奥林匹克训练题库·分割
奥林匹克数学竞赛试题资料

奥林匹克数学竞赛试题资料一.填空题(共10小题,满分43分)1.(4分)求出得数4+4+3+5=6+6+7+6+5=2.(4分)35个小朋友坐船游玩,每条船最多坐8人,至少要条船.3.(4分)同学们做操,排成一个正方形的队伍,从前、后、左、右数,小红都是第5个,问一共有人.4.(4分)13个孩子在一起捉迷藏的游戏,最后有2个孩子躲得最巧,没有捉到,请问被捉到的孩子有个.5.(4分)一个标准油桶,桶连油共重7千克.司机马叔叔已经用去一半油,现在连桶还重4千克.桶里还有油.6.(4分)筐里有42个橘子,最少拿出个就正好平均分给8个同学,最少加上个才可以平均放在9个盘子里.7.(4分)最大的两位数与最小的两位数相差,积是.8.(4分)把一根12米长的绳子对折,再对折,每折长米.9.(6分)找规律填数:(1)2,5,7,12,19,(2)1,4,9,16,25,10.(5分)△+○=88,△﹣○=20,△=○=.二.选择题(共5小题,满分15分,每小题3分)11.(3分)2个人吃2个西红柿,用2分钟吃完,9个人吃9个西红柿,需要()分钟才能吃完.A.27 B.18 C.9 D.212.(3分)二(1)班的小朋友排队到医务室检查视力,每批进去5人,小华排在第39位.他第()批才能进去.A.5 B.6 C.7 D.813.(3分)把一段木头锯成7段,每锯一次要7分钟,锯完这根木头要()分钟.A.49 B.42 C.35 D.2814.(3分)张三比李四重,王五比李四轻,最轻的是()A.张三B.李四C.王五15.(3分)物体绕着一个点或一个轴移动,这样的现象叫()A.旋转B.平移三.解答题(共6小题,满分42分,每小题7分)16.(7分)一张正方形的纸,用剪刀截去一个角,还剩几个角?(画出示意图)17.(7分)小明家养了8只鸡,共生蛋45只,每只母鸡生9个蛋,这些鸡中有几只公鸡?18.(7分)小虹家离学校有45米.有一天上学,她从家走出9米处,发现忘了带作业本,又回家取,她从家到学校共走了多少米?19.(7分)二年级原来女同学比男同学多25人,今年二年级又增加了80个那同学和65个女同学.现在是男同学多还是女同学多?多几人?20.(7分)一块三角板,切去其中的一个角,还有几个角?21.(7分)1只大白兔的重量事2只松鼠的重量,1只松鼠的重量是3只小鸡的重量,1只大白兔的重量等于几只小鸡的重量?。
奥林匹克数学竞赛试题及答案

奥林匹克数学竞赛试题及答案奥林匹克数学竞赛是一项国际性的数学竞赛,旨在激发中学生对数学的兴趣和热爱。
以下是一份奥林匹克数学竞赛的模拟试题及答案,供参考:奥林匹克数学竞赛模拟试题一、选择题(每题2分,共10分)1. 如果一个数的平方等于它本身,那么这个数是:A. 0B. 1C. -1D. 0或12. 下列哪个数不是有理数?A. πB. √2C. -3D. 1/33. 将一个圆分成三个扇形,每个扇形的圆心角都是120°,那么这三个扇形的面积之和等于:A. 圆的面积B. 圆面积的1/3C. 圆面积的2/3D. 圆面积的1/24. 如果一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定5. 一个数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。
这个数列的第10项是:A. 144B. 145C. 146D. 147二、填空题(每题3分,共15分)6. 一个数的立方根等于它本身,这个数可以是______。
7. 如果一个直角三角形的两条直角边长分别为3和4,那么它的斜边长是______。
8. 一个圆的半径为5,那么它的周长是______。
9. 一个等差数列的前5项之和为50,如果这个数列的公差为3,那么它的首项是______。
10. 如果一个多项式f(x) = ax^3 + bx^2 + cx + d,其中a, b, c, d是整数,且f(1) = 5,f(-1) = -1,那么a - d的值是______。
三、解答题(每题5分,共20分)11. 证明:对于任意的正整数n,1^3 + 1^2 + 1 + ... + 1/n^3总是大于1/n。
12. 解不等式:2x^2 - 5x + 3 > 0。
13. 一个圆的直径为10,求圆内接正六边形的边长。
14. 给定一个等比数列的前三项分别为2, 6, 18,求这个数列的第20项。
奥林匹克训练题库·分析计算

分析计算72甲、乙、丙三人都是业余射箭爱好者,在一次练习中,他们箭箭命中,甲、乙、丙分别射了8发、7发和6发,成绩都是51环。
根据练习用的靶纸(见左下图),请你正确填写出右下表所示的成绩表。
73甲、乙、丙3人射击,每人打5发子弹,中靶的位置在右图中用点表示,计算成绩时发现3人得分相同。
甲说:“我头2发打了8环。
”乙说:“我头2发打了9环。
”请你判断唯一的10环是谁打的?74六个人参加乒乓球比赛,每两个人都要赛一场,胜者得2分,负者得0分。
比赛结果,第二名和第五名都是两人并列。
问:第一名和第四名各得多少分?75A,B,C,D四个队举行足球循环赛(即每两个队都要赛一场),胜一场得3分,平一场得1分,负一场得0分。
已知:(1)比赛结束后四个队的得分都是奇数;(2)A队总分第一;(3)B队恰有两场平局,并且其中一场是与C队平局。
问:D队得几分?76甲、乙、丙三个班进行棋类比赛,比赛设象棋、军棋和跳棋三项。
前四名得分标准是:第一名5分,第二名3分,第三名2分,第四名1分。
比赛结果:甲班得名次的人最少,总分却是第一;乙班没人得第一,总分比甲班少1分;丙班得名次的人最多,总分却比乙班还少1分。
问:三个班各得了几个什么名次?77四人进行跳远、百米、铅球、跳高四项比赛,各个单项的一、二、三、四名(没有并列名次)分别得5,3,2,1分。
已知总分第一名的跳高得分低于其它项得分,总分第三名的跳高得分高于其它项得分。
请将下表填写完整。
78有A,B,C三个足球队,两两比赛一场,共赛了三场。
A队两胜,进6球失2球;B队一胜一负,进4球失4球;C队两负,进2球失6球。
试写出三场比赛的具体比分。
79五年级三个班举行年级运动会,设跳高、跳远和百米三项,各项均取前三名,第一名得5分,第二名得3分,第三名得1分。
已知一、二班总分相等,并列第一名,而二班进入前三名的人数是一班的两倍。
问:三班总分多少?80五支足球队进行循环赛,即每两个队之间都要赛一场。
奥林匹克训练题库工程问题

工程问题1、甲、乙两个工程队共同完成一项工程需18天,如果甲队干3天、乙队干4天则完成工程的1/5.问:甲、乙两队独立完成该工程各需多少天?2、完成一件工作,需要甲干5天、乙干6天,或者甲干7天、乙干2天。
问:甲、乙单独干这件工作各需多少天?3、一件工作,甲5时完成了1/4,乙6时完成了剩下的一半,余下的部分有甲、乙合作,还需要多少天才能完成?4、一件工程,甲干2天、乙干5天可完成1/2;甲干5天、乙干3天可完成1/3.问:甲、乙合干需几天完成?5、加工一批零件,甲干2天、乙干3天可完成总数的1/2;甲干1天、乙干2天可完成总数的7/24.问:甲、乙合干需几天完成?6、一件工作,甲、乙合干需6天完成,已知甲单独完成该工作的1/2所需的时间与乙单独完成该工作的1/3所需的时间相等。
问:甲单独完成该工作需多长时间?7、小松读一本书,已读和未读的页数之比是3:4,后来又读了33页,已读和未读的页数之比2变为5:3.这本书共有多少页?8、单独完成一件工程,甲需要24天,乙需要32天。
若甲先做若干天后乙接着做,则共用26天的时间,问:甲做了几天?9、打印一份稿件,甲单独打需50分完成,乙单独打需30分完成。
现在甲单独打若干分钟后,乙接着打完,共42分钟。
问:甲打了稿件的几分之几?10、一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成。
如果甲做3时后由乙接着做,那么还需多少时间才能完成?11、一件工作,先由甲、乙合做4时,完成了它的25%。
再由乙单独做8时,这时还剩下的工作甲单独做还需20时才能全部完成。
甲单独做这件工作需多长时间?12、几个同学去割两块草地的草,甲地的面积是乙地的4倍,开始他们在甲地割了半天,后来他们分开,一半同学在甲地割,另一半同学在乙地割,又割了半天,乙地割完了。
问:甲地剩下的草他们一起干还需几天?13、一水池装有一个放水管和一个排水管,单开放水管5时可将水池灌满,单开排水管7时可将满池水排完。
奥数:4-1-5图形的分割与拼接题库

本讲主要学习三大图形处理方法: 1.理解掌握图形的分割; 2.理解掌握图形的拼合; 3.理解图形的剪拼.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合. 将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼. 我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.板块一 图形的分割【例 1】 用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法?BAO【解析】 怎样把一个图形按照规定的要求分割成若干部分呢?这就是图形的分割问题.按照规定的要求合理分割图形,是很讲究技巧的,多做这种有趣的训练,可以培养学生的创造性思维,发展空间观念,丰富想象,提高观察能力.这道题要求把长方形平均分割成两块,过长方形中心的任意一条直线都可以把长方形平均分割成两块,根据这点给出如下分法(如右图): ⑴ 做长方形的两条对角线,设交点为O⑵ 过O 点任作一条直线AB ,直线AB 将长方形平均分割成两块.例题精讲图形的分割与拼接可见用线段平分长方形的分法是无穷多的.【巩固】画一条直线,将六边形分成大小相等、形状相同的两部分,这样的直线有 条. 【解析】 无数条.任何过六边形中心的直线均符合要求.【例 2】 把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法. 【解析】 根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积必定相等.而要得到这4个等底等高的小三角形,只需把原三角形的某条边四等分,再将各分点与这边相对的顶点连接起来就行了.根据上面的分析,可得如左下图所示的三种分法.又因为4 14 22=⨯=⨯,所以,如果我们把每一个小三角形的面积看做1,那么14⨯就可以视为把三角形的面积直接分成4等份,即分成4个面积为1的小三角形;而22⨯可以视为先把原三角形分成两等份,再把每一份分别分成两等份.根据前面的分析,在每次等分时,都要想办法找等底等高的三角形. 根据上面的分析,又可以得到如右下图的另两种分法.AB C B AABC【巩固】把任意一个三角形分成面积相等的2个小三角形,有许多种分法.请你画出3种不同的分法.AB C B ABA【解析】 根据等底等高的三角形面积相等这一结论,只要把原三角形分成2个等底等高的小三角形,它们的面积必定相等.而要得到这2个等底等高的小三角形,只需找出原三角形的某条边的中点与这边相对的顶点连接起来就行了.根据上面的分析,可得如图所示的三种分法.【例 3】怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.→ 【解析】 ⑴分成8块的方法是:先取各边的中点并把它们连接起来,得到4个大小、形状相同的三角形,然后再把每一个三角形分成两部分,得到如左上图所示的图形.⑵分成9块的方法是:先把每边三等分,然后再把分点彼此连接起来,得到加上右上图所示的符合条件的图形.【例 4】 下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.321DC BA 1FE 221D C B A【解析】 直角梯形的上底为1,下底为2,要分成两个相同的四边形,需要一条边可以分成1和2,AD 边长正好为3,所以AD 边分成两段,找到AD 的三等分点E ,现在,CD AE =,DE AB =,BF EF =,所以还要找到BC 的中点F ,连接EF ,就把梯形ABCD 分成完全相同的两部分.如右上图.【例 5】 在一块长方形的地里有一正方形的水池(如下图).试画一条直线把除开水池外的这块地平分成两块.AO【解析】 用连对角线的办法找出这块长方形地的中心O 和正方形水池的中心A .过O 、A 画一条直线,这条直线正好能把除开水池外的这块地平分为两块(如右上图).【例 6】 把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗?2060402020【解析】 先把图形分成2040⨯相等的两块,每一块中再分成相等的两份,这样就不难分成四块了,如右上图.【例 7】 下图是一个34⨯的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【解析】 分成的两块每块有1226÷=(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,我们从对称线入手,介绍一种分割技巧——染色法,先选中一个小格,找它关于中心点或中心线的对称位置,标上相应的符号.当找它关于中心线的对称位置时是一种情况,关于中心点的对称位置是另一种情况,具体如下图所示.【巩固】右图是一个44⨯的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【解析】 因为要分割成完全相同的两块,即大小、形状完全相同.方格纸一共有4416⨯=(个)小格,所以分成的两块每块有1628÷=(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,应用染色法,从中心点的一侧入手染色,逐步推进.(建议教师同时呈现六幅空的44⨯格图,不同的变化在不同的图上同时呈现)如下图:【例8】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的四部分.【解析】要求把阴影部分分成四个大小、形状都相同的四个图形,先不考虑形状,大小相同也就是面积相等,也就是把整个图形的面积分成四份,分割后的每一部分占一份.考虑先把阴影部分分成12个小正方形再分成四份,这样每份正好有3个小正方形.再看形状,三个小正方形只能排成“-”形或者“∟”形.答案如下图.【巩固】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的两部分.如果分三部分呢?【解析】从形状,面积两方面综合考虑,很容易就能得到答案.答案如右上图.【巩固】图中是由三个正三角形组成的梯形.你能把它分割成4个形状相同、面积相等的梯形吗?【解析】这道题的要点在于通过计算解决问题,要求把原来三个正三角形分成四个大小、形状都相同的四个梯形,先不考虑形状,大小相同也就是面积相等,即把整个梯形的面积分成四份,分割后的每一个梯形占一份,可以考虑把每一个三角形的面积分成四份,再把三个正三角形中的每一个小三角形合成要求的梯形,这种类型的题目可以从中点入手,找到每个正三角形的中点并连接,如右上图.【例9】下图是由五个正方形组成的图形.把它分成形状、大小都相同的四个图形,应怎样分?【解析】 如果不考虑分成的四个图形的形状,只考虑它们的面积,这就要求把原来五个正方形分成四个面积相等的图形,每个图形的面积应是1个多正方形.我们把每个正方形各分成四个面积相等的小正方形,分成的每块图形应有五个这样的小正方形.根据图形的对称性,我们很快就能得到如右上图的分法.也可以将中间的正方形分成四个小正方形,如右上图.【例 10】 已知左下图是由同样大小的5个正方形组成的.试将图形分割成4块形状、大小都一样的图形.【解析】 已知图形是由同样大小的5个正方形组成的,要分成4块同样大小的图形,则每块图形是54个正方形.由此想到,若把每个正方形都分成4等份,则分割成的每一块中应包含5份.再稍经试验,即得右上图的解(图内部的实线为分割线).【巩固】把右图剪成形状、大小相等的8个小图形,怎么剪?作出分出的小图形.【解析】 总格数为12,用总格数除以8,得到每个小图形应该是一个半小正方形,根据平均一个小图形的格数作图,如右图.【例 11】 下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形.【解析】 通过计算,18÷6=3,说明基本形状是由三个小正方形组成,三个正方形有两种形式:与,通过观察,上面的图形具有对称性,不可能分成6个,再由6结合染色法,如下图.666555444333222111【例 12】 一个正三角形形状的土地上有四棵大树(如下图所示),现要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树.应怎样分?【解析】 由于土地的形状为正三角形,由题意可知,把大三角形的面积分成四份,每一块占一份,且形状与原三角形相同,于是我们想到取大正三角形的各边中点,依次连接各边中点,即可将这块大正三角形的土地分成与它相等的四份,如右上图所示.【总结】本题若死守三角形面积等于底⨯高的一半,则无以下手,引导学生转换一下思考角度,取原三角形各边中点,将原三角形分成面积相等的四部分,问题即可解决.【例 13】 将下图分割成大小、形状相同的三块,使每一小块中都含有一个○.【解析】 图中一共有18个小方格,要求分割成大小、形状相同的三块,每一块有:1836÷=(块),而且分割成大小、形状相同的三块,可以看出图形的中心点是O ,而且上面的部分是对称的,但是只有5块,需要对称的再加上一块,再由图形的特点,可以判断应分为右下图的三部分.O【例 14】 请把下面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪?本读数奥【解析】 图中“奥数”与“读本”中的两个字都是挨着的,所以肯定要在它们中间分割,因此,首先在他们中间划出分割线,因为要将这个长方形分成大小、形状完全相同的4块,因为长方形是64⨯的,所以分割后的每一块都有6小块组成,可以考虑先把长方形分成相同的两部分,再把每一部分分成相同的两部分,如下图所示.本读数奥答案不唯一.【例 15】 (2008年第八届“春蕾杯”小学数学邀请赛初赛)请把下面的图形分成形状、大小都相同的4块,使每一块里面都有“春蕾杯赛”4个字.春春蕾杯赛春春蕾蕾蕾杯杯杯赛赛赛第13题【解析】 如下图所示:图1答案不唯一.【例 16】 学习与思考对小学生的发展是很重要的,学习改变命运,思考成就未来,请你将下图分成形状和大小都相同的四个图形,并且使其中每个图形都含有“学习思考”这四个字.应怎样分?学习思考学习思考学习思考考思习学 (5)(4)(3)(2)(1)【解析】 看到这道题目,我们想到俄罗斯方块,由题意可知,所分出的每一块图形,必须由4个小正方形组成,它的形状不外乎如右上图所示的五种俄罗斯方块,这就控制了搜索的范围.根据原题中各个字的具体位置,上图中有些图形是必须排除的,例如,如果把图⑵与原题右下角22 的正方形重叠,其中“考”字出现了两次,不符合题意,因此,图⑵可以先排除掉. 现在,再固定某一角上的一个小正方形,按其中的字来考虑.如固定右上角写有“考”的小正方形来分析,只有下列4种可能出现的情况:考思习学考思学习学考思习学考思习学习思考考思习学考思习学考思习学【例 17】 如下图所示,请将这个正方形分切成两块,使得两块的形状、大小都相同,并且每一块都含有学而思奥数五个字.学而思奥数数奥思而学→图1 图2【解析】图中有相同汉字挨在一起的情况,肯定要从它们之间切开(图1),因此,首先要在它们之间划出切分线.因为要将这个正方形切开成两块形状和大小都一样的图形,所以其中一块绕中心点旋转180︒必定与另一块重合.要是把切分线也绕中心点旋转180°就可得到一些新的切分线(图2).这就为我们解决问题提供了线索,本题的两种解法如上图所示.【巩固】如下图所示的正方形是由36个小正方格组成的.如图那样放着4颗黑子,4颗白子,现在要把它切割成形状、大小都相同的四块,并使每一块中都有一颗黑子和一颗白子.试问如何切割?【解析】首先在相同颜色的棋子之间划出切分线,以中心旋转90、180、270之后,得到一些新的切分线,同时考虑到每块包含有一颗黑子和一颗白子的要求,以及每一块面积应该是3649÷=,即含有9个小正方格,先找到符合要求的一块后,让它绕中心旋转90、180、270便得到其他三块,如右上图.【例 18】如图,甲、乙是两个大小一样的正方形.要求把每一个正方形分成四块,两个正方形共分为八块,使每块的大小和形状都相同,而且都带一个○.甲乙【解析】一个正方形分成大小和形状都相同的四块,一定是从中心点分开的,只要能找出其中符合题目要求的一块,然后再将这块绕着正方形的中心点分别旋转90、180、270就可以得到另外三块.又因为这个正方形面积为36平方单位,所以分成的每一块的面积都是9平方单位.即每一块都由9个小正方格组成.另外,由于两个正方形要切分成一样大小的四块,因此可将两个正方形重叠在一起考虑.①将两个正方形重叠在一起,如下图所示,为便于区别,将其中一组的“○”改写成“×”.按要求将这重叠的正方形切分成大小、形状都相同的四块,并且每块都有一个“○”和“×”.②图中有相同符号的“○”挨在一起的从中间把它们切开,在它们中间划上截线.并将这些截线绕中心点旋转90、180、270得到另外三段截线.如下图.利用它们设想出划分线.③设想分块从中心位置开始,逐步向外扩散,在里层方格中,先指定某一方格已分入到某小块中,并作上记号(斜线阴影),然后将它绕中心旋转180后得到另一方格分入到另一小块中,也作上记号(横线阴影),如图.对于中间一层方格和最外一层方格,设想分块时一定要紧扣条件:每一块中都要有一个“○”和一个“⨯”.每一块都有9个方格组成,不能断开.下图是分解了的分块过程示意图.④注意到斜线阴影部分已经有了一个“○”和一个“⨯”.那么左下角包含“○”的方格就不能再分到斜线阴影部分去了,而只能将右下角的方格分到斜线阴影部分.于是左上角的方格就应该分给横线阴影部分.空白部分是另外两块. 下就是最后分得的结果.【例 19】 正三角形ABC 的面积是1平方米,将三条边分别向两端各延长一倍,连结六个端点得到一个六边形(如右图),求六边形的面积.CBA【解析】 采用分割法,过A 、B 、C 分别作平行线,得到右上图,其中所有小三角形的面积都相同,所以六边形面积等于13平方米.【巩固】正方形ABCD 的面积是1平方米,将四条边分别向两端各延长一倍,连结八个端点得到一个正方形(如图),求大正方形的面积.DCB A【解析】 四条边分别向两端各延长一倍,很容易可以观察出,大正方形有9个小正方形组成,所以,大正方形的面积是:199⨯=(平方米).【巩固】正六边形ABCDEF 的面积是1平方米,将六条边分别向两端各延长一倍,交于六个点,组成如下图的图形,求这个图形的面积.FE D CB AFE D CBA【解析】采用分割法,连接正六边形的对角线,会发现,所有的三角形面积都相同,一共有12个小三角形,原来正六边形的面积是1平方米,由6个小三角形组成,所以现在的大图形的面积是:122⨯=(平方米)【例20】(第九届“中环杯”小学生思维能力训练活动初赛)如图,它是由15个边长为1厘米的小正方形组成的.⑴请在原图中沿正方形的边线,把它划分为5个大小形状完全相同的图形,分割线用笔描粗.⑵分割后每个小图形的周长是厘米.⑶分割后5个小图形的周长总和与原来大图形的周长相差厘米.第3题【分析】⑴因为总共有15个小正方形,所以分成5个大小形状相同的图形后每个图形应该有1553÷=(个)小正方形,如图.⑵每个小图形的周长为8厘米.⑶5个小图形的周长和:8540⨯=(厘米),原图形的周长:44218⨯+=(厘米),所以相差401822-=(厘米).图1【例21】如何把下图中的三个图形分割成两个相同的部分(除了沿正方形的边进行分割外,还可沿正方形的对角线进行分割).【解析】要把图形分成两个相同的部分,首先要保证分得的两部分面积相同,其次要保证分得的两部分形状相同,从面积入手进行分割会使问题更容易解决.第一个图形一共有6个小正方形,2个三角形,要分割成两块完全相同的部分,每一部分都要有3个正方形、1个三角形,这样很容易就可以解决这个问题了;同样,对第二个图形,一共有7个正方形,2个三角形,因为正方形的个数是奇数,所以,肯定有一个正方形被分成相同的两块,对于这个图形,我们很容易看出有一个正方形的位置很特殊,在最中间,所以考虑将它分成两部分,由对称的原则,从对角线分开;第三个图形更复杂一些,一共有6个正方形,6个三角形,分成的两块每一块都要有3个正方形、3个三角形,因为最上面的两个三角形组合成了一个大的三角形,所以右下方的两个三角形不能分开,再根据对称的原则,就容易解决这个问题了,具体分法见下图.【例22】(2003年《小学生数学报》数学邀请赛)如图,将一个等边三角形分割成互相不重叠的23个较小的等边三角形(这些较小的等边三角形的大小不一定都相同),请在图中画出分割的结果.【解析】分割的方法不唯一,如图所示.【例23】(2005年《小学生数学报》数学邀请赛)如图,将一个正方形分割成互相不重叠的21个小正方形,这些小正方形的大小不一定相同,请画图表示.【解析】分割的方法不唯一,如右图所示.板块二图形的拼合【例24】用两块大小一样的等腰直角三角形能拼成几种常见的图形?【解析】建议用等腰直角三角板,把不同的边进行重合,不要漏掉旋转重合,或者准备一些等腰直角三角形的纸片,由学生拼接后贴到黑板上,见下图:【巩固】用3个等腰直角三角形拼图,要求边与边完全重合,能拼出几种图形?【解析】这种类型的题需要学生亲自操作,建议教师准备材料与学生互动.一共可以拼成如下图的几种形状:【巩固】用同样大小的四块等腰直角三角板,能否拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形?若能,画出示意图.【解析】能用四块同样大小的等腰直角三角板拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形.建议用等腰直角三角板,把不同的边进行重合,不要漏掉旋转重合,或者准备一些等腰直角三角形的纸片,由学生拼接后贴到黑板上,具体拼法如图所示.【例25】下面哪些图形自身用4次就能拼成一个正方形?【解析】 用4块图(4)和图(5)那样的图形显然能够拼成一个大正方形.其实用图(1)、图(2)、图(3)也能拼成一个大正方形,拼法见下图.【例 26】 用下面的3个图形,拼成右边的大正方形.【解析】 首先数一数所有的空格数,一共只有16个,只能组成44⨯的正方形,使用目标倒推法,在右边的大正方形中拼图,仍然使用染色法,相当于把已知图形往右边的大正方形中放,这样就很容易拼合了,如下图:【巩固】用“四连块”拼成一个正方形,按编号画入右边图中.④③②①【解析】 首先数一数所有的空格数,一共只有16个,只能组成44⨯的正方形,目标倒推,在右边的大正方形中拼图,仍然使用染色法,相当于把已知图形往右边的大正方形中放,这样就很容易拼成了,注意标号的位置,具体如下图所示:→→→【例 27】 有6个完全相同的,你能将它们拼成下面的形状吗?【解析】利用染色法以及图形的对称性,对称轴两侧都有三个小图形,按照下面的顺序标号即可完成.→→【例28】(保良局亚洲区城市小学数学邀请赛)三种塑料板的型号如图:(A) (B) (C)已有A型板30块,要购买B、C两种型号板若干,拼成55⨯正方形10个,B型板每块价格5元,C型板每块价格为4元.请你考虑要各买多少块,使所花的总钱数尽可能少,那么购买B、C两种板要花多少元?【解析】要使花的钱尽可能的少,已有30个A型板最好能用上,而价格较贵的B型板尽可能少用,因为A型与B型的面积都为3,所以在拼成的55⨯的正方形中,除了C型外,余下的面积应能被3整除.有25449-⨯=或254121-⨯=能被3整除知,只能用4块C型板或1块C型板,考虑尽可能多地使用A型板,有如下图1、图2的拼法:BCC CCBAAAAAABCA图1图2图1的拼法要花445226⨯+⨯=(元),图2的拼法要花459+=(元),因为只有30块A型板,所以在10快55⨯的正方形中,图2的拼法只能有4块,剩下6块用图1拼法,共需:94266192⨯+⨯=(元)【例29】试用图a中的8个相等的直角三角形,拼成图b中的空心正八边形和图c中的空心正八角星.【解析】把一个直角三角形的斜边与另一个直角三角形的一条直角边重合,同时,斜边上的一个锐角顶点与直角顶点重合,像这样依次摆放下去,便可得空心正八边形.若把一个直角三角形的斜边与另一个直角三角形的直角边的一部分重合,但顶点均不重合,依次摆放下去,便可由这八个相等的直角三角形组成空心正八角星.板块三图形的剪拼【例30】试将一个正方形分成相同的四块,然后用这四块分别拼成三角形、平行四边形和梯形.【解析】要用分成的四块组成三角形,那么剪成得图形一定是三角形,这样平均分成四等分,当然这种分法有好几种.组成图形的时候我们可以换位思考,看如何将三角形、平行四边形、梯形分成大小相等的三角形.如图所示:【例31】把两个小正方形剪开以后拼成一个大正方形.【解析】因为大正方形的面积等于两个小正方形的面积和,所以大正方形的边长不能等于两个小正方形的边长和,而是等于小正方形的对角线的长,所以要沿着两个小正方形的对角线剪开再进行拼接,如右图.【例32】将下图分成4个形状、大小都相同的图形,然后拼成一个正方形.【解析】总共有36块小正方形,所以最后拼成的大正方形边长有6个单位,具体切拼方法如下:【例33】试将一个49⨯的长方形分割成两个大小相等、形状相同的图形,然后拼成一个正方形.【解析】已知长方形格数9436⨯= (个),所以正方形的边长应为6个格,因此可以把长方形上半部分成3个格、6个格,下半部分成6个格、3个格,分成相等的两块,合起来正好拼成一个边长为6个格的正方形,如右下图.。
小学奥数:图形的分割.专项练习及答案解析

几何面积问题除了利用常规的五大模型、各种公式求得之外,还可以用图形分割的思想来做。
我们发现,在迎春杯几何问题中,这类题目很多。
掌握好这种思想方法,可以帮助我们解决很多几何难题。
解题关键:分割其实就是运用特殊的三角形(等角直角三角形、等边三角形等)、正方形、等边图形的特殊性质进行分割而得,所以分割的关键是利用了特殊图形的关系解题。
解题思想:这其实就是一种化整为零的思想,各位同学不仅要学会几何题中的这种方法,更要细细体味这种思想在解决各种问题中的妙用。
模块一、简单分割【例 1】3个相同的正方形纸片按相同的方向叠放在一起(如图),顶点A和B分别与正方形中心点重合,如果所构成图形的周长是48厘米,那么这个图形覆盖的面积是__________平方厘米.【考点】图形的分割【难度】2星【题型】填空【关键词】迎春杯,中年级组,复试,4题【解析】将这3个正方形分割,可知这个图形的周长即为两个正方形纸片的周长之和,故正方形边长为48÷8=6(厘米),则图中每个分割得到的小正方形边长为6÷2=3(厘米),所以这个图形覆盖的面积为6×6×2+3×3×2=90(平方厘米)。
【答案】90平方厘米【例 2】正方形ABCD的面积是1平方米,将四条边分别向两端各延长一倍,连结八个端点得到一个正方形(如图),求大正方形的面积.D CBA【考点】图形的分割【难度】2星【题型】解答【解析】四条边分别向两端各延长一倍,很容易可以观察出,大正方形有9个小正方形组成,所以,大正方形的面积是:199⨯=(平方米).【答案】9平方米例题精讲知识点拨4-2-4.图形的分割【例 3】 将边长为a 的正方形各边的中点连结成第二个正方形,再将第二个正方形各边的中点连结成第三个正方形,依此规律,继续下去,得到下图那么,边长为a 的正方形面积是图中阴影部分面积的________ 倍.【考点】图形的分割 【难度】3星 【题型】填空 【关键词】希望杯,四年级,复赛,第6题,4分 【解析】 阴影部分是大正方形的0.5×0.5×0.5×0.5=116,所以正方形是阴影的16倍 【答案】16倍【例 4】 正三角形ABC 的面积是1平方米,将三条边分别向两端各延长一倍,连结六个端点得到一个六边形(如右图),求六边形的面积.CBA【考点】图形的分割 【难度】3星 【题型】解答 【解析】 采用分割法,过A 、B 、C 分别作平行线,得到右上图,其中所有小三角形的面积都相同,所以六边形面积等于13平方米.【答案】13平方米【例 5】 正六边形ABCDEF 的面积是1平方米,将六条边分别向两端各延长一倍,交于六个点,组成如下图的图形,求这个图形的面积.FED CB A FAB CDE【考点】图形的分割 【难度】3星 【题型】解答 【解析】 采用分割法,连接正六边形的对角线,会发现,所有的三角形面积都相同,一共有12个小三角形,原来正六边形的面积是1平方米,由6个小三角形组成,所以现在的大图形的面积是:122⨯= (平方米)【答案】2平方米【例 6】 长方形ABCD 的面积是40平方厘米,E 、F 、G 、H 分别为AC 、AH 、DH 、BC 的中点。
小学数学奥林匹克辅导及练习三角形的分割(一)-.doc

三角形的分割(一)同学们大家好!三角形的面积的计算方法大家已经知道了,今天我再告诉大家一个规律:等底等高的三角形面积相等。
这是一个非常重要的规律,在解决多边形面积的许多问题中都要用到它。
今天,我们就一起来研究应用这一规律可以解决哪些问题。
【典型例题】一. 阅读思考:例1. 有一个三角形花坛,想把它平均分成两个相等的三角形,可以怎样分?分析与解答:因为“等底等高的三角形面积相等”,所以要把这个三角形花坛平均分成两个相等的三角形,就是把这个三角形花坛分成两个等底等高的三角形就可以了。
而三角形的每条边都可以作三角形的底,所以我们只要把这三条边分别二等分,再把中点与这条边相对的顶点连接起来就可以了。
例2. 将任一三角形分成面积相等的六个三角形,应怎么分?分析与解:根据等底等高的三角形面积相等这一结论,只要把原三角形分成六个等底等高的小三角形,它们的面积就必然相等。
而要找这六个等底等高的小三角形,只需把三角形的某一边六等分,再将各分点与这边相对的顶点连结起来即可。
如图(1)图(1)又因为,所以,如果我们把每一个小三角形的面积看成1,即而可以看成是先把原三角形等分两份,再把每一份分别等分成三份。
C图(2)同理,可以看成是先把原三角形等分成三份,然后再把每一份等分成两份。
即A A AB C图(3)类似于这样的分法,我们还可以画出许多,这里就不一一列举了。
这两道例题有一个共同的思路,就是想办法找出等底等高的三角形,而找这种三角形,就要几等分某一条线段。
如果两个三角形的底相等,高不相等,它们的面积有什么关系呢?如果两个三角形底的长度相等,高的长度不相等,那么它们的面积之比正好等于这两个三角形高的长度比。
同样的道理,我们还可以推出,如果两个三角形高的长度相等,底的长度不相等,那么这两个三角形的面积之比正好等于它们的底的长度比,因此我们有下面的结论:如果甲、乙两个三角形的底(高)的长度相等,那么甲、乙两个三角形的面积之比等于它们的高(底)的长度之比。
八年级数学奥林匹克竞赛训练题1.因式分解ok

第一讲 因式分解班级__________学号__________姓名______________得分______________一、选择题1.下列由左边到右边的变形中,其中是因式分解的是 ( )(A )(2a +3)(2a -3)=4a 2-9(B )4m 2-9=(2m +3)(2m -3)(C )m 2-16+3m =(m +4)(m -4)+3m (D )2x (y +z )-3(y +z )=2xy +2xz -3y -3z2.下面各式的因式分解中,正确的是 ( )(A )-7ab -14+49aby =7ab (1-2x +7y )(B )-3x m y n +x m +1y n -1=-3x m y n -1(y +3x )(C )6(a -b )2-2(b -a )=2(a -b )(3a -3b +1) (D )xy (x -y )-x (y -x )=x (x -y )(y -1) 3.下面各式的因式分解中,正确的是( )(A )1-8(a +b )3=(1-2a +2b )(1+2a +2b +4a 2+4ab +b 2) (B )(x 2+y 2)2-4x 2y 2=(x 2+y 2+2xy )(x 2+y 2-2xy ) (C )8a -4a 2-4=4(a -1)2(D )a 2(x -y )+b 2(y -x )=(x -y )(a +b )(a -b ) 4.下面各式的因式分解中,正确的是 ( )(A )ab -a +b +1=(a -1)(b +1) (B )4xy +1-4x 2-y 2=(1+2x -y )(1-2x -y ) (C )3a -3b +3x -bx =(a -b )(3-x ) (D )-4xy +1-4x 2-y 2=(1+2x +y )(1-2x -y )5.下列因式分解的变形中,正确的是 ( )(A )x 2-(a +1)x +a 2=(x -1)(x -a )(B )m 2+65m +61=(2m +1)(3m +1)(C )y 2+(a 2+b 2)·y +a 2b 2=(y +a 2)(y +b 2)(D )(x 2-3x )2-2(x 2-3x )-8=(x -1)(x -2)(x +4)(x -1) 二、填空题1.在代数式:(1)4x 2-4x +1,(2)m 2+mn +n 2,(3)64n 2+1中是完全平方式的是__________. 2.若2x 2+ax -9被2x -3除后余3,则商式是__________,且a =__________.3.在一个边长12.75平厘米的正方形内挖去一个边长为7.25厘米的正方形,则剩下的面积就是___________. 4.乘积(1-221)(1-231) (1)291)(1-2101)=________________.5.已知一个正六位数,前三位数字与后三位数字完全相同,那么这个六位数一定能被质数___________整除.三、解答题1.分解因式(1)x4+2x2-3;(2)x4+2x2+9;(3)(1-a2)(1-b2)-4ab;(4)x2-xy+2x-y-3;(5)a2+(a+1)2+a2(a+1)2;(6)(m+n)3+2mn(1-m-n)-1;(7)(a2+a+1)(a2+a+2)-12;(8)12x4-56x3+89x2-56x+12.2.已知三角形的三条边a,b,c适合等式:a3+b3+c3=3abc,请确定三角形的形状.3.已知:三个连续奇数,它们的平方和为251,求这三个奇数.4.已知:2x-3和3x+1是f(x)=ax3+bx2+32x+15的因式,求a,b的值.5.证明:(1)若n为整数,则(2n+1)2-(2n-1)2一定是8的倍数;(2)若n为正整数时,n3-n的值必是6的倍数;(3)四个连续自然数的积加1必为一完全平方数.更多数学资料,请点击:/user/925/index.html(hnnylpzの初中数学教育)。
奥林匹克训练题库·分割

分割
1 将长10cm宽9cm的长方形分割成若干个边长为整数厘米的小正方形,怎样能使分割成的小正方形数目尽量少?
2 一张长13cm宽11cm的长方形纸片,最多可以裁成多少个长5cm
宽3cm的小长方形?怎样裁?
3 用四种不同的方法将任意一个三角形分成四个面积相等的三角形。
4 左下图是一个3×4的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整。
5 右上图是一个4×4的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整。
6将下列各图各自分成四个大小相等、形状相同的图形:
7将下列各图各自分成三个大小相等、形状相同的图形:
8将下列各图各自分成五个大小相等、形状相同的图形:
9将下列各图各自分成两个大小相等、形状相同的图形:
10将下列各图各自分成大小、形状都相同的三块,并且每块带一个小圆圈:
11将下列各图各自分成大小、形状相同的四块,并且每块都带一个小圆圈:
12将左下图分成大小、形状都相同的四块,并且每块带黑子和白子各一个。
13右上图是一个直角梯形,BC=2CD,试将其分成四个大小相等、形状相同的图形。
14右图是一个直角梯形(单位:cm)。
请你画一条线段,把它分成两个形状相同并且面积相等的四边形。
15将下列各图各自分割成八个形状、大小都相同的图形:。
奥林匹克数学竞赛试题

奥林匹克数学竞赛试题题目1一辆车从A地以匀速行驶到B地,全程360公里,用时4小时。
然后车主休息了2小时,再以同样的速度从B地返回A地。
在返回的路程中,车主发现车的速度比从A到B的时候慢了20%。
求车主返回A地所用的时间。
题目2在正方形ABCDEF中,用折线连接顶点A、C、D、B、E、F,使得图形周长最小,请问这条折线的长度是多少?题目3在数轴上,有N个点,坐标依次为x1、x2、…、xn。
我们需要选择这些点中的两个点,并将数轴分为三段,使得这三段长度之和最小。
请问,最小的长度之和是多少?题目4将正方形分成两个部分,一部分为黄色,一部分为红色,分界线为一条线段,这条线段不一定是正方形的边。
已知黄色部分的面积比红色部分的面积大9倍,求这条线段的长度是正方形边长的多少倍?题目5已知五角星的每条边的长度是x,五角星的周长是y。
请问,x和y有什么样的关系?题目6甲、乙、丙三个人相互竞赛,比赛规则如下:每个人接力跑100米,甲先跑,然后乙跑,最后丙跑。
已知甲、乙、丙三人的速度比为3:4:5。
假设他们都跑完100米所用的时间是相同的,求甲跑完全程的耗时是乙和丙总耗时的多少倍?题目7已知等比数列a n的前5项和是31,前10项和是2047,求a3和a6的和。
题目8一个立方体的表面积是24平方厘米,一个小正方体的体积是1立方厘米。
在这个立方体中,最多可以放多少个小正方体?题目9已知等差数列a n的前三项和为6,前六项和为21,求a9。
题目10在空间直角坐标系中,已知点A(1, -2, 3)和点B(4, -1, 6)。
求点A和点B之间的距离。
以上是奥林匹克数学竞赛的一些试题,希望对大家的数学学习有所帮助!。
第二届奥林匹克分区联赛初赛试题(初中组)参考答案

第二届全国青少年信息学(计算机)奥林匹克分区联赛初赛(初中组)参考答案一、基础知识部分:1.①A:\TB>COPY \TP\D11\F1.TXT \DOS\D31②A:\TB>DEL\ TB\*.*A:\TB>RD TB③A:\TB>\DOS\FORMA T B:/42.错误:向B盘写入时发现写保护。
校正:可在驱动器灯不亮时取出B盘,去掉写保护然后重新插入B驱动器,回答R,重新写入。
3.(21)10=(15)16=(25)8=(10101)24.X=12245.(注:除A6 为1分外,其余每空为0.5分)7.设A0……A N存储在数组A中:BASIC PASCAL10 Y=1 Y:=1;20 FOR I=N TO 0 STEP-1 FOR I:=N DOWNTO 0 DO30 Y=Y*X+A(I)Y:=Y*X+A[I];40 NEXT I8.IF I>=J THEN K=(I*(I-1))/2+J ELSE K=(J*(J-1))/2+I9.第二次比较(S1,S2):S1>S2 取K=K+0S1<S2 取K=K+9S1=S2 取K=K+18第三次比较(S1,S2):S1>S2 取K=K+0S1<S2 取K=K+3S1=S2 取K=K+6第四次比较(S1,S2):S1>S2 AK+1 为最大数S1<S2 AK+2 为最大数S1=S2 AK+3 为最大数二、程序设计部分:PASCAL语言BASIC语言1.①N-1 50 N-1②I+1 60 I+1③S:=S +1;70 S=S+12.①A[0]:=0;30 A(0)=0②K>A[J-I] 50 K<=A(J-I)③K:=K-J 60 K=K-J④A[L]:=A[L]+1 100 A(L)=A(L)+1⑤J-1 120 J-13.①B:=N;50 B=B②R<=B 60 R>B③A[B]=0 70 A(B)=2④A[B]=1 80 A(B)=1⑤Y:=Y-1 120 Y=Y-1⑥B:=B-1;120 B=B-1。
小学数学奥林匹克竞赛裂项法(含答案)

裂项法(一)同学们知道:在计算分数加减法时,两个分母不同的分数相加减,要先通分化成同分母分数后再计算。
(一)阅读思考例如1314112-=,这里分母3、4是相邻的两个自然数,公分母正好是它们的乘积,把这个例题推广到一般情况,就有一个很有用的等式:111111 1111n nnn nnn n n nn n n n-+=++-+ =+-+=+()()()()即11111 n n n n-+=+()或11111 n n n n ()+=-+下面利用这个等式,巧妙地计算一些分数求和的问题。
【典型例题】例1. 计算:119851986119861987119871988119941995⨯+⨯+⨯++⨯……+⨯+⨯+1 199519961 1996199711997分析与解答:1 1985198611985119861 1986198711986119871 1987198811987119881 199419951199411995⨯=-⨯=-⨯=-⨯=-……11995199611995119961199619971199611997⨯=-⨯=- 上面12个式子的右面相加时,很容易看出有许多项一加一减正好相互抵消变为0,这一来问题解起来就十分方便了。
11985198611986198711987198811995199611996199711997⨯+⨯+⨯++⨯+⨯+… =-+-+-++-+-+=119851198611986119871198711988119951199611996119971199711985…… 像这样在计算分数的加、减时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以相互抵消,从而使计算简化的方法,我们称为裂项法。
例2. 计算:1111211231123100+++++++++++…… 公式的变式11221+++=⨯-…n n n ()当n 分别取1,2,3,……,100时,就有112121122231123234112342451121002100101=⨯+=⨯++=⨯+++=⨯+++=⨯ (1)11121123112100212223234299100210010121121231341991001100101211212131314199110011001101211101++++++++++=⨯+⨯+⨯++⨯+⨯=⨯⨯+⨯+⨯++⨯+⨯=⨯-+-+-++-+-=⨯-……………()()() =⨯==2100101200101199101例3. 设符号( )、< >代表不同的自然数,问算式1611=+<>()中这两个符号所代表的数的数的积是多少?分析与解:减法是加法的逆运算,1611=+<>()就变成1611-=<>(),与前面提到的等式11111n n n n -+=+()相联系,便可找到一组解,即1617142=+ 另外一种方法设n x y 、、都是自然数,且x y ≠,当111n x y=+时,利用上面的变加为减的想法,得算式x n nx y-=1。
数学奥林匹克竞赛试卷初中

一、选择题(每题5分,共50分)1. 下列各数中,能被3整除的是()A. 2B. 7C. 12D. 252. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是()A. 20cmB. 22cmC. 24cmD. 26cm3. 已知函数y=2x+1,若x=3,则y的值为()A. 5B. 6C. 7D. 84. 在下列各组数中,有最大公约数4的是()A. 16,24B. 12,18C. 20,28D. 15,215. 一个长方体的长、宽、高分别为5cm、4cm、3cm,那么它的体积是()A. 60cm³B. 72cm³C. 80cm³D. 90cm³6. 已知x²-5x+6=0,则x的值为()A. 2B. 3C. 4D. 57. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)8. 下列各图中,是轴对称图形的是()A.B.C.D.9. 下列各数中,有最小公倍数120的是()A. 24,40B. 30,48C. 36,50D. 42,6010. 已知a²+b²=c²,则下列结论正确的是()A. a、b、c都是正数B. a、b、c都是负数C. a、b、c都是整数D. a、b、c都是正整数二、填空题(每题5分,共50分)11. 若a+b=5,ab=6,则a²+b²的值为______。
12. 0.5+0.2+0.1+…+0.05+0.01+0.005+…+0.0005+0.0001的和为______。
13. 一个数的平方根是±2,那么这个数是______。
14. 下列各数中,是质数的是______。
15. 一个圆的半径增加了50%,那么这个圆的面积增加了______。
16. 若一个等边三角形的边长为a,那么它的周长是______。
小学奥林匹克之三角形的分割(二)(含答案)-

三角形的分割(二)同学们大家好!在上一讲中,我们一起研究了“三角形的分割”的一些知识。
其中有一条很重要的知识“等底等高的三角形面积相等”。
今天我们这一讲一起来研究这些知识的应用。
【典型例题】一. 阅读思考:例1. 如图,点D、E、F与点G、H、N分别是三角形ABC与三角形DEF各边的中点。
那么阴影部分的三角形面积的和是三角形ABC的面积的。
(十一届迎春杯决赛题)分析与解答:因为D、E、F分别为AB、BC、AC的中点,所以DE、EF、DF分别平行于AC、AB、BC,所以是等底等高的三角形,,分别是等底等高的三角形。
解:即例2. 下图中,三角形ABC的面积是12平方厘米。
并且BE=2EC,F是CD的中点。
那么阴影部分的面积是()平方厘米。
(第十二届迎春杯训练题)分析与解答:因为的高相等,而BE=2EC,所以的面积是面积的2倍。
解:(平方厘米)(平方厘米)又因为所以(平方厘米)于是又(平方厘米)所以(平方厘米)(平方厘米)【模拟试题】(答题时间:30分钟)二. 尝试练习:1. 有一张等腰直角三角形的纸片,沿它的斜边上的高把这个三角形对折;再沿小三角形的斜边上的高把它对折;再沿更小三角形斜边上的高把它对折。
这时,得到一个直角边的长是2厘米的等腰直角三角形(如下图中阴影部分)。
那么,原来的等腰直角三角形纸片的面积是多少平方厘米?2. 如下图,已知三角形ABC面积是1平方厘米,延长AB至D,使BD=AB,延长BC 至E,使CE=2BC,延长CA至F,使AF=3AC,求三角形DEF的面积。
3. 在下图中,中,E、D、G分别是AB、BC、AD的中点,图中与等积的三角形一共有多少个?4. 在图中,的面积是52平方厘米,AC=13,是等腰直角三角形,又由面积相等,求的面积是多少?5. A是所在边上的中点,B点在边上距顶点C三分之一处,阴影部分,那么(),()奥数要从小学抓起,培养孩子的数学思维能力。
最后希望同学们在做题的过程中养成不断总结的好习惯,考试中避免出现技术性错误,在各类考试中取得最好的成绩!最后希望同学们在做题的过程中养成不断总结的好习惯,考试中避免出现技术性错误,在各类考试中取得最好的成绩!。
奥林匹克数学竞赛因式分解

奥林匹克数学竞赛因式分解因式分解是多项式乘法的逆向运算,是代数恒等变形的基础,体现了一种化归的思想.提取公因式法、公式法、二次三项式的十字相乘法、分组分解法是因式分解的基本方法,下面是店铺为你整理的奥林匹克数学竞赛因式分解,一起来看看吧。
奥林匹克数学竞赛因式分解十二种方法1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、分解因式x-2x-x(2003淮安市中考题)x-2x-x=x(x-2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a+4ab+4b(2003南通市中考题)解:a+4ab+4b=(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m+5n-mn-5m解:m+5n-mn-5m=m-5m-mn+5n=(m-5m)+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x-19x-6分析:1-3722-21=-19解:7x-19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x+3x-40解x+3x-40=x+3x+()-()-40=(x+)-()=(x++)(x+-)=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
四年级下册数学试题-奥数专题讲练:5 图形的分割与拼接 竞赛篇(解析版)全国通用

第五讲图形的分割与拼接卷Ⅰ教学目标本章内容比较抽象,在这一讲中我们主要学习几种图形处理方法:1、理解掌握图形的分割;2、理解掌握图形的拼合;3、理解图形的剪拼;4、利用剪拼图形计算、解决问题.本章中很多类型的题目还要求同学们去动手尝试.通过本章知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.有8个相等的直角三角形,你能拼成下图中的空心正八角星吗?想挑战吗分析:把一个直角三角形的斜边与另一个直角三角形的直角边的一部分重合,但顶点均不重合,依次摆放下去,便可由这八个相等的直角三角形组成如右图所示的空心正八角星.专题精讲把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.(一)图形的分割【例1】(★★★)把如右图这样由五个正方形组成的图形,分成四块大小、形状都相同的图形→→分析:从面积考虑,把整个图形的面积分成四份,分割后的每一部分占一份.正方形,则可把每个正方形分成四个面积相等的小正方形,每块图形应有五个这样的小正方形,如右上图所示.[前铺]如右图所示是由三个正方形组成的图形,请把它分成大小、形状都相同的四个图形?→→分析:要求把原来三个正方形分成四个大小、形状都相同的四个图形,先不考虑形状,大小相同也就是面积相等,也就是把整个图形的面积分成四份,分割后的每一部分占一份,可以考虑把每一个正方形的面积分成四份,再把三个正方形中的每一个小正方形合成要求的图形,如右上图所示.[巩固]右图是由五个正方形组成的图形.把它分成形状、大小都相同的四个图形,应怎样分?分析:如果不考虑分成的四个图形的形状,只考虑它们的面积,这就要求把原来五个正方形分成四个面积相等的图形,每个图形的面积应是1个多正方形.我们把每个正方形各分成四个面积相等的小正方形,分成的每块图形应有五个这样的小正方形.根据图形的对称性,我们很快就能得到如右上图的分法.【例2】(★★★★)怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.→分析:(1)分成8块的方法是:先取各边的中点并把它们连接起来,得到4个大小、形状相同的三角形,然后再把每一个三角形分成一半,得到如左上图所示的图形.(2)分成9块的方法是:先把每边三等分,然后再把分点彼此连接起来,得到加上右上图所示的符合条件的图形.[前铺]把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法.分析:根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积必定相等.而要得到这4个等底等高的小三角形,只需把原三角形的某条边四等分,再将各分点与这边相对的顶点连接起来就行了.根据上面的分析,可得如左上图所示的三种分法.又因为4=l×4=2×2,所以,如果我们把每一个小三角形的面积看做1,那么1×4就可以视为把三角形的面积直接分成4等份,即分成4个面积为1的小三角形;而2×2可以视为先把原三角形分成两等份,再把每一份分别分成两等份.根据前面的分析,在每次等分时,都要想办法找等底等高的三角形.根据上面的分析,又可以得到如右上图的另两种分法.【例3】(★★★★)如下图所示,请将这个正方形分切成两块,使得两块的形状、大小都相同,并且每一块都含有学而思奥数五个字.→图1 图2分析:图中有相同汉字挨在一起的情况,肯定要从它们之间切开(图1),因此,首先要在它们之间划出切分线.因为要将这个正方形切开成两块形状和大小都一样的图形,所以其中一块绕中心点旋转180°必定与另一块重合.要是把切分线也绕中心点旋转180°就可得到一些新的切分线(图2).这就为我们解决问题提供了线索,本题的两种解法如上图所示.[拓展] 如右图所示的正方形是由36个小正方格组成的.如图那样放着4颗黑子,4颗白子,现在要把它切割成形状、大小都相同的四块,并使每一块中都有一颗黑子和一颗白子.试问如何切割?分析:首先在相同颜色的棋子之间划出切分线,以中心旋转90°、180°、270°之后,得一些新的切分线,同时考虑到每块包含有一颗黑子和一颗白子的要求,以及每一块面积应该是36÷4=9,即含有9个小正方格,先找到符合要求的一块后,让它绕中心旋转90°、180°、270°便得到其他三块,如右上图.【例4】如图,甲、乙是两个大小一样的正方形.要求把每一个正方形分成四块,两个正方形共分为八块,使每块的大小和形状都相同,而且都带一个○.分析:一个正方形分成大小和形状都相同的四块,一定是从中心点分开的,只要能找出其中符合题目要求的一块,然后再将这块绕着正方形的中心点分别旋转90°、180°、270°就可以得到另外三块.又因为这个正方形面积为36平方单位,所以分成的每一块的面积都是9平方单位.即每一块都由9个小正方格组成.另外,由于两个正方形要切分成一样大小的四块,因此可将两个正方形重叠在一起考虑.①将两个正方形重叠在一起,如右图所示,为便于区别,将其中一组的“○”改写成“×”.按要求将这重叠的正方形切分成大小、形状都相同的四块,并且每块都有一个“○”和“×”.②图中有相同符号的“○”挨在一起的从中间把它们切开,在它们中间划上截线.并将这些截线绕中心点旋转90°、180°、270°得到另外三段截线.如右图.利用它们设想出划分线.③设想分块从中心位置开始,逐步向外扩散,在里层方格中,先指定某一方格已分入到某小块中,并作上记号(斜线阴影),然后将它绕中心旋转180°后得到另一方格分入到另一小块中,也作上记号(横线阴影),如右图.对于中间一层方格和最外一层方格,设想分块时一定要紧扣条件:每一块中都要有一个“○”和一个“×”.每一块都有9个方格组成,不能断开.下图是分解了的分块过程示意图.④注意到斜线阴影部分已经有了一个“○”和一个“×”.那么左下角包含“○”的方格就不能再分到斜线阴影部分去了,而只能将右下角的方格分到斜线阴影部分.于是左上角的方格就应该分给横线阴影部分.空白部分是另外两块.右图就是最后分得的结果.(二)图形的拼合【例5】(★★★★)用6个完全一样的等腰直角三角形拼图,要求边与边完全重合.你能拼出几种图形?把它们画出来.分析:建议用等腰直角三角板,把不同的边进行重合,不要漏掉旋转重合,或者准备一些等腰直角三角形的纸片,由学生拼接后贴到黑板上,见下图[前铺]用3个等腰直角三角形拼图,要求边与边完全重合,能拼出几种图形?分析: 这种类型的题需要学生亲自操作,建议教师准备材料与学生互动。
小学奥数几何专题--图形剪拼(六年级)竞赛测试.doc

小学奥数几何专题--图形剪拼(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法?【答案】无穷多【解析】怎样把一个图形按照规定的要求分割成若干部分呢?这就是图形的分割问题.按照规定的要求合理分割图形,是很讲究技巧的,多做这种有趣的训练,可以培养学生的创造性思维,发展空间观念,丰富想象,提高观察能力.这道题要求把长方形平均分割成两块,过长方形中心的任意一条直线都可以把长方形平均分割成两块,根据这点给出如下分法(如右图):⑴ 做长方形的两条对角线,设交点为⑵ 过点任作一条直线,直线将长方形平均分割成两块.可见用线段平分长方形的分法是无穷多的.【题文】把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法.【答案】【解析】根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积必定相等.而要得到这4个等底等高的小三角形,只需把原三角形的某条边四等分,再将各分点与这边相对的顶点连接起来就行了.根据上面的分析,可得如左下图所示的三种分法.又因为,所以,如果我们把每一个小三角形的面积看做1,那么就可以视为把三角形的面积直接分成4等份,即分成4个面积为1的小三角形;而可以视为先把原三角形分成两等份,再把每一份分别分成两等份.根据前面的分析,在每次等分时,都要想办法找等底等高的三角形.根据上面的分析,又可以得到如右评卷人得分下图的另两种分法.【题文】把任意一个三角形分成面积相等的2个小三角形,有许多种分法.请你画出3种不同的分法.【答案】【解析】根据等底等高的三角形面积相等这一结论,只要把原三角形分成2个等底等高的小三角形,它们的面积必定相等.而要得到这2个等底等高的小三角形,只需找出原三角形的某条边的中点与这边相对的顶点连接起来就行了.【题文】怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.【答案】→【解析】⑴分成8块的方法是:先取各边的中点并把它们连接起来,得到4个大小、形状相同的三角形,然后再把每一个三角形分成两部分,得到如左上图所示的图形.⑵分成9块的方法是:先把每边三等分,然后再把分点彼此连接起来,得到加上右上图所示的符合条件的图形.【题文】下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.【答案】【解析】直角梯形的上底为1,下底为2,要分成两个相同的四边形,需要一条边可以分成1和2,边长正好为3,所以边分成两段,找到的三等分点,现在,,,,所以还要找到的中点,连接,就把梯形分成完全相同的两部分.如右上图.【题文】在一块长方形的地里有一正方形的水池(如下图).试画一条直线把除开水池外的这块地平分成两块.【答案】 【解析】用连对角线的办法找出这块长方形地的中心O和正方形水池的中心A.过O、A画一条直线,这条直线正好能把除开水池外的这块地平分为两块(如右上图).【题文】把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗?【答案】【解析】先把图形分成相等的两块,每一块中再分成相等的两份,这样就不难分成四块了,如右上图.【题文】下图是一个的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【答案】【解析】分成的两块每块有(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,我们从对称线入手,介绍一种分割技巧——染色法,先选中一个小格,找它关于中心点或中心线的对称位置,标上相应的符号.当找它关于中心线的对称位置时是一种情况,关于中心点的对称位置是另一种情况。
分割图形练习题

分割图形练习题在本练习题中,我们将探索和解决有关分割图形的问题。
通过这些练习题,你将学习如何将不同的图形分割成特定的部分,并且提升你的空间感知能力。
请按照以下要求完成每个练习题。
练习题一:矩形分割给定一个矩形的长度为L,宽度为W。
请将这个矩形分割成N个相等的小矩形,使得每个小矩形都具有最大的面积。
请写下你的解决方案步骤。
解决方案:1. 计算矩形的总面积,公式为 L × W。
2. 将总面积除以 N,得到每个小矩形的面积,记作 A。
3. 找到一个正整数 M,使得 M × A 最接近且小于等于总面积。
4. 将矩形的长度 L 分割成 M 段,宽度 W 保持不变,得到 M 个小矩形。
5. 每个小矩形的长度为 L/M,宽度为 W。
练习题二:圆形分割给定一个半径为R 的圆形。
请将这个圆形分割成N 个相等的扇形,使得每个扇形都具有最大的面积。
请写下你的解决方案步骤。
解决方案:1. 计算圆形的总面积,公式为π × R^2。
2. 将总面积除以 N,得到每个扇形的面积,记作 A。
3. 计算每个扇形的圆心角度数,公式为 360/N。
4. 将圆形分割成 N 个等角度的扇形。
练习题三:三角形分割给定一个任意形状的三角形 ABC,我们需要将这个三角形分割成 N 个小三角形,并使每个小三角形都具有相等的面积。
请写下你的解决方案步骤。
解决方案:1. 计算三角形 ABC 的面积,使用海伦公式或其他合适的方法。
2. 将总面积除以 N,得到每个小三角形的面积,记作 A。
3. 选择三个点 A、B、C,构成一个小三角形,使得这个小三角形的面积最接近且小于等于 A。
4. 将三角形 ABC 划分成 N 个小三角形,每个小三角形的面积都为A。
练习题四:多边形分割给定一个多边形 P,我们需要将这个多边形分割成 N 个小多边形,并使每个小多边形都具有相等的面积。
请写下你的解决方案步骤。
解决方案:1. 计算多边形 P 的总面积,使用绿公式或其他适当的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分割
1 将长10cm宽9cm的长方形分割成若干个边长为整数厘米的小正方形,怎样能使分割成的小正方形数目尽量少?
2 一张长13cm宽11cm的长方形纸片,最多可以裁成多少个长5cm
宽3cm的小长方形?怎样裁?
3 用四种不同的方法将任意一个三角形分成四个面积相等的三角形。
4 左下图是一个3×4的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整。
5 右上图是一个4×4的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整。
6将下列各图各自分成四个大小相等、形状相同的图形:
7将下列各图各自分成三个大小相等、形状相同的图形:
8将下列各图各自分成五个大小相等、形状相同的图形:
9将下列各图各自分成两个大小相等、形状相同的图形:
10将下列各图各自分成大小、形状都相同的三块,并且每块带一个小圆圈:
11将下列各图各自分成大小、形状相同的四块,并且每块都带一个小圆圈:
12将左下图分成大小、形状都相同的四块,并且每块带黑子和白子各一个。
13右上图是一个直角梯形,BC=2CD,试将其分成四个大小相等、形状相同的图形。
14右图是一个直角梯形(单位:cm)。
请你画一条线段,把它分成两个形状相同并且面积相等的四边形。
15将下列各图各自分割成八个形状、大小都相同的图形:。