公约数。
2、字母:取相同字母的最低次幂。
例如:对分式(6x^2 y)/(9xy^2) 进行约分,分子分母的公因式为 3xy ,约分后得到 2x/3y 。
六、通分把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做通分。
通分的关键是确定几个分式的最简公分母。
确定最简公分母的方法:1、系数:取各分母系数的最小公倍数。
2、字母:取所有字母的最高次幂。
3、因式:取分母中出现的所有因式。
例如:将分式 1/(x^2 4) 和 1/(2x + 4) 通分,分母分别为(x +2)(x 2) 和 2(x + 2) ,最简公分母为 2(x + 2)(x 2) ,通分后分别为2/2(x + 2)(x 2) 和(x 2)/2(x + 2)(x 2) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式复习资料
知识梳理:
1、分式的基本概念:
重点:掌握分式的概念和分式有意义的条件。
难点:分式有意义、分式为0的条件。
知识点1:分式的定义:
1、下列有理式中是分式的有 ( )
A 、 m 1
B 、162y x -
C 、xy x 7
151+- D 、57 2、在代数式132x +、5a 、26x y 、35y +、23a b +、23
25ab c 中,分式有( ).
(A )4个 (B )3个 (C )2个 (D )1个
知识点2:分式有、无意义的条件,分式的值为0.
例题1:若式子 算出的结果有意义,求x 的取值?
1、分式5
5+x x ,当______x 时有意义; 2、当x 时,分式6
532+--x x x 无意义。
3、当x 时,分式6
)2)(2(2---+x x x x 的值为零。
4、 判断下列各分式中x 取什么值时,分式的值为0?x 取什么值时,分式无意义: )1)(3(2x x x --+; 2522+-x x ; 2
231--+x x . 5、当x 时,分式42
2--x x 有意义。
当x 时,分式1872---x x x 的值为零。
当x 时,分式x x 61212-+的值为负数。
当x 时,分式x x 322
-的值为-1。
6、 使分式x
312--的值为正的条件是 ( ) A 、x<31 B 、x>3
1 C 、x<0 D 、x>0
543323++÷-+x x x x
二、分式的基本性质
重点:正确理解分式的基本性质; 难点:运用分式的基本性质,将分式约分、通分。
知识点1:分式的分子与分母都乘以(或除以)同一个 ,分式的值不变。
1、不改变分式的值,使分式的分子、分母中各项系数都为整数,
0.20.10.5x x -=-- , = 。
知识点2:约分:分子和分母约去 ,使得分式化成最简分式的过程。
1、在分式4
43y x +,a b 424+,1142--x x ,222b ab ab a --中,最简分式有 。
2、把2
2))()((10))(()(5c d a b b c b a c b d c -+-+--约分,得 。
3.下列约分,结果正确的是( )
A.632x x x =
B.x m m x n n +=+
C.22x y x y x y +=++
D.1x y x y -+=--
知识点3:通分:通分的关键在于找最简公分母。
1、分式2232b a c ,c b a 443-,c
a b 225的最简公分母是 ( ) A 、12a 2b 4c 2 B 、24a 2b 4c 2 C 、24a 4b 6c D 、12a 2b 4c
2、若把下列各式)
(,)(,12a b y d b a c xy --,通分,则最简公分母是( ) A 、)(b a xy - B 、)(2b a xy - C 、)(2b a y - D 、)(2b a y x -
三、分式的运算:
重点:运算的顺序,分子分母含有多项式的运算。
难点:含有多项式的分式的运算
例题:计算 )2
52(423--+÷--x x x x
y x y x 3
1214131-+
练习:
1、计算:
① x x ---112= 。
② 23
2x y x y y x ÷⎪⎭⎫ ⎝⎛-⋅⎪⎪⎭⎫ ⎝⎛-= 。
③ m n n n m m -+-22= 。
④ 1112+--+a a a = 。
2、化简: (1) x x x x x
x x --+⨯+÷+--36)3(446222; (2) )2()1()()(3432
22
a a
b a b b a ⋅⋅-⋅--;
(3) 3
2
13213232y x y x x y x y -+--+; (4) )11111)(1(2-+---x x x .
(5)、 421444122++--+-x x x x x (6) 1222222-⋅⎥⎦⎤⎢⎣⎡-+-+--n mn n m n mn n mn m n m
3、已知分式:221A x =-,1111B x x
=++-.()1x ≠±.下面三个结论:①A ,B 相等,②A ,B 互为相反数,③A ,B 互为倒数,请问哪个正确?为什么?
4、已知22221111x x x y x x x x +++=÷-+--.试说明不论x 为何值,y 的值不变.
5、选择题
(1) 若3x=2y,则22
94x
y 的值等于 ( ) A 、32 B 、1 C 、81
16 D 、278 (2) 化简b
a c c
b a
c b c b a c b a c b a ---++-+---++-232所得正确结果是 ( ) A 、0 B 、c
b a
c b -+-)2(2 C 、1 D 、以上结论都不对 (3) 若x 等于本身的倒数,则6
33622-++÷---x x x x x x 的值是 ( ) A 、-3 B 、-2 C 、-1 D 、0
6、填空题:
(1) 已知3
11=-y x 。
则分式y xy x y xy x ---+2232的值为 。
(2) 若7=+b a ,12=ab ,则ab b a 2
2+= 。
8、阅读下面题目的计算过程:
x x x +---12132=()()()()()1112113-+---+-x x x x x x ①=()()123---x x ②=223+--x x ③=1--x ④
(1)上面计算过程从哪一步开始出现错误,请写出该步的代号 。
(2)错误原因是 。
(3)本题的正确结论是 。
分式综合练习题
一、选择题
1、化简分式a
c ab c c ab 35123522÷•的结果是( ) A )34 B )b c 4 C )b a 34 D )ac
b 45 2、计算y
x y x y y x y x x ----+-22的结果是( ) A )1 B )3 C )
y x y x -+ D )y x y x --3 3、计算1
1--+a a a 的结果是( ) A 11-a B 1
1--a C 112---a a a D 1-a 4、计算y x x x y x y x +•+÷+222
)(的结果是 ( ) A y
x x +22
B y x +2
C y 1
D y +11 5、小亮的父亲上下班需要过一个山坡,上坡时的速度是V 1,下坡时的速度是V 2,则上坡和下坡的平均速度是( )
A 、221V V +
B 、212V V +
C 、2121V V V V +
D 、)
(21212V V V V + 二、填空:
6、每千克单价为a 元的糖果m 千克与每千克单价为b 元的糖果n 千克混合,则混合后糖果的
单价为每千克 元;
三、解答题:
7、计算:
(1)222931x x x x x --÷-+ (2)1
3131313----+-a a a a a a
(3) 224+--x x (4)22224421b ab a b a b a b a ++-÷+--。