阿伏加德罗定律及其推论全面版
阿伏伽德罗定理
![阿伏伽德罗定理](https://img.taocdn.com/s3/m/2474635ead02de80d4d84049.png)
课堂练习3
同温同压下,500mL气体R的质量为1.2g, 1.5L O2的质量为2.4g, 则R的相对分子 质量为( C ) (A)24 (B)36 (C)48 (D)60
课堂练习4
将H2、O2、N2三种气体分别装在三个容积相 等的容器中,当温度和密度完全相同时, 三种气体压强(P)的大小关系正确的是 ( )B (A)P(H2)=P(O2)=P(N2) (B)P(H2)>P(N2)>P(O2) (C)P(H2)>P(O2) >P(N2) (D)P(N2)>P(O2) >P(H2)
推论3:同温同压下,任何气体的密度之比 等于摩尔质量之比(即式量之比)
1 M1 2 = M2 =D
气体状态方程: PV= n R T PV=(m/M)RT 公式变形:
PM=m R T /V= ρ RT
即:PM=ρRT ρ1RT1 P1M1
P2M2
同温同压:
=
ρ2RT2
T1=T2 P1=P2 1 M1 同 T、P: 2 = M2 =D
同温同压下,等质量的二氧化硫和二氧化 碳相比较,下列叙述中,正确的是 A D (A)密度比为16:11 (B)密度比为11:16 (C)体积比为1:1 (D)体积比为11:16
二、阿伏加德罗定律推论:
气体状态方程:PV= n R T
1、同温同压下,气体的体积与物质的量成正比。
即:V1/V2 =n1/n2
2、阿伏加德罗定律的数学表达式:
理想气体状态方程:
PV=nRT
P:气体压强(单位:Pa ) V:气体的体积(单位:L) n:气体分子的物质的量(单位:mol) T:温度(单位:K) R:常数
二、阿伏加德罗定律的几个推论
阿伏伽德罗定律及其推论
![阿伏伽德罗定律及其推论](https://img.taocdn.com/s3/m/ce250099fe4733687f21aa14.png)
A.3∶2
B.1∶3
C.2∶3
D.1∶2
【规范解答】选A。1 mol H2含氢原子2 mol,1 mol NH3含 氢原子3 mol,若H2和NH3所含氢原子数相等,则H2和NH3 的物质的量之比为3∶2,同温同压下气体的体积比等于
其物质的量之比,两个容器的体积比是3∶2。
精品课件
【互动探究】(1)若改为A容器中H2与B容器中 NH3所含原子数相等,则两个容器的体积之比为 ________。
气体摩尔体积(二)
阿伏加德罗定律及其推论
精品课件
气体摩尔体积 定义:单位物质的量的 气体所占的体积 Vm=V/n 单位:L/mol
精品课件
[注意]
★ 气体摩尔体积的数值不是固定不变的,它与 温度和压强有关
★ 气体摩尔体积只适用于气态物质,对于固态 物质和液态物质来讲,都是不适用的。
★ 标准状况下气体摩尔体积约为22.4L/mol (标准状况:T=0 ℃,P=101KPa)
物质的量分数)
精品课件
例题讲析
已知氮气和氨气的混合气体在标准状况 下的密度为1g/L,求混合气体的平均相 对分子质量。
解析:混合气体的平均摩尔质量为: 1g/L×22.4L/mol=22.4g/mol
故混合气体的平均相对分子质量为22.
精品课件
【练习4】
标准状况下
CO和CO2的混和气体 5g 所占体积为 3. 36L。 求CO的质量、CO2的体积及混和气体的平均式量。
精品课件
5. 气体的相对分子质量(M)的计算
(1)已知标准状M=况ρ下标气体. 2密2度.4ρ标
(2)已知两种气体的相对密度D
M(A)=D . M(B)
(3)混合气体的平均相对分子质量(M)
第5讲 阿佛加德罗定律
![第5讲 阿佛加德罗定律](https://img.taocdn.com/s3/m/2da7a7d643323968001c923d.png)
6.同温同压下,A 容器中 H2 和 B 容器中 NH3 所含氢 原子数相等,则两个容器的体积比是( )
A.3∶2 B.1∶3 C.2∶3 D.1∶2
7.同温同压下,已知 O2 的密度为ρ g·L-1,则 NH3 的 密度为( )
2. 一个密闭容器中盛有11gCO2时,压强为 1×104Pa.如果在相同温度下,把更多的CO2充 入容器中,使容器内压强增至5×104Pa,这时容 器内气体的分子数约为( C )
A. 3.3×1025
B. 3.3×1024
C. 7.5×1023
D. 7.5×1022
推论3:同温同压下,任何气体的密度之比等于 摩尔质量之比(即式量之比)
4.同温同压下,下列关于氢气和氧气的叙述中,正确
的是 ( )
①等体积的氢气和氧气所含的分子数相等 ②氢分子
间的平均距离和氧分子间的平均距离几乎是相等的 ③氢
分子与氧分子大小相同 ④氢分子和氧分子本身的大小对
于气体体积影响可以忽略不计
A.①②③ B.①②④
C.①④
D.②③
5.同温同压下,向两个密闭容器中分别充入等质量的 O2、O3 气体,下列说法正确的是( )
A.17ρ g·L-1 B.32 g·L-1
32
17
C. 32 g·L-1 D. 17 g·L-1
17ρ
32ρ
8.设 NA 表示阿伏加德罗常数的值。下列说法正确的 是( )
A.0.5 mol O3 与 11.2 L O2 所含的分子数一定相等 B.常温常压下,18 g H2O 中含有的原子总数为 3NA C.标准状况下,22.4 L 的 CCl4 中含有的 CCl4 分子数 为 NA D.常温常压下,22.4 L 的 NO2 和 CO2 混合气体含有 2NA 个氧原子
阿伏伽德罗定律及其推论
![阿伏伽德罗定律及其推论](https://img.taocdn.com/s3/m/1a97568968dc5022aaea998fcc22bcd126ff42f7.png)
阿伏伽德罗定律及其推论阿伏伽德罗定律是描述化学物质之间的质量关系的基本定律,也被称为质量守恒定律。
根据阿伏伽德罗定律,任何一个封闭系统中的质量在化学反应发生前后保持不变。
这个定律为我们研究和理解化学反应提供了基础。
阿伏伽德罗定律的推论之一是摩尔比关系。
根据摩尔比关系,化学反应中不同物质的摩尔比与其系数之间存在着简单的比例关系。
通过摩尔比关系,我们可以计算出化学反应中物质的摩尔数,从而研究反应的定量关系。
阿伏伽德罗定律和摩尔比关系在化学实验和化学计算中得到了广泛的应用。
在实验中,我们可以通过称量物质的质量来验证阿伏伽德罗定律。
例如,在氧化还原反应中,我们可以称量反应前后参与反应的物质的质量,验证质量守恒定律的成立。
在化学计算中,阿伏伽德罗定律和摩尔比关系可以用来确定化学反应的化学计量关系。
例如,在计算化学反应的反应物和生成物的摩尔比时,我们可以根据化学方程式中的系数来确定。
这样,我们可以根据摩尔比关系计算出反应物和生成物的摩尔数,从而计算出反应物质的质量、体积或浓度等。
阿伏伽德罗定律和摩尔比关系的应用不仅限于化学反应,还可以应用于溶液的配制和稀释、气体的混合和溶解等方面。
通过摩尔比关系,我们可以计算出溶液中溶质和溶剂的摩尔数,从而确定溶液的浓度或配比。
阿伏伽德罗定律和摩尔比关系的应用也扩展到了工业生产中。
在化工生产中,我们需要准确计算反应物的用量,以确保反应的效率和质量。
同时,在产品的合成和提纯过程中,阿伏伽德罗定律和摩尔比关系也为我们提供了重要的计算依据。
阿伏伽德罗定律及其推论摩尔比关系是化学中十分重要的基本原理。
它们为我们理解和研究化学反应提供了基础,并在实验和计算中得到了广泛的应用。
通过应用阿伏伽德罗定律和摩尔比关系,我们可以准确计算化学反应中物质的质量、摩尔数等参数,进而推导出反应的定量关系。
这些定律和关系的应用不仅在科学研究中起到重要作用,也在工业生产和实际应用中发挥着巨大的价值。
阿伏伽德罗定律及其推论
![阿伏伽德罗定律及其推论](https://img.taocdn.com/s3/m/c5b6fb5ccf84b9d528ea7ac0.png)
m=ρV
m1 M 1 m2 M2
例5. 化合物A是一种不稳定的物质,它的分子组成 可用OxFy表示。10 mL A气体能分解生成15 mL O2和10 mL F2(同温、同压下)。
[解析]
⑤SO2
V1 n1 T 、P相同: V2 n 2
m n M
例2. 在两个密闭容器中,分别充有质量相同的甲、 乙两种气体,若两容器的温度和压强均相同, 且甲的密度大于乙的密度,则下列说法正确 的是(
B )
A. 甲的分子数比乙的分子数多 B. 甲的物质的量比乙的物质的量少 C. 甲的摩尔体积比乙的摩尔体积小 D. 甲的相对分子质量比乙的相对分子质量小
例8. 在标准状况下, 11.2 L CO和CO2混合气体的
质量为20.4 g,则混合气体中CO和CO2的体
1 : 4 ,质量比为_______ 7 : 44 。 积比为__________
[解析] 标准状况下,Vm = 22.4 L· mol-1
V 11.2L n 0.5mol 1 Vm 22.4L mol
O3F2 (1)A的化学式是________
推断理由是
阿伏加德罗定律和质量守恒定律 ______________________________________ 。
V n 1 1 [解析] T、P相同: V2 n 2
10mL
A = O2 + F2
15mL
10mL
例6、同温同压下,某容器充满O2重116 g,若充满
阿伏伽德罗定律5个推论
![阿伏伽德罗定律5个推论](https://img.taocdn.com/s3/m/4028dc875ebfc77da26925c52cc58bd630869357.png)
阿伏伽德罗定律5个推论阿伏伽德罗定律是化学中一条非常重要的定律,它描述了电解质溶液中的电离现象。
根据阿伏伽德罗定律,我们可以推导出以下五个推论。
推论一:电离的程度与浓度成正比阿伏伽德罗定律告诉我们,电解质溶液中的电离程度与溶液的浓度成正比。
也就是说,溶液中溶质的浓度越高,溶质的电离程度就越大。
这个推论可以解释为什么浓度较高的电解质溶液具有较好的导电性。
推论二:电离的程度与温度成反比根据阿伏伽德罗定律,电离的程度与温度成反比。
也就是说,随着溶液温度的升高,电解质的电离程度会降低。
这个推论可以帮助我们理解为什么低温下的电解质溶液比高温下的电解质溶液具有更好的导电性。
推论三:弱电解质的电离程度较低根据阿伏伽德罗定律,强电解质的电离程度较高,而弱电解质的电离程度较低。
这是因为强电解质在溶液中能够完全电离,而弱电解质只能部分电离。
这个推论可以帮助我们区分强电解质和弱电解质,并理解它们在溶液中的行为差异。
推论四:电离度与溶液中的电解质种类有关根据阿伏伽德罗定律,溶液中的电离度与电解质的种类有关。
不同的电解质具有不同的电离度,这是由于它们的离子化能力不同。
这个推论可以帮助我们理解为什么不同的电解质在溶液中具有不同的导电性。
推论五:电离度与溶液中的离子价数有关根据阿伏伽德罗定律,溶液中的电离度与电解质的离子价数有关。
离子价数越高的电解质通常具有较高的电离度。
这个推论可以帮助我们理解为什么具有多价阳离子或多价阴离子的电解质在溶液中通常具有较好的导电性。
总结:阿伏伽德罗定律是描述电解质溶液中电离现象的重要定律之一。
根据这个定律,我们可以推导出五个重要的推论。
这些推论帮助我们理解了电解质溶液中电离的规律,以及影响电离程度的因素。
通过学习和应用这些推论,我们可以更好地理解和解释电解质溶液的行为,为化学实验和工业生产提供指导。
阿伏伽德罗定律及其推论
![阿伏伽德罗定律及其推论](https://img.taocdn.com/s3/m/1f4008f504a1b0717fd5ddbd.png)
5.用NA表示阿伏加德罗常数,下列说法正确的是 [ BC ] A.18g水所含总电子数为8NA B.标准状况下,22.4L氯气中所含的氯原子数为 2NA C.醋酸的摩尔质量与NA个醋酸分子的质量在数 值上相等 D.12g金属镁变为镁离子时,失去电子数目为 0.1NA
6.某玻璃瓶质量为54g,在一定温度和压强下 充满 CO2气体后其质量为60.6g,在相同 条件下 如装满CO,其质量为 [ B ] A.60.6g B.58.2g C.56.2g D.48.4g
40;40g/mol
3.利用气体摩尔体积, 进行有关化学方程反应,在标准状 况时生成3.36L氢气,计算需要多少摩的HCl和Zn。 【解】设需要Zn的物质的量为x,需要HCl的物质的量 为y。
答:需0.15molZn和0.30molHCl。
1.下列说法中正确的是 [ B C ]
xM1= Vm Vm V1 V2 M2 = M1
x M2
推论3 同温同压下,相同质量的任何气体的体积比
练习: 同温同压下,等质量的下列气体的体积由大 到小排列顺序 ①CO2②H2③Cl2④HCl⑤SO2 ②④①⑤③
等于它们的摩尔质量的反比。 即:V1∶V2=M 2∶M 1。
同温同压下: V1 n1 = n2 V2
A.相同状况下,气体的摩尔体积约等于 22.4L/mol B.标准状况下,22.4L的任何气体中都 约含有6.02×1023个分子 C.0℃,101kPa条件下,5.6LNH3中约含 有6.02×1023个原子 D.100℃、101kPa条件下,22.4L水蒸气 的质量等于18g
2.在一定温度和压强下,2体积XY2(g) 跟1体积Y2(g)化合,生成2体积气体 化合物, 则该化合物的化学式为 [ D ] A.X3Y B.X3Y2 C.X2Y3 D.XY3 3.下列物质中,其体积约是22.4L的是 [ B] A.1molH2S(g) B.0℃,101kPa时28gCO C.标准状况下1molH2O D.64gSO2
高中化学之阿伏伽德罗定律及其推论解析
![高中化学之阿伏伽德罗定律及其推论解析](https://img.taocdn.com/s3/m/85d2b256ce84b9d528ea81c758f5f61fb73628b6.png)
高中化学之阿伏伽德罗定律及其推论解析
学生在做题过程中老是记不住阿弗伽德罗定律及其推论的公式,其实这些不用死记硬背,推导方法很简单。
先看看它的定义及推论。
一.定义
阿伏伽德罗定律:同温同压下,相同体积的任何气体都含有相同数目的分子。
二.推论
三.具体解析
推导过程中会用到理想气体状态方程,具体方法看下图:
1.阿弗伽德罗定律推导
2.四个推论的推导
看完了推导过程,是不是很简单。
四.注意事项
1.阿弗伽德罗定律的适用范围是气体。
可理解为“三同定一同”,即同温,同压,同体积,得出微粒数相等。
2.阿弗伽德罗定律及其推论适用于任意气体,可以是单一气体,也可以是混合气体。
最后,看一道例题吧,如下图:
解析:A项,同温度,同体积,二者压强不一定相等,则二者的分子数不一定相等,原子数也不一定相等了
B项,二者的质量相等,摩尔质量也相等,那么二者的物质的量相等。
都是双原子分子,那么原子数目一定相等
D项,同体积,同压强,但温度不一定相当,二者的物质的量不一定相等,都是三原子分子,所以原子数目也不一定相等
C项,看下图:
此题正确选项为B
解析完毕。
1-2.4阿伏加德罗定律及其推论(含平均相对分子质量)
![1-2.4阿伏加德罗定律及其推论(含平均相对分子质量)](https://img.taocdn.com/s3/m/a0ce651455270722192ef7ca.png)
第二节 化学计量在实验中的应用课题四 阿伏伽德罗定律一、要点聚焦(一).阿伏加德罗定律及推论(1)阿伏加德罗定律的内容 :同温同压下相同体积的任何气体都含有相同数目的分子。
①适用范围:任何气体,可以是单一气体,也可以是混合气体。
②“四同”定律:同温、同压、同体积、同分子数中只要有“三同”则必有第“四同”。
即“三同定一同”。
(2)阿伏加德罗定律的推论:可由理想气体状态方程:PV= n R T 【式中:P 为压强,V 为气体体积,n 为物质的量,T 为热力学温度(T=摄氏度+273,单位K ),R 为常数(数值为8.314Pa·m 3·mol -1·K -1或Ka·dm 3·mol -1·K -1)】,结合V=ρm ,n=M m =A N N =m V V 等变形来推导,如:P ρm =Mm RT 得PM=ρRT 等等 ①.(T 、P 相同)同温同压下,气体的体积与物质的量成正比。
即:V 1/V 2 =n 1/n 2=N 1/N 2 。
②.(T 、V 相同)同温同体积下,气体的压强与物质的量成正比。
即:P 1/P 2=n 1/n 2③.(T 、P 、V 相同)同温同压下,同体积的任何气体的质量比等于摩尔质量之比,等于密度之比。
即:m 1/m 2=M 1/M 2=ρ1/ρ2。
④.(T 、P 、m 相同)同温同压下,相同质量的任何气体的体积比等于摩尔质量之反比。
即: V 1/V 2=M 2/M 1。
⑤.(T 、V 相同)同温同体积时,等质量的任何气体的压强之比等于摩尔质量之反比。
即:P 1/P 2 =M 2/M 1。
⑥.(T 、n 相同)当温度相同,物质的量也相同时,气体的体积与压强成反比。
即:V 1/V 2=P 2/P 1。
(3)特别提醒①标准状况下的气体摩尔体积是22.4 L ·mol -1,是阿伏加德罗定律的一个特例。
②以上推论只适用于气体(包括相互间不发生反应的混合气体),公式不能死记硬背,要在理解的基础上加以运用(二)、混合物的平均摩尔质量(M )1.定义:单位物质的量的混合物所具有的质量叫做平均摩尔质量2.单位:g/mol3.适用对象:混合气体、混合液体、混合固体均适用4.计算方法简介:①已知混合物的总质量[m(混)]和总的物质的量[n(混)],则:②已知气体的密度,则:M =ρ× Vm (标准状况下:Vm=22.4L/mol)③已知两种气体的相对密度D,因,则有:M(A)=DM(B)二、自学内容:(一).填一填:1.阿伏加德罗定律内容:相同温度和压强下,相同体积的任何气体都含有数目的分子数。
阿伏伽德罗定律及其推论公式(一)
![阿伏伽德罗定律及其推论公式(一)](https://img.taocdn.com/s3/m/ac4fb079bf1e650e52ea551810a6f524ccbfcbd6.png)
阿伏伽德罗定律及其推论公式(一)阿伏伽德罗定律及其推论公式1. 阿伏伽德罗定律简介阿伏伽德罗定律是化学中一个基本的定律,它描述了元素之间的质量关系。
阿伏伽德罗定律可简单表述为:元素的质量与其所含原子数成正比。
根据元素的质量和原子数的关系,我们可以推导出以下公式。
2. 阿伏伽德罗定律公式根据阿伏伽德罗定律,我们可以得到以下公式:元素质量与原子数的关系元素的质量可以表示为原子数乘以单位原子质量,即:质量 = 原子数× 单位原子质量单位原子质量单位原子质量是指一个元素中平均每个原子的质量。
单位原子质量可以通过将元素质量与元素原子数相除得到,即:单位原子质量 = 元素质量 / 元素原子数3. 推论公式根据阿伏伽德罗定律及其相关公式,我们可以得到一些重要的推论公式。
元素质量与单位原子质量的关系由阿伏伽德罗定律公式可推导出,元素质量与单位原子质量之间的关系为:质量 = 单位原子质量× 原子数元素摩尔质量与原子摩尔质量的关系元素摩尔质量是指一个摩尔的元素的质量,原子摩尔质量是指一个摩尔的元素中每个原子的质量。
根据阿伏伽德罗定律及相关公式,我们可以得到元素摩尔质量与原子摩尔质量之间的关系:元素摩尔质量 = 原子摩尔质量× 原子数4. 举例解释例如,对于氧气(O2)分子,我们可以通过阿伏伽德罗定律及其相关公式计算其质量。
根据阿伏伽德罗定律,氧气分子的质量等于其所含原子数乘以单位原子质量。
氧气分子由2个氧原子组成,而单位原子质量为每个氧原子的质量。
假设单位原子质量为16克/摩尔,根据节的推论公式,氧气分子的质量可以计算如下:质量 = 单位原子质量× 原子数 = 16克/摩尔× 2 = 32克/摩尔因此,氧气分子的质量为32克/摩尔。
总结阿伏伽德罗定律及其推论公式是化学领域中非常重要的定律和公式。
通过这些公式,我们可以计算元素的质量、单位原子质量和元素摩尔质量等重要参数。
阿伏伽德罗定律及其推论
![阿伏伽德罗定律及其推论](https://img.taocdn.com/s3/m/c519db4533687e21af45a95d.png)
(1)同温同压下,V1/V2=n1/n2 (2)同温同体积时,P1/P2=n1/n2=N1/N2 (3)同温同压等质量时,V1/V2=M2/M1 (4)同温同压同体积时,M1/M2=ρ1/ρ2 分子间的平均距离又决定于外界的温度和压强,当温度、压强相同时,任何气体分子间的平均距离几乎相等(气体分子间的作用微弱,可忽略),故定律成立。该定律在有气体参加的化学反应、推断未知气体的分子式等方面有广泛的应用。 阿伏加德罗定律认为:在同温同压下,相同体积的气体含有相同数目的分子。1811年由意大利化学了气体反应的体积关系,用以说明气体分子的组成,为气体密度法测定气态物质的分子量提供了依据。对于原子分子说的建立,也起了一定的积极作用。
克拉伯龙方程式
中学化学中,阿伏加德罗定律占有很重要的地位。它使用广泛,特别是在求算气态物质分子式、分子量时,如果使用得法,解决问题很方便。下面简介几个根据克拉伯龙方程式导出的关系式,以便更好地理解和使用阿佛加德罗定律。 克拉伯龙方程式通常用下式表示:PV=nRT……① P表示压强、V表示气体体积、n表示物质的量、T表示绝对温度、R表示气体常数。所有气体R值均相同。如果压强、温度和体积都采用国际单位(SI),R=8.31帕·米3/摩尔·开。如果压强为大气压,体积为升,则R=0.082大气压·升/摩尔·度。 因为n=m/M、ρ=m/v(n—物质的量,m—物质的质量,M—物质的摩尔质量,数值上等于物质的分子量,ρ—气态物质的密度),所以克拉伯龙方程式也可写成以下两种形式: Pv=m/MRT……②和PM=ρRT……③ 以A、B两种气体来进行讨论。 (1)在相同T、P、V时: 根据①式:nA=nB(即阿伏加德罗定律) 分子量一定 摩尔质量之比=密度之比=相对密度)。若mA=mB则MA=MB。 (2)在相同T·P时: 体积之比=摩尔质量的反比;两气体的物质的量之比=摩尔质量的反比) 物质的量之比=气体密度的反比;两气体的体积之比=气体密度的反比)。 (3)在相同T·V时: 摩尔质量的反比;两气体的压强之比=气体分子量的反比)。
阿伏伽德罗定律及推论公式
![阿伏伽德罗定律及推论公式](https://img.taocdn.com/s3/m/d6dad7bbed3a87c24028915f804d2b160a4e8647.png)
阿伏伽德罗定律及推论公式阿伏伽德罗定律是化学中的一条基本法则,它描述了化学物质的微观粒子(原子或分子)之间的关系。
根据阿伏伽德罗定律,不同元素的原子在相同的条件下,其相对原子质量之比是一个恒定的值。
阿伏伽德罗定律的数学表达式为:M = n × m,其中M是物质的质量,n是物质的物质量,m是物质单位质量。
阿伏伽德罗定律的推论公式则是基于这一定律得出的一系列公式,用于计算化学反应中的相关物质的物质量和质量比。
我们来看一下摩尔质量的计算。
摩尔质量是指物质的质量与其摩尔数之间的关系。
根据阿伏伽德罗定律,我们可以通过分子量来计算物质的摩尔质量。
分子量是指分子中各个原子质量的总和。
例如,氧气(O2)的分子量为32g/mol,那么1mol的氧气的质量就是32g。
如果我们有2mol的氧气,那么它的质量就是64g。
接下来,我们来看一下摩尔比的计算。
摩尔比是指参与反应的不同物质的摩尔数之比。
根据阿伏伽德罗定律,我们可以通过化学方程式来计算摩尔比。
例如,对于以下反应方程式:2H2 + O2 → 2H2O,我们可以得出氢气和氧气的摩尔比为2:1。
这意味着,当2mol的氢气与1mol的氧气反应时,会产生2mol的水。
除了摩尔比,阿伏伽德罗定律还可以用来计算反应的质量比。
质量比是指参与反应的不同物质的质量之比。
例如,对于以上反应方程式,我们可以根据氢气和氧气的摩尔质量来计算它们的质量比。
氢气的摩尔质量为2g/mol,氧气的摩尔质量为32g/mol。
因此,氢气的质量比为4:32,即1:8。
这意味着,当1g的氢气与8g的氧气反应时,会产生9g的水。
阿伏伽德罗定律及其推论公式在化学中具有重要的应用价值。
它们为我们提供了一种计算化学反应中物质的量和质量比的方法,帮助我们理解和分析化学反应。
同时,它们也为我们提供了一种准确且可靠的实验方法,用于验证和验证化学反应中物质的量和质量比的理论计算结果。
阿伏伽德罗定律及其推论公式是化学中重要的基本法则,它们描述了化学物质的微观粒子之间的关系,可以用于计算化学反应中物质的摩尔质量、摩尔比和质量比。
阿伏伽德罗定律及其推论
![阿伏伽德罗定律及其推论](https://img.taocdn.com/s3/m/625e734c336c1eb91a375d3e.png)
在相同温度和压强下,相同体积的任何气体具有 相同数目的分子——三ቤተ መጻሕፍቲ ባይዱ定一同。
【强调】: ⑴适用对象:任何气体 ⑵使用条件: T 、 P 、 V 相同,分子数才相同。 ⑶阿氏定律与标况下气体摩尔体积的关系: 阿氏定律是一般的规律,标况下气体摩尔体 积是阿氏定律一种特殊情况。
即同温同压下,气 阿伏加德定律公式表述 体的体积比等于其 分子个数比,或者 说气体的体积与分 子数成正比
(理想气体状态方程PV=nRT p是指理 想气体的压强,V为理想气体的体积,n 表示气体物质的量,而T则表示理想气体 的热力学温度;还有一个常量:R为理想 气体常数)
阿伏加德定律的推论
V1 N1 n1 V2 N 2 n2
(2)同温同压同体积
阿伏加德定律的推论
n1 V1 r 2 M 2 (5) 同温同压同质量 n2 V2 r 1 M 1
阿伏加德罗定律及其推论
![阿伏加德罗定律及其推论](https://img.taocdn.com/s3/m/14905bdbb4daa58da1114aa2.png)
阿伏加德罗定律及其推论1.幻想气体状况方程我们设定:T .温度;p .气体夺强;n .物资的量;V .气体的体积;m .气体的质量;M .气体的摩尔质量; .气体的密度N .气体的分子数.幻想气体状况方程为:(1)111T V p =222T V p ;(2)pV =nRT =RT M m (R 为常数).对(2)若p 的单位为大气压(atm ),V 为升(L ),T 为绝对温度时,R =0.082.若p 为帕斯卡(Pa ),V 为立方米(m 3),T 为绝对温度时,R =8.31.2.阿伏加德罗定律在雷同温度和压强下,雷同体积的任何气体都含有雷同数量标分子数.这是意大利科学家阿伏加德罗最早提出的,是以称为“阿伏加德罗定律”.懂得时留意:在该定律中有“四同”:同温.同压.同体积.同分子数量,有“三同”就可定“一同”.如,同温同压下,同体积的两种气体必含有雷同数量标分子;同温同压下,同分子数量标两种气体必定同体积;再如,在同温下,两种气体同体积又同分子数量,则必定同压.3.阿伏加德罗定律的推论依据阿伏加德罗定律及气态方程(pV =nRT )限制不合的前提,即可得到阿伏加德罗定律的多种情势,闇练并控制了它们,解答有关问题时,可达到事半功倍的后果.前提结论说话论述T .p 雷同21N N =21V V 同温同压下,气体的分子数与其体积成正比 T .V 雷同21p p =21N N 温度.体积雷同的气体,压强与其分子数成正比 n .p 雷同21V V =21T T 分子数相等.压强雷同的气体,体积与其温度成正比n .T 雷同21p p =12V V 分子数相等.温度雷同的气体,压强与其体积成反比T .p .m 雷同21M M =12V V 同温同压下,等质量的气体相对分子质量与其体积成反比。
§1-8 阿伏加得罗定律及其推论
![§1-8 阿伏加得罗定律及其推论](https://img.taocdn.com/s3/m/f063465dbe23482fb4da4cc7.png)
[答案]
③>②>⑤>④>①
[问题解决]
3、 在一定温度和压强下,1体积X2(g) 和 3体积Y2(g)化合生成2体积气态化合 物,则该化合物的化学式为?
XY3
4、同温同压下,甲、乙两容器分别装满 氢原子个数相同 CH4和NH3,已知所含原子个数相同,甲、 乙两容器体积比为? 4 :5
3:4
பைடு நூலகம்
[交流讨论2] 同温同压下,任何气体的密度比有何规律?
3. T、V相同时 P1:P2=n1:n2
7、在相同温度下,相同质量的下列气体分别通入相 同容积的 容器中,容器内压强最小的是 ( B )
A. HF
B. Ar
C.
NH3
D. CH4
[整理归纳]
阿伏加德罗定律
T、P、V相同时
阿伏加德罗定律推论
N(n)同
1. T、P相同时 V1:V2=n1:n2 =N1:N2 2. T、P相同时 ρ 1: ρ 2=M1:M2 3. T、V相同时 P1:P2=n1:n2
[板书]
2. T、P相同时
ρ 1: ρ
2=M1:M2
[问题解决]
5、同温同压下,密度最大的是( C )
A、H2
B、O2
C、CO2
D、CO
6、同温同压下,A气体密度是相同条件下 H2密度的14倍, A气体可能是( AD ) A、N2 B、O2 C、CO2 D、CO
[交流讨论3]
恒温恒容下,气体的压强比有何规律? [板书]
物质的聚集状态
——
§1-8 阿伏加德罗定律及其推论
[知识回顾] 1、气体摩尔体积? 2、STP下,Vm≈?
3、决定气体体积大小的因素?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
——苏州中学化学组
本讲主要内容:
阿伏加德罗定律的导出 理想气体状态方程的推导 阿伏加德罗定律推论的导出 阿伏加德罗定律及其推论的应用
1. 影响物质体积的因素:
状态 因素 粒子的数目
固体和液体
气体
相同(1mol) 相同(1mol)
粒子的大小 主要因素
次要因素
粒子间距离 次要因素
主要因素
温度
忽略不计
影响因素
压强
忽略不计
影响因素
2.气体摩尔体积Vm
VmV n VmVm(PT, )
当P,T一定时,Vn, V N 在标准状况下(0ºC,101KPa) Vm22.4L/mol
二、理想气体方程的导出
1. 波义儿—马略特定律 2. T一定时,一定量的气体P与V成反比
P1 V1 3. P2 V2
即 P1V1P2V2
4.
图像表示:
波义耳—马略特定律的图像表示
P
9
8
8
7
6
5
4
4
3
2
1
0
0
1
P-V图
2
y = 4x-1
1
2
3
Hale Waihona Puke 4V52. 查理-盖•吕萨克定律
一定质量的气体,在体积不变时,温 度升高(或降低)1°C,压强增大(获 减小)0 °C的压强的1/273。
只要我们坚持了,就没有克服不了的困难。或许,为了将来,为了自己的发展,我们会把一件事情想得非常透彻,对自己越来越严,要求越来越高,对任何机会都不曾错过,其 目的也只不过是不让自己随时陷入逆境与失去那种面对困难不曾屈服的精神。但有时,“千里之行,始于足下。”我们更需要用时间持久的用心去做一件事情,让自己其中那小 小的浅浅的进步,来击破打破突破自己那本以为可以高枕无忧十分舒适的区域,强迫逼迫自己一刻不停的马不停蹄的一直向前走,向前看,向前进。所有的未来,都是靠脚步去 丈量。没有走,怎么知道,不可能;没有去努力,又怎么知道不能实现?幸福都是奋斗出来的。那不如,生活中、工作中,就让这“幸福都是奋斗出来的”完完全全彻彻底底的 渗入我们的心灵,着心、心平气和的去体验、去察觉这一种灵魂深处的安详,侧耳聆听这仅属于我们自己生命最原始最动人的节奏。但,这种聆听,它绝不是仅限于、执着于 “我”,而是观察一种生命状态能够扩展和超脱到什么程度,也就是那“幸福都是奋斗出来的”深处又会是如何?生命不止,奋斗不息!又或者,对于很多优秀的人来说,我们 奋斗了一辈子,拼搏了一辈子,也只是人家的起点。可是,这微不足道的进步,对于我们来说,却是幸福的,也是知足的,因为我们清清楚楚的知道自己需要的是什么,隐隐约 约的感觉到自己的人生正把握在自己手中,并且这一切还是通过我们自己勤勤恳恳努力,去积极争取的!“宝剑锋从磨砺出,梅花香自苦寒来。”当我们坦然接受这人生的终局, 或许,这无所皈依的心灵就有了归宿,这生命中觅寻处那真正的幸福、真正的清香也就从此真正的灿烂了我们的人生。一生有多少属于我们的时光?陌上的花,落了又开了,开 了又落了。无数个岁月就这样在悄无声息的时光里静静的流逝。童年的玩伴,曾经的天真,只能在梦里回味,每回梦醒时分,总是多了很多伤感。不知不觉中,走过了青春年少, 走过了人世间风风雨雨。爱过了,恨过了,哭过了,笑过了,才渐渐明白,酸甜苦辣咸才是人生的真味!生老病死是自然规律。所以,面对生活中经历的一切顺境和逆境都学会 了坦然承受,面对突然而至的灾难多了一份从容和冷静。这世上没有什么不能承受的,只要你有足够的坚强!这世上没有什么不能放下的,只要你有足够的胸襟! 一生有多少 属于我们的时光?当你为今天的落日而感伤流泪的时候,你也将错过了明日的旭日东升;当你为过去的遗憾郁郁寡欢,患得患失的时候,你也将忽略了沿途美丽的风景,淡漠了 对未来美好生活的憧憬。没有十全十美的生活,没有一帆风顺的旅途。波平浪静的人生太乏味,抑郁忧伤的人生少欢乐,风雨过后的彩虹最绚丽,历经磨砺的生命才丰盈而深刻。 见过了各样的人生:有的轻浮,有的踏实;有的喧哗,有的落寞;有的激扬,有的低回。肉体凡胎的我们之所以苦恼或喜悦,大都是缘于生活里的际遇沉浮,走不出个人心里的 藩篱。也许我们能挺得过物质生活的匮乏,却不能抵挡住内心的种种纠结。其实幸福和欢乐大多时候是对人对事对生活的一种态度,一花一世界,一树一菩提,就是一粒小小的 沙子,也有自己精彩的乾坤。如果想到我们终有一天会灰飞烟灭,一切象风一样无影亦无踪,还去争个什么?还去抱怨什么?还要烦恼什么?未曾生我谁是我?生我之时我是谁? 长大成人方是我,合眼朦胧又是谁?一生真的没有多少时光,何必要和生活过不去,和自己过不去呢。你在与不在,太阳每天都会照常升起;你愁与不愁,生活都将要继续。时
光不会因你而停留,你却会随着光阴而老去。
有些事情注定会发生,有的结局早已就预见,那么就改变你可以改变的,适应你必须去适应的。面对幸与不幸,换一个角度,改变一种思维,也许心空就不再布满阴霾,头上就 是一片蔚蓝的天。一生能有多少属于我们的时光,很多事情,很多人已经渐渐模糊。而能随着岁月积淀下来,在心中无法忘却的,一定是触动心灵,甚至是刻骨铭心的,无论是 伤痛是欢愉。人生无论是得意还是失意,都不要错过了清早的晨曦,正午的骄阳,夕阳的绚烂,暮色中的朦胧。经历过很多世态炎凉之后,你终于能懂得:谁会在乎你?你又何 必要别人去在乎?生于斯世,赤条条的来,也将身无长物的离开,你在世上得到的,失去的,最终都会化作尘埃。原本就不曾带来什么,所以也谈不到失去什么,因此,对自己 经历的幸与不幸都应怀有一颗平常心有一颗平常心,面对人生小小的不如意或是飞来横祸就能坦然接受,知道人有旦夕祸福,这和命运没什么关系;有一颗平常心,面对台下的 鲜花掌声和头上的光环,身上的浮名都能清醒看待。花不常开,人不常在。再热闹华美的舞台也有谢幕的时候;再奢华的宴席,悠扬的乐曲,总有曲终人散的时刻。春去秋来, 我们无法让季节停留;同样如同季节一样无法挽留的还有我们匆匆的人生。谁会在乎你?生养我们的父母。纵使我们有千般不是,纵使我们变成了穷光蛋,唯有父母会依然在乎! 为你愁,为你笑,为你牵挂,为你满足。这风云变幻的世界,除了父母,不敢在断言还会有谁会永远的在乎你!看惯太多海誓山盟的感情最后星流云散;看过太多翻云覆雨的友 情灰飞烟灭。你春风得意时前呼后拥的都来锦上添花;你落寞孤寂时,曾见几人焦急赶来为你雪中送炭。其实,谁会在乎你?除了父母,只有你自己。父母待你再好,总要有离 开的时日;再恩爱夫妻,有时也会劳燕分飞,孩子之于你,就如同你和父母;管鲍贫交,俞伯牙和钟子期,这样的肝胆相照,从古至今有几人?不是把世界想的太悲观,世事白 云苍狗,要在纷纷扰扰的生活中,懂得爱惜自己。不羡慕如昙花一现的的流星,虽然灿烂,却是惊鸿一瞥;宁愿做一颗小小的暗淡的星子,即使不能同日月争辉,也有自己无可 取代的位置其实,也不该让每个人都来在乎自己,每个人的人生都是单行道,世上绝没有两片完全相同的树叶。大家生活得都不容易,都有自己方向。相识就是缘分吧,在一起 的时候,要多想着能为身边的人做点什么,而不是想着去得到和索取。与人为善,以直报怨,我们就会内心多一份宁静,生活多一份和谐没有谁会在乎你的时候,要学会每时每 刻的在乎自己。在不知不觉间,已经走到了人生的分水岭,回望过去生活的点滴,路也茫茫,心也茫茫。少不更事的年龄,做出了一件件现在想来啼笑皆非的事情:斜阳芳草里, 故作深沉地独对晚风夕照;风萧萧兮,渴望成为一代侠客;一遍遍地唱着罗大佑的《童年》,期待着做那个高年级的师兄;一天天地幻想,生活能轰轰烈烈。没有刀光剑影,没 有死去活来,青春就在浑浑噩噩、懵懵懂懂中悄然滑过。等到发觉逝去的美好,年华的可贵,已经被无可奈何地推到了滚滚红尘。从此,青春就一去不回头。没有了幻想和冲动, 日子就像白开水一样平淡,寂寞地走过一天天,一年年。涉世之初,还有几分棱角,有几许豪情。在碰了壁,折了腰之后,终于明白,生活不是童话,世上本没有白雪公主和青 蛙王子,原本是一张白纸似的人生,开始被染上了光怪陆离的色彩。你情愿也罢,被情愿也罢,生存,就要适应身不由己,言不由衷的生活。人到中年,突然明白了许多:人生 路漫漫,那是说给还不知道什么叫人生的人说的,人生其实很短暂,百年一瞬间;世事难预料,是至理名言,这一辈子,你遇见了谁,擦肩而过了谁,谁会是你真心的良朋益友,