2013年八年级下数学期末检测试卷及答案
北京市石景山区2013-2014学年八年级下学期期末数学试卷 有答案
北京市石景山区2013—2014学年度第二学期期末考试初二数学试题一、选择题(每小题3分,共24分,每小题只有一个答案符合题意) 1.若一个正多边形的一个外角是40°,则这个正多边形的边数是( ).A .10B .9C .8D .6 2.若532q =,则q 的值是( ). A .103B .215 C .310D .1523.下列四张扑克牌图案中,是中心对称图形的是( ).4.执行如图所示程序框图,y 与x 之间函数关系所对应图象为( )5.初二年级1小君,小菲分别用甲、乙表示.设两同学得分的平均数依次为x 甲,x 乙,得分的方差依次为2S 甲,2S 乙,则下列关系中完全正确的是( ). A .x x =乙甲,22S S >乙甲 B . x x =乙甲,22S S <乙甲 C .x x >乙甲,22S S >乙甲 D . x x <乙甲,22S S <乙甲 6.综合实践课上,小超为了测量某棵树的高度,用长为2m 的竹竿作测量工具,移动竹竿,使竹竿顶端、树的顶端的影子恰好落在地面的同一点(如图).此时竹竿与这一点相距6m,与树相距15m ,则树的高度为 ( ) .A . 4mB . 5mC . 7mD . 9m 7.王老师组织摄影比赛,小语上交的作品如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x 英寸(如图),下面所列方程正确是( ) .A DC B 第4题A .(7)(5)375x x ++⨯=⨯B .(72)(52)375x x ++=⨯⨯C .(72)(52)375x x ++⨯=⨯D .(7)(5)375x x ++=⨯⨯8.如图:已知P 是线段AB 上的动点(P 不与A,B 重合),4AB =,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;连结PG ,当动点P 从点A 运动到点B 时,设 PG=m ,则m 的取值范围是( ). A2m ≤< B .2m << C .4m ≤< D .32m <二、填空题(本题共21分,每空3分) 9.方程22x x =的解为_________________. 10.函数y =x 的取值范围是___________.11.在菱形ABCD 中, AC =6,BD =8,则菱形ABCD的周长为__________,面积为________.12. 如图,在△ABC 中,∠ACB=58°,D ,E 分别是AB , AC 中点.点F 在线段DE 上,且AF ⊥CF ,则∠FAE = °.13.在平面直角坐标系xOy 中,O 是坐标原点,将直线y x =绕原点O 逆时针旋转15°,再向上平移3个单位得到直线l ,则直线l 的解析式为_______________________.14.给出定义:若直线与一个图形有且只有两个公共点,则直线与该图形位置关系是相交.坐标系xOy 中, 以()1,1A --, B (3,0), ()1,1C , D (0,3)为顶点,顺次连结AB 、BC 、CD 、DA 构成图形M .若直线y x b =-+与M 相交,则b 的取值范围是____________. 三、解答题(本题共15分,每小题5分) 15.用配方法...解方程:23630x x --=16.已知:关于x 的一元二次方程2230x x m --+=有实数根.(1)求m 的取值范围;(2)若m 为符合条件的最小整数,求此时方程的根.第6题 第7题 第8题第12题17.如图,直线x y l 2:1=与直线3:2+=kx y l 在同一平面直角坐标系内交于点P . (1)直接写出....不等式2x > kx +3的解集 (2)设直线2l 与x 轴交于点A ,求△OAP 的面积.四、解答题(本题共15分,每小题5分) 18.我们把依次连接任意一个四边形各边中点得到的四边形叫做中点四边形.如图,在四边形ABCD中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,依次连接各边中点得到中点四边形EFGH .(1)这个中点四边形EFGH 的形状是_________________(2)请证明你的结论.19.如图,在矩形ABCD 中,AB =5,BC =4,将矩形ABCD 翻折,使得点B 落在CD 边上的点E 处,折痕AF 交BC 于点F ,求FC 的长.B20.如图,在平面直角坐标系xOy 中,O 是坐标原点,一次函数y kx b =+的图象与x 轴交 于点A (3-,0),与y 轴交于点B ,且与正比例函数43y x =的图象的交点为C (m ,4) (1) 求一次函数y kx b =+的解析式;(2) D 是平面内一点,以O 、C 、D 、B 四点为顶点的四边形 是平行四边形,直接写出....点D五、列方程解应用题(本题5分)21.小明对新发地水果批发市场某种水果销售情况调查发现:如果每千克盈利10元,每天可售出500千克.对市场进一步调查发现,在进价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,则日销售量将减少20千克.如果市场每天销售这种水果盈利了6 000元,同时顾...客又得到了实惠.......,那么每千克这种水果涨了多少元?六、解答题(本题10分,每题5分) 22.小辰根据北京市统计局发布的有关数据制作的统计图表的一部分,请你结合下面图表中提供的信息解答下列问题.(注:能源消费量的单位是万吨标准煤,简称标煤).“十一五”期间北京市新能源和可再生能源消费量统计图 2010年北京市各类能源消费量占能源消费总量的百分比统计图(1)2010年北京市新能源和可再生能源消费量是____________万吨;并补全条形统计图并在图中标明相应数据......; (2)2010年北京市能源消费总量约是____________万吨标煤(结果精确到百位)?(3)据 “十二五”规划,到2015年,本市能源消费总量比2010年增长31%,其中新能源和可再生能源利用量占全市能源消费总量的6%.小辰调查发现使用新能源每替代一万吨标煤,可减少二氧化碳排放量约为2万吨,到2015年,由于新能源和可再生能源的开发利用,北京市可减少二氧化碳排放量约为多少万吨? 解: 23.已知关于x 的方程 03)13(2=+++x m mx . (1)求证: 不论m 为任何实数, 此方程总有实数根;(2)若方程()23130mx m x +++=有两个不同的整数根,且m 为正整数,求m 的值.图1FE图3七、解答题(本题5分)24. 数学课外选修课上李老师拿来一道问题让同学们思考.原问题:如图1,已知△ABC ,在直线BC 两侧..,分别画出两个..等腰三角形△DBC ,△EBC 使其面积与△ABC 面积相等;(要求:所画的两个三角形一个以BC 为底.一个以BC 为腰);小伟是这样思考的:我们学习过如何构造三角形与已知三角形面积相等.如图2,过点A 作直线l ∥BC ,点D 、E 在直线l 上时,ABC DBC EBC S S S ∆∆∆==,如图3,直线l ∥BC ,直线l 到BC 的距离等于点A 到BC 的距离,点D 、E 、F 在直线l 上,则ABC DBC EBC FBC S S S S ∆∆∆∆===.利用此方法也可以计算相关三角形面积,通过做平行线,将问题转化,从而解决问题. (1)请你在下图中,解决李老师提出的原问题;参考小伟同学的想法,解答问题:(2)如图4,由7个形状,大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,若每个正六边形的边长为1, △ABC 的顶点都在格点上,则△ABC 的面积为________.(3)在平面直角坐标系xOy 中,O 是坐标原点,()()1,0,0,2,A B -D 是直线l :321+=x y 上一点,使△ABO 与△ABD 面积相等,则D 的坐标为_______________.图2备用图1B备用图2备用图3八、几何探究(本题5分)25.已知:在正方形ABCD 中,E 、G 分别是射线CB 、DA 上的两个动点,点F 是CD 边上,满足EG ⊥BF , (1)如图1,当E 、G 在CB 、DA 边上运动时(不与正方形顶点重合),求证:GE =BF . (2)如图2,在(1)的情况下,连结GF,求证:FG BE +.(3)如图3. 当E 、G 运动到BC 、AD 的反向延长线时,请你直接写出....FG 、BE 、BF 三者的数量关系(不必写出证明过程).(3)FG 、BE 、BF 三者的数量关系为______________________________________A 图1A 图2图3北京市石景山区2013—2014学年度第二学期期末考试初二数学答案及评分参考一、选择题(本题共8道小题,每小题3分,共24分)二、填空题(本题共21分,每空3分)9. 120,2x x ==(漏解扣1分,出现错解0分) 10.3x ≥; 11.20,24. 12.61° 13.3y + 14.22b -<<或3b =(对一种得2分);三、解答题(本题共3个小题,每小题5分,共15分)15.解:原方程化为:2210x x --= ………………………………………………1分 22111x x -+=+ ………………………………………………2分 ()212x -= ………………………………………………3分 ∴1211x x == ………………………………………………5分 16.解:(1)由题意:0∆≥ ………………………………………………1分 即:()4430m --≥解得 2m ≥ ………………………………………………3分 (2)当2m =时,原方程化为2210x x -+=解得121x x == ………………………………………………5分(阅卷说明:若考生答案为1x =,扣1分)17. 解:(1)x > 1;………………………………………………1分(2)把1=x 代入x y 2=,得2=y .∴点P (1,2). ……………………………………………………………2分 ∵点P 在直线3+=kx y 上, ∴32+=k . 解得 1-=k .∴3+-=x y . ………………………………………………………………3分 当0=y 时,由30+-=x 得3=x .∴点A (3,0). ……………………4分 ∴32321=⨯⨯=∆OAP S ………………………………………………5分四、解答题(本题共15分,每小题5分)18. (1)平行四边形; ……………………………………… 1分 (2)证明:连结AC ……………………………………… 2分∵E 是AB 的中点,F 是BC 中点,∴EF ∥AC ,EF =12AC . 同理HG ∥AC ,HG =12AC . …… ……… 4分∴EF ∥HG ,EF =HG , ∴四边形EFGH 是平行四边形. ……………………………………… 5分 19.解法一:由题意,△ABF ≌△AEF得AE =AB =5,AD =BC =4,EF =BF. …………………………… 1分 在Rt △ADE 中,由勾股定理,得DE =3. …………………………………… 2分 在矩形ABCD 中,DC =AB =5. ∴CE =DC -DE =2. …………………………………………………………… 3分设FC =x ,则EF =4-x .在Rt △CEF 中,()22242x x -=+. .……………… 4分 解得23=x . ………………………………… …… 5分 即FC =23. 解法二:由题意,△ABF ≌△AEF得AE =AB =5,AD =BC =4,EF =BF. …………………………… 1分 在Rt △ADE 中,由勾股定理,得DE =3. …………………………………… 2分 在矩形ABCD 中,DC =AB =5. ∴CE =DC -DE =2. ………………………………… 3分 由题意∠AED +∠FEC =90° 在Rt △CEF 中,∠EFC +∠FEC =90° ∴∠EFC =∠AED . 又∵∠D =∠C =90°, ∴Rt △AED ∽Rt △EFC ∴CF CEDE DA= .……… ………4分 ∴FC =23.………………………………… …… 5分20. 解:(1)∵点C (m ,4)在直线43y x =上,∴443m =,解得3m =. ……………………………………………… 1分∵点A (3-,0)与C (3,4)在直线(0)y kx b k =+≠上,∴03,43.k b k b =-+⎧⎨=+⎩ 解得2,32.k b ⎧=⎪⎨⎪=⎩ ……………………………………………… 2分 ∴一次函数的解析式为223y x =+. ………………………………………………3分(2) 点D 的坐标为(3-,2-)或(3,6)(3,2)…………………………………………… 5分(阅卷说明:出现正确解得1分,三个点计算都正确得2分)五、列方程解应用题(本题5分)21.解:设市场某天销售这种水果盈利了6 000元,同时顾客又得到了实惠时,每千克这种水果涨了x 元 …………………………………………… 1分由题意得 (10)(50020)6000x x +-=……………………………………………3分 整理,得 215500x x -+=.解得 15x =,210x =. ……………………………………………4分 因为顾客得到了实惠,应取 5x =答:销售这种水果盈利6 000元,同时顾客又得到了实惠时,每千克这种水果涨5元. .…………………………………………… 5分 六、解答题(本题10分,每题5分) 22.解:⑴ 补全统计图如右图,所补数据为98+36+78.5+8+2.8=223.3. ………2分 ⑵ 2010年北京市总能耗量约是223.3÷3.2%≈7000(万吨标煤).………3分 ⑶到2015年,由于新能源和可再生能源的开发 利用北京市可减少二氧化碳排放量约为 7000×(1+31%)×6%×2=1100.4(万吨).………………………5分23. 解:(1)当m =0时,原方程化为,03=+x此时方程有实数根 x =3-. ……………………………………… 1分 当m ≠0时,原方程为一元二次方程.∵()()222311296131m m m m m ∆=+-=-+=-≥0.∴ 此时方程有两个实数根. …………………………………………3分综上, 不论m 为任何实数时, 方程 03)13(2=+++x m mx 总有实数根. (2)∵mx 2+(3m +1)x +3=0. 解得 13x =-,21x m=-………………………………………4分 ∵方程()23130mx m x +++=有两个不同的整数根,且m 为正整数, ∴1m = …………………………………5分 七、解答题(本题5分)24.(1)……………………………2分(2) △ABC的面积为………………………3分(3) 则D的坐标为()2,428,33⎛⎫-⎪⎝⎭………………………5分八、几何探究(本题5分)25.(既可以理解为平移也可以理解为旋转)(1)证明:延长DA至M,使AM=CF,连结MB∵四边形ABCD是正方形∴BA=BC,∠MAB=∠C=90°,∠ABC=90°∴△BAM≌△BCF∴BM=BF,∠MBA=∠FBC ……………1分∴∠MB F=90°,∴MB∥GE∴四边形MBEG是平行四边形∴MB=GE∴GE=BF ……………………2分(2)连结MF∵BM=BF ,且∠MBF=90°∴△MBF是等腰直角三角形∴MF=…………………3分∵四边形MBEG是平行四边形∴MG=BE在△MGF中,MG+FG>MF∴FG BE+…………………4分(3BE FG+>…………………5分。
八年级数学第二学期期末教学质量检测试卷及答案201307
第9题图学校__________________ 姓名__________________ 班级_______________ 考号__________________…………………………………………………………………线………………………………订…………………………………装………………………………………………八年级数学第二学期期末教学质量检测试卷一.选择题(本题有10小题,每小题3分,共30分,请选出每小题中一个符合题意的正确选项,不选,多选,错选,均不给分)1.在二次根式1+x 中,字母x 的取值范围是………………………………………( )A .0≥xB .0≤xC .1-≥xD .1-≤x2.下列语句中,不是命题的是…………………………………………………………( )A .若两角之和为90º,则这两个角互补B .同角的余角相等C .作线段的垂直平分线D .相等的角是对顶角3.用配方法解方程0242=+-x x ,下列配方正确的是…………………………( )A .2)2(2=-xB .2)2(2=+xC .2)2(2-=-xD .6)2(2=-x 4.下列计算正确..的是…………………………………………………………………( ) A .16=±4 B .12223=- C .7)7(2-=- D .2343=5.一组数据共40个,分为6组,第1组到第4组的频数分别为10,5,7,6,第5组的频率为0.1,则第6组的频数为………………………………………………………( ) A .10 B .8 C .6 D .46.一幅平面图案,在某个顶点处由四个正多边形镶嵌而成,其中的三个分别为正三角形、正方形、正六边形,那么另外一个为……………………………………………( ) A .正三角形 B .正方形 C .正五边形 D .正六边形7.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,E 、F 是对角线AC 上的两点,当E 、F 满足下列哪个条件时,四边形DEBF 不一定...是平行四边形( ) A .DE=BF B .AE =CF C .∠ADE=∠CBF D .∠AED=∠CFB8.已知三角形两边的长分别是4和3,第三边的长是一元二次方程01582=+-x x 的一个实数根,则该三角形的面积是( )A .12或54B .6或25C .6D . 529.如图,在平面直角坐标系中,以O (0,0)、A (1,-1)、B (2,0)为顶点,构造平行(第7题图)第15题图第16题图四边形,下列各点中不能作为平行四边形第四个顶点坐标的是( ) A .(3,-1) B .(-1,-1) C .(1,1) D .(-2,-1)10.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,……,其中从第三个数起,每一个数都等于它前面两个数的和. 现以这组数中的各个数作为正方形的长度构造一组正方形(如下图),再分别依次从左到右取2个,3个,4个,5个正方形拼成如下长方形并记为①,②,③,④,相应长方形的周长如下表所示:序号 ① ② ③ ④ 周长6101626若按此规律继续作长方形,则序号为⑧的长方形周长是( ) A .288 B .178 C .128 D .110第Ⅱ卷(非选择题 共70分)二.填空题(本题有6小题,每小题3分,共24分) 11.如图,D 、E 分别是AB .AC 中点,现测得DE 的长为30米,则池塘的宽BC 是___________米.12.“等腰三角形的两个底角相等”的逆命题是______ _____________________. 13.若关于x 的一元二次方程043)2(22=-++-m x x m 有一个根是0,则m =______. 14.如图,学校有块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,这些人只是大约少走了__________步,却踩伤了花草。
2013-2014新人教版八年级数学下期期末试题2(含答案)
2013—2014年八年级下学期期末考试 数学模拟试卷(人教版)(二)(满分100分,考试时间100分钟)学校________________ 班级_____________ 姓名________________ 一、选择题(每小题3分,共24分) 1. 下列运算错误的是()A=B.=C=D .2(2=2. 已知函数y =kx +b 的图象如图所示,则y =2kx +b 的图象可能是( )3. 下列说法:①对角线互相垂直的四边形是菱形;②矩形的对角线垂直且互相平分;③对角线相等的四边形是矩形;④对角线相等的菱形是正方形;⑤有一个角是直角的平行四边形是正方形.其中正确的有( ) A .1个B .2个C .3个D .4个4. 五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,下列图形中正确的是( )201525247724251520157242025157242025A .B .C .D .5. 已知一个一次函数,当自变量x 的取值范围为-1≤x ≤2,相应的函数值y 的取值范围为3≤y ≤6,则这个一次函数的解析式是( ) A .4y x =+ B .45或y x y x =+=-- C .5y x =-- D .45或y x y x =+=-+6. 如图,一架长25米的梯子AB 斜靠在墙上,梯子底端距墙脚7米,当梯子顶端沿墙壁向下滑动9米时,梯子的底端水平向外滑动了( ) A .13米B .9米C .6米D .5米NHF E DCBA第6题图 第7题图 第8题图7. 如图,在平行四边形ABCD 中,EF ∥AD ,HN ∥AB ,则图中的平行四边形共有( ) A .12个B .9个C .7个D .5个8. 一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图所示.当容器内的水量大于5升时,时间x 的取值范围是( ) A .1<x <9 B .1≤x ≤9 C .1<x ≤3 D .3<x <9二、填空题(每小题3分,共21分)9. 两个不相等的无理数,他们的乘积是有理数,请写出一对这样的数:_____、______.10. 若一组数据为1,2,3,则这组数据的方差为_____.11. 如图,图中所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 2.12. 已知11()A x y ,,22()B x y ,是一次函数y =kx +2(k >0)图象上不同的两点,若1212()()t x x y y =--,则t ________0.(选填“>”、“≥”、“<”或“≤”)13. 如图,点A 1,B 1,C 1,D 1分别是四边形ABCD 各边上的中点,两条对角线AC ,BD 互相垂直.若AC =3,BD =4,则四边形A 1B 1C 1D 1的面积为_________. 14. 如图,在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(4,0),点C 在第一象限内,∠CAB =90°,且BC =6.将△ABC 沿x 轴向右平移,当点C 落在直线y =-BC 扫过的面积为________________.D 1C 1B 1A 1DC BADC BPEA第13题图 第14题图 第15题图15. 如图,E 为正方形ABCD 外一点,连接AE ,BE ,DE ,过点A 作AP ⊥AE ,交DE 于点P .若AE =AP =1,BPAPD ≌△AEB ;②点B 到直线AE的距离为;③BE ⊥DE;④1APB APD S S +=△△4ABCD S =正方形.其中正确的是___________________.(填写序号) 三、解答题(本大题共7小题,满分55分)16. (6分)(1)已知-1<x <4,4x -.(2)17. (8分)如图,圆柱的底面周长为16 cm ,AC 是底面圆的直径,高BC =9 cm ,点P 是母线BC 上一点,且PC 23BC .一只蚂蚁从点A 出发沿着圆柱体的侧面爬行到点P 的最短距离是多少?18. (8分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A :4棵;B :5棵;C :6棵;D :7棵.将各类的人数绘制成扇形统计图(如图1)和条形统计图(如图2),经确认图1是正确的,而图2尚有一处错误.类型C D B A 40%20%30%10%图1 图2回答下列问题:(1)写出条形统计图中存在的错误,并说明理由. (2)写出这20名学生每人植树量的众数、中位数.(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.19.20.(8分)为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)之间的函数关系式.(1)根据图象,阶梯电价方案分为三个档次,填写下表:((3)求第二档每月电费y (元)与用电量x (度)之间的函数关系式; (4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m 元,小刚家某月用电290度,交电费153元,求m 的值.21. (8分)如图,以△ABC 的三边为边在BC 同侧分别作等边三角形,即△ABD ,△BCE ,△ACF .(1)四边形ADEF 为__________四边形;(2)当△ABC 满足条件____________时,四边形ADEF 为矩形; (3)当△ABC 满足条件____________时,四边形ADEF 为菱形; (4)当△ABC 满足条件____________时,四边形ADEF 不存在.FAEDB22. (9分)如图,在平面直角坐标系中,直线1y x =-+与3y x =+交于点A ,与x 轴分别交于点B 和点C .若D 是直线AC 上一动点,则在直线AB 上是否存在点E .使得以O ,D ,A ,E 为顶点的四边形是平行四边形?若存在,请求出点E 的坐标;若不存在,请说明理由.2013—2014年八年级下学期期末考试数学模拟试卷(二)(人教版)参考答案一、选择题1.A 2.C 3.A 4.C5.D 6.A7.B8.A二、填空题9,10.2311.4912.>13.3 14.15.①③⑤三、解答题16.(1)2x-2 (2)217.10cm18.(1)条形统计图中D类型对应的人数应为2人(2)5棵,5棵(3)①从第二步开始出错;②5.3,1378 19.(1)证明略(2)菱形,证明略(3)2:120.(1)140<x≤230;x>230(2)920 y x =(3)m=0.2521.(1)平行;(2)∠BAC=150°;(3)AB=AC且∠BAC≠60°(4)∠BAC=60°22.111 () 22E,;257 ()22E-,。
【中学教材全解】2013-2014学年湘教版八年级下数学期末检测题及答案
期末检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题3分,共24分)1.在平面直角坐标系中,O 为坐标原点,点A的坐标为1,M 为坐标轴上一点,且使得△MOA 为等腰三角形,则满足条件的点M 的个数为( )A.4B.5C.6D.8 2.有下列四个命题:(1)两条对角线互相平分的四边形是平行四边形; (2)两条对角线相等的四边形是菱形;(3)两条对角线互相垂直的四边形是正方形;(4)两条对角线相等且互相垂直的四边形是正方形. 其中正确的个数为( )A.4B.3C.2D.1 3.如图,矩形的对角线,,则图中 五个小矩形的周长之和为( ) A.10 B.8 C.18 D.284.在△ABC 中,∠BAC =90°,AB =3,AC =4.AD 平分∠BAC 交BC 于D ,则BD 的长为( ) A.157B.125C.207D.2155.在下列各图象中,表示函数)0(<-=k kx y 的图象的是( )6.函数的图象在第一、二、四象限,那么的取值范围是( )A.34m <B.314m -<< C.1m <- D.1m >-7.对某中学名女生进行测量,得到一组数据的最大值为,最小值为,对这组数据整理时规定它的组距为,则应分组数为( )A.5B.6C.7D.88.某超市统计了某个时间段顾客在收银台排队付款的等待时间,并绘制成频数分布直方图(图中等待时间6 min 到7 min 表示大于或等于6 min 而小于7 min ,其他类同).这个时间段内顾客等待时间不少于4 min 的人数为( )A.8B.16C.19D.32ABDCCDA B第3题图二、填空题(每小题3分,共24分)9.已知两点、,如果,则、两点关于________对称.10.已知一次函数,函数的值随值的增大而增大,则的取值范围是_______.11.若直线平行于直线,且经过点,则______ ,______ .12.如图,在Rt △中,,平分,交于点,且,,则点到的距离是________.13.已知两条线段的长分别为,当第三条线段长为________时,这三条线段可以组成一个直角三角形.14.已知菱形的周长为,一条对角线长为,则这个菱形的面积为_________.15.已知有个数据分别落在个小组内,第一、二、三、四、五组数据的个数分别为2、8、15、20、5,则第四组的频率为______.16.下表为某中学八(1)班学生将自己的零花钱捐给“助残活动”的数目,老师将学生捐款数目按10元组距分段,统计每个段出现的频数,则_____,_______.2三、解答题(共72分)第12题图第17题图ABC ED 17.(6分)已知:如图,,,.求证:.18.(6分)如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?19.(6分)为了了解小学生的素质教育情况,某县在全县各小学共抽取了200名五年级学生进行素质教育调查,将所得的数据整理后分成5小组,画出频数直方图,已知从左到右前4个小组的频率分别为0.04,0.12,0.16,0.4,则第5小组的频数为多少? 20.(6分)如图,为一个平行四边形的三个顶点,且三点的坐标分别为(1)请直接写出这个平行四边形第四个顶点的坐标;(2)求这个平行四边形的面积.21.(9分)某公司有甲种原料260 kg ,乙种原料270 kg ,计划用这两种原料生产A 、B 两种产品共40件.生产每件A 种产品需甲种原料8 kg ,乙种原料5 kg ,可获利润900元;生产每件B 种产品需甲种原料4 kg ,乙种原料9 kg ,可获利润1 100元.设安排生产A 种产品件. (1)完成下表:(2)安排生产A、B两种产品的件数有几种方案?试说明理由;(3)设生产这批40件产品共可获利润元,将表示为的函数,并求出最大利润.22.(9分)某工厂计划为某山区学校生产两种型号的学生桌椅套,以解决名学生的学习问题,一套型桌椅(一桌两椅)需木料,一套B型桌椅(一桌三椅)需木料,工厂现有库存木料.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往该学校,已知每套型桌椅的生产成本为元,运费元;每套型桌椅的生产成本为元,运费元,求总费用与生产型桌椅之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)23.(10分)为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频数直方图,已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5.(1)求第四小组的频率和参加这次测试的学生人数;(2)在这次测试中,学生跳绳次数的中位数落在第几小组内?24.(10分)已知,在矩形中,,,平分∠交于点,平分∠交于点.(1)说明四边形为平行四边形;(2)求四边形的面积.25.(10分)如图,在菱形中,点是的中点,且⊥,.求:(1)∠的度数;(2)对角线的长;(3)菱形的面积.期末检测题参考答案1.C 解析:连接OA,因为点A的坐标为1,O为原点,所以OA=2.以O为等腰三角形的顶角的端点时,以点O为圆心,2为半径画圆,则⊙O与坐标轴共有4个交点;以A 为等腰三角形的顶角的端点时,以点A为圆心,2为半径画圆,则⊙A只与x轴正半轴、y轴正半轴相交,有2个交点,其中与x轴正半轴的交点与以O为圆心,2为半径的圆与x轴的正半轴的交点重合;以M为等腰三角形的顶角的端点时,则作OA的垂直平分线交y轴正半轴于一点,交x轴正半轴于一点,其中与x轴正半轴的交点与上述重合.综上可知,满足条件的点M 的个数为6.2.D 解析:只有(1)正确,(2)(3)(4)都错误.3.D 解析:由勾股定理,得 ,又,,所以所以五个小矩形的周长之和为4.A 解析:∵ ∠BAC =90°,AB =3,AC =4,∴ 5BC ===, ∴ BC 边上的高=123455⨯÷=. ∵ AD 平分∠BAC ,∴ 点D 到AB 、AC 的距离相等,设为h , 则111123452225ABC S h h ∆=⨯+⨯=⨯⨯,解得127h =,1121123 2725ABD S BD ∆=⨯⨯=⨯,解得157BD =.故选A . 5.C 解析:因为,所以,所以函数的值随自变量的增大而增大,且函数为正比例函数,故选C. 6.C 解析:由函数的图象在第一、二、四象限,知,所以7.B 解析:因为最大值与最小值的差为,所以组数为,所以应分组数为6.故选B .8.D 解析:由频数直方图可以看出:顾客等待时间不少于4 min 的人数,即最后四组的人数为.故选D .9.轴 解析:因为,所以,,所以两点关于轴对称. 10. 解析:由函数的值随值的增大而增大,知,所以11. 解析:由直线平行于直线,知.又由直线经过点,知,所以12.3 解析:如图,过点作于.因为,,,所以.因为平分,,所以点到的距离.13.或解析:根据勾股定理,当12为直角边长时,第三条线段长为;当12为斜边长时,第三条线段长为.14.96 解析:因为菱形的周长是40,所以边长是10.如图,,.根据菱形的性质,有⊥,,所以,.所以.15.0.4 解析:16.解析:因为该中学八(1)班学生总人数为,所以,.17.证明:因为,所以所以△和△为直角三角形.在Rt△和Rt△中,因为,所以Rt△≌Rt△.所以.又因为在Rt△中,,所以18.解:设旗杆未折断部分的长为米,则折断部分的长为米,根据勾股定理,得,解得,即旗杆在离底部6米处断裂.19.解:第5小组的频率为.所以第5小组的频数为.20.解:(1)当为对角线时,第四个顶点的坐标为(7,7);当为对角线时,第四个顶点的坐标为(5,1);当为对角线时,第四个顶点的坐标为(1,5).(2)图中△面积为()13313132242⨯-⨯+⨯+⨯=,所以平行四边形的面积=2×△的面积=8.21.解:(1)表格分别填入:.(2)根据题意,得84402605940270x -x x -x +≤⎧⎨+≤⎩(),(). ①②由①得,25x ≤; 由②得,225x ..≥ ∴ 不等式组的解集是22525.x ≤≤. ∵ x 是正整数,∴ 232425x =,,. 共有三种方案:方案一:A 产品23件,B 产品17件; 方案二:A 产品24件,B 产品16件; 方案三:A 产品25件,B 产品15件. (3)∵ ,∴ 随的增大而减小,∴时,有最大值,22.解:(1)设生产型桌椅x 套,则生产型桌椅(500)x -套, 由题意,得⎩⎨⎧≥-⨯+≤-⨯+,,1250)500(32302)500(7.05.0x x x x 解得.250240≤≤x 因为x 是整数,所以有种生产方案.(2)因为所以随的增大而减小. 所以当时,有最小值.所以当生产型桌椅套,生产型桌椅套时,总费用最少.此时23.解:(1)由题意,知前三个小组的频率分别是则第四小组的频率为又由第一小组的频数为,其频率为,所以参加这次测试的学生人数为(2)由可得,参加测试的人数为,则第二小组的频数为第三小组的频数为第四小组的频数为即第一,第二,第三,第四小组的频数分别为易知将数据从小到大排列,第个数据在第三小组内,所以学生跳绳次数的中位数落在第三小组内. 24.解:(1)因为四边形是矩形,所以∥,∥,所以因为平分,平分,所以.所以∥.所以四边形为平行四边形.(2)如图,过点E 作⊥于点.因为平分∠,所以. 又,所以,. 在Rt △中,设,则,那么,解得.所以平行四边形的面积等于.25.解:(1)如图,连接. 因为点是的中点,且⊥,所以.又因为,所以△是等边三角形,所以.所以.(2)设与相交于点,则2a. 根据勾股定理,得a23,所以 a 3.(3)21×a 3223a .。
2013-2014学年江苏省苏州市八年级下数学期末模拟试卷(三)及答案【苏科版】
2013-2014学年第二学期初二数学期末模拟试卷(三)(满分:150分 时间:120分钟)一、选择题(每题3分,共24分)1.下列调查中适合采用普查的是 ( ) A .调查市场上某种白酒中塑化剂的含量 B .调查鞋厂生产的鞋底能承受的弯折次数C .了解某火车的一节车厢内感染禽流感病毒的人数D .了解某城市居民收看江苏卫视的时间2.(2013.泰州)事件A :打开电视,正在播广告;事件B :抛掷一枚质地均匀的骰子,朝上的点数小于7;事件C :在标准大气压下,温度低于0℃时冰融化.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是 ( ) A .P(C)<P(A)=P(B) B .P(C)<P(A)<P(B) C .P(C)<P(B)=P(A)D .P(A)<P(B)=P(C)3.(2013.凉山)如果代数式1xx -有意义,那么x 的取值范围是 ( ) A .x ≥0 B .x ≠1 C .x>0 D .x ≥0且x ≠14.(2013.沈阳)计算2311x x+--的结果是 ( ) A .11x - B .11x - C .51x - D .51x-5.(2013.乐山)如图,点E 是□ABCD 的边CD 的中点,AD 、BE 的延长线相交于点F ,DF =3,DE =2,则□ABCD 的周长是 ( ) A .5 B .7 C .10 D .146.解分式方程22311x x x++=--时,去分母后变形为 ( ) A .2+(x +2)=3(x -1) B .2-x +2=3(x -1) C .2-(x +2)=3(1-x)D .2-(x +2)=3(x -1)7.如图,正比例函数y 1与反比例函数y 2相交于点E(-1,2),若y 1>y 2>0,则x 的取值范围在数轴上表示正确的是 ( )8.如图,将矩形纸片ABCD 的四个角向内翻折,恰好拼成一个无缝隙无重叠的四边形EFGH ,若EH =12厘米,EF =16厘米,则边AD 的长是 ( )A .12厘米B .16厘米C .20厘米D .28厘米二、填空题(每题3分,共30分) 9.当x =_______时,分式32x -无意义. 10.(2013.青岛)计算:12205-+÷=_______.11.(2013.黑龙江)如图,□ABCD 的对角线AC 、BD 相交于点O ,试添加一个条件:______________,使得□ABCD 为菱形.12.(2013.宿迁)如图,一个平行四边形的活动框架,其对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线的长度也在发生改变.当∠α是_______°时,两条对角线的长度相等.13. (2013.河北)若x +y =1,且x ≠0,则22xy y x y x x x ⎛⎫+++÷⎪⎝⎭的值为_______. 14.若实数x 、y 满足3402y x y--+=,则以x 、y 的值为边长的直角三角形的周长为_______. 15.若代数式211x --的值为0,则x =_______. 16.已知关于x 的方程22x mx +-=3的解是正数,则m 的取值范围是_______.17.(2013.呼和浩特)如图,在四边形ABCD 中,对角线AC ⊥BD ,垂足为O ,点E 、F 、G 、H 分别为边AD 、AB 、BC 、CD 的中点,若AC =8,BD =6,则四边形EFGH 的面积为_______.18.如图,反比例函数y =3x(x>0)的图像与矩形OABC 的边AB 、BC 分别交于点E 、F ,且AE =BE ,则△OEF 的面积为_______. 三、解答题(共96分) 19.(8分)解方程:21x +=.20.(8分)青少年“心理健康”问题越来越引起社会的关注,某中学为了了解学校600名学生的心理健康状况,举行了一次“心理健康”知识测试,并随机抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制成如下尚未完成的频数分布表和频数分布直方图.请根据图表,解答下面的问题:(1)填写频数分布表中的空格,并补全频数分布直方图;(2)如果成绩在70分以上(不含70分)为心理健康状况良好,且心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否则就需要加强心理辅导.请根据上述数据分析该校学生是否需要加强心理辅导,并说明理由.21.(8分)已知实数a满足a2+2a-15=0,求()()2212121121a aaa a a a+++-÷+--+的值.22.(8分)若a、b都是实数,且b=114412a a-+-+,试求2b aa b++-2b aa b+-的值.23.(10分)(2013.桂林)如图,在矩形ABCD中,E、F为BC上两点,且BE=CF,连接AF、DE 交于点O.求证:(1)△ABF≌△DCE;(2)△AOD是等腰三角形.24.(10分(2013.南宁)如图,在菱形ABCD中,AC是对角线,点E、F分别是边BC、AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.25.(10分)(2013.南京)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M、N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.26.(10分)(2013.哈尔滨)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天.且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?‘(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来盼2倍,要使甲队总的工作量不少于乙队工作量的2倍,那么甲队至少再单独施工多少天?27.(12分)如图,四边形ABCD为正方形,点A的坐标为(0,2),点B的坐标为(0,-3),反比例函数y=kx的图像经过点C,一次函数y=ax+b的图像经过点A、C.(1)求反比例函数和一次函数的表达式;(2)若点P是反比例函数图像上的一点,△OAP的面积恰好等于正方形ABCD的面积,求点P的坐标.28.(12分)(2013.锦州)如图①,等腰直角三角尺的一个锐角顶点与正方形ABCD的顶点A重合,将此三角尺绕点A旋转,使三角尺中该锐角的两条边分别交正方形的两边BC、DC于点E、F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图①中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图②,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E、F分别是BC、CD边上的点,∠EAF=1 2∠BAD,连接EF,过点A作AM⊥EF于点M.试猜想AM与AB之间的数量关系,并证明你的猜想.参考答案一、1.C 2.B 3.D 4.B 5.D 6.D 7.A 8.C二、9.2 10.5211.答案不唯一 12.90 13.1 14.12或 7+7 15.3 16.m>-6且 m ≠-4 17.12 18.94三、19.x =3是原方程的解 20.(1)表中竖着填,依次为:6、50、0.32、0.12补图略 (2)需要 21.原式=1822.223.略 24.(1)略 (2)23 25.略26.3天 27.(1)y =-x +2 (2)点P 的坐标为(25,-35)或(-25, 35) 28.(1)EF =DF +BE (2)AM =AB (3)AM =AB。
数学人教版八年级下册期末素养测评卷试卷及答案1
数学人教版8年级下册期末素养测评卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各组中的两个式子,不属于同类二次根式的是()AB C 与D2.实数a ,b b a --的结果是()A .2a b -B .2a b -+C .aD .a-3.如图,在平面直角坐标系中,平行四边形OABC 的边OA 在x 轴的正半轴上,A 、C 两点的坐标分别为()()2,01,2、,点B 在第一象限,将直线2y x =-沿y 轴向上平移m ()0m >个单位.若平移后的直线与边BC 有交点,则m 的取值范围是()A .08m <<B .04m <<C .28m <<D .48m ≤≤4.如图,某蓄水池的横断面示意图,如果这个蓄水池以固定的流量注水,下面哪个图象能大致表示水的最大深度h 和时间t 之间的关系()A .B .C .D .5.一个样本的极差是52,样本容量不超过100.若取组距为10,则画频数分布直方图应把数据分成()A .5组B .6组C .10组D .11组6.某校生物兴趣小组11人到野外捕捉蝴蝶制作标本.其中有2人每人捉到6只,有4人每人捉到3只,其余5人每人捉到4只,则这个兴趣小组平均每人捉到蝴蝶只数为()A .3B .4C .5D .67.如图,矩形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(3,2).点D 、E 分别在AB 、BC 边上,1BD BE ==.沿直线将BDE ∆翻折,点B 落在点B '处.则点B '的坐标为()A .()1,1B .()2,1C .()1.5,1D .()1.5,1.58.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点D 作DH BC ⊥于点H ,连接OH ,若8OA =,96ABCD S =菱形,则OH 的长为()A .6B .8C .485D .109.用四个完全一样的直角三角板拼成如图所示的图形,其中每个直角三角板的斜边长都为c ,两直角边长分别为a ,()b b a >,下列结论中正确的是()A .()22c a b =+B .222c a b =+C .222c a ab b =++D .222c a ab b =-+10.如图,直角ABC 中,7AC =,25AB =,则内部五个小直角三角形的周长为().A .32B .56C .31D .55二、填空题11.已知0x >,0y >且150x y --=,则=____.12.已知△ABC 的三边分别为a 、b 、c ,化简:=___________.13.已知一次函数y kx b =+,当02x ≤≤时,对应的函数值y 的取值范围是24y -≤≤,则kb 的值为________.14.在直角坐标系中,等腰直角三角形112213321,,,,n n n A B O A B B A B B A B B -⋯按如图所示的方式放置,其中点123,,,,n A A A A ⋯均在一次函数y kx b =+的图象上,点123,,,,n B B B B ⋯均在x 轴上.若点1B 的坐标为(1,0),点2B 的坐标为(3,0),则点2023A 的坐标为________.15.已知a 、b 、c 、d 、e 的平均数是x ,则5a +、12b +、22c +、9d +、2e +的平均数是________.16.小明同学在德,智,体,美,劳五项评价的成绩分别为:10分,9分,8分,9分,8分.已知这5项成绩的比例依次为2:3:2:2:1,则小明同学5项评价的平均成绩________分.17.如图,四边形ABCD 中,AD BC ∥,90C ∠︒=,AB AD =,连接BD ,作BAD ∠角平分线AE 交BD 、BC 于点F 、E .若3EC =,4CD =,那么AE 长为_____.18.如图,在Rt ABC △中,90,1C AC BC ∠=︒=,D 在AC 上,将ADB △沿直线BD 翻折后,点A 落在点E 处,如果AD ED ⊥,那么ABE △的面积是___________.三、解答题19.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如(231+=,善于思考的小明进行了以下探索:若设(22222a m m n +=+=++a 、b 、m 、n 均为整数),则有222a m n =+,2b mn =.这样小明就找到了一种把类似a +方法,请你仿照小明的方法探索并解决下列问题:(1)若(2a m +=+,当a、b 、m 、n 均为整数时,用含m 、n 的式子分别表示a 、b ,得:=a ______,b =______;(2)若(2a m +=+,且a、m 、n 均为正整数,求a 的值;(3)化简下列各式:20.在某风景游船处,如图,在离水面高度为5m 的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13m ,此人以0.5m/s 的速度收绳.10s 后船移动到点D 的位置,此时船距离岸边多少m?(结果保留根号)2111,请回答以下问题:的小数部分是________,5________.(2)若ab 1a b +的平方根.(3)若7x y =+,其中x 是整数,且01y <<,求x y -的值.22.如图,直线AB 与x 轴、y 轴分别交于点(3,0)A 、点(0,2)B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,90BAC ∠=︒.(1)请直接写出直线AB 的表达式;(2)请直接写出ABC 的面积为;(3)点P 是坐标系中的一个动点,当ABC 与ABP 全等时,请直接写出点P 的坐标.23.如图,直线OC 、BC 的函数关系式分别为y x =和2y x b =-+,且交点C 的横坐标为2,动点()0P x ,在线段OB 上移动(03x <<).(1)求点C 的坐标和b ;(2)若点()01A ,,当x 为何值时,AP CP +的值最小;(3)过点P 作直线EF x ⊥轴,分别交直线OC 、BC 于点E 、F .①若3EF =,求点P 的坐标.②设OBC △中位于直线EF 左侧部分的面积为s ,请写出s 与x 之间的函数关系式,并写出自变量的取值范围.24.某校七年级甲班、乙班举行一分钟投篮比赛,每班派10名学生参赛,在规定时间内进球数不少于8个为优秀学生.比赛数据的统计图表如下(数据不完整):甲班乙班1分钟投篮测试成绩统计表甲班乙班平均数 6.5a中位数b6方差 3.45 4.65优秀率30%c根据以上信息,解答下列问题:(1)直接写出a,b,c的值.(2)你认为哪个班的比赛成绩要好一些?请简要说明理由.25.某商店3,4月份销售同一品牌各种规格空调的情况如表所示:1匹 1.2匹 1.5匹2匹3月1220844月1630148根据表中数据,解答下列问题:(1)该商店3,4月份平均每月销售空调______台.(2)该商店售出的各种规格的空调中,中位数与众数的大小关系如何?(3)在研究6月份进货时,你认为哪种空调应多进,哪种空调应少进?26.如图,已知在Rt ABC∠=︒,816ACB△中,90,,D是AC上的一点,==AC BCCD=,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动,设点3P 的运动时间为t ,连接AP .(1)当3t =秒时,求AP 的长度;(2)当ABP 为等腰三角形时,求t 的值;(3)过点D 作DE AP ⊥于点E ,连接PD ,在点P 的运动过程中,当PD 平分APC ∠时,直接写出t 的值.27.已知:如图,在ABC 中,AB AC =,AD BC ⊥,垂足为点D ,AN 是ABC 外角CAM ∠的平分线,CE AN ⊥,垂足为点E(1)求证:四边形ADCE 为矩形;(2)当ABC 满足时(添加一个条件),四边形ADCE 是正方形,并证明当90BAC ∠=︒时,四边形ADCE 是一个正方形28.如图,在ABC 中,点O 是边AC 上一个动点,过O 作直线MN BC ∥,设MN 交ACB ∠的平分线于点E ,交ABC 的外角ACD ∠的平分线于点F .(1)探究线段EF 与OC 的数量关系,并说明理由;(2)当O 运动到何处,且ABC 满足什么条件时,四边形AECF 是正方形?请说明理由;(3)当点O 在边AC 上运动时,四边形BCFE _______________是菱形填“可能”或“不可能”,请说明理由.参考答案1.C2.D3.D4.C5.B6.B7.B8.A9.B10.B11.212.4c13.6-或12-/12-或6-14.()2022202221,2-15.ˆ10x+/10x +16.8.917.18.119.(1)设(22272a m m n +=+=++a 、b 、m 、n 均为整数),则有227a m n =+,2b mn =;故答案为:227m n +,2mn ;(2)∵62mn =,∴3mn =,∵a 、m 、n 均为正整数,∴1m =,3n =或3m =,1n =,当1m =,3n =时,2222313328a m n =+=+⨯=;当3m =,1n =时,2222333112a m n =+=+⨯=;即a 的值为12或28;(32==+2==t =,则244t =++8=+8=+)821=+6=+)21=+,∴1t =.20.解:∵在Rt ABC △中,90CAB ∠=︒,13m BC =,5m AC =,∴()12m AB ==,∵此人以0.5m/s 的速度收绳,10s 后船移动到点D 的位置,∴()130.5108m CD =-⨯=,∴)m AD ===,.21.(1)解:∵34<<,的整数部分为3,3,∵34<<,∴34--,∴534--即12,∴51,∴54,3-,4;(2)解:∵910,a ∴a =9,∵12<<,1,∵b∴1b =,∴19119a b +=+-=∵9的平方根等于3±,∴1a b +的平方根等于3±;(3)解:∵23<<,∴72773+<+<+即9710<<,∵7x y =+,其中x 是整数,且01y <<,∴x =9,y =792-=,∴)9211x y --+.22.(1)解:设直线AB 所在的表达式为:y kx b =+,则302k b b +=⎧⎨=⎩,解得232k b ⎧=-⎪⎨⎪=⎩,故直线l 的表达式为:223y x =-+,故答案为:223y x =-+;(2)解:在Rt ABC 中,由勾股定理得:222223213AB OA OB =+=+=,ABC 为等腰直角三角形,211322ABC S AB ∴== ,故答案为:132;(3)解:①90ABP ∠=︒时,如图,过点P 作PE y ⊥轴于E,90BOA ∠=︒ ,90ABP ∠=︒,BOA PEB ∴∠=∠,90PBE ABO BAO ABO ∠+∠=∠+∠=︒,PBE BAO ∴∠=∠,ABP BAC ≌,BP AC AB ∴==,(AAS)PBE BAO ∴ ≌,2PE OB ∴==,3==BE OA ,321OE ∴=-=,∴点P 的坐标为(21)--,;同理:点P '的坐标为(25),;②90BAP ∠=︒时,如图,过点P 作PF x ⊥轴于F ,90BOA ∠=︒ ,90BAP ∠=︒,BOA AFP ∴∠=∠,90PAF BAO ABO BAO ∠+∠=∠+∠=︒,PAF ABO ∴∠=∠,ABP BAC ≌,AP AC AB ∴==,(AAS)PAF ABO ∴ ≌,2AF OB ∴==,3PF OA ==,321OF ∴=-=,∴点P 的坐标为(1)3-,;综上,点P 的坐标为(21)--,或(25),或(1)3-,.故答案为:(21)--,或(25),或(1)3-,.23.(1)∵点C 在直线OC :y x =上,且点C 的横坐标为2∴点()22C ,,∵点C 在直线BC :2y x b =-+上,∴222b -⨯+=,∴6b =(2)如图1,作点C 关于x 轴的对称点C ',连接AC '交x 轴于点P ,此时AP CP AP PC AC ''+=+=最小,第14页共20页∵()22C ,,∴()22C '-,,∵点()01A ,,∴直线AC '的解析式为312y x =-+,令0y =,解得:23x =∴点P 的坐标为2,03⎛⎫⎪⎝⎭(3)①由(1)知,6b =,∴直线BC 的解析式为26y x =-+,∵EF x ⊥轴于P ,∴()26,F x x -+,∵点E 在直线OC 上,∴(),E x x ,∴2636EF x x x =-+-=-,∵3EF =,∴363x -=,∴3x =(舍)或1x =,∴()10P ,;②当02x <≤时,如图2,点(),E x x ,∴OP x =,PE x =,∴21122OPE s S OP PE x === △,当23x <<时,如图3,由(2)知,直线BC 的解析式为26y x =-+,∴()30B ,,∵(),0P x ,∴()26,F x x -+,∴3BP x =-,26PF x =-+,∴()()()211323263322OBC BPF s S S x x x =-=⨯⨯---+=--+△△,即:221(02)2(3)3(23)x x s x x ⎧<≤⎪=⎨⎪--+<<⎩.24.解:(1)由统计表可知:甲班进球数平均数为6.5,因此甲班共进球数为6.5×10=65(个),所以甲班的3号同学进球的个数为:65﹣3﹣5﹣6﹣6﹣7﹣7﹣8﹣8﹣10=5(个),由统计图可知,乙班3号同学进球个数也是5个,所以a =110(3+4+5+6×3+7+9×2+10)=6.5,将甲班10名同学进球的个数从小到大排列为:3,5,5,6,6,7,7,8,8,10;处在中间位置的两个数的平均数为672+=6.5,故中位数是6.5,即b =6.5,因为乙班进球8个及以上的人数为3人,∴c =3÷10=30%,故a =6.5,b =6.5,c =30%;(2)甲班的比赛成绩要好一些;理由:两个班的平均数相同,甲班的中位数略高于乙班,方差小于乙班.25.(1)561220841630148562x +++++++==(台),所以该商店3,4月份平均每月销售空调56台.(2)从总体上看,由于1.2匹售出50台,售出台数大于其他三种规格的售出台数,故其众数是1.2匹.将这112个数据由小到大排列,得中位数是1.2匹,所以中位数与众数相等.(3)由(2)可知l.2匹空调的销售量最多,所以l.2匹空调应多进;由题表可知2匹空调的销售量最少,所以2匹空调应少进.26.(1)解:根据题意,得2BP t =,∴162162310PC t =-=-⨯=,在Rt APC △中,8AC =,由勾股定理,得AP ===故答案为:(2)解:在Rt ABC △中,816AC BC ==,,由勾股定理,得AB ==若BP BA =,则2t =,解得t =若AP AB =,则21632BP =⨯=,232t =,解得16t =;若PB PA =,则()()22221628t t =-+,解得5t =.答:当ABP 为等腰三角形时,t 的值为16、5;(3)解:①点P 在线段BC 上时,过点D 作DE AP ⊥于E ,如图1所示:则90AED PED ∠=∠=︒,∴90PED ACB ∠=∠=︒,∵PD 平分APC ∠,∴EPD CPD ∠=∠,又∵PD PD =,∴()AAS PDE PDC ≌△△,∴3ED CD ==,162PE PC t ==-,∴835AD AC CD =-=-=,∴4AE ===,∴4162202AP AE PE t t =+=+-=-,在Rt APC △中,由勾股定理得:()()2228162202t t +-=-,解得:5t =;②点P 在线段BC 的延长线上时,过点D 作DE AP ⊥于E ,如图2所示:同①得:()AAS PDE PDC ≌△△,∴3ED CD ==,216PE PC t ==-,∴835AD AC CD =-=-=,∴4AE ===,∴4216212AP AE PE t t =+=+-=-,在Rt APC △中,由勾股定理得:()()2228216212t t +-=-,解得:11t =;综上所述,在点P 的运动过程中,当t 的值为5或11时,PD 平分APC ∠.27.(1)证明:在ABC 中,AB AC =,AD BC ⊥,12BAD CAD BAC ∴∠=∠=∠,AN 是CAM ∠的平分线,12MAE CA CA E M ∴∠∠=∠=,()111809022DAE CAD CAE BAC CAM ∴∠=∠+∠=∠+∠=⨯︒=︒,AD BC ⊥ ,CE AN ⊥,90ADC CEA ∴∠=∠=︒,∴四边形ADCE 为矩形.(2)当ABC 满足90BAC ∠=︒时,四边形ADCE 是一个正方形,理由如下:AB AC = ,45ACB B ∴∠=∠=︒,AD BC ⊥ ,45CAD ACD ∴∠=∠=︒,DC AD ∴=,四边形ADCE 为矩形,∴矩形ADCE 是正方形,故当90BAC ∠=︒时,四边形ADCE 是一个正方形.28.(1)2EF OC =.理由如下:CE 是ACB ∠的角平分线,ACE BCE ∴∠=∠,又∵MN BC ∥,NEC ECB ∴∠=∠,NEC ACE ∴∠=∠,OE OC ∴=,同理可得:OF OC =,OE OF OC ∴==;2EF OC ∴=.(2)当点O 运动到AC 的中点,且ABC 满足ACB ∠为直角的直角三角形时,四边形AECF 是正方形.理由如下:当点O 运动到AC 的中点时,AO CO =,又EO FO = ,∴四边形AECF 是平行四边形,FO CO = ,AO CO EO FO ∴===,AO CO EO FO ∴+=+,即AC EF =,∴四边形AECF 是矩形.已知MN BC ∥,当90ACB ∠=︒,则90AOF COE COF AOE ∠=∠=∠=∠=︒,AC EF ∴⊥,∴四边形AECF 是正方形;(3)不可能.理由如下:如图,CE 平分ACB ∠,CF 平分ACD ∠,111()90222ECF ACB ACD ACB ACD ∴∠=∠+∠=∠+∠=︒,若四边形BCFE 是菱形,则BF EC ⊥,但在GFC 中,不可能存在两个角为90︒,所以不存在其为菱形.故答案为:不可能.。
北京市西城区2013—2014年八年级下期末考试数学试卷及答案
北京市西城区2013—2014学年度第二学期期末考试八年级数学试卷2014.7试卷满分:100分,考试时间:100分钟一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.下列各组数中,以它们为边长的线段能构成直角三角形的是( ).A .31,41,51 B .3,4,5 C .2,3,4 D .1,1,32.下列图案中,是中心对称图形的是( ).3.将一元二次方程x 2-6x -5=0化成(x -3)2=b 的形式,则b 等于( ).A .4B .-4C .14D .-14 4.一次函数12+=x y 的图象不.经过( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.已知四边形ABCD 是平行四边形,下列结论中不正确...的是( ). A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC =90º时,它是矩形D .当AC =BD 时,它是正方形6.如图,矩形ABCD 的对角线AC ,BD 交于点O ,AC =4cm , ∠AOD =120º,则BC 的长为( ).A . 34 B. 4 C . 32 D. 27.中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:这些运动员跳高成绩的中位数和众数分别是( ).A .1.65,1.70B .1.70,1.65C .1.70,1.70D .3,58.如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行. 直线y =x +3与x 轴、y 轴分别交于点E ,F . 将菱形ABCD 沿x 轴向左平移m 个单位,当点D 落在△EOF 的内部时(不包括三角形的边),m 的值可能是( ).A .3 B. 4 C. 5 D. 6二、填空题(本题共25分,第9~15题每小题3分,第16题4分) 9.一元二次方程022=-x x 的根是 .10.如果直线x y -=向上平移3个单位后得到直线AB ,那么直线AB 的解析式是_________. 11.如果菱形的两条对角线长分别为6和8,那么该菱形的面积为_________. 12.如图,Rt △ABC 中,∠BAC =90°,D ,E ,F 分别为AB ,BC ,AC 的中点,已知DF =3,则AE = .13.若点1(1,)A y 和点2(2,)B y 都在一次函数2+-=x y 的图象上,则y 1 y 2(选择“>”、“<”、“=”填空).14.在平面直角坐标系xOy 中,点A 的坐标为(3,2),若将线段OA 绕点O 顺时针旋转90°得到线段A O ',则点A '的坐标是 .15.如图,直线1l :1y x =+与直线2l :y mx n =+相交于点P (a ,2) 则关于x 的不等式1x +≥mx n +的解集为 .16.如图1,五边形ABCDE 中,∠A =90°,AB ∥DE ,AE ∥BC ,点F ,G 分别是BC ,AE 的中点. 动点P 以每秒2cm 的速度在五边形ABCDE 的边上运动,运动路径为F →C →D →E →G ,相应的△ABP 的面积y (cm 2)关于运动时间t (s)的函数图象如图2所示.若AB =10cm ,则(1)图1中BC 的长为_______cm ;(2) 图2中a 的值为_________.三、解答题(本题共30分,第17题5分,第18~20题每小题6分,第21题7分) 17.解一元二次方程:2420x x +-=. 解:18.已知:在平面直角坐标系xOy 中,一次函数4y kx =+的图象与y 轴交于点A ,与x 轴的正半轴交于点B ,2OA OB =. (1)求点A 、点B 的坐标;(2)求一次函数的解析式.解:19.已知:如图,点A 是直线l 外一点,B ,C 两点在直线l 上,90BAC ∠=︒,2BC BA =. (1)按要求作图:(保留作图痕迹) ①以A 为圆心,BC 为半径作弧,再以C 为圆心,AB 为半径作弧,两弧交于点D ; ②作出所有以A ,B ,C ,D 为顶点的四边形;(2)比较在(1)中所作出的线段BD 与AC 的大小关系. 解:(1)(2)BD AC .20.已知:如图, ABCD 中,E ,F 两点在对角线BD 上,BE=DF . (1)求证:AE=CF ; (2)当四边形AECF 为矩形时,直接写出BD ACBE-的值.(1)证明:(2) 答:当四边形AECF 为矩形时,BD ACBE-= .21.已知关于x 的方程2(2)210x k x k -++-=.(1)求证:方程总有两个不相等的实数根;(2)如果方程的一个根为3x =,求k 的值及方程的另一根. (1)证明:(2)解:四、解答题(本题7分)22.北京是水资源缺乏的城市,为落实水资源管理制度,促进市民节约水资源,北京市发改委在对居民年用水量进行统计分析的基础上召开水价听证会后发布通知,从2014 年5月1日起北京市居民用水实行阶梯水价,将居民家庭全年用水量划分为三档,水 价分档递增,对于人口为5人(含)以下的家庭,水价标准如图1所示,图2是小明 家在未实行新水价方案时的一张水费单(注:水价由三部分组成).若执行新水价方 案后,一户3口之家应交水费为y (单位:元),年用水量为x (单位:3m ),y 与x 之间的函数图象如图3所示.图1 图2五、解答题(本题共14分,每小题7分)23.已知:正方形ABCD 的边长为6,点E 为BC 的中点,点F 在AB 边上,2BF AF =. 画出EDF ∠,猜想EDF ∠的度数并写出计算过程. 解: EDF ∠的度数为 . 计算过程如下:xO24.已知:如图,在平面直角坐标系xOy 中,(0,4)A ,(0,2)B ,点C 在x 轴的正半轴上, 点D 为OC 的中点. (1) 求证:BD ∥AC ; (2) 当BD 与AC 的距离等于1时,求点C 的坐标;(3)如果OE ⊥AC 于点E ,当四边形ABDE 为平行四边形时,求直线AC 的解析式. 解:(1)(2)(3)北京市西城区2013—2014学年度第二学期期末试卷八年级数学参考答案及评分标准2014.7一、选择题(本题共24分,每小题3分)二、填空题(本题共25分,第9~15题每小题3分,第16题4分)9.120,2x x ==. 10.3y x =-+. 11.24. 12.3. 13.>. 14.(2,3)-. 15.x ≥1(阅卷说明:若填x ≥a 只得1分) 16.(1)16;(2)17.(每空2分)三、解答题(本题共30分,第17题5分,第18~20题每小题6分,第21题7分) 17.解:2420x x +-=.1a =,4b =,2c =-. …………………………………………………………1分 224441(2)24b ac ∆=-=-⨯⨯-=.…………………………………………… 2分方程有两个不相等的实数根x ………………………… 3分==.所以原方程的根为12x =-22x =- (各1分)……………… 5分 18.解:(1)∵ 一次函数4y kx =+的图象与y 轴的交点为A ,∴ 点A 的坐标为(0,4)A .………………………………………………… 1分 ∴ 4OA =.………………………………………………………………… 2分 ∵ 2OA OB =, ∴ 2OB =.………………………………………………………………… 3分 ∵ 一次函数4y kx =+的图象与x 轴正半轴的交点为B , ∴ 点B 的坐标为(2,0)B (2)将(2,0)B 的坐标代入4y kx =+,得 02= 解得 2k =-.………………………… 5 ∴ 一次函数的解析式为 24y x =-+.………………………………… 619.解:(1)按要求作图如图1所示,四边形1ABCD 和四边形2ABD C 分别是所求作的四边形;………………………………… 4分 (2)BD ≥ AC . …………………………………………………………… 6分阅卷说明:第(1)问正确作出一个四边形得3分;第(2)问只填BD >AC 或BD =AC 只得1分.20.(1)证明:如图2.∵ 四边形ABCD 是平行四边形,∴ AB ∥CD ,AB =CD .…………… 1分 ∴ ∠1=∠2.……………………… 2分图1D在△ABE 和△CDF 中,, 12, , AB CD BE DF =⎧⎪∠=∠⎨⎪=⎩………………………3分 ∴ △ABE ≌△CDF .(SAS ) ………………………………………… 4分 ∴ AE=CF .…………………………………………………………… 5分(2) 当四边形AECF 为矩形时,BD ACBE-= 2 . ………………………………6分 21.(1)证明:∵ 2(2)210x k x k -++-=是一元二次方程,[]2224(2)41(21)48b ac k k k k ∆=-=-+-⨯⨯-=-+ ………… 1分2(2)4k =-+,…………………………………………………… 2分 无论k 取何实数,总有2(2)k -≥0,2(2)4k -+>0.……………… 3分 ∴ 方程总有两个不相等的实数根.…………………………………… 4分 (2)解:把3x =代入方程2(2)210x k x k -++-=,有233(2)210k k -++-=.………………………………………………… 5分 整理,得 20k -=.解得 2k =.………………………………………………………………… 6分 此时方程可化为 2430x x -+=. 解此方程,得 11x =,23x =.∴ 方程的另一根为1x =.………………………………………………… 7分四、解答题(本题7分)22.解:(1) 4 .……………………………………………………………………………1分解法二:当180<x ≤260时,设y 与x 之间的函数关系式为y kx b =+(k ≠0). 由(2)可知:(180,900)A ,(260,1460)B .得180900,2601460.k b k b +=⎧⎨+=⎩ 解得7,360.k b =⎧⎨=-⎩∴ 7360y x =- .……………………………………………… 7分 五、解答题(本题共14分,每小题7分)23.解:所画EDF ∠如图3所示.……………………………………………………… 1分EDF ∠的度数为45. …………………………… 2分解法一:如图4,连接EF ,作FG ⊥DE 于点G . …… 3分 ∵ 正方形ABCD 的边长为6,∴ AB=BC=CD= AD =6,90A B C ∠=∠=∠=︒. ∵ 点E 为BC 的中点, ∴ BE=EC=3. ∵ 点F 在AB 边上,2BF AF =, ∴ AF =2,BF =4.在Rt △ADF 中,90A ∠=︒, 222226240DF AD AF =+=+=. 在Rt △BEF ,Rt △CDE 中,同理有222223425EF BE BF =+=+=,222226345DE CD CE =+=+=.在Rt △DFG 和Rt △EFG 中,有 22222FG DF DG EF EG =-=-.设DG x =,则224025)x x -=-. ……………………………… 4分 整理,得60=.解得x =即DG = ………………………………………… 5分 ∴FG =∴ DG FG =.……………………………………………………………… 6分 ∵ 90DGF ∠=︒, ∴ 180452DGFEDF ︒-∠∠==︒. ………………………………………7分 解法二:如图5,延长BC 到点H ,使CH=AF ,连接DH ,EF .………………… 3分 ∵ 正方形ABCD 的边长为6,∴ AB=BC=CD=AD =6,=90A B ADC DCE ∠=∠=∠=∠︒. ∴ 180=90DCH DCE ∠=︒-∠︒,A DCH ∠=∠. 在△ADF 和△CDH 中,, , , AD CD A DCH AF CH =⎧⎪∠=∠⎨⎪=⎩∴ △ADF ≌△CDH .(SAS ) ……………4分 ∴ DF=DH , ① 12∠=∠.图3EB 图4E B 图5八年级期末 数学试卷 第 11 页 (共 12∴ 2190FDH FDC FDC ADC ∠=∠+∠=∠+∠=∠=︒.……………… 5分∵ 点E 为BC 的中点,∴ BE=EC=3.∵ 点F 在AB 边上,2BF AF =,∴ CH= AF=2,BF=4.∴ 5EH CE CH =+=.在Rt △BEF 中,90B ∠=︒,5EF ==.∴ EF EH =.②又∵ DE= DE ,③由①②③得△DEF ≌△DEH .(SSS ) …………………………………… 6分 ∴ 452FDH EDF EDH ∠∠=∠==︒. ………………………………… 7分 24.解:(1)∵ (0,4)A ,(0,2)B ,∴ OA =4,OB =2,点B 为线段OA 的中点.…………………………… 1分 ∵ 点D 为OC 的中点,∴ BD ∥AC .……………………………………………………………… 2分(2)如图6,作BF ⊥AC 于点F ,取AB 的中点G ,则(0,3)G .∵ BD ∥AC ,BD 与AC 的距离等于1,∴ 1BF =.∵ 在Rt △ABF 中,90AFB ∠=︒,AB =2,点G 为AB 的中点,∴ 12AB FG BG ===. ∴ △BFG 是等边三角形,60ABF ∠=︒. ∴ 30BAC ∠=︒. 设OC x =,则2AC x =,OA . ∵ OA =4, ∴ x =.……………………………………… 3分 ∵ 点C 在x 轴的正半轴上, ∴ 点C 的坐标为.……………………………………………… 4分 (3)如图7,当四边形ABDE 为平行四边形时,AB ∥DE . ∴ DE ⊥OC . ∵ 点D 为OC 的中点,∴ OE=EC .八年级期末 数学试卷 第 12 页 (共 12 页) ∵ OE ⊥AC ,∴ 45OCA ∠=︒.∴ OC=OA =4.………………………………… 5分∵ 点C 在x 轴的正半轴上,∴ 点C 的坐标为(4,0).………………………………………………… 6分 设直线AC 的解析式为y kx b =+(k ≠0).则40,4.k b b +=⎧⎨=⎩ 解得1,4.k b =-⎧⎨=⎩∴ 直线AC 的解析式为4y x =-+ .………………………………………7分。
北京市门头沟区2013-2014学年八年级下学期期末考试数学试卷
门头沟区2013—2014学年度第二学期期末测试试卷八 年 级 数 学一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的. 1.点A 的坐标是(2,8),则点A 在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.一元二次方程4x 2+x =1的二次项系数、一次项系数、常数项分别是( ) A .4,0,1B .4,1,1C .4,1,-1D .4,1,03.内角和等于外角和的多边形是( ) A .三角形B .四边形C .五边形D .六边形4.将方程x 2+4x +2=0配方后,原方程变形为( ) A .(x +4)2=2B .(x +2)2=2C .(x +4)2=-3D .(x +2)2=-55.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .角B .等边三角形C .平行四边形D .矩形6.若关于x 的方程(m -2)x 2-2x +1=0有两个不等的实根,则m 的取值范围是( ) A .m <3B .m ≤3C .m <3且m ≠2D .m ≤3且m ≠27.已知点(-5,y 1),(2,y 2)都在直线y =-2x 上,那么y 1与y 2大小关系是( ) A .y 1≤y 2B .y 1≥y 2C .y 1<y 2D .y 1>y 28.直线y =-x -2不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限9.在菱形ABCD 中,对角线AC 与BD 交于点O ,如果∠ABC =60°,AC =4,那么该菱形的面积是( ) A .B .16C .D .810.如图,在平面直角坐标系xOy 中,以点A (2,3)为顶点作一直角∠P AQ ,使其两边分别与x 轴、y 轴的正半轴交于点P ,Q .连接PQ , 过点A 作AH ⊥PQ 于点H .如果点P 的横坐标为x , AH 的长为y ,那么在下列图象中,能表示y 与x 的 函数关系的图象大致是( )A B C D二、填空题:(本题共32分,每小题4分)11.点P(-2,3)关于x轴对称的点的坐标是.12.在函数32yx=-中,自变量x的取值范围是.13.如图,A、B两点被池塘隔开,在AB外选一点C,连接AC和BC,并分别找出它们的中点M和N.如果测得MN=15m,则A,B两点间的距离为m.14.如图,在□ABCD中,CE⊥AB于E,如果∠A=125°,那么∠BCE= °.第13题图第14题图第15题图第16题图15.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,如果通常新手的成绩都不太稳定,那么根据图中所给的信息,估计小林和小明两人中新手是(填“小林”或“小明”).16.如图,在△ABC中,∠ACB=90°,D是AB的中点,DE∥BC交AC于E.如果AC=6,BC=8,那么DE= ,CD= .17.如图,在甲、乙两同学进行的400米跑步比赛中,路程s(米)与时间t(秒)之间函数关系的图象分别为折线OAB和线段OC,根据图象提供的信息回答以下问题:(1)在第秒时,其中的一位同学追上了另一位同学;(2)优胜者在比赛中所跑路程s(米)与时间t(秒)之间函数关系式是.第17题图第18题图18.如图,在平面直角坐标系xOy中,直线x=2和直线y=ax交于点A,过A作AB⊥x轴于点B.如果a取1,2,3,…,n(n为正整数)时,对应的△AOB的面积为S1,S2,S3,…,S n,那么S1=;S1+S2+S3+…+S n=.三、解答题:(本题共36分,每题6分)19.解方程:22830.x x-+=20.已知:如图,在正方形ABCD中,E是CD边上的一点,F为BC延长线上一点,且CE=CF.(1)求证:△BEC≌△DFC;(2)如果BC+DF=9,CF=3,求正方形ABCD的面积.21.某校数学兴趣小组的成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题:(1)频数分布表中a= ,b= ;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是.22.已知:如图,在△ABC中,90⊥,CE∥AD.如ACB∠=︒,D是BC的中点,DE BC 果AC=2,CE=4.(1)求证:四边形ACED是平行四边形;(2)求四边形ACEB的周长;(3)直接写出CE和AD之间的距离.23.如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.24.列方程(组)解应用题:据媒体报道,2011年某市市民到郊区旅游总人数约500万人,2013年到郊区旅游总人数增长到约720万人.(1)求这两年该市市民到郊区旅游总人数的年平均增长率.(2)若该市到郊区旅游的总人数年平均增长率不变,请你预计2014年有多少市民到郊区旅游.四、解答题:(本题共22分,第25、26题,每小题7分,第27题8分)25.已知:关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)如果该方程有两个不同的整数根,且m为正整数,求m的值;(3)在(2)的条件下,令y=mx2+(3m+1)x+3,如果当x1=a与x2=a+n(n≠0)时有y1=y2,求代数式4a2+12an+5n2+16n+8的值.26.阅读下列材料:问题:如图1,在□ABCD中,E是AD上一点,AE=AB,∠EAB=60°,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.求证:EG =AG+BG.小明同学的思路是:作∠GAH=∠EAB交GE于点H,构造全等三角形,经过推理使问题得到解决.参考小明同学的思路,探究并解决下列问题:(1)完成上面问题中的证明;(2)如果将原问题中的“∠EAB=60°”改为“∠EAB=90°”,原问题中的其它条件不变(如图2),请探究线段EG、AG、BG之间的数量关系,并证明你的结论.图1 图227.如图1,在平面直角坐标系xOy中,等腰直角△AOB的斜边OB在x上,顶点A的坐标为(3,3).(1)求直线OA的解析式;(2)如图2,如果点P是x轴正半轴上的一个动点,过点P作PC∥y轴,交直线OA 于点C,设点P的坐标为(m,0),以A、C、P、B为顶点的四边形面积为S,求S与m之间的函数关系式;(3)如图3,如果点D(2,a)在直线AB上. 过点O、D作直线OD,交直线PC于点E,在CE的右侧作矩形CGFE,其中CG=32,请你直接写出矩形CGFE与△AOB重叠部分为轴对称图形时m的取值范围.图1 图2 图3门头沟区2013—2014学年度第二学期期末测试试卷八年级数学参考答案及评分参考一、选择题(本题共30分,每小题3分)二、填空题(本题共32分,每小题4分)三、解答题(本题共36分,每题6分) 19.(1)22830.x x -+=解:2283x x -=- (1)分 2342x x -=- (2)分 234442x x -+=-+ (3)分 ()2522x -= (4)分2x -=∴12x =+,22x =-…………………………………………………6分 20.(1)证明:∵正方形ABCD ,∴BC =CD ,∠BCE =∠DCF =90°. 又∵CE =CF ,∴△BEC ≌△DFC (SAS ). ……………4分(2)解:设BC =x ,则CD =x ,DF =9-x ,在Rt △DCF 中,∵∠DCF =90°,CF =3, ∴CF 2+CD 2=DF 2.∴32+x 2=(9-x )2.…………………………………………………………5分 解得x =4.∴正方形ABCD 的面积为:4×4=16.……………………………………6分 21.解:(1)频数分布表中a =8,b =0.08;………………………………………………2分(2)略;……………………………………………………………………………4分(3)小华被选上的概率是14.……………………………………………………6分 22.(1)证明:∵∠ACB=90°,DE ⊥BC ,∴AC ∥DE . ……………………………1分又∵CE ∥AD ,∴四边形ACED 是平行四边形. ………2分(2)解:∵四边形ACED 的是平行四边形.∴DE=AC=2.在Rt △CDE 中,∵∠CDE =90°,由勾股定理3222=-=DE CE CD .……………………………………3分 ∵D 是BC 的中点, ∴BC=2CD=34.在Rt △ABC 中,∵∠ACB =90°,由勾股定理13222=+=BC AC AB .…………………………………4分 ∵D 是BC 的中点,DE ⊥BC , ∴EB=EC=4.∴四边形ACEB 的周长= AC+CE+EB+BA=10+132.…………………5分(3)解:CE 和AD 6分23.解:(1)∵点A (m ,2)正比例函数y =x 的图象上,∴m =2.……………………………………………1分 ∴点A 的坐标为(2,2).∵点A 在一次函数y =kx -k 的图象上, ∴2=2k -k ,∴k =2.∴一次函数y =kx -k 的解析式为y =2x -2.………………………………2分 (2)过点A 作AC ⊥y 轴于C .∵A (2,2), ∴AC =2. ……………………………………………………3分 ∵当x =0时,y =-2, ∴B (0,-2),∴OB =2. ……………………………………………………………………4分∴S △AOB =12×2×2=2. ……………………………………………………5分 (3)自变量x 的取值范围是x >2.…………………………………………6分 24.解:(1)设这两年市民到郊区旅游总人数的年平均增长率为x . …………………1分由题意,得 500(1+x )2=720. ………………………………………………3分 解得 x 1=0.2,x 2=-2.2 ∵增长率不能为负,∴只取x =0.2=20%.………………………………………………………4分 答:这两年市民到郊区旅游总人数的年平均增长率为20%.…………5分(2)∵720×1.2=864.∴预计2014年约有864万人市民到郊区旅游.…………………………6分四、解答题:(本题共22分,第27、28题,每小题7分,第29题8分)25.解:(1)当m=0时,原方程化为x+3=0,此时方程有实数根x=-3.…………1分当m≠0时,原方程为一元二次方程.∵△=(3m+1)2-12m=9m2-6m+1=(3m-1)2.∵m≠0,∴不论m为任何实数时总有(3m-1)2≥0.∴此时方程有两个实数根.………………………………………………2分综上,不论m为任何实数时,方程mx2+(3m+1)x+3=0总有实数根.(2)∵mx2+(3m+1)x+3=0.解得x1=-3,x2=1m-.………………………………………………3分∵方程mx2+(3m+1)x+3=0有两个不同的整数根,且m为正整数,∴m=1.………………………………………………………………………5分(3)∵m=1,y=mx2+(3m+1)x+3.∴y=x2+4x+3.又∵当x1=a与x2=a+n(n≠0)时有y1=y2,∴当x1=a时,y1=a2+4a+3,当x2=a+n时,y2=(a+n)2+4(a+n)+3.∴a2+4a+3=(a+n)2+4(a+n)+3.化简得2an+n2+4n=0.即n(2a+n+4)=0.又∵n≠0,∴2a=-n-4.…………………………………………………6分∴4a2+12an+5n2+16n+8=(2a)2+2a•6n+5n2+16n+8=(n+4)2+6n(-n-4)+5n2+16n+8=24.…………………………………7分26.解:(1)证明:如图,作∠GAH=∠EAB交GE于点H.∴∠GAB=∠HAE. ………………………………………………………1分∵∠EAB=∠EGB,∠APE=∠BPG,∴∠ABG=∠AEH. …………………………………………………………2分∵又AB=AE,∴△ABG≌△AEH. …………3分∴BG=EH,AG=AH.∵∠GAH=∠EAB=60°,∴△AGH是等边三角形.∴AG=HG.∴EG=AG+BG. ……………………………………………………………4分(2)线段EG、AG、BG之间的数量关系是.EG BG=-…………5分理由如下:如图,作∠GAH=∠EAB交GE的延长线于点H.∴∠GAB=∠HAE.∵∠EGB=∠EAB=90°,∴∠ABG+∠AEG=∠AEG+∠AEH =180°.∴∠ABG=∠AEH.∵又AB=AE,∴△ABG≌△AEH. ………………6分∴BG=EH,AG=AH.∵∠GAH=∠EAB=90°,∴△AGH是等腰直角三角形.=HG.∴.EG BG=-…………………………………………………………7分27.解:(1)设直线OA的解析式为y=kx.∵直线OA经过点A(3,3),∴3=3k,解得k=1.∴直线OA的解析式为y=x. ………………………………………………2分(2)过点A作AM⊥x轴于点M.∴M(3,0),B(6,0),P(m,0),C(m,m).当0<m<3时,如图1.S=S△AOB-S△COP=12AD·OB-12OP·PC=116322m m⨯⨯-⋅=2192m-.………………………………………………4分当3<m<6时,如图2. S=S△COB-S△AOP=12PC·OB-12OP·AD=116322m m⨯⨯-⋅=33322m m m-=.……………………………………5分当m>6时,如图3. S=S△COP-S△AOB=12PC·OP-12OB·AD=116322m m⋅-⨯⨯2192m=-.…………………………………………6分图1 图2 图3(3)m的取值范围是32m ,94≤m<3. ……………………………………8分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分,谢谢!。
新北师版2013-2014八年级下期期末数学模拟试卷二及答案
2013—2014年八年级下学期期末考试数学模拟试卷(北师版)(满分100分,考试时间100分钟)学校________________ 班级_____________ 姓名________________ 一、选择题(每小题3分,共24分)1. 已知a >b ,c 为任意实数,则下列不等式中一定成立的是( )A .ac <bcB .ac 2>bc 2C .a +c <b +cD .a -c >b -c2. 下列图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个3. 已知式子1a ,2xy π,34a ,56x +,78x y+,210xy -,其中是分式的有( )A .5个B .4个C .3个D .2个4. 若关于x 的分式方程111x m x x+=--有增根,则m 的值为( ) A .1B .-1C .3D .55. 如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2,将△ABC 绕点C 按顺时针方向旋转n 度后得到△EDC ,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( ) A .30,2B .60,2C .60,32D .60,3C B EA DFF EDCB A第5题图 第6题图 6. 如图,在△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则 ∠EFC 的度数为( )A .30°B .45°C .55°D .60°7. 如图,在Rt △ABC 中,∠BAC =90°,AC =6,BC =10,过点A 作BC 的平行线,交∠ABC 的平分线于点E ,交∠ACB 的平分线于点D ,则DE 的长为( )A .18B .16C .14D .8EDCB A8. 下列四组条件中,不能判定四边形ABCD 是平行四边形的是( )A .AB =CD ,AD =BC B .AB ∥CD ,AD ∥BC C .AB ∥CD ,AD =BC D .AB ∥CD ,AB =CD 二、填空题(每小题3分,共21分)9. 已知当x =-2时,分式x bx a-+无意义,当x =6时,此分式的值为0,则3a b ⎛⎫⎪⎝⎭=_____. 10. 分解因式:a 3-a =________________.11. 已知4821-可以被60到70之间的某两个数整除,则这两个数是_________. 12. 用反证法证明“三角形的三个外角中至少有两个钝角”时,应先假设_______________________.13. 已知0234x y z==≠,则x y z x y z +++-的值为___________.14. 如图,直线y =kx +b 经过A (-2,-1),B (1,2)两点,则不等式组122x kx b <+<的解集为____________________. y=12xy=kx+bxOAByO'OC B A 第14题图 第15题图15. 如图,O 是等边三角形ABC 内一点,且OA =3,OB =4,OC =5.将线段OB 绕点B 逆时针旋转60°得到线段O′B ,连接O′A ,则下列结论:①△AO′B 可以由△COB 绕点B 逆时针旋转60°得到;②∠AOB =150°;③633AOBO'S =+四边形;④9364AOB AOC S S +=+△△.其中正确的是_________.(填写序号)三、解答题(本大题共7小题,满分55分)16. (每题3分,共6分)(1)解方程:21124x x x -=--; (2)分解因式:42164a a -.17. (6分)如图,方格纸中的每个小正方形边长都是1个单位长度,Rt △ABC的顶点均在格点上,建立平面直角坐标系后,点A 的坐标为(1,1),点B 的坐标为(4,1).(1)先将Rt △ABC 向左平移5个单位长度,再向下平移1个单位长度得到Rt △A 1B 1C 1,请在图中画出Rt △A 1B 1C 1;(2)再将Rt △A 1B 1C 1绕点A 1顺时针旋转90°,得到Rt △A 1B 2C 2,在图中画出Rt △A 1B 2C 2,并求出旋转过程中C 1经过的路径长.OA BCxy18. (7分)先化简分式3423332a a a a a a a +-+⎛⎫-÷⋅ ⎪+++⎝⎭,然后从不等式组25<324a a --⎧⎨⎩≤的解集中选取一个你认为符合题意的a 值代入求值.19. (8分)如图,已知平行四边形ABCD ,过点A 作AM ⊥BC 于点M ,交BD于点E ,过点C 作CN ⊥AD 于点N ,交BD 于点F ,连接AF ,CE .求证:四边形AECF 是平行四边形.FE N MA BC D20. (9分)某电器城经销A 型号彩电,今年四月份与去年同期相比,卖出彩电的数量相同,但去年销售额为5万元,今年销售额为4万元.已知去年每台彩电的售价比今年多500元.(1)去年四月份每台A 型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B 型号彩电,已知A 型号彩电每台进货价为1 800元,B 型号彩电每台进货价为1 500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,则有哪几种进货方案?(3)在(2)的条件下,电器城准备把A 型号彩电继续以原价出售,B 型号彩电以每台1 800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?21. (9分)如图,在平面直角坐标系中,函数y =2x +12的图象分别交x 轴、y轴于A ,B 两点,过点A 的直线交y 轴正半轴于点M ,且M 为线段OB 的中点.若C 是直线AB 上一动点,则在直线AM 上是否存在点D ,使以A ,O ,C ,D 为顶点的四边形是平行四边形?若存在,求出点C 的坐标;若不存在,请说明理由.y xOMB Ay xOMB A22. (10分)已知,在四边形ABCD 中,四条边都相等,四个角都是直角,△BEF是以BF 为斜边的等腰直角三角形,取DF 的中点G ,连接EG ,CG . (1)如图1,若△BEF 的斜边BF 在BC 上,猜想EG 和CG 之间的数量关系,并证明.(2)将图1中的△BEF 绕点B 顺时针旋转45°,如图2所示,则(1)中的结论是否仍成立?若成立,请给出证明;若不成立,请说明理由.(3)将图1中的△BEF 绕点B 顺时针旋转任意角度,如图3所示,则(1)中的结论是否仍成立?请直接写出结论.GF E DC B A图1GF E DCBA图2GF E DCBA图3参考答案一、选择题1.D 2.C 3.C 4.B 5.C 6.B 7.C 8.C二、填空题9.12710.a(a+1)(a-1) 11.63,6512.三角形的三个外角中至多有一个钝角13.9 14.-2<x<1 15.①②④三、解答题16.(1)x=32-;(2)()()242121a a a+-.17.(1)作图略;(2)路径长:132π.18.化简结果:a+3;当a=1时,值为4;当a=0时,值为3;当a=-1时,值为2.19.提示:连接AC,证明△ABE≌△CDF,进而说明对角线互相平分.20.(1)2500元;(2)四种进货方案:A型7台,B型13台;A型8台,B型12台;A型9台,B型11台;A型10台,B型10台;(3)方案为:A型7台,B型13台;最大利润为:5 300元.21.C1(0,12),C2(-12,-12)22.(1)EG=CG,提示:直角三角形斜边中线等于斜边一半;(2)成立,提示:延长EG交CD于点H,证明△ECH是等腰直角三角形;(3)成立,EG=CG.。
人教版八年级数学第二学期期末质量检测试卷及答案三
人教版八年级数学第二学期期末质量检测试卷及答案一.选择题(共10小题,满分40分,每小题4分)1.在函数y=中,自变量x的取值范围是()A.x<B.x≤C.x>D.x≥2.下图中不是中心对称图形的是()A.B.C.D.3.若△ABC中,AB=c,AC=b,BC=a,由下列条件不能判定△ABC为直角三角形的是()A.(c+b)(c﹣b)=a2B.∠A+∠B=∠CC.a=32,b=42,c=52D.a:b:c=5:12:134.一个容量为70的样本最大值为141,最小值60,取组距为10,则可以分成()A.10组B.9组C.8组D.7组5.若xy>0,则关于点P(x,y)的说法正确的是()A.在一或二象限B.在一或四象限C.在二或四象限D.在一或三象限6.一次函数y=﹣2x+1的图象经过()A.一、二、三象限B.二、三、四象限C.一、三、四象限D.一、二、四象限7.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,若AC=9,则AE的值是()A.B.C.6D.48.若一个正多边形的每一个外角都等于40°,则这个正多边形的边数是()A.7B.8C.9D.109.如图,在直角坐标系中,△AOB是等边三角形,若点B的坐标是(4,0),则点A的坐标是()A.(2,2)B.(2,2)C.(2,2)D.(1,2)10.如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F,连接AC、CF.下列结论:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△BEF=S△ABE.其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共8小题,满分32分,每小题4分)11.如图,把△ABC的一角折叠,若∠1+∠2=130°,则∠A的度数为.12.如图,正比例函数图象经过点A,则该函数的解析式为.13.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是.14.如图,在矩形纸片ABCD中,边AB=12,AD=5,点P为DC边上的动点(点P不与点D,C重合),将纸片沿AP折叠,则CD′的最小值为.15.如图,点A、B分别在x轴和y轴上,OA=1,OB=2,若将线段AB平移至A'B',则a+b的值为.16.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE⊥AB于E,OF⊥AD于F.则OE+OF=.17.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为.18.如图,等腰三角形ABC的底边BC长为8,面积是48,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为.三.解答题(共8小题,满分78分)19.(6分)如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=120°,求∠MBC+∠NDC的度数;(2)如图1,若BE与DF相交于点G,∠BGD=30°,请写出α、β所满足的等量关系式;(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.20.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的平行四边形为整点平行四边形.如图,已知整点A(2,5),B(3,2),请在所给网格区域内按要求画以A,B,C,D为顶点的整点平行四边形.(1)在图1中画出点C,D,使点C的横、纵坐标之和等于点D的横、纵坐标之和的3倍;(2)在图2中画出点C,D,使点C的横、纵坐标之积等于点D的横、纵坐标之积的2倍.21.(8分)如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣2),B(1,4)两点,并且交x轴于点C,交y轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△DOB的面积22.(10分)如图,在Rt△ABC中,∠ACB=90°,D,E分别是边AB,BC的中点,连接DE并延长到点F,使EF=DE,连接CF,BF.(1)求证:四边形CFBD是菱形;(2)连接AE,若CF =,DF=2,求AE的长.23.(10分)为贯彻落实教育部印发的《大中小学劳动教育指导纲要(试行)》通知要求,培养学生劳动习惯与劳动能力,某校学生发展中心在暑假期间开展了“家务劳动我最行”的实践活动,开学后从校七至九年级各随机抽取30名学生,对他们的每日平均家务劳动时长(单位:min)进行了调查,并对数据进行了收集、整理和描述.下面是其中的部分信息:a.90名学生每日平均家务劳动时长的频数分布表:分组频数20≤x<925m25≤x<301530≤x<3535≤x<2440n40≤x<45945≤x<50合计90b.90名学生每日平均家务劳动时长频数分布直方图:c.每日平均家务劳动时长在35≤x<40这一组的是:35 35 35 35 36 36 36 36 36 37 37 37 38 38 38 38 38 38 38 39 39 39 39 39d.小东每日平均家务劳动时长为37min.根据以上信息,回答下列问题:(1)写出频数分布表中的数值m=,n=;(2)补全频数分布直方图;(3)小东每日平均家务劳动时长样本中一半学生的每日平均家务劳动时长;(填“超过”或“没超过”)(4)学生发展中心准备将每日平均家务劳动时长达到40min及以上的学生评为“家务小能手”,如果该校七至九年级共有420名学生,请估计获奖的学生人数.24.(10分)如图,在平行四边形ABCD中,对角线AC、BD交于点O.(1)若DE⊥AC于点E,BF⊥AC于点F,求证:AE=CF;(2)若DO=AC,求证:四边形ABCD为矩形.25.(13分)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x(元)和游客居住房间数y(间)符合一次函数关系,如图是y关于x的函数图象.(1)求y与x之间的函数解析式,并写出自变量x的取值范围;(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?26.(13分)在平面直角坐标系中,O为原点,△OAB是等腰直角三角形,∠OBA=90°,BO=BA,顶点A(4,0),点B在第一象限,矩形OCDE的顶点E(﹣,0),点C在y轴的正半轴上,点D在第二象限,射线DC经过点B.(Ⅰ)如图①,求点B的坐标;(Ⅱ)将矩形OCDE沿x轴向右平移,得到矩形O′C′D′E′,点O,C,D,E的对应点分别为O′,C′,D′,E′.设OO′=t,矩形O′C′D′E′与△OAB重叠部分的面积为S.①如图②,当点E′在x轴正半轴上,且矩形O′C′D′E′与△OAB重叠部分为四边形时,D′E′与OB相交于点F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤t≤时,求S的取值范围(直接写出结果即可).参考答案一.选择题(共10小题,满分40分,每小题4分)1.解:在函数y=中,自变量x的取值范围是x≤,故选:B.2.解:A、是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项不合题意;C、是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项符合题意;故选:D.3.解:由(c+b)(c﹣b)=a2整理得:a2+b2=c2,故选项A不符合题意;由∠A+∠B=∠C,可知∠C=90°,故选项B不符合题意;a=32,b=42,c=52,则a2+b2≠c2,故选项C符合题意;当a:b:c=5:12:13时,则a2+b2=c2,故选项D不符合题意;故选:C.4.解:(141﹣60)÷10=8.1,因此可以分9组,故选:B.5.解:∵xy>0,∴x>0,y>0或x<0,y<0,∴点P(x,y)在一或三象限.故选:D.6.解:∵k=﹣2<0,∴一次函数的图象经过第二四象限,∵b=1>0,∴一次函数y=﹣2x+1的图象与y轴正半轴相交,经过第一象限,∴一次函数y=﹣2x+1的图象经过第一二四象限,故选:D.7.解:∵BE平分∠ABC,∴∠ABE=∠CBE,∵ED垂直平分AB,∴EA=EB,∴∠A=∠ABE,∴∠A=∠ABE=∠CBE=×90°=30°,在Rt△ABC中,BC=AC=×9=3,在Rt△BCE中,CE=BC=×3=3,∴BE=2CE=6,∴AE=6.故选:C.8.解:∵360÷40=9,∴这个多边形的边数是9.故选:C.9.解:过点A作AC⊥OB于点C,∵△AOB是等边三角形,∴OA=OB,OC=BC,∠AOB=60°,∴∠OAC=30°,∵点B的坐标为(4,0),∴OB=4,∴OA=4,∴OC=OA=2,∴AC===2,∴A(2,2).故选:B.10.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵AB=AE,BC=AD,∴△ABC≌△EAD(SAS);①正确;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,又∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF.若AD与BF相等,则BF=BC,题中未限定这一条件,若S△BEF=S△ACD;则S△BEF=S△ABC,则AB=BF,∴BF=BE,题中未限定这一条件,∴④不一定正确.若AD与AF相等,即∠AFD=∠ADF=∠DEC,即EC=CD=BE即BC=2CD,题中未限定这一条件,∴③不一定正确;故选:B.二.填空题(共8小题,满分32分,每小题4分)11.解:如图,∵△ABC的一角折叠,∴∠3=∠5,∠4=∠6,而∠3+∠5+∠1+∠2+∠4+∠6=360°,∴2∠3+2∠4+∠1+∠2=360°,∵∠1+∠2=130°,∴∠3+∠4=115°,∴∠A=180°﹣∠3﹣∠4=65°.故答案为:65°.12.解:设该正比例函数的解析式为y=kx,由图象可知,该函数图象过点A(2,4),∴2=k,即该正比例函数的解析式为y=2x.故答案为:y=2x.13.解:第五组的频数是40×0.2=8,则第六组的频数是40﹣5﹣10﹣6﹣7﹣8=4.故答案是:4.14.解:连接AC,当点D'在AC上时,CD'有最小值,∵四边形ABCD是矩形,AB=12,AD=5,∴∠D=∠B=90°,AD=BC,∴AC=,由折叠性质得:AD=AD'=5,∠AD'P=∠D=90°,∴CD'的最小值=AC﹣AD'=13﹣5=8,故答案为:8.15.解:由作图可知,线段AB向右平移3个单位,再向下平移1个单位得到线段A′B′,∵A(﹣1,0),B(0,2),∴A′(2,﹣1),B′(3,1),∴a=﹣1,b=3,∴a+b=2,故答案为:2.16.解:如图,连接AC交BD于点G,连接AO,∵四边形ABCD是菱形,∴AC⊥BD,AB=AD=10,BG=BD=8,根据勾股定理得:AG===6,∵S△ABD=S△AOB+S△AOD,即BD•AG=AB•OE+AD•OF,∴16×6=10OE+10OF,∴OE+OF=9.6.故答案为:9.6.17.解:∵l:y=x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴AB=,∵A1B⊥l,∴∠ABA1=60°,∴AA1=3,∴A1O(0,4),同理可得A2(0,16),…∴A4纵坐标为44=256,∴A4(0,256),故答案为:(0,256).18.解:连接AD,AD与EF的交点即为M,∵EF是AC的垂直平分线,∴C点与A点关于直线EF对称,∴AM=CM,∴CM+MD=AD,此时△CDM周长最小,∵△ABC是等腰三角形,D是BC的中点,∴AD⊥BC,∵BC长为8,面积是48,∴AD=12,∴△CDM周长=AD+CD=12+4=16,故答案为16.三.解答题19.解:(1)∵∠ABC+∠ADC=360°﹣(α+β)=240°,∴∠MBC+∠NDC=180°﹣∠ABC+180°﹣∠ADC=α+β=120°.(2)β﹣α=60°理由:如图1,连接BD,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=∠MBC,∠CDG=∠NDC,∴∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),在△BCD中,∠BDC+∠CBD=180°﹣∠BCD=180°﹣β,在△BDG中,∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CBD)+∠BGD=180°,∴(α+β)+180°﹣β+30°=180°,∴β﹣α=60°,(3)平行,理由:如图2,延长BC交DF于H,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE=∠MBC,∠CDH=∠NDC,∴∠CBE+∠CDH=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,∴∠CBE+β﹣∠DHB=(α+β),∵α=β,∴∠CBE+β﹣∠DHB=(β+β)=β,∴∠CBE=∠DHB,∴BE∥DF.20.解:(1)如图,四边形ACBD即为所求.(2)如图,四边形ACBD即为所求.21.解:(1)把A(﹣2,﹣2),B(1,4)代入y=kx+b得,解得.所以一次函数解析式为y=2x+2;(2)令y=0,则0=2x+2,解得x=﹣1,所以C点的坐标为(﹣1,0),把x=0代入y=2x+2得y=2,所以D点坐标为(0,2),(3)S△BOD=2×1=1.22.证明:(1)∵点E为BC的中点,∴CE=BE,又∵EF=DE,∴四边形CFBD是平行四边形,∵D是边AB,∠ACB=90°,∴CD=AB=BD,∴四边形CFBD是菱形;(2)∵D,E分别是边AB,BC的中点,∴AC=2DE,∵DF=2DE=2EF,DF=2,∴AC=2,EF=1,∵CF=,四边形CFDB是菱形,∴∠CEF=90°,∴CE===3,∵∠ACE=90°,∴AE===,即AE的长是.23.解:(1)由频数分布直方图知m=12,则n=90﹣(9+12+15+24+9)=21,故答案为:12、21;(2)补全频数分布直方图如下:(3)样本中一半学生的每日平均家务劳动时长为≈42.8(min),所以小东每日平均家务劳动时长没超过样本中一半学生的每日平均家务劳动时长,故答案为:没超过;(4)如果该校七至九年级共有420名学生,估计获奖的学生人数为420×=140(人).24.证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠DAE=∠BCF,∵DE⊥AC,BF⊥AC,∴∠DEA=∠BFC=90°,在△DEA与△BFC中,,∴△DEA≌△BFC(AAS),∴AE=CF;(2)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=BD,∴OA=OC=OB=OD,∴AC=BD,∴平行四边形ABCD是矩形.25.解:(1)由题意,设y关于x的函数解析式为y=kx+b,把(280,40,),(290,39)代入得:,解得:,∴y与x之间的函数解析式为y=﹣x+68(200≤x≤320);(2)设宾馆的利润为w元,则w=(x﹣20)y=(x﹣20)(﹣x+68)=﹣x2+70x﹣1360=﹣(x﹣350)2+10890,∵﹣<0,∴当x<350时,w随x的增大而增大,∵200≤x≤320,∴当x=320时,w取得最大值,最大值为10800元,答:当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是10800元.26.解:(1)如图①,过点B作BH⊥OA,垂足为H,由点A(4,0),得OA=4,∵BO=BA,∠OBA=90°,∴OH=BH=OA==2,∴点B的坐标为(2,2);(2)①由点E(﹣,0),得OE=,由平移知,四边形O'C'D'E'是矩形,得∠O'E'D'=90°,O'E'=OE=,∴OE'=OO'﹣O'E'=t﹣,∠FE'O=90°,∵BO=BA,∠OBA=90°,∴∠BOA=∠BAO=45°,∴∠OFE'=90°﹣∠BOA=45°,∴∠FOE'=∠OFE',∴FE'=OE'=t﹣,∴S△FOE'=OE'•FE'=(t﹣)2,∴S=S△OAB﹣S△FOE'=,即S=﹣t2+t﹣(4≤t<);②(Ⅰ)当4<t≤时,由①知S=﹣t2+t﹣=﹣(t﹣)2+4,∴当t=4时,S有最大值为,当t=时,S有最小值为,∴此时≤S<;(Ⅱ)当<t≤4时,如图2,令O'C'与AB交于点M,D'E'与DB交于点N,∴S=S△OAB﹣S△OE'N﹣S△O’AM=4﹣(t﹣)2﹣(4﹣t)2=﹣t2+t﹣=﹣(t﹣)2+,此时,当t=时,S有最大值为,当t=4时,S有最小值为,∴≤S≤;(Ⅲ)当≤t≤时,如图3,令O'C'与AB交于点M,此时点D'位于第二象限,∴S=S△OAB﹣S△O’AM=4﹣(4﹣t)2=﹣t2+4t﹣4=﹣(t﹣4)2+4,此时,当t=时,S有最小值为,当t=时,S有最大值为,∴≤S≤;综上,S的取值范围为≤S≤;∴S的取值范围为≤S≤.。
北京市丰台区2013-2014学年八年级下学期期末考试数学试卷
C丰台区2013—2014学年度第二学期期末统考初 二数 学一、选择题(共24分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的. 1.函数y =中自变量x 的取值范围是A .2x ≠B .2x ≤C .2x >D .2x ≥ 2.五边形的内角和为A .180°B .360°C .540°D .720°3.在平面直角坐标系中,点A (1,2)关于x 轴对称的点的坐标是 A .(1,2) B .(1,-2) C .(-1,2) D .(-1,-2) 4. 下列图形中,既是中心对称图形又是轴对称图形的是A .等边三角形B .平行四边形C .等腰梯形D .矩形 5.已知2x =是一元二次方程2+80x mx -=的一个解,则m 的值是A .2B .2-C .4-D .2或4-6.某工厂由于管理水平提高,生产成本逐月下降. 原来每件产品的成本是1600元,两个月后,降至900元.如果产品成本的月平均降低率是x ,那么根据题意所列方程正确的是 A .1600(1)900x -= B .900(1)1600x += C .21600(1)900x -= D .2900(1)1600x +=7. 10名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm )如下表所示:设两队队员身高的平均数依次为x 甲,x 乙,身高的方差依次为2S 甲,2S 乙,则下列关系中完全 正确的是A .x x =甲乙,22S S >乙甲B .x x =甲乙,22S S<乙甲C .x x >甲乙,22S S>乙甲D .x x <甲乙,22S S<乙甲8.如图,菱形ABCD 中,AB =2,∠B=120°,点M 是AD 的中点,点P 由点A 出发,沿A →B →C →D 作匀速运动,到达点D 停止,则△APM 的面积y 与点P 经过的路程x 之间的函数关系的图象大致是A B CD二、填空题(共18分,每小题3分)9.如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,如果BC =8,那么DE = .10. 某地未来7日最高气温走势如图所示,那么这组数据的极差为 °C .11. 如图,在菱形ABCD 中,AC ,BD 是对角线,如果∠BAC =70°,那么∠ADC 等于 .12. 如果把代数式x 2-2x+3化成2()x h k -+的形式,其中h ,k 为常数,那么h +k 的值是 .13. 如图,在梯形ABCD 中,AD ∥BC ,如果∠ABC =60º,BD 平分∠ABC ,且BD ⊥DC ,CD =4, 那么梯形ABCD 的周长是 .14.如图,在平面直角坐标系中有一个边长为1的正方形OABC ,边OA ,OC 分别在x 轴、y 轴上,如果以对角线OB 为边作第二个正方形11OBB C ,再以对角线1OB 为边作第三个正方形122OB B C ,……,照此规律作下去,则点2B 的坐标为_________;点2014B 的坐标为_________.三、解答题(共20分,每小题5分) 15.解方程:2450x x --=.16. 如图,将△ABC 置于平面直角坐标系中,点A (-1,3),B (3,1),C (3,3). (1)请作出△ABC 关于原点O 的中心对称图形△A ’B ’C ’;(点A 的对称点是点A ’, 点B 的对称点是点B ’, 点C 的对称点是点C ’)ED BA A BCDDCBA(2)判断以A ,B ’,A ’ ,B 为顶点的四边形的形状,并直接写出这个四边形的周长.17. 已知一次函数112y x =+的图象与x 轴交于点A ,与y (1)求A ,B 两点的坐标;(2)过B 点作直线B P 与x 轴交于点P ,且使△A B P 的面积为2,求点P 的坐标.18.已知:如图,点E ,F 是□ABCD 中AB ,DC 边上的点,且AE =CF ,联结DE ,BF .求证:DE =BF .四、解答题(共24分,每小题6分)19. 已知关于x 的一元二次方程04222=-++k x x 有两个不相等的实数根. (1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.20.为了解某校学生的身高情况,随机抽取该校若干名学生测量他们的身高,已知抽取的学生中,男生、女生的人数相同....,利用所得数据绘制如下统计图表: 身高分组表 女生身高频数分布表 男生身高频数分布直方图ABCD F请根据以上图表提供的信息,解答下列问题:(1)在女生身高频数分布表中:a= ,b= ,c= ;(2)补全男生身高频数分布直方图;(3)已知该校共有女生400人,男生380人,请估计身高在165≤x<170之间的学生约有多少人.21.为鼓励居民节约用水,某市对居民用水收费实行“阶梯水价”,按每年用水量统计,不超过180立方米的部分按每立方米5元收费;超过180立方米不超过260立方米的部分按每立方米7元收费;超过260立方米的部分按每立方米9元收费.(1)设每年用水量为x立方米,按“阶梯水价”应缴水费y元,请写出y(元)与x(立方米)之间的函数解析式;(2)明明家预计2015年全年用水量为200立方米,那么按“阶梯水价”收费,她家应缴水费多少元?22.如图,矩形ABCD的对角线AC,BD交于点O,DE∥AC交BA的延长线于点E,点F 在BC上,BF=BO,且AE=6,AD=8.(1)求BF的长;(2)求四边形OFCD的面积.EOFDCBA五、解答题(共14分,每小题7分)23. 如图,在平面直角坐标系xOy 中,直线1l 与x 轴交于点A (3-,0),与y 轴交于点B ,且与直线2l :43y x =的交点为C (a ,4) . (1)求直线1l 的解析式;(2)如果以点O ,D ,B ,C 为顶点的四边形是平行四边 形,直接写出点D 的坐标;(3)将直线1l 沿y 轴向下平移3个单位长度得到直线3l ,点P (m ,n )为直线2l 上一动点,过点P 作x 轴的垂线, 分别与直线1l ,3l 交于M ,N.当点P 在线段..MN 上时,请直接写出m 的取值范围.24.把一个含45°角的直角三角板BEF 和一个正方形ABCD 摆放在一起,使三角板的直角顶点和正方形的顶点B 重合,联结DF ,点M ,N 分别为DF ,EF 的中点,联结MA ,MN .图1 图2丰台区2013—2014学年度第二学期期末初二数学试题答案及评分参考一、选择题(共24分,每小题3分)二、填空题(共18分,每小题3分)三、解答题(共20分,每小题5分) 15.解方程:2450xx --=.解:5)(1)0x x -+=(,------- 2分 ∴50x -=或10x +=.∴125, 1.x x ==- ------- 5分 16.解:(1)如右图: ------- 3分(2)正方形; ------- 5分17.解:(1)令y =0,则x =-2;令x =0,则y =1; ∴A 点坐标为(-2,0);B 点坐标为(0,1).(2)∵△ABP 的面积为2,∴122OB AP ⨯=. ------- 3分又∵OB =1,∴AP =4. ∴点P 的坐标为(-6,0),(2,0). ------- 5分18.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD . ------- 2分∵AE =CF ,∴AB -AE =CD -CF ,即EB =DF . ------- 3分 ∴四边形DEBF 是平行四边形. ------- 4分 ∴DE =BF . ------- 5分 其他证法相应给分.四、解答题(共24分,每小题6分)19.解:(1)∵方程04222=-++k x x 有两个不相等的实数根,∴()2=24240k D -->. ------- 2分∴52k <. ------- 3分 (2)∵k 为正整数,∴=1,2k . ------- 4分当=1k 时,原方程为 2220x x +-=,此方程无整数根,不合题意,舍去. ------- 5分当=2k 时,原方程为 220x x +=,解得,1202x x ==-,. 符合题意. 综上所述,=k 2.------- 6分20. 解:(1)a =0.20,b =40,c =6,------- 3分 (2)如右图: ------- 4分(3)84000.15+380=60+76=13640创(人), ∴身高在165≤x <170之间的学生约有136人. ------- 6分 21.解:(1)当0180x# 时,5y x =; ------- 1分当180260x < 时,()5180+7180y x =?,即7360y x =-; -------2分 当260x >时,()()5180+72601809260y x =创-+-,即9880y x =-.综上所述, ()()()5018073601802609880260.x x y x x x x ≤≤⎧⎪=-<≤⎨⎪->⎩;;-------4分 (2)当=200x 时,736072003601040y x =-=?=(元). ∴按“阶梯水价”收费,她家应缴水费1040元. -------6分22.解: (1)∵四边形ABCD 是矩形,∴∠BAD =90°,∴∠EAD =180°—∠BAD =90°.ABCD EF在Rt △EAD 中,∵AE =6,AD =8,∴10DE . -------1分∵DE ∥AC ,AB ∥CD ,∴四边形ACDE 是平行四边形. ∴AC =DE =10. -------2分 在Rt △ABC 中,∠ABC =90°,∵OA =OC ,∴152BO AC ==. -------3分∵BF =BO ,∴BF =5. -------4分(2)过点O 作OG ⊥BC 于点G ,∵四边形ABCD 是矩形, ∴∠BCD =90°,∴CD ⊥BC .∴OG ∥CD .∵OB =OD ,∴BG =CG ,∴OG 是△BCD 的中位线. -------5分 由(1)知,四边形ACDE 是平行四边形,AE =6,∴CD =AE =6.∴132OG CD ==. ∵AD =8,∴BC =AD =8.∴1242BCD S BC CD D =鬃= , 11522BOF S BF OG D =鬃=. ∴332BCD BOF OFCD S S S D D =-=四边形 . -------6分 其他证法相应给分.五、解答题(共14分,每小题7分) 23.解:(1)∵直线2l :43y x =经过点C (a ,4), ∴443a =,∴3a =. ------- 1分 ∴点C (3,4).设直线1l 的解析式为y kx b =+,∵直线1l 与x 轴交于点A (3-,0),且经过点C (3,4),∴30,3 4.k b k b -+=⎧⎨+=⎩,∴ 232.k b ,⎧=⎪⎨⎪=⎩ ∴直线1l 的解析式为223y x =+. ------- 2分 (2)点D 的坐标是(3,2),(3,6)或(3-,2-). ------- 5分(3)332x -# . ------- 7分25.解:(1)MA =MN 且MA ⊥MN . ------- 2分(2)(1)中结论仍然成立. ------- 3分 证明:联结DE ,∵四边形ABCD 是正方形,∴AB =BC =CD =DA ,∠ABC =∠BCD =∠CDA =∠DAB =90°.EOFDCBAG在Rt△ADF中,∵M是DF的中点,∴12MA DF MD MF ===.∴∠1=∠3.∵N是EF的中点,∴MN是△DEF的中位线.∴12MN DE=,MN∥DE. ------- 4分∵△BEF为等腰直角三角形,∴BE=BF,∠EBF=90°.∵点E,F分别在正方形的边CB,AB的延长线上,∴AB BF CB BE+=+ ,即AF=CE.∴△ADF≌△CDE. ------- 5分∴DF=DE,∠1=∠2.∴MA=MN,∠2=∠3. ------- 6分∵∠2+∠4=∠ABC=90°,∠4=∠5,∴∠3+∠5=90°,∴∠6=180°—(∠3+∠5)=90°. ∴∠7=∠6=90°,MA⊥MN. ------- 7分其他证法相应给分.7654321DANME B CF。
盐城第一中学2012-2013学年八年级下期末质量检测数学试卷
绝密★启用前2012-2013学度年第二学期期末质量检测八年级数学试卷注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 如不等式组x bx a-⎧⎨+⎩<>解集为2<x<3,则a,b的值分别为A.-2,3 B.2,-3 C.3,-2 D.-3,22. 分式xyzx y z++(xyz≠0)中x,y,z的值都变为原来的2倍,则分式的值变为原来的A.2倍B.4倍C.6倍D.8倍3. 若(m+n):n=5:2,则m:n的值是A.5:2 B.2:3 C.2:5 D.3:24. 矩形的面积一定,则它的长和宽的关系是A.正比例函数B.一次函数C.反比例函数D.二次函数5. 已知三角形两边的长度分别为2和7,其周长为偶数,那么第三边的长是A .5B .6C .7D .86. A ,B ,C ,D ,E 五人参加“五羊杯”初中数学竞赛得分都超过91分.其中E 排第三,得96分.又知A ,B ,C 平均95分,B ,C ,D 平均94分.若A 排第一,则D 得多少分 A .98 B .97C .93D .927. 已知△ABC 与△DEF 是关于点P 的位似图形,它们的对应点到P 点的距离分别为3cm 和4cm ,则△ABC 与△DEF 的面积比为A .3:4B .9:16C .3:7D .9:498. 在平面坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2),延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ,延长C 1B 1交x 轴于点A 2,作 正方形A 2B 2C 2C 1,…按这样的规律进行下去,第2012个正方 形的面积为A .201035()2⋅B .201095()4⋅C .201295()4⋅D .402235()2⋅二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直 接写在答题卡相应位置上)9. 不等式2x <4x-6的解集为 ▲ . 10. 若117m n m n+=+,则n m m n +的值为 ▲ .11. 设x ,y 为正整数,并计算它们的倒数和;接着将这两个正整数x ,y 分别加上1、2后,再计算它们的倒数和,请问经过这样操作之后,倒数和之差的最大值是 ▲ .12. 若(m 十n )人完成一项工程需要m 天,则n 个人完成这项工程需要 ▲ 天.(假定每个人的工作效率相同)13. 长度为2的线段AB 被点P 分成AP 和BP 两段,已知较长的线段BP 是AB 与AP 的比O D B C第8题图C 1B 1C 2B 2 xyA 1A 2A例中项,则较短的一条线段AP的长为▲ .14. 已知:反比例函数y=kx的图象经过点A(2,-3),那么k= ▲ .15. 如图所示,在边长为2的正三角形ABC中,E、F、G分别为AB、AC、BC的中点,点P为线段EF上一个动点,连接BP、GP,则△BPG的周长的最小值是▲ .16. 货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意可列方程▲.17. 人民公园的侧门口有9级台阶,小聪一步只能上1级台阶或2级台阶,小聪发现当台阶数分别为1级、2级、3级、4级、5级、6级、7级…逐渐增加时,上台阶的不同方法的种数依次为:1,2,3,5,8,13,21…这就是著名的斐波那契数列.那么小聪上这9级台阶共有▲ 种不同方法.18. 如图所示,正方形OEFG和正方形ABCD是位似图形,点F的坐标为(-1,1),点C 的坐标为(-4,2),则这两个正方形位似中心的坐标是▲ .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)19.(本题满分6分)解方程:321x x=+BGCE P FA第15题图xyDCABOEFG(第17题图)20.(本题满分8分)先化简,再求值:2214()244x x x xx x x +---÷--+ ,其中x 是不等式3x+7>1的负整数解.21.(本题满分8分)如图,在平面直角坐标系内,已知OA =OB =2,∠AOB =30°. (1)点A 的坐标为( ▲ , ▲ ); (2)将△AOB 绕点O 顺时针旋转a 度(0<a<90). ①当a =30时,点B 恰好落在反比例函数y =kx(x>0)的图象上,求k 的值; ②在旋转过程中,点A 、B 能否同时落在上述反比例函数的图象上,若能,求出a 的值;若不能,请说明理由.22. (本题满分6分)某商场设计了两种促销方案:第一种是顾客在商场消费每满200元就可以从一个装有100个完全相同的球(球上分别标有数字1,2,…100)的箱子中随机摸出一个球(摸后放回).若球上的数字是能被20整除,则返购物券200元;若球上的数字能被5整除但不能被4整除则返购物券20元;若球上的数字能被4整除但不能被5整除,则返购物券10元;若是其它数字,则不返购物券.第二种是顾客在商场消费每满200元直接获得购物券16元.估计促销期间将有5000人次参加活动.请你通过计算说明商家选择哪种促销方案合算些?xyOAB23. (本题满分12分)(1)如图(1),正方形AEGH 的顶点E 、H 在正方形ABCD 的边上,直接写出HD :GC : EB 的结果(不必写计算过程);(2)将图(1)中的正方形AEGH 绕点A 旋转一定角度,如图(2),求HD :GC :EB ; (3)把图(2)中的正方形都换成矩形,如图(3),且已知DA :AB=HA :AE=m :n ,此 时HD :GC :EB 的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后 的结果(不必写计算过程).24. (本题满分10分)如图,在△ABD 和ACE 中,,,AB AD AC AE BAD CAE ==∠=∠,连接,BC DE 相交于点F ,BC 与AD 相交于点G .(1)试判断线段,BC DE 的数量关系,并说明理由; (2)如果ABC CBD ∠=∠,那么线段FD 是线段FG 和FB 的比例中项吗?并说明理由.AE DHGC(3)B(1)E DH CAG BBDCA GEF(2) EDCH GBA25. (本题满分10分)如图1,已知直线y =-2x +4与两坐标轴分别交于点A 、B ,点C 为线段OA 上一动点, 连结BC ,作BC 的中垂线分别交OB 、AB 交于点D 、E .(l)当点C 与点O 重合时,DE = ▲ ; (2)当CE ∥OB 时,证明此时四边形 BDCE 为菱形;(3)在点C 的运动过程中,直接写出OD 的 取值范围.26. (本题满分12分)如图,已知P 为AOB ∠的边OA 上的一点,且2OP =.以P 为顶点的MPN ∠ 的两边分别交射线OB 于M N ,两点,且60MPN AOB ∠=∠=︒.当MPN ∠以点P 为旋转中心,PM 边与PO 重合的位置开始,按逆时针方向旋转(MPN ∠保持不变)时,M N ,两点在射线OB 上同时以不同的速度向右平行移动.设,OM x ON y ==(0y x >>),△POM 的面积为S .(1)判断:△OPN 与△PMN 是否相似,并说明理由; (2)写出y 与x 之间的关系式;(3)试写出S 随x 变化的函数关系式,并确定S 的取值范围.OAB备用图图1 OABC EM N BPAO27. (本题满分12分) 知识迁移当0a >且0x >时,因为2()a x x-≥0,所以2a x a x -+≥0,从而ax x+≥2a (当x a =时取等号). 记函数(0,0)ay x a x x=+>>,由上述结论可知:当x a =时,该函数有最小值为2a . 直接应用已知函数1(0)y x x =>与函数21(0)y x x=>, 则当x = ▲ 时,12y y +取得最小值为 ▲ . 变形应用已知函数11(1)y x x =+>-与函数22(1)4(1)y x x =++>-,求21y y 的最小值,并指出取得该最小值时相应的x 的值. 实际应用已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共360元;二是燃油费,每千米为1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x 千米,求当x 为多少时,该汽车平均每千米的运输成本..........最低?最低是多少元?28. (本题满分12分)如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8.动点P 从点A 开始沿折线AC-CB-BA 运动,点P 在AC ,CB ,BA 边上运动,速度分别为每秒3,4,5个单位.直线l 从与AC 重合的位置开始,以每秒43个单位的速度沿CB 方向平行移动,即移动过程中保持l ∥AC ,且分别与CB ,AB 边交于E ,F 两点,点P 与直线l 同时出发,设运动的时间为t 秒,当点P 第一次回到点A 时,点P 和直线l 同时停止运动.(1)当t=5秒时,点P 走过的路径长为 ▲ ;当t= ▲ 秒时,点P 与点E 重合;(2)当点P 在AC 边上运动时,将△PEF 绕点E 逆时针旋转,使得点P 的对应点M 落在EF 上,点F 的对应点记为点N ,当EN ⊥AB 时,求t 的值;(3)当点P 在折线AC-CB-BA 上运动时,作点P 关于直线EF 的对称点,记为点Q .在点P 与直线l 运动的过程中,若形成的四边形PEQF 为菱形,请直接写出t 的值.A FNBP lEC M 备用图。
八年级下期末数学试卷及答案
)
y A
O
x
20、如图,AD∥ EF∥ GH∥ PQ∥BC,AE=EG=GP=PB,AD=2, BC=10,则 EF、PQ 长为( ) A.3 和 7 B.4 和 7 C .5 和 8 D.4 和 8; 三、计算、解方程: (每题 5 分,共 20 分) 21、 2 cos 30 2 tan 45 tan 60 ;
2
4 , AB 5 ,则 BC 5
;
D
;
5米 C
7、如图,一铁路路基的横断面为等腰梯形,坡面 AD 的 坡度为 1﹕2,高为 3 米,则下底宽 AB= 米;
m2 8、双曲线 y 中,当 x 0 时, y 随 x 的增大而减小,则 m x
9、计算:
A
B
;
b 18a 2a b
;
A
C 45 30
F
D
B
EБайду номын сангаас
26 如图,一次函数 y kx b 的图像与反比例函数 y
m 的图像相交于 A、B 两点, x
y
⑴利用图中条件,求反比例函数和一次函数的解析式; ⑵根据图像写出使一次函数的值小于反比例函数的值的 x 的取值范围;
A(-2,1)
O
x
B(1,n)
27、如图,点 F 是 △ABC 中 AC 边上的中点, AD ∥ BC , DF 交 AB 于 E ,交 BC 延长线于 G , D ⑴若 BE ︰ AE =3︰1, BC 8 ,求 BG 的长; A ⑵若 1 2 ,试证: FC FE FD ;
A. x 1 B. x 1 C. x 1 D. x 1 ; 12、下列说法正确的是( ) A.对应边都成比例的多边形相似 B.对应角都相等的多边形相似 C.边数相同的正多边形相似 D.矩形都相似; 13、下列函数关系式中, y 是 x 的正比例函数的是 ( ) A. y 2 x 1 B. y x C. y 2( x 1) D. y
人教版八年级下册数学期末测试题及答案
人教版八年级下册数学期末测试题及答案本内容由八年级下册试卷栏目提供,想查看更多内容可继续浏览初二下学期试题栏目。
数学公式本页无法显示,请点击下载原文档查看。
点击下载《人教版八年级下册数学期末测试题及答案》预览:人教版八年级下数学期末测试题一、选择题(每题4分,共48分)1、下列各式中,分式的个数有()、、、、、、、A、2个B、3个C、4个D、5个2、如果把中的x和y都扩大5倍,那么分式的值()A、扩大5倍B、不变C、缩小5倍D、扩大4倍3、已知正比例函数y=k1x(k1≠0)与反比例函数y= (k2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是A. (2,1)B. (-2,-1)C. (-2,1)D. (2,-1)4、一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为A.10米 B.15米 C.25米 D.30米5、一组对边平行,并且对角线互相垂直且相等的四边形是()A、菱形或矩形B、正方形或等腰梯形C、矩形或等腰梯形D、菱形或直角梯形6、把分式方程的两边同时乘以(x-2), 约去分母,得( )A.1-(1-x)=1 B.1 (1-x)=1 C.1-(1-x)=x-2 D.1 (1-x)=x-27、如图,正方形格中的△ABC,若小方格边长为1,则△ABC是()A、直角三角形B、锐角三角形C、钝角三角形D、以上答案都不对(第7题)(第8题)(第9题)8、如图,等腰梯形ABCD中,AB∥DC,AD=BC=8,AB=10,CD=6,则梯形ABCD的面积是()A、 B、 C、 D、9、如图,一次函数与反比例函数的图像相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是()A、x<-1B、x>2C、-1<x<0,或x>2D、x<-1,或0<x<210、在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为,。
2013-2014学年山东省临沂市莒南县八年级下期末考试数学试卷及答案【新课标人教版】
山东省临沂市莒南县2013-2014学年下学期期末考试八年级数学试卷一、选择题(每小题3分,共42分)将唯一正确答案的代号字母填在下面的方格内1.(3分)若代数式在实数范围内有意义,则x的取值范围是()A.x≥2 B.x>2 C.x≠2 D.2.(3分)(2013•莱芜)一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A.10,10 B.10,12.5 C.11,12.5 D.11,103.(3分)下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有()A.4个B.3个C.2个D.1个4.(3分)下列计算中,正确的是()A.B.C.D.5.(3分)如图,在▱ABCD中,延长CD至点E,延长AD至点F,连结EF,如果∠B=110°,那么∠E+∠F=()A.110°B.70°C.50°D.30°6.(3分)函数的自变量x的取值范围为()A.x≥2且x≠8 B.x>2 C.x≥2 D.x≠87.(3分)下列命题中,真命题是()A.两条对角线垂直且相等的四边形是正方形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分且相等的四边形是矩形D.同一底上两个角相等的四边形是等腰梯形8.(3分)若ab>0,mn<0,则一次函数的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.(3分)如图,在梯形ABCD中,AB∥DC,DE∥CB,若CD=4,△ADE周长为18,那么梯形ABCD的周长为()A.22 B.26 C.38 D.3010.(3分)如图,菱形ABCD的周长为16,若∠BAD=60°,E是AB的中点,则点E的坐标为()A.(1,1)B.(,1)C.(1,)D.(,2)11.(3分)在下列各图象中,y不是x函数的是()A.B.C.D.12.(3分)已知点(﹣6,y1),(8,y2)都在直线y=﹣x﹣6上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较13.(3分)雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利润45元.当M型号的时装为多少套时,能使该厂所获利润最大()A.40 B.44 C.66 D.8014.(3分)在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是()A.B.C.D.二、填空题(共5小题,每小题3分,共15分)答案直接填在题中横线上15.(3分)如果,那么xy的值为_________.16.(3分)一组数据0,﹣1,6,1,﹣1,这组数据的方差是_________.17.(3分)(2008•广安)在平面直角坐标系中,将直线y=2x﹣1向上平移动4个单位长度后,所得直线的解析式为_________.18.(3分)如图,在平面直角坐标系xOy中,直线与x轴交于点A,与y轴交于点B,将△AOB沿过点A的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y 轴交点交于点D,则点C的坐标为_________,点D的坐标为_________.19.(3分)如图,在菱形ABCD中,AB=13cm,BC边上的高AH=5cm,那么对角线AC 的长为_________cm.三、解答题(共58分)20.(8分)计算(1)﹣÷(2×);(2).21.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,点E,点F在BD上,且BE=DF 连接AE并延长,交BC于点G,连接CF并延长,交AD于点H.(1)求证:△AOE≌△COF;(2)若AC平分∠HAG,求证:四边形AGCH是菱形.22.某学校通过初评决定最后从甲、乙、丙三个班中推荐一个班为区级先进班集体,下表是这三个班的五项素质考评得分表:五项成绩素质考评得分(单位:分)班级行为规范学习成绩校运动会艺术获奖劳动卫生甲班10 10 6 10 7乙班10 8 8 9 8丙班9 10 9 6 9根据统计表中的信息解答下列问题:(1)请你补全五项成绩考评分析表中的数据:五项成绩考评比较分析表(单位:分)班级平均数众数中位数甲班8.6 10乙班8.6 8丙班9 9(2)参照表中的数据,你推荐哪个班为区级先进班集体?并说明理由;_________(3)如果学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照按3:2:1:1:3的比确定,学生处的李老师根据这个平均成绩,绘制了一幅不完整的条形统计图,请将这个统计图补充完整,依照这个成绩,应推荐哪个班为市级先进班集体?23.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a 元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c 元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:设某户每月用水量x(立方米),应交水费y(元)月份用水量(m3)收费(元)9 5 7.510 9 27(1)求a,c的值;(2)当x≤6,x≥6时,分别写出y于x的函数关系式;(3)若该户11月份用水量为8立方米,求该户11月份水费是多少元?24.小丽驾车从甲地到乙地.设她出发第xmin时的速度为ykm/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系.(1)小丽驾车的最高速度是_________km/h;(2)当20≤x≤30时,求y与x之间的函数关系式,并求出小丽出发第22min时的速度;(3)如果汽车每行驶100km耗油10L,那么小丽驾车从甲地到乙地共耗油多少升?25.(10分)(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.26.(12分)如图,已知点A(2,0)、B(﹣1,1),点P是直线y=﹣x+4上任意一点.(1)当点P在什么位置时,△PAB的周长最小?求出点P的坐标及周长的最小值;(2)在(1)的条件下,求出△PAB的面积.参考答案1-10、ADBDB ACBBB 11-14、CABA15、-616、6.817、y=2x+318、(﹣1,0);(0,)19、20、(1)(2)2+21、证明:(1)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,在△AOE与△COF中,,∴△AOE≌△COF(SAS);(2)由(1)得△AOE≌△COF,∴∠OAE=∠OCF,∴AE∥CF,∵AH∥CG,∴四边形AGCH是平行四边形;∵AC平分∠HAG,∴∠HAC=∠GAC,∵AH∥CG,∴∠HAC=∠GCA,∴∠GAC=∠GCA,∴CG=AG;∴▱AGCH是菱形.22、解:(1)丙班的平均数为=8.6(分);甲班成绩为6,7,10,10,10,中位数为10(分);乙班的众数为8分,填表如下:五项成绩考评比较分析表(单位:分)班级平均数众数中位数甲班8.6 10 10乙班8.6 8 8丙班8.6 9 9(2)甲班,理由为:三个班的平均数相同,甲班的众数与中位数都高于乙班与丙班;故答案为:甲班;(3)根据题意得:丙班的平均分为9×+10×+9×+6×+9×=8.9(分),补全条形统计图,如图所示:∵8.5<8.7<8.9,∴依照这个成绩,应推荐丙班为市级先进班集体.23、解:(1)由题意5a=7.5,解得a=1.5;6a+(9﹣6)c=27,解得c=6.(2)依照题意,当x≤6时,y=1.5x;当x≥6时,y=6×1.5+6×(x﹣6),y=9+6(x﹣6)=6x﹣27,(x>6)(3)将x=8代入y=6x﹣27(x>6)得y=6×8﹣27=21(元).24、解:(1)由图可知,第10min到20min之间的速度最高,为60km/h;(2)设y=kx+b(k≠0),∵函数图象经过点(20,60),(30,24),∴,解得,所以,y与x的关系式为y=﹣x+132,当x=22时,y=﹣×22+132=52.8km/h;(3)行驶的总路程=×(12+0)×+×(12+60)×+60×+×(60+24)×+×(24+48)×+48×+×(48+0)×,=+3+10+7+3+8+2,=33.5km,∵汽车每行驶100km耗油10L,25、(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∴AB=AC=×60=30cm.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE即60﹣4t=4t解得:t=∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°)∴小丽驾车从甲地到乙地共耗油:33.5×=3.35升.26、解:(1)作出点A关于直线y=﹣x+4的对称点C,连结BC交直线于点P,∴PA=PC,AD=CD,则PB+PA=PB+PC=BC,由直线y=﹣x+4得与x轴上的交点D为(4,0)、与y轴的交点为E为(0,4),∴OD=OE=4,则∠ODE=45°,则∠ADC=90°,∴AD=CD=2,∴点C的坐标是(4,2),设直线BC的解析式为y=kx+b,则有,解得:k=,b=,即直线BC的解析式为:y=x+.由方程组得:,即P的坐标是(,),由勾股定理得BC=、AB=,∴△PAB的周长是.(2)由直线BC的解析式y=x+得:点F的坐标是(﹣6,0),∴S△PAB=S△PAF﹣S△BAF=×AE×(﹣1)=.。
北京清华附中2012-2013年八年级下期末考试数学试卷及答案
清华附中2012-2013学年初二第二学期期末试卷数学(清华附中初11级) 2013.7一、选择题:(每题3分,共24分)1. )A B . C D .272.下面计算正确的是( )A .3=B 3=C =D 2=-3.一个矩形的两条对角线的夹角为60°,且对角线的长度为8cm ,则较短边的长度为( )A .8cmB . 6cmC .4cmD . 2cm 4.下列图形中是中心对称图形,但不是..轴对称图形的是( )A .B .C .D . 5.下列方程中是关于x 的一元二次方程的是( )A .2210x x+= B .20ax bx c ++= C .223253x x x --= D .(1)(2)1x x -+=6.顺次连接对角线互相垂直的四边形四边中点所得的四边形是( )A .梯形B .矩形C .菱形D .正方形7.关于x 的方程240x x a -+=有两实数根,则实数a 的取值范围是( )A .4a ≤B .4a <C .4a >D .4a ≥8.Rt △ABC 中,AB =AC ,点D 为BC 中点.∠MDN =90°,∠MDN 绕点D 旋转, DM 、DN 分别与边AB 、AC 交于E 、F 两点,下列结论 : ①()2BE CF BC +=;② 14AEF ABC S S ≤ ;③S 四边形AEDF =AD ·EF ;④ AD ≥EF ;⑤ AD 与EF 可能互相平分,其中正确结论的个数是 ( ) A .1个 B .2个 C .3个 D .4个二、填空题:(每题3分,共24分) 9.x 的取值范围是 . 10.= .11.关于x 的方程220x mx m -+=的一个根为1,则m 的值为 . 12.若关于x 的方程290x kx ++=有两个相等的实数根,则k = __________. 13.如图,△OAB 绕点O 逆时针旋转80°得到△OCD ,若∠A =110°,∠D =40°,则∠α的度数是 。
云南省临沧市镇康县勐捧中学2013年八年级数学下学期期末考试试卷 (word含答案)
镇康县勐捧中学2012至2013学年下学期八年级期末模拟检测数学试卷(全卷三个大题,共23小题,共8页;满分100分考试用时120分钟)一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.下列各式:a1,πxy3,4332cba,7x,yx109+,xx2中,分数的个数是()A. 1个 B.2个 C.3个 D.4个2.人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:80==乙甲xx,2402=甲s,1802=乙s,则成绩较为稳定的班级是()A.甲班B.乙班C.两班成绩一样稳定D.无法确定3.下列各数组中,不能作为直角三角形三边长的是 ( )A. 9,12,15B. 7,24,25C. 6,8,10D. 3,5,74.下列函数中,y是x的反比例函数的是()A.xy21-= B.21xy-= C.11+=xy D.xy11-=5.若把分式yxxy+2的x、y同时扩大3倍,则分式值()A.扩大3倍B.缩小3倍C.不变D.扩大9倍6.对角线互相垂直平分的四边形是()A.平行四边形B.矩形 C.菱形 D.梯形7.如图,E是平行四边形内任一点,若S□ABCD=8,则图中阴影部分的面积是( )A.3 B.4 C.5 D.68.在同一直角坐标系中,函数kkxy+=与)0(≠=kxky(k≠0)的图像大致是()二、填空题(本大题共6小题,每小题3分,满分18分)9.数据“1,2,1,3,1”的众数是_ ____.10.当x时,分式1-xx有意义;11.已知y是x的反比例函数,当x=2时,y=6,则y与x的函数关系式为;12. 0.000002013用科学计数法表示为:;13.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行_______米.14.等腰三角形底边长为5cm,一腰上的中线把它的周长分为两个部分的差为3cm,则它的腰长是。
汉阳区2012--2013学年第二学期期末测试八年级数学试卷(含答案)
C BA汉阳区2012--2013学年第二学期期末测试八年级数学试卷第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分) 1.若分式221x -有意义,则x 的取值范围是( ) A . 1x ≠ B . x ≠-1 C . x ≠-1或x ≠1 D . x ≠-1 且x ≠1 2.下列各式中,与分式mx y--相等的是( ) A . m x y -+ B . m x y+ C . mx y -+ D .mx y- 3.据了解,今年全国的大学毕业生是建国以来最多的一年,大约有630多万大学毕业生,请把6300000人用科学记数法表示为( ) A . 66.310⨯ B . 56.310⨯ C . 70.6310⨯ D . 56310⨯ 4.某鞋业老板在调查某种品牌的皮鞋的市场占有率时,最应该关注的是( )A . 皮鞋尺码的平均数B . 皮鞋尺码的众数C . 皮鞋尺码的中位数D . 皮鞋最小尺码 5.如图,下列三角形中是直角三角形的是( )6.已知点(1x ,2-),(2x ,2),(3x ,3)都在反比例函数6y x=的图象上,则下列关系中正确的是( ) A .123x x x << B .132x x x << C .321x x x << D .231x x x <<7.已知四边形ABCD 是菱形,对角线AC=8,BD=6,DH ⊥AB 于点H ,则DH 的长度是( )A .125 B . 165 C . 245D . 485 8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( ) A .90° B .60° C .45° D .30°9.如图,矩形ABCD 中,BE ⊥AC 于E ,∠CBE=3∠ABE ,则∠AOB=( )A. 45°B. 30°C. 22.5°D. 60°PMNDCBAABCDE G 第15题F10.如图,正方形ABCD 中,AB=1,M 、N 分别是边BC 、CD 上的点,连接MN 、AN 、AM ,过点A 作AP ⊥MN 于点P ,若MN=BN+DM. 那么下列结论: ①AN 平分∠BNP ; ②PM=DM ; ③∠MAN=45º; ④△CMN 的周长为2;其中正确的结论个数为( )A .1 B . 2 . C .3 D . 4第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分)11.化简分式2221a ab a b--+=___________.12.把9个数按从小到大的顺序排列,其平均数是9,如果这组数中前5个数的平均数是8,后5个数的平均数是10,则这9个数的中位数是________.13. 甲、乙两班学生举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后填入下表:某同学根据上表分析得出如下结论:①甲、乙两班学生成绩的平均水平相同;②甲班成绩的波动情况比乙班成绩的波动大; ③乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数90个为优秀); ④甲、乙两班的每分钟输入80个汉字的人数一样多;上述结论正确的是14.在平面直角坐标系中,0(0,0),A (2,1),B (2,3),若以O 、A 、B 、C 为顶点的四边形为平行四边形,则C 点的坐标为15.矩形纸片ABCD 的边长AB=4,AD=2.将矩形纸片沿EF 折叠,使点A 与点C 重合,折叠后在其一 面着色(如图),则着色部分的面积为_____________.16..如图,双曲线y = 6x (x >0)经过四边形OABC 的顶点A 、C ,∠ABC=90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB'C ,B'点落在OA 上,则四边形OABC 的面 积是_______班级 参加人数 中位数 方差 平均数 众数 甲 55 89 135 78 80 乙55911187880xyB'A BDOC第8题图第9题图第10题图ACD B三.解答题.(共6小题,共72分)17.(本题满分6分)解方程:32122x x x =--- 18.(本题满分6分)先化简,再求值:221(2)11x x x -÷+-,其中21x =+. 19.(本题满分7分)某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.左图是根据这组数据绘制的条形统计图.请结合统计图回答下列问题:(1)被调查的学生数为(2)本次抽样调查中,“最喜欢的体育项目”的人数的众数是什么项目?学生数为(3)若该校八年级共有200名学生,右图是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?20.(本题满分6分)如图,在梯形ABCD 中,AD∥BC,AB⊥AC,∠B=45°, AD =1,B C =4,求DC 的长.21.(本题满分7分)在2011年7月24日由北京开往福州的高速列车出事后,某省决定从2011年8月起将从该省开往西藏的列车平均减速30千米/时,用相同的时间,列车减速前行驶了400千米,减速后比减速前少行驶50千米.减速前列车的平均速度是多少千米? 22、(本题满分8分)如图,△OA 1A 2是边长为1的等腰直角三角形,图中的其余三角形都是直角三角形,且较短的直角边长都为1. (1)OA 10= ;(2)第n 个(n 为正整数)直角三角形的其它篮球足球跳绳羽毛球最喜欢的体育活动项目最喜欢体育活动项目的人数/人18108426%九年级八年级24%七年级30%六年级11∙∙∙∙∙∙S 5S 4S 3S 2S 1A 6A 5A 4A 3A 2A 1O第20题图第16题图第22题图面积为 ;(3)求222212324S S S S ++++ 的值.23.(本题满分10分)将边长为2的正三角形OAB 如图放置,现将△OAB 绕O 点逆时针旋转90°得图形,且A '点正好在反比例函数xky =的图象上。
八年级下册数学期末试卷综合测试卷(word含答案)(1)
八年级下册数学期末试卷综合测试卷(word含答案)(1) 一、选择题1.函数y=35xx--的自变量x的取值范围是()A.x≠5B.x>3且x≠5C.x≥3D.x≥3且x≠5 2.由下列线段组成的三角形不是直角三角形的是()A.7,24,25 B.4,5,41C.3,5,4 D.4,5,6 3.下列关于平行四边形的命题中,错误的是()A.两组对角分别相等的四边形是平行四边形B.一组对边相等,另一组对边平行的四边形是平行四边形C.一组对边平行,一组对角相等的四边形是平行四边形D.一组对边平行且相等的四边形是平行四边形4.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数()cm183183183183方差 5.7 3.5 6.78.6要从中选择一名发挥稳定的运动员去参加比赛,应该选择()A.甲B.乙C.丙D.丁5.如图,已知矩形ABCD的对角线AC的长为10cm,连结矩形各边中点E、F、G、H得四边形EFGH,则四边形EFGH的周长为()cm.A.20 B.202C.203D.256.如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为()A.20º B.25º C.30º D.35º7.如图,在△ABC中,BC=2∠C=45°,若D是AC的三等分点(AD>CD),且AB =BD ,则AB 的长为( )A .2B .5C .3D .528.一条公路旁依次有A 、B 、C 三个村庄,甲、乙两人骑自行车分别从A 村、B 村同时出发前往C 村,甲、乙之间的距离()km s 与骑行时间()t h 之间的函数关系如图所示,下列结论:①A 、B 两村相距8km ;②甲出发2h 后到达C 村;③甲每小时比乙我骑行8km ;④相遇后,乙又骑行了15min 或45min 时两人相距2km .其中正确结论的个数是( )A .1B .2C .3D .4二、填空题9.若13x x --在实数范围内有意义,则x 的取值范围是____________. 10.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,已知4OA =,菱形ABCD 的面积为24,则BD 的长为______.11.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的边长为_____12.如图,在矩形ABCD 中,点E 在AD 上,且EC 平分BED ∠,若1AB =,45EBC ∠=︒,则DE 的长为__________.13.已知一次函数y x b =-+的图象过点()8,2,那么此一次函数的解析式为__________. 14.若顺次连接四边形ABCD 四边中点所得的四边形是菱形,则原四边形的对角线AC 、BD 所满足的条件是________.15.在平面直角坐标系中,矩形OABC 的顶点O 为坐标原点,顶点A ,C 分别在x 轴和y 轴上,OA =4,OC =3,D 为AB 边的中点,E 是OA 边上的一个动点,当△CDE 的周长最小时,则点E 的坐标为_____.16.如图,∠ABD =∠BDC =90°,AB =12,BC =8,CD =10A 与点D 重合,折痕为HG ,则线段BH 的长为___.三、解答题17.计算:(1)218×12﹣24;(2)48÷3﹣12×12+24. 18.如图,在甲村到乙村的公路一旁有一块山地正在开发.现A 处需要爆破,已知点A 与公路上的停靠站B ,C 的距离分别为400 m 和300 m ,且AC ⊥AB .为了安全起见,如果爆破点A 周围半径260 m 的区域内不能有车辆和行人,问在进行爆破时,公路BC 段是否需要暂时封闭?为什么?19.如图,4×10长方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A ,B ,E ,F 都在格点上,按下列要求作图,使得所画图形的顶点均在格点上. (1)在图中画出以AB 为边的正方形ABCD ;(2)在图中画出以EF 为边的等腰三角形EFG ,且△EFG 的周长为1010+; (3)在(1)(2)的条件下,连接CG ,则线段CG 的长为 .20.如图,在ABCD 中,两条对角线AC 和BD 相交于点O ,并且6BD =,8AC =,5BC =.(1)AC 与BD 有什么位置关系?为什么?(2)四边形ABCD 是菱形吗?为什么?21.阅读材料:规定初中考试不能使用计算器后,小明是这样解决问题的:已知a 23+,求2281a a -+的值.他是这样分析与解的:∵a 23+2323(23)(23)-=+-, ∴23a -= ∴2(2)3,a -= 2443a a -+=∴241a a -=-, ∴2281a a -+=2(24)1a a -+=2(1)11⨯-+=-.请你根据小明的分析过程,解决如下问题:(1)若a 21-,直接写出2481a a -+的值是 . (21315375121119+++++ 22.为丰富同学们的课余活动,某校成立了篮球课外兴趣小组,计划购买一批篮球,需购买A 、B 两种不同型号的篮球共300个.已知购买3个A 型篮球和2个B 型篮球共需340元,购买2个A 型篮球和1个B 型篮球共需要210元.(1)求购买一个A 型篮球、一个B 型篮球各需多少元?(2)若该校计划投入资金W 元用于购买这两种篮球,设购进的A 型篮球为t 个,求W 关于t 的函数关系式;(3)学校在体育用品专卖店购买A 、B 两种型号篮球共300个,经协商,专卖店给出如下优惠:A 种球每个降价8元,B 种球打9折,计算下来,学校共付费16740元,学校购买A 、B 两种篮球各多少个?23.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为秒.(1)直接写出的面积(用含的代数式表示).(2)当点M 落在BC 边上时,求的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的的值;若不存在请说明理由(不能添加辅助线). 24.如图,在平面直角坐标系中,直线28y x =+与x 轴交于点A,与y 轴交于点B,过点B 的直线x 轴于点C ,且AB=BC .(1)求直线BC 的表达式(2)点P 为线段AB 上一点,点Q 为线段BC 延长线上一点,且AP=CQ,PQ 交x 轴于点P ,设点Q 的横坐标为m ,求PBQ ∆的面积(用含m 的代数式表示)(3)在(2)的条件下,点M 在y 轴的负半轴上,且MP=MQ ,若45BQM ︒∠=求点P 的坐标.25.如图,Rt △CEF 中,∠C =90°,∠CEF ,∠CFE 外角平分线交于点A ,过点A 分别作直线CE ,CF 的垂线,B ,D 为垂足.(1)∠EAF = °(直接写出结果不写解答过程);(2)①求证:四边形ABCD 是正方形.②若BE =EC =3,求DF 的长.(3)如图(2),在△PQR 中,∠QPR =45°,高PH =5,QH =2,则HR 的长度是 (直接写出结果不写解答过程).【参考答案】一、选择题1.D解析:D【分析】根据二次根式和分式有意义的条件列出不等式,求解不等式即可.【详解】根据题意得:x﹣3≥0且x﹣5≠0,解得x≥3且x≠5.∴自变量x的取值范围是x≥3且x≠5.故选:D.【点睛】本题考查了二次根式和分式由意义的条件,理解二次根式和分式由意义的条件是解题的关键.2.D解析:D【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】解:A、∵72+242=625=252,∴能够成直角三角形,故本选项不符合题意;B、∵42+52412,∴能够成直角三角形,故本选项不符合题意;C、∵32+42=52,∴能够成直角三角形,故本选项不符合题意;D、∵42+52≠62,∴不能够成直角三角形,故本选项符合题意.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.B解析:B【解析】【分析】根据平行四边形的判定方法,一一判断即可.【详解】解:A. 两组对角分别相等的四边形是平行四边形,正确;根据平行四边形的判定方法,可得结论;B. 一组对边相等,另一组对边平行的四边形是平行四边形,错误;如:等腰梯形;C. 一组对边平行,一组对角相等的四边形是平行四边形正确,由题意可以证明两组对边分别平行,四边形是平行四边形;D. 一组对边平行且相等的四边形是平行四边形,正确,根据平行四边形的判定方法,可得结论.故选:B【点睛】本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考基础题.4.B解析:B【解析】【分析】首先比较出甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的方差的大小关系,然后根据方差越大,波动性越大,判断出应该选择谁参加比赛即可.【详解】解:因为3.5<5.7<6.7<8.6,所以乙最近几次选拔赛成绩的方差最小,所以要从中选择一名发挥稳定的运动员去参加比赛,应该选择乙.故选:B.【点睛】此题主要考查了方差的含义和应用,要熟练掌握,解答此题的关键是要明确:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.A解析:A【分析】连接BD,根据三角形中位线定理易得四边形EFGH的各边长等于矩形对角线的一半,而矩形对角线相等,从而算出周长即可.【详解】连接BD,∵H、G是AD与CD的中点,∴HG是△ACD的中位线,∴HG=1AC=5cm,同理EF=5cm,2∵四边形ABCD是矩形,∴根据矩形的对角线相等,即BD=AC=10cm,∵H、E是AD与AB的中点,∴EH是△ABD的中位线,∴EH=1BD=5cm,同理FG=5cm,2∴四边形EFGH的周长为20cm.故选A.【点睛】熟练掌握矩形对角线相等和三角形中位线等于第三边的一半的性质是解决本题的关键. 6.C解析:C【解析】【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.【详解】∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故选:C.【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.7.B解析:B【解析】【分析】作BE ⊥AC 于E ,根据等腰三角形三线合一性质可得AE =DE ,根据∠C =45°,得出∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,可得BE =CE ,利用勾股定理求出CE =BE =2,根据D 是AC 的三等分点得出AE =DE =121233AC AC ⨯==CD ,求出CD =1,利用勾股定理2222215AB BE AE =+=+=即可.【详解】解:作BE ⊥AC 于E ,∵AB =BD ,∴AE =DE ,∵∠C =45°,∴∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,∴BE =CE ,在Rt △BEC 中,∴()22222+222BE CE CE BC ===,∴CE =BE =2,∵D 是AC 的三等分点, ∴CD =13AC ,AD =AC -CD =1233AC AC AC -=, ∴AE =DE =121233AC AC ⨯==CD , ∴CE =CD +DE =2CD =2,∴CD =1,∴AE =1,在Rt △ABE 中,根据勾股定理2222215AB BE AE =+=+=.故选B .【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键. 8.C解析:C【分析】由图像与纵轴的交点可得出A 、B 两地的距离;当s=0时,即为甲、乙相遇的时候,同理根据图像的拐点判断其他即可.【详解】解:由图像可知A 村、B 村相离8km ,故①正确;甲出发2h 后到达C 村,故②正确;当0≤t≤1时,易得一次函数的解析式为s=-8t+8,故甲的速度比乙的速度快8km/h ,故③正确;当1≤t≤1.5时,函数图象经过点(1,0)(1.5,4)设一次函数的解析式为s=kt+b则有:104 1.5k b k b =+⎧⎨=+⎩解得21k b =⎧⎨=⎩ ∴s=2t+1当s=2时,得2=2t+1,解得t=0.5<1,不符合题意,④错误.故答案为C.【点睛】本题考查了一次函数的应用和函数与方程的思想,解题的关键在于读懂图象,根据图像的信息进行解答.二、填空题9.1≥x 且3x ≠【解析】【分析】根据分母不等于0,且被开方数是非负数列式求解即可.【详解】由题意得10x -≥且30x -≠解得1≥x 且3x ≠故答案为:1≥x 且3x ≠【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.10.A解析:6【解析】【分析】根据菱形的性质得到AC =8,根据菱形的面积等于两条对角线乘积的一半,即可求解.【详解】解:∵四边形ABCD 为菱形;∴AC =2OA =8,12ABCD S AC BD =⋅菱形, ∴12482BD =⨯⨯, ∴BD =6,故答案为:6【点睛】本题考查了菱形的性质,解题的关键是熟记菱形面积的两种表示法:(1)底乘高,(2)对角线乘积的一半,本题运用的是第二种.11.E解析:8【解析】【分析】根据正方形的面积等于边长的平方,由正方形PQED 的面积和正方形PRQF 的面积分别表示出PR 的平方及PQ 的平方,又三角形PQR 为直角三角形,根据勾股定理求出QR 的平方,即可求小正方形的边长.【详解】如图,∵正方形PQED 的面积等于225,∴即PQ 2=225,∵正方形PRGF 的面积为289,∴PR 2=289,又△PQR 为直角三角形,根据勾股定理得:PR 2=PQ 2+QR 2,∴QR 2=PR 2−PQ 2=289−225=64,∴QR=8,即字母A 所代表的正方形的边长为8.【点睛】本题考查勾股定理,根据勾股定理求出小正方形的面积是关键.12.D21【分析】由矩形的性质和角平分线的定义得出∠DEC =∠ECB =∠BEC ,推出BE =BC ,求得 AE =AB =1,然后依据勾股定理可求得BC 的长;【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DEC =∠BCE ,∵EC 平分∠DEB ,∴∠DEC =∠BEC ,∴∠BEC =∠ECB ,∴BE =BC ,∵四边形ABCD 是矩形,∴∠A =90°,AD BC =∵∠ABE =45°,∴∠ABE =∠AEB =45°,∴AB =AE =1,由勾股定理得:BE ==,∴BC =AD =BE, ∴1DE AD AE =-,1.【点睛】本题考查了矩形的性质,等腰三角形的性质与判定,勾股定理的应用;熟练掌握矩形的性质,证出BE =BC 是解题的关键.13.10y x =-+【分析】用待定系数法即可得到答案.【详解】解:把()8,2代入y x b =-+得82b -+=,解得10b =,所以一次函数解析式为10y x =-+.故答案为10y x =-+【点睛】本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.14.A解析:AC BD =【分析】如下图,根据三角形中位线的定理,可得AG=EF=12AC ,GF=AE=12BD ,再根据菱形四条边相等的性质,可得出AC 与BD 的关系.【详解】如下图,点E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点∵点E、F是AB、BC的中点∴EF=12AC同理可得:AG=EF=12AC,GF=AE=12BD∵要使得四边形HEFG是菱形,则HE=EF=FG=GH ∴只需AC=BD即可故答案为:AC=BD【点睛】本题考查菱形的性质和三角形中位线的性质,解题关键是得出AG=EF=12 AC,GF=AE=12 BD.15.(,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解析:(83,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解:作点D关于x轴对称点F,如图,∵四边形OABC 是矩形,∴OC =BD =3,点C 的坐标为()0,3,∵D 为AB 边的中点,∴AD =32, ∵OA =4,∴D 点的坐标为34,2⎛⎫ ⎪⎝⎭,则F 点的坐标为34,2⎛⎫- ⎪⎝⎭, 根据轴对称的性质可得:EF =ED ,∴C △CDE =CD +CE +DE =CD +CE +EF ,其中CD 为定值,当CE +EF 值最小时,△CDE 周长最小,此时点C ,E ,F 三点共线,设直线CF 的解析式为:()0y kx b k =+≠,将()0,3和34,2⎛⎫- ⎪⎝⎭代入解析式得: 3342b k b =⎧⎪⎨+=-⎪⎩,解得:983k b ⎧=-⎪⎨⎪=⎩, ∴直线CF 的解析式为:938y x =-+, 令0y =,得:9308x -+=, 解得:83x =, ∴点E 坐标(83,0), 故答案为:803⎛⎫ ⎪⎝⎭,. 【点睛】本题考查一次函数与轴对称的综合运用,理解最短路径的求解方法,熟悉待定系数法求一次函数解析式是解题关键.16.5【分析】在Rt△BDC中由勾股定理可求出BD,根据翻折变换可得AH=HD,在Rt△BDH 中由勾股定理可得答案.【详解】解:在Rt△BDC中,∵BC=8,CD=2,∴BD=,由题意,得解析:5【分析】在Rt△BDC中由勾股定理可求出BD,根据翻折变换可得AH=HD,在Rt△BDH中由勾股定理可得答案.【详解】解:在Rt△BDC中,∵BC=8,CD=∴BD=由题意,得AH=HD,设BH=x,则AH=12﹣x=HD,在Rt△BDH中,由勾股定理得,HB2+BD2=HD2,即x2)2=(12﹣x)2,解得x=5,即HB=5,故答案为:5.【点睛】本题考查了翻折变换,勾股定理.掌握翻折变换的性质及勾股定理是解题的关键.三、解答题17.(1);(2)【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.【详解】解:(1)解析:(1)2)4【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.【详解】解:(1)===(22=4=4=【点睛】本题主要考查了利用二次根式的化简和二次根式的混合运算,熟练掌握相关计算法则是解题的关键.18.需要封闭,理由见解析【分析】过作于 先求解 再利用等面积法求解 再与260比较,可得答案.【详解】解:过作于所以进行爆破时,公路BC 段需要暂时封闭.【点睛】解析:需要封闭,理由见解析【分析】过A 作AK BC ⊥于,K 先求解,BC 再利用等面积法求解,AK 再与260比较,可得答案.【详解】解:过A 作AK BC ⊥于,K,400,300,AB AC AB AC22500,BC AB AC11,AB AC BC AK22AK300400500,240,AK240260,所以进行爆破时,公路BC段需要暂时封闭.【点睛】本题考查的是勾股定理的应用,利用等面积法求解直角三角形斜边上的高,掌握“等面积法求解直角三角形斜边上的高”是解题的关键.19.(1)见解析;(2)见解析;(3)【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为等腰三角形即可;(3)解析:(1)见解析;(2)见解析;(35【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为1010(3)由勾股定理求出CG即可.【详解】解:(1)如图,所作正方形ABCD即为以AB为边的正方形ABCD;(2)如图,所作△EFG即为以EF为边的等腰三角形EFG,且△EFG的周长为1010+(3)如图,CG22+512【点睛】本题考查作图-应用与设计,勾股定理,解题的关键是理解题意,根据GE=GF=5画出等腰三角形.20.(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC, OB的长,再利用勾股定理逆定理求出∠BOC=90,可得AC与BD的位置关系;(解析:(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC,OB的长,再利用勾股定理逆定理求出∠BOC=90︒,可得AC与BD的位置关系;(2)菱形的判定方法:对角线互相垂直平分的四边形是菱形,可得答案.【详解】解:(1)AC⊥BD;理由如下:在ABCD中,132==OB BD,142OC AC==∵22291625+=+==OB OC BC∴∠BOC=90︒∴AC⊥BD.(2)四边形ABCD是菱形∵四边形ABCD是平行四边形(已知),AC⊥BD(已证)∴四边形ABCD是菱形.【点睛】此题主要考查了菱形的判定,平行四边形的性质,以及勾股定理的逆定理的运用,解题的关键是根据条件证出BO2+CO2=CB2.21.(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵a=,∴4a2-8a+1=4×()2-8×()+1=5;(2)解析:(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵, ∴4a 2-8a+1)2-8×)+1=5;(2)原式=12×=12×) =12×10=5.点睛:本题主要考查了分母有理化,利用分母有理化化简是解答此题的关键. 22.(1)一个A 型篮球为80元,一个B 型篮球为50元;(2)函数解析式为:;(3)A 型篮球120个,则B 型篮球为180个.【分析】(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意列出方程组求 解析:(1)一个A 型篮球为80元,一个B 型篮球为50元;(2)函数解析式为:()30150000300W t t =+≤≤;(3)A 型篮球120个,则B 型篮球为180个.【分析】(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意列出方程组求解即可得; (2)A 型篮球t 个,则B 型篮球为()300t -个,根据单价、数量、总价的关系即可得; (3)根据A 型篮球与B 型篮球的优惠政策求出单价,然后代入(2)解析式中求解即可得.【详解】解:(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意可得:323402210x y x y +=⎧⎨+=⎩, 解得:8050x y =⎧⎨=⎩,∴一个A 型篮球为80元,一个B 型篮球为50元;(2)A 型篮球t 个,则B 型篮球为()300t -个,根据题意可得:()()805030030150000300W t t t t =+-=+≤≤,∴函数解析式为:()30150000300W t t =+≤≤;(3)根据题意可得:A 型篮球单价为()808-元,B 型篮球单价为500.9⨯元,则()()16740808500.9300t t =-+⨯⨯-,解得:120t =,300180t -=,∴A 型篮球120个,则B 型篮球为180个. 【点睛】题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应方程是解题关键.23.(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,. 【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是解析:(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,.【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是等腰直角三角形,然后根据等腰直角三角形的性质可得AH 的长,最后根据等腰直角三角形的面积公式即可得; (2)先根据平行四边形的性质可得,从而可得,再根据三角形中位线定理可得是的中位线,从而可得,然后与(1)所求的建立等式求解即可得;(3)分①当点H 是AB 的中点时,;②当点Q 与点E 重合时,;③当时,三种情况,分别求解即可得.【详解】 (1)由题意得:,点Q 为AP 的中点,,四边形ABCD 是矩形,,是BAD的角平分线,,,是等腰直角三角形,,则的面积为;(2)如图1,四边形PQHM是平行四边形,,点M在BC边上,,点Q为AP的中点,是的中位线,,由(1)知,,则,解得;(3)由题意,有以下三种情况:①如图2,当点H是AB的中点时,则,四边形PQHM是平行四边形,,,在和中,,由(2)可知,此时;②如图3,当点Q与点E重合时,在和中,,,,则,解得;③如图4,当时,四边形ABCD是矩形,四边形PQHM是平行四边形,,,在和中,,,,在中,,是等腰直角三角形,,,在中,,是等腰直角三角形,,则由得:,解得;综上,如图2,当时,;如图3,当时,;如图4,当时,.【点睛】本题考查了矩形的性质、三角形中位线定理、三角形全等的判定定理与性质、等腰直角三角形的判定与性质等知识点,较难的是题(3),依据题意,正确分三种情况讨论并画出图形是解题关键.24.(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC 的解析式;(2)过点P作PG解析:(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC 的解析式;(2)过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,由“AAS”可证△AGP≌△CHQ,可得AG=HC=m-4,PG=HQ=2m-8,由“AAS”可证△PEF≌△QCF,可得S△PEF=S△QCF,即可求解;(3)如图2,连接AM,CM,过点P作PE⊥AC,由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=4,可求m的值,可得点P的坐标.【详解】解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,∴点B(0,8),点A(-4,0)∴AO=4,BO=8,∵AB=BC,BO⊥AC,∴AO=CO=4,∴点C(4,0),设直线BC解析式为:y=kx+b,由题意可得:804bk b=⎧⎨=+⎩,解得:28kb=-⎧⎨=⎩,∴直线BC解析式为:y=-2x+8;(2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,设△PBQ的面积为S,∵AB=CB,∴∠BAC=∠BCA,∵点Q横坐标为m,∴点Q(m,-2m+8)∴HQ=2m-8,CH=m-4,∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°,∴△AGP≌△CHQ(AAS),∴AG=HC=m-4,PG=HQ=2m-8,∵PE∥BC,∴∠PEA=∠ACB,∠EPF=∠CQF,∴∠PEA=∠PAE,∴AP=PE,且AP=CQ,∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ,∴△PEF≌△QCF(AAS)∴S△PEF=S△QCF,∴△PBQ的面积=四边形BCFP的面积+△CFQ的面积=四边形BCFP的面积+△PEF的面积=四边形PECB的面积,∴S=S△ABC-S△PAE=12×8×8-12×(2m-8)×(2m-8)=16m-2m2;(3)如图2,连接AM,CM,过点P作PE⊥AC,∵AB=BC,BO⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠PAM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=4,∴2m-8=4,∴m=6,∴P(-2,4).【点睛】本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.25.(1)45;(2)①见解析;②DF的长为2;(3)【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=DFE,∠AEF=BEF,求得∠解析:(1)45;(2)①见解析;②DF的长为2;(3)15 7【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=12∠DFE,∠AEF=12∠BEF,求得∠AEF+∠AFE=12(∠DFE+∠BEF),根据三角形的内角和定理即可得到结论;(2)①作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD是矩形,再由角平分线的性质得出AB=AD,即可得出四边形ABCD是正方形;②设DF=x,根据已知条件得到BC=6,由①得四边形ABCD是正方形,求得BC=CD=6,根据全等三角形的性质得到BE=EG=3,同理,GF=DF=x,根据勾股定理列方程即可得到结论;(3)把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,得出MG=DG=MP=PH=6,GQ=4,设MR=HR=a,则GR=6﹣a,QR=a+2,在Rt△GQR 中,由勾股定理得出方程,解方程即可.【详解】解:(1)∵∠C=90°,∴∠CFE+∠CEF=90°,∴∠DFE+∠BEF=360°﹣90°=270°,∵AF平分∠DFE,AE平分∠BEF,∴∠AFE=12∠DFE,∠AEF=12∠BEF,∴∠AEF +∠AFE =12(∠DFE +∠BEF )=12⨯270°=135°,∴∠EAF =180°﹣∠AEF ﹣∠AFE =45°, 故答案为:45;(2)①作AG ⊥EF 于G ,如图1所示:则∠AGE =∠AGF =90°, ∵AB ⊥CE ,AD ⊥CF , ∴∠B =∠D =90°=∠C , ∴四边形ABCD 是矩形,∵∠CEF ,∠CFE 外角平分线交于点A , ∴AB =AG ,AD =AG , ∴AB =AD ,∴四边形ABCD 是正方形; ②设DF =x , ∵BE =EC =3, ∴BC =6,由①得四边形ABCD 是正方形, ∴BC =CD =6,在Rt △ABE 与Rt △AGE 中,AB AGAE AE=⎧⎨=⎩ , ∴Rt △ABE ≌Rt △AGE (HL ), ∴BE =EG =3, 同理,GF =DF =x ,在Rt △CEF 中,EC 2+FC 2=EF 2, 即32+(6﹣x )2=(x +3)2, 解得:x =2, ∴DF 的长为2; (3)解:如图2所示:把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,∴MG=DG=MP=PH=5,∴GQ=3,设MR=HR=a,则GR=5﹣a,QR=a+2,在Rt△GQR中,由勾股定理得:(5﹣a)2+32=(2+a)2,解得:a=157,即HR=157;故答案为:157.【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、角平分线的性质、勾股定理、矩形的判定、翻折变换的性质等知识;本题综合性强,有一定难度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级第二学期数学(下)期末模拟试卷及答案
一、选择题(共10道小题,每小题2分,共20分)
1.
( )
A .24
B .12
C .
2
3
D .18
2. 在反比例函数1k
y x
-=
的图象的每一条曲线上,y 都随x 的增大而增大,则k 的值可以是 ( ) A .1- B .0
C .1
D .2
3. 若分式1
1x 2+-x 的值为0,则x 的值为 ( )
A .1x =
B .1x =-
C .1x =±
D .x ≠l
4.将50个数据分成五组,编成组号为①~⑤的五个组,频数颁布如下表:那么第③组的频率为( ) A 、14
B 、7
C 、0.14
D 、0.7
5、用配方法解下列方程时,配方有错误的是( )
A 、x 2-2x -99=0化为(x -1)2=100
B 、x 2+8x +9=0化为(x +4)2=25
C 、2t 2-7t -4=0化为2781()416t -
= D 、3y 2-4y -2=0化为2210()39
y -= 6.下面说法中正确的是( )
A 、“同位角相等”的题设是“两个角相等”
B 、“相等的角是对顶角”是假命题
C 、如果0=ab ,那么0=+b a 是真命题;
D 、“任何偶数都是4的倍数”是真命题
7.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB =6,则BC 的长为( ) A .1
B .2 2
C .2 3
D .12
8.平行四边形的对角线分别为a 和b ,一边长为12,则a 和b 的值可能是下面各组的数据中的 ( )
A 、8和4
B 、10和14
C 、18和20
D 、10和38
9.如图,在等腰Rt ABC △中,908C AC ∠==°
,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形,③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( ) A 、①②③
B 、①④⑤
C 、①③④
D 、③④⑤
10.如图,已知121=A A , 9021=∠A OA ,
3021=∠OA A ,
以斜边2OA 为直角边作直角三角形,使得
3032=∠OA A ,依次以前一个直角三角形的斜边为直
角边一直作含o
30角的直角三角形,则20122011OA A Rt ∆的最小边长为 ( ) A 、2010
2 B 、2011
2
C 、2010)3
2(
D 、 2011)3
2(
二、填空题(共10道小题,每小题3分,共30分)
11、要使二次根式3-x 有意义,字母x 应满足的条件为_____________。
12、一个容量为70的样本,最大值是137,最小值是50,取组距为10,可以分成 组。
13、用反证法证明“若︱a ︱≠︱b ︱,则a≠b”时,应假设
14.用16cm 长的铁丝弯成一个矩形,用长18cm 长的铁丝弯成一个腰长为5cm 的等腰三角形,如果矩形的面积与等腰三角形的面积相等,则矩形的边长为
15、已知以下基本事实:①对顶角相等;②一条直线截两条平行直线所得的同位角相等;③两条直线被第三条直线所截,若同位角相等,则这两条直线平行;④全等三角形的对应边、对应角分别相等.在利用以上基本事实作为依据来证明命题“两直线平行,内错角相等”时,必须要用的基本事实有 (填入序号即可);
16、若一元二次方程 2x (kx -4)-x 2+6 = 0 无实数根,则k 的最小整数值是 17. □ABCD 的周长为48cm ,对角线相交于点O ;△AOB 的周长比△BOC 的周长多4cm ,
C
E
B
A
F
D
则AB ,BC 的长分别等于 cm , cm .
18. 已知:梯形ABCD 中,AD ∥BC ,E 是BC 的中点,BEA D EA ∠=∠,联结AE 、BD 相交于点F ,BD CD ⊥.则四边形ABED 是什么形状的四边形: 19如图,在矩形ABCD 中,AB=2BC ,N 为DC 的中点,点M 在DC 上,且AM=AB ,则∠MBN •的度数为 .
20.如图,正方形ABCD 中,点E 在边AB 上,点G 在边AD 上,且∠ECG =45°,点F 在边AD 的延长线上,且DF= BE .则下列结论:①∠ECB 是锐角,;②AE <AG ;③△CGE ≌△CGF ;④EG= BE +GD 中一定成立的结论有 (写出全部正确结论).
三、解答题(共8道小题,共50分) 21、(本题满分6分)化简计算:
(2)182)12)(12(12⨯+-++
22、(本题满分6分)解方程
(1)x 2+3x +1=0 (2)(x -2)(x -5)=-2
23、(本题满分6分)某校八年级260名学生
第19题图 第20题图
进行了一次数学测验,随机抽取部分学生的成绩进行分析,这些成绩整理后分成五组,绘制成频率分布直方图(如图所示),从左到右前四个小组的频率分别为0.1、0.2、0.3、0.25,最后一组的频数为6.根据所给的信息回答下列问题: (1)共抽取了多少名学生的成绩?
(2)估计这次数学测验成绩超过80分的学生人数约有多少名?
(3)如果从左到右五个组的平均分分别为55、68、74、86、95分,那么估计这次数学测验成绩的平均分约为多少分?
24、(本题满分6分)如图,把长为2cm 的正方形剪成四个全等的直角三角形,请用这四个直角三角形(全部用上)拼成下列符合要求的图形(互不重叠且没有空隙),并把你的拼法画在下列的方格纸内(方格为1cm×1cm )
(1)画一个不是正方形的菱; (2)画一个不是正方形的矩形
(3)画一个不是矩形也不是菱形的平行四边形 (4)画一个梯形
25、(本题满分8分)两块完全相同的三角板Ⅰ(△ABC )和Ⅱ(△A 1B 1C 1)如图①放置在同一平
面上(∠C =∠C 1=90º,∠ABC =∠A 1B 1C 1=60º),斜边重合.若三角板Ⅱ不动,三角板Ⅰ在三角板Ⅱ所在的平面上向右滑动,图②是滑动过程中的一个位置. (1)在图②中,连接BC 1、B 1C ,求证:△A 1BC 1≌△AB 1C .
(2)三角板Ⅰ滑到什么位置(点B 1落在AB 边的什么位置)时,四边形BCB 1C 1是菱形?说
第24题图。