高中数学必修3第三章 3.2

合集下载

高中数学北师大版必修3 3.2 教学设计 《互斥事件》(数学北师大必修3)

高中数学北师大版必修3 3.2 教学设计 《互斥事件》(数学北师大必修3)

《互斥事件》互斥事件与对立事件是北师大版数学必修3第三章第2节的内容,新课标的要求是:理解互斥事件概念,掌握互斥事件和对立事件的区别和联系,为以后学习相互独立事件和次独立重复试验做好铺垫,因此这节课有着深化知识层面,拓展能力范围的作用,是本章的重要内容。

之 【知识与能力目标】理解互斥事件和对立事件的概念,并根据概率计算公式的应用范围和具体运算法则解决简单的概率问题。

【过程与方法目标】通过引导学生判断互斥事件和互为对立事件两个概念的对比学习,提高学生的类比、归纳、探寻事物的能力。

通过不同形式的自主学习和探究活动,体验数学发现和创造的历程,提高学生的合作能力和创造的历程,提高学生的合作解题能力和利用数学知识解决实际应用问题的能力。

【情感与态度目标】通过课堂上学生独立思考、合作讨论,有意识、有目的的培养学生自主学习的学习习惯与协作共进的团队精神;让学生体验成功,激发其求知欲,树立求真知的信心;培养学生的辩证唯物主义观点。

◆ 教材分析◆教学目标【教学重点】:互斥事件和对立事件的概念以及互斥事件的概率计算公式。

【教学难点】:互斥事件与对立事件的区别与联系。

多媒体课件一、互斥事件1.互斥事件的定义:不能同时发生的两个事件称为互斥事件例如,在一个盒子里放有大小相同的10个小球,其中有7个红球,2个绿球,1个黄球.从盒中摸出1个小球得到的结果可能是红球,也可能是绿球或黄球,并且只能是其中一种情况.我们把“从盒中摸出1个小球,得到红球”叫做事件A ,“从盒中摸出1个小球,得到绿球”叫做事件B ,“从盒中摸出1个小球,得到黄球”叫做事件C ,那么这里的事件A 、事件B 、事件C 中的任何两个是不可能同时发生的.事件A 与事件B 、事件B 与事件C 都是互斥事件.从集合的角度来看,事件A 与事件B 是互斥事件,则事件A 所包含的基本事件构成的集合与事件B 所包含的基本事件构成的集合的交集是空集.2.互斥事件有一个发生的概率设A 、B 为互斥事件,当事件A 、B 有一个发生时,我们把这个事件记作A+B .事件A+B 发生的概率等于事件A 、B 分别发生的概率的和,即P (A+B )=P (A )+P (B ),此公式也称概率和公式.例如上例中“从盒中摸出1个小球,得到红球”叫做事件A ,则P (A )=0.7;“从盒中摸出1个小球,得到绿球”叫做事件B ,则P (B )=0.2.若记“从盒中摸出1个小球,得到红球或绿球”为事件D ,则D=A+B ,此时P (D )=P (A )+P (B )=0.7+0.2=0.9.3.一般地,如果事件A1,A2,…,An 中的任何两个都是互斥事件,就说事件A1,A2,…,An 彼此互斥.从集合的角度看,几个事件彼此互斥是指由各个事件所含的结果组成的集合彼此没有公共元素,即两两交集都是空集.一般地,如果事件A 1,A 2,…,A n 两两互斥,则P (A 1+A 2+…+A n )=P (A 1)+P (A 2)◆ 教学重难点 ◆ ◆ 课前准备◆◆ 教学过程。

高中数学必修3第三章课后习题解答

高中数学必修3第三章课后习题解答

新课程标准数学必修3第三章课后习题解答第三章概率3.1随机事件的概率练习(P113)1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面.(2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25.2、略3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1.练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次.练习(P121)1、0.72、0.6153、0.44、D5、B习题3.1 A组(P123)1、D.2、(1)0;(2)0.2;(3)1.3、(1)430.067645≈;(2)900.140645≈;(3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率练习(P140)1、(1)1;(2)38.2、如果射到靶子上任何一点是等可能的,那么大约有100个镖落在红色区域.说明:在实际投镖中,命中率可能不同,这里既有技术方面的因素,又是随机因素的影响,所以在投掷飞镖、射击或射箭比赛中不会以一枪或一箭定输赢,而是取多次成绩的总和,这就是为了减少随机因素的影响.习题3.3 A组(P142)1、(1)49;(2)13;(3)29;(4)23;(5)59.2、(1)126;(2)12;(3)326;(4)326;(5)12;(6)313.说明:(4)是指落在6,23,9三个相邻区域的情况,而不是编号为6,7,8,9,四个区域.3、(1)25; (2)115; (3)35. 说明:本题假设在任何时间到达路口是等可能的. 习题3.3 B 组(P142) 1、设甲到达的时间为x ,乙到达的时间为y ,则0,24x y <<. 若至少一般船在停靠泊位时必须等待,则06y x <-<或06x y <-<,必须等待的概率为:22189711241616-=-=.2、D .第三章 复习参考题A 组(P145)1、56,16,23. 2、(1)0.548; (2)0.186; (3)0.266.3、(1)38; (2)14.4、(1)813; (2)726; (3)665. 5、分别计算两球均为白球的概率、均为红球的概率、均为黑球的概率,然后相加,得1223311166666636⨯⨯⨯++=⨯⨯⨯. 6、56. 说明:利用对立事件计算会比较简单. 第三章 复习参考题B 组(P146)1、第一步,先计算出现正面次数与反面次数相等的概率46328=. 第二步,利用对称性,即出现正面的次数多于反面次数的概率与出现反面的次数多于正面次数的概率是相等的,所以出现正面的次数多于反面次数的概率为35(1)2816-÷=. 2、(1)是; (2)否; (3)否; (4)是.3、(1)45; (2)15; (3)25; (4)25. 说明:此题属于古典概型的一类“配对问题”,由于这里的数比较小,可以用列举法.4、参考教科书140页例4.。

苏教版高中数学必修三-第三章-概率第3章-3.2ppt课件

苏教版高中数学必修三-第三章-概率第3章-3.2ppt课件
§3.2 古典概型
教师用书独具演示
●三维目标 1.知识与技能 (1)理解基本事件的特点; (2)通过实例,理解古典概型及其概率计算公式; (3)会用列举法计算一些随机事件所含的基本事件数及事 件发生的概率.
2.过程与方法 根据本节课的内容和学生的实际水平,通过两个试验的 观察让学生理解古典概型的特征:试验结果的有限性和每一 个试验结果出现的等可能性,观察类比骰子试验,归纳总结 出古典概型的概率计算公式,体现了化归的重要思想,掌握 列举法,学会运用数形结合、分类讨论的思想解决概率的计 算问题.
(2)学法分析: 学生在教师创设的问题情景中, 通过观察、 类比、思考、探究、概括、归纳和动手尝试相结合,体现了 学生的主体地位,培养了学生由具体到抽象,由特殊到一般 的数学思维能力,形成了实事求是的科学态度,增强锲而不 舍的求学精神.
●教学流程
演示结束
课 标 解 读
1.理解等可能事件的意义,能把事件分解成 等可能基本事件.(重点) 2.理解古典概型的特点、等可能事件概率的 计算方法.(重点) 3.掌握古典概型的判断方法.(重、难点)
3.情感态度与价值观 概率教学的核心问题是让学生了解随机现象与概率的意 义,加强与实际生活的联系,以科学的态度评价身边的一些 随机现象。适当地增加学生合作学习交流的机会,尽量地让 学生自己举出生活和学习中与古典概型有关的实例。使得学 生在体会概率意义的同时,感受与他人合作的重要性以及初 步形成实事求是的科学态度和锲而不舍的求学精神.
●重点难点 重点:理解古典概型的概念及利用古典概型求解随机事 件的概率. 难点:如何判断一个试验是否是古典概型,分清在一个 古典概型中某随机事件包含的基本事件的个数和试验中基本 事件的总数.
教学时要以概率与频率的关系为知识的切入点,从学生 的认知水平和所需的知识特点入手,引导学生结合掷骰子试 验,使学生经历从直观到抽象,从特殊到一般的认知,引导 学生概括出古典概型的概念及特征;从而化解难点. 引导学生总结基本事件的特点;通过例题与练习让学生 掌握古典概型概率的求解方法;以强化重点.

高中数学必修2-3第三章3.2独立性检验的基本思想及其初步应用讲解

高中数学必修2-3第三章3.2独立性检验的基本思想及其初步应用讲解

3.2独立性检验的基本思想及其初步应用1.问题导航(1)分类变量的概念是什么?什么是列联表?什么是2×2列联表?(2)等高条形图的优点是什么?如何利用等高条形图判断两个变量之间的关系?(3)独立性检验的概念是什么?怎样进行独立性检验?2.例题导读例1是利用等高条形图和K2值的计算判断秃顶与患心脏病是否有关,请试做教材P97练习.1.分类变量和列联表(1)分类变量变量的不同“值”表示个体所属的_______不同类别,像这样的变量称为分类变量.(2)列联表①定义:列出的两个分类变量的_______频数表称为列联表.②2×2列联表一般地,假设有两个分类变量X和Y,它们的取值分别为_______{x1,x2_______}和_______{y1,y2.2.等高条形图(1)等高条形图与表格相比,更能直观地反映出两个分类变量间是否_______相互影响,常用等高条形图展示列联表数据的_______频率特征.(2)观察等高条形图发现aa+b和cc+d相差很大,就判断两个分类变量之间_______有关系.3.独立性检验(1)定义利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验.(2)K2=_______n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d为样本容量.(3)独立性检验的具体做法①根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查表确定_______临界值k0.②利用公式计算随机变量K2的_______观测值k.③如果_______k≥k0,就推断“X与Y有关系”,这种推断犯错误的概率不超过α,否则,就认为在_______犯错误的概率不超过α的前提下不能推断“X与Y有关系”,或者在样本数据中_______没有发现足够证据支持结论“X与Y有关系”.1.判断(对的打“√”,错的打“×”)(1)列联表中的数据是两个分类变量的频数.()(2)事件A与B的独立性检验无关,即两个事件互不影响.()(3)K2的大小是判断事件A与B是否相关的统计量.()答案:(1)√(2)×(3)√2.在研究两个分类变量之间是否有关时,可以粗略地判断两个分类变量是否有关的是()A.散点图B.等高条形图C.2×2列联表D.以上均不对答案:B3.分类变量X和则下列说法中正确的是()A.ad-bc越小,说明X与Y关系越弱B.ad-bc越大,说明X与Y关系越强C.(ad-bc)2越大,说明X与Y关系越强D.(ad-bc)2越接近于0,说明X与Y关系越强答案:C4.若由一个2×2列联表中的数据计算K2的观测值k=4.013,那么在犯错误的概率不超过________的前提下认为两个变量有关系.答案:0.05详析独立性检验(1)独立性检验是对两个分类变量有关系的可信程度的判断,而不是对其是否有关系的判断.独立性检验的结论只能是有多大的把握认为两个分类变量有关系,而不能是两个分类变量一定有关系或没有关系.(2)列联表中的数据是样本数据,它只是总体的代表,具有随机性,因此,独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论.(3)独立性检验原理:在假设H0下,如果出现一个与H0相矛盾的小概率事件,就推断H0不成立,且该推断犯错误的概率不超过这个小概率.等高条形图的应用(2015·青岛高二检测)某学校对高三学生作了一项调查发现:在平时的模拟考试中,性格内向的学生426人中332人在考前心情紧张,性格外向的学生594人中有213人在考前心情紧张,作出等高条形图,利用图形判断考前心情紧张与性格类别是否有关系.[解]作列联表如下:相应的等高条形图如图所示:图中阴影部分表示考前心情紧张与考前心情不紧张中性格内向的比例,从图中可以看出考前心情紧张的样本中性格内向占的比例比考前心情不紧张样本中性格内向占的比例大,可以认为考前紧张与性格类别有关.利用等高条形图判断两个分类变量是否相关的步骤1.(1)观察下列各图,其中两个分类变量X,Y之间关系最强的是()解析:选D.在四幅图中,D图中两个阴影条的高度相差最明显,说明两个分类变量之间的关系最强.(2)在一次恶劣气候的飞行航程中,调查男女乘客在机上晕机的情况如下表所示,据此解:由数据的列联表可以得到等高条形图为:从图中可以发现男性中晕机的频率与女性中晕机的频率相差较大,故我们认为性别和是否晕机有关系,且在恶劣气候飞行中男性比女性更容易晕机.独立性检验(2014·高考辽宁卷节选)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.[解]将2×2列联表中的数据代入公式计算,得K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=100×(60×10-20×10)2 70×30×80×20=10021≈4.762.因为4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.解决独立性检验问题的基本步骤:(1)根据已知的数据作出列联表.(2)作出相应的等高条形图,可以利用图形做出相应判断.(3)求K2的观测值.(4)判断可能性:与临界值比较,得出事件有关的可能性大小.2.(1)为了探究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.分析学生选报文、理科与对外语的兴趣是否有关?解:列出2×2列联表代入公式得K 2的观测值k =361×(138×52-73×98)2236×125×211×150≈1.871×10-4.∵1.871×10-4<2.706,∴可以认为学生选报文、理科与对外语的兴趣无关. (2)①这种传染病是否与饮用水的卫生程度有关,请说明理由;②若饮用干净水得病5人,不得病50人,饮用不干净水得病9人,不得病22人.按此样本数据分析这种疾病是否与饮用水有关,并比较两种样本在反映总体时的差异.解:①假设H 0:传染病与饮用水无关,把表中数据代入公式得K 2=830×(52×218-466×94)2146×684×518×312≈54.21,∵54.21>10.828,所以拒绝H 0.因此我们有99.9%的把握认为该地区这种传染病与饮用不干净水有关. ②依题意得2×2列联表:此时,K 2的观测值k =86×(5×22-50×9)214×72×55×31≈5.785.由于5.785>5.024,所以我们有97.5%的把握认为该种疾病与饮用不干净水有关.两个样本都能统计得到传染病与饮用不干净水有关这一相同结论,但①中我们有99.9%的把握肯定结论的正确性.②中我们只有97.5%的把握肯定.(本题满分12分)调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据:出生时间在晚上的男婴为24人,女婴为8人;出生时间在白天的男婴为31人,女婴为26人.(1)将下面的2×2(2)能否在犯错误的概率不超过0.1的前提下认为婴儿性别与出生时间有关系? [解] (1)4分(2)由所给数据计算K 2的观测值 k =89×(24×26-31×8)255×34×32×57≈3.689>2.706.8分根据临界值表知P (K 2≥2.706)≈0.10.9分因此在犯错误的概率不超过0.1的前提下认为婴儿的性别与出生的时间有关系.12分 [规范与警示] (1)解答过程中的表格经常因为不认真仔细,把数据填写错误,会直接导致总计出错,也会导致k值求错,另外在利用公式求K2的观测值时经常因为公式用错,数据代入计算错误,而使得独立性检验出错.(2)在解答独立性检验题目中,数据有时比较多,一定不要混淆,要分辨清楚,否则会影响解题的下一步,如本例2×2列联表中数据极易混淆.(3)计算中,有时公式复杂,要记忆准确,同时计算不能失误,如K2的公式很复杂,计算中也不要粗心.1.对于分类变量X与Y的随机变量K2的观测值k,下列说法正确的是()A.k越大,“X与Y有关系”的可信程度越小B.k越小,“X与Y有关系”的可信程度越小C.k越接近于0,“X与Y没有关系”的可信程度越小D.k越大,“X与Y没有关系”的可信程度越大解析:选B.k越大,“X与Y没有关系”的可信程度越小,则“X与Y有关系”的可信程度越大,k越小,“X与Y有关系”的可信程度越小.2.下面是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图中可以看出()A.性别与喜欢理科无关B.女生中喜欢理科的比为80%C.男生比女生喜欢理科的可能性大些D.男生不喜欢理科的比为60%解析:选C.由图知女生中喜欢理科的比为20%,男生不喜欢理科的比为40%,故B、D 不正确.由图知,男生比女生喜欢理科的可能性大些.3.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名由表中数据直观分析,收看新闻节目的观众与年龄________.(填“有关”或“无关”) 解析:因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即b a +b =1858,d c +d =2742,两者相差较大,所以,经直观分析,收看新闻节目的观众与年龄有关.答案:有关4.高中流行这样一句话“文科就怕数学不好,理科就怕英语不好”.下表是一次针对高三文科学生的调查所得的数据.(1)计算a ,(2)文科学生总成绩不好与数学成绩不好有关系吗? 解:(1)由478+a =490,得a =12. 由a +24=c ,得c =12+24=36. 由b +c =913,得b =913-36=877. (2)计算随机变量K 2的观测值:k =913×(478×24-399×12)2490×423×877×36≈6.233>5.024,∵P (k ≥5.024)≈0.025,∴在犯错误的概率不超过0.025的前提下,认为文科学生总成绩不好与数学成绩不好有关系.[A.基础达标]1.下面是2×2则表中a ,b 的值分别为A .94,72 B .52,50 C .52,74 D .74,52 解析:选C.根据列联表的特点,可知:⎩⎪⎨⎪⎧a +21=73,a +22=b ,解得⎩⎪⎨⎪⎧a =52,b =74. 2.下列关于等高条形图的叙述正确的是( )A .从等高条形图中可以精确地判断两个分类变量是否有关系B .从等高条形图中可以看出两个变量频数的相对大小C .从等高条形图中可以粗略地看出两个分类变量是否有关系D .以上说法都不对解析:选C.在等高条形图中仅能粗略判断两个分类变量的关系,故A 错.在等高条形图中仅能够找出频率,无法找出频数,故B 错.3.在研究打鼾与患心脏病之间的关系中,通过收集数据、整理分析数据得到“打鼾与患心脏病有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的.下列说法中正确的是( )A .100个心脏病患者中至少有99人打鼾B .1个人患心脏病,则这个人有99%的概率打鼾C .100个心脏病患者中一定有打鼾的人D .100个心脏病患者中可能一个打鼾的人都没有解析:选D.这是独立性检验,犯错误的概率在不超过0.01的前提下认为“打鼾与患心脏病有关”.这只是一个概率,即打鼾与患心脏病有关的可能性为99%.根据概率的意义可知答案应选D.4.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中由以上数据,计算得到K 的观测值k ≈9.643,根据临界值表,以下说法正确的是( ) A .没有充足的理由认为课外阅读量大与作文成绩优秀有关 B .有0.5%的把握认为课外阅读量大与作文成绩优秀有关 C .有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关解析:选D.根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.5.对两个分类变量A、B的下列说法中正确的个数为()①A与B无关,即A与B互不影响;②A与B关系越密切,则K2的值就越大;③K2的大小是判定A与B是否相关的唯一依据A.1 B.2C.3 D.0解析:选A.①正确,A与B无关即A与B相互独立;②不正确,K2的值的大小只是用来检验A与B是否相互独立;③不正确,也可借助等高条形图等.故选A.6.独立性检验所采用的思路是:要研究X,Y两个分类变量彼此相关,首先假设这两个分类变量彼此________,在此假设下构造随机变量K2.如果K2的观测值较大,那么在一定程度上说明假设________.解析:独立性检验的前提是假设两个分类变量无关系,然后通过随机变量K2的观测值来判断假设是否成立.答案:无关系不成立7.在吸烟与患肺病是否相关的判断中,有下面的说法:①若K2的观测值k>6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有99%的可能患有肺病;③从独立性检验可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有5%的可能性使得推断错误.其中说法正确的是________.解析:K2是检验吸烟与患肺病相关程度的量,是相关关系,而不是确定关系,是反映有关和无关的概率,故说法①不正确;说法②中对“确定容许推断犯错误概率的上界”理解错误;说法③正确.答案:③8根据上述数据分析,我们得出的K 的观测值k 约为________. 解析:由公式可计算得k =102×(27×29-34×12)239×63×61×41≈2.334.答案:2.3349.某生产线上,质量监督员甲在生产现场时,990件产品中有合格品982件,次品8件;不在生产现场时,510件产品中有合格品493件,次品17件.试利用列联表和等高条形图判断监督员甲在不在生产现场对产品质量好坏有无影响.解:根据题目所给数据得如下2×2列联表:∵ad -bc =982×17-8×493=12 750,|ad -bc |比较大,说明甲在不在生产现场与产品质量好坏有关系.相应的等高条形图如图所示.图中两个阴影部分的高分别表示甲在生产现场和甲不在生产现场时样品中次品数的频率.从图中可以看出,甲不在生产现场时样本中次品数的频率明显高于甲在生产现场时样本中次品数的频率.因此可以认为质量监督员甲在不在生产现场与产品质量好坏有关系.10.研究人员选取170名青年男女大学生作为样本,对他们进行一种心理测验,发现60名女生对该心理测验中的最后一个题目的反应是:作肯定的有22名,作否定的有38名;110名男生在相同的题目上作肯定的有22名,作否定的有88名,问:性别与态度之间是否存在某种关系?试用独立性检验的方法判断.解:根据题意,得如下2×2列联表:根据列联表中的数据,得k=170×(22×38-22×88)2110×60×44×126≈5.622>5.024,所以可以在犯错误的概率不超过0.025的前提下认为“性别与态度有关”.[B.能力提升]1.假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其2×2列联表如下:对于以下数据,对同一样本能说明X与Y有关的可能性最大的一组为()A.a=5,b=4,c=3,d=2B.a=5,b=3,c=4,d=2C.a=2,b=3,c=4,d=5D.a=2,b=3,c=5,d=4解析:选D.对于A,|ad-bc|=|10-12|=2;对于B,|ad-bc|=|10-12|=2;对于C,|ad-bc|=|10-12|=2;对于D,|ad-bc|=|8-15|=7.2.有两个分类变量X,Y,其一组的列联表如下所示,其中a,15-a均为大于50.05的前提下认为X,Y有关,则a 的值为( )A .8B .9C .8,9D .6,8解析:选 C.根据公式,得K 2的观测值k =65×[a (30+a )-(15-a )(20-a )]220×45×15×50=13×(13a -60)220×45×3×2>3.841,根据a >5且15-a >5,a ∈Z ,求得a =8,9满足题意.3.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:K 2的观测值:k =50×(13×20-10×7)223×27×20×30≈4.844>3.841.因此,判定主修统计专业与性别有关系,那么这种判断出错的概率为________. 解析:根据k >3.841,可判断在犯错误的概率不超过0.05的前提下,认为主修统计专业与性别有关系.故出错的概率为0.05.答案:0.054试说明心理障碍与性别的关系:________. 解析:由表可知,a =10,b =20,c =10,d =70,a +b =30,c +d =80,a +c =20,b +d =90,n =110,ad =700,bc =200, 把以上数值代入K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=110×(700-200)230×80×20×90≈6.365 7.因为6.365 7>5.024,所以在犯错误的概率不超过0.025的前提下认为心理障碍与性别有关系.答案:在犯错误的概率不超过0.025的前提下认为心理障碍与性别有关系5.某学生对其30位亲属的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数,如图所示.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数大于等于70的人,饮食以肉类为主.)(1)根据茎叶图,帮助这位同学说明其30位亲属的饮食习惯; (2)(3)能否在犯错误的概率不超过0.010的前提下认为“其亲属的饮食习惯与年龄有关”?并写出简要分析.解:(1)30位亲属中50岁以上的人饮食多以蔬菜为主,50岁以下的人饮食多以肉类为主.(2)列联表如表所示:(3)K 2=30×(4×2-8×16)212×18×20×10=10>6.635,所以在犯错误的概率不超过0.010的前提下认为“其亲属的饮食习惯与年龄有关”. 6.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否在犯错误的概率不超过0.010的前提下认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ).解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为70500×100%=14%.(2)K 2的观测值k =500×(40×270-30×160)2200×300×70×430≈9.967.由于9.967>6.635,所以在犯错误的概率不超过0.010的前提下认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.。

高中数学必修三3

高中数学必修三3

高中数学必修三3.2教案
教学重点:椭圆的定义和性质,三要素、离心率和焦点等相关理论知识的掌握。

教学难点:椭圆方程的转化和应用、椭圆的综合应用、以及解答椭圆相关问题的思维能力。

教学准备:教学课件、教学实验装置、教学实验设备、课堂习题
教学过程:
一、导入:通过提问和展示图片等形式引导学生了解椭圆的概念和性质。

二、讲解:介绍椭圆的定义、三要素、离心率、焦点等椭圆的基本概念和性质,以及相关
定理。

三、实验:通过实验装置演示椭圆的性质和形状,帮助学生更直观地理解椭圆的特点。

四、练习:设计一些练习题,让学生灵活运用椭圆的相关知识进行计算和分析,加深对椭
圆的理解。

五、讨论:组织学生进行小组讨论,分享解题思路和方法,探讨解答椭圆问题的多种可能性。

六、总结:总结本节课的内容,强调椭圆的重要性和应用价值,激发学生学习兴趣。

七、作业:布置相关练习作业,巩固学生对椭圆的理解和掌握。

教学反思:本节课通过多种形式和方法引导学生深入了解椭圆的相关知识,激发学生学习
兴趣和解题能力,提高了学生数学素养和应用能力。

2021学年高中数学第3章概率32古典概型321古典概型322整数值随机数randomnumber

2021学年高中数学第3章概率32古典概型321古典概型322整数值随机数randomnumber

19
0.35 [ 抛 掷 这 枚 硬 币 三 次 恰 有 两 次 正 面 朝 上 的 有 010,010,100,100,010,001,100 共 7 组,则抛掷这枚硬币三次恰有两次 正面朝上的概率可以为270=0.35.]
20
合作 探究 释疑 难
21
基本事件及其计数问题
【例 1】 连续掷 3 枚硬币,观察落地后 3 枚硬币是正面向上还 是反面向上.
(1)写出这个试验的所有基本事件; (2)“恰有两枚正面向上”这一事件包含哪几个基本事件?
22
[解] (1)由树形图表示如下:
23
试验的所有基本事件为(正,正,正),(正,正,反),(正,反, 正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反, 反,反).
(2)“恰有两枚正面朝上”包含以下 3 个基本事件:(正,正,反), (正,反,正),(反,正,正).
(2)若把所取出卡片的标号之和作为基本事件,则共有多少个基 本事件?是古典概型吗?
(3)求所取卡片标号之和小于 4 的概率.
30
思路点拨:先列举出基本事件,紧扣古典概型的特点加以判断, 再用古典概型概率公式求相应概率.
31
[解] (1)基本事件为(红 1,红 2),(红 1,红 3),(红 1,蓝 1),(红 1,蓝 2),(红 2,红 3),(红 2,蓝 1),(红 2,蓝 2),(红 3,蓝 1),(红 3,蓝 2),(蓝 1,蓝 2)共 10 种,由于基本事件个数有限,且每个基 本事件发生的可能性相同,所以是古典概型.
3.理解用模拟方法估计概率的实质, 率,提升数学抽象素养.
会用模拟方法估计概率.(重点)
4
自主 预习 探新 知

2018-2019学年高中数学第三章不等式3.2均值不等式课件新人教B版必修

2018-2019学年高中数学第三章不等式3.2均值不等式课件新人教B版必修
2 ( ������ + ������ ) 2.怎样比较 a2+b2, 2 ,2ab
三者的大小关系?
a=b 时等号成立.利用作差
法即可证明.
2 ( ������ + ������ ) 提示:a2+b2≥ ≥2ab,当且仅当 2



3.做一做:已知a,b∈R,且a2+b2=4,则ab( ) A.有最大值2,有最小值-2 B.有最大值2,但无最小值 C.有最小值2,但无最大值 D.有最大值2,有最小值0 解析:这里没有限制a,b的正负,则由a2+b2=4,a2+b2≥2|ab|,得 |ab|≤2,所以-2≤ab≤2,可知ab的最大值为2,最小值为-2. 答案:A
������+������ 2 (a,b>0),当且仅当 2 ������+������ a,b,数 2 叫做
������+������
a,b 的算术平均值,数 ������������
a=b
1 ②a+������≥2(a>0),当且仅当 a=1 时,等号成立. ������ ������ ③������ + ������≥2(a,b 同号),当且仅当 a=b 时,等号成立.



2.均值不等式与不等式a2+b2≥2ab的关系如何?请对此进行讨论. 提示:(1)在a2+b2≥2ab中,a,b∈R;在a+b≥ 2 ������������ 中,a,b>0. (2)两者都带有等号,等号成立的条件从形式上看是一样的,但实 质不同(范围不同). (3)证明的方法都是作差比较法. (4)都可以用来求最值. 3.当利用均值不等式求最大(小)值,等号取不到时,如何处理? 提示:等号取不到时,可利用函数的单调性等知识来求解.

高中数学第三章三角函数3.2任意角的三角函数3.2.1任意角三角函数的定义一课件湘教版必修2

高中数学第三章三角函数3.2任意角的三角函数3.2.1任意角三角函数的定义一课件湘教版必修2
没有意义.
2.三角函数在各个象限的符号
3.三角函数的定义域 三角函数 sin α,cos α
tan α,sec α
cot α,csc α
定义域 R
{α|α≠kπ+π2,k∈Z} {α|α≠kπ,k∈Z}
要点一 三角函数定义的应用 例 1 已知角 α 的终边在直线 y=-3x 上,求 10 sin α+co3s α 的值.
解 由题意知,cos α≠0. 设角α的终边上任一点为P(k,-3k)(k≠0),则
x=k,y=-3k,r= k2+-3k2= 10|k|.
(1)当 k>0 时,r= 10k,α 是第四象限角,
sin
α=yr= -130kk=-3
10 10 ,
1 cos
α=xr=
1k0k=
10,
∴10sin α+co3s α=10×-3 1010+3 10
规律方法 在解决有关角的终边在直线上的问题时,应注意
到角的终边为射线,所以应分两种情况处理,取射线上异于原
点 的 任 意 一 点 坐 标 (a,b), 则 对 应 角 的 正 弦 值 为 sin α =
b ,cos α= a2+b2
a ,tan
a2+b2
α=ba.
跟踪演练 1 已知角 θ 的顶点为坐标原点,始边为 x 轴的正半
答 锐角A的正弦,余弦,正切依次为:
sin A=ac,cos A=bc,tan A=ab.
[预习导引]
1.三角函数的定义
(1)正弦、余弦、正切
如图,在α的终边上任取一点P(x,y),设OP=r
y
x
y
(r≠0).定义:sin α= r ,cos α=r ,tan α= x ,

人教版高中数学必修三教材用书第三章概率3.22(整数值)随机数(randomnumbers)的产生

人教版高中数学必修三教材用书第三章概率3.22(整数值)随机数(randomnumbers)的产生

3.2.2(整数值)随机数(random numbers)的产生随机数的产生[导入新知]1.随机数的产生(1)标号:把n个大小、形状相同的小球分别标上1,2,3,…,n;(2)搅拌:放入一个袋中,把它们充分搅拌;(3)摸取:从中摸出一个.这个球上的数就称为从1~n之间的随机整数,简称随机数.2.伪随机数的产生(1)规则:依照确定算法;(2)特点:具有周期性(周期很长);(3)性质:它们具有类似随机数的性质.计算机或计算器产生的随机数并不是真正的随机数,我们称为伪随机数.[化解疑难]对随机数的理解计算器或计算机产生的整数随机数是按照确定的算法产生的数,具有周期性(周期很长),它们具有类似随机数的性质,不是真正的随机数,称为伪随机数.即使是这样,由于计算器或计算机省时省力,并且速度非常快,我们还是把计算器或计算机产生的伪随机数近似地看成随机数.产生随机数的方法[导入新知]1.利用计算器产生随机数的操作方法用计算器的随机函数RANDI(a,b)或计算机的随机函数RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数值的随机数.例如,用计算器产生1到25之间的取整数值的随机数,方法如下:2.利用计算机产生随机数的操作程序每个具有统计功能的软件都有随机函数,以Excel软件为例,打开Excel软件,执行下面的步骤:(1)选定A1格,键入“=RANDBETWEEN(0,1)”,按Enter键,则在此格中的数是随机产生的0或1.(2)选定A1格,按Ctrl+C快捷键,然后选定要随机产生0,1的格,比如A2至A100,按Ctrl+V快捷键,则在A2至A100的数均为随机产生的0或1,这样相当于做了100次随机试验.(3)选定C1格,键入频数函数“=FREQUENCY(A1∶A100,0.5)”,按Enter键,则此格中的数是统计A1至A100中,比0.5小的数的个数,即0出现的频数.(4)选定D1格,键入“=1-C1/100”,按Enter键,在此格中的数是这100次试验中出现1的频率.[化解疑难]计算机模拟试验的优点用频率估计概率时,需做大量的重复试验,费时费力,并且有些试验具有破坏性,有些试验无法真正进行.因此利用计算机进行随机模拟试验就成为一种很重要的替代方法,它可以在短时间内多次重复地来做试验,不需要对试验进行具体操作,可以广泛应用到各个领域.随机数的产生方法[例1]某校高一年级共有20个班1 200名学生,期末考试时,如何把学生随机地分配到40个考场中去?[解]第一步,n=1;第二步,用RANDI(1,1 200)产生一个[1,1 200]内的整数随机数x表示学生的座号;第三步,执行第二步,再产生一个座号,若此座号与以前产生的座号重复,则执行第二步,否则n=n+1;第四步,如果n≤1 200,则重复执行第三步,否则执行第五步;第五步,按座号的大小排列,作为考号(不足四位的前面添上“0”,补足位数),程序结束.[类题通法]产生随机数需要注意的两个问题(1)利用抽签法时,所设计的试验要切实保证任何一个数被抽到的可能性是相等的,这是试验成功的基础.(关键词:等可能)(2)利用计算器或计算机产生随机数时,由于不同型号的计算器产生随机数的方法可能会有所不同,故需特别注意操作步骤与顺序的正确性,具体操作需严格参照其说明书.(关键词:步骤与顺序)[活学活用]用随机模拟方法抛掷一枚均匀的硬币100次,产生计算机统计这100次试验中“出现正面朝上”随机数.解:利用计算机统计频数和频率,用Excel 演示.(1)选定C1格,键入频数函数“=FREQUENCY(A1:A100,0.5)”,按Enter 键,则此格中的数是统计A1至A100中比0.5小的数的个数,即0出现的频数,也就是反面朝上的频数;(2)选定D1格,键入“=1-C1/100”,按Enter 键,在此格中的数是这100次试验中出现1的频率,即正面朝上的频率. 利用随机模拟法估计概率[例2] (1)已知某运动员每次投篮命中的概率低于40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907 966 191 925 271 932 812 458 569683 431 257 393 027 556 488 730 113537 989据此估计,该运动员三次投篮恰有两次命中的概率为( )A .0.35B .C .0.20D .(2)种植某种树苗,成活率是0.9.若种植该种树苗5棵,用随机模拟方法估计恰好4棵成活的概率.[解析] (1)选B 由题意知模拟三次投篮的结果,经随机模拟产生了20组随机数,在20组随机数中表示三次投篮恰有两次命中的有191,271,932,812,393,共5组随机数,∴所求概率为520=14=0.25. (2)利用计算器或计算机产生0到9之间取整数值的随机数,我们用0代表不成活,1至9的数字代表成活,这样可以体现成活率是0.9.因为种植5棵,所以每5个随机数作为一组,可产生30组随机数,如下所示:698016609777124229617423531516297472494557558652587413023224374454434433315271202178258555610174524144134922017036283005949765617334783166243034401117这就相当于做了30次试验,在这些数组中,如果恰有一个0,则表示恰有4棵成活,共有9组这样的数,于是我们得到种植5棵这样的树苗恰有4棵成活的概率近似为9=0.3.30 [类题通法]利用随机模拟估计概率应关注三点用整数随机数模拟试验估计概率时,首先要确定随机数的范围和用哪些数代表不同的试验结果.我们可以从以下三方面考虑:(1)当试验的基本事件等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及总个数;(3)当每次试验结果需要n个随机数表示时,要把n个随机数作为一组来处理,此时一定要注意每组中的随机数字能否重复.[活学活用]甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计乙获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数:034 743 738 636 964 736 614 698 637 162332 616 804 560 111 410 959 774 246 762428 114 572 042 533 237 322 707 360 751据此估计乙获胜的概率为________.解析:产生30组随机数,就相当于做了30次试验.如果6,7,8,9中恰有2个或3个数出现,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707.共11个.所以采用三局两胜制,乙获胜的概率约为1130≈0.367. 答案:[典例] 通过模拟试验,产生了20组随机数:6830 3013 7055 7430 7740 4422 78842604 3346 0952 6807 9706 5774 57256576 5929 9768 6071 9138 6754如果恰有三个数在1,2,3,4,5,6中,表示恰有三次击中目标,则四次射击中恰有三次击中目标的概率约为________.[解析] 表示三次击中目标分别是3013,2604,5725,6576,6754,共5组数,而随机数总共20组,所以所求的概率近似为520=25%. [答案] 25%[易错防范]1.由题意可知,数字1,2,3,4,5,6代表击中,若不能正确理解各数字的意义,则容易导致题目错解.2.解决此类题目时正确设计试验,准确理解随机数的意义是解题的基础和关键.[成功破障]天气预报说,在今后的三天中,每一天下雨的概率均为40%,用随机模拟的方法估计这三天中恰有两天下雨的概率.可利用计算机产生0到9之间的整数值的随机数,如果我们用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,顺次产生的随机数如下:907 966 191 925 271 932 812 458569 683 631 257 393 027 556 488730 113 137 989 则这三天中恰有两天下雨的概率约为( )A.1320B .720 C.920 D .1120 解析:选B 由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191,271,932,812,631,393,137,共7组随机数,∴所求概率为720.[随堂即时演练]1.利用抛硬币产生随机数1和2,出现正面表示产生的随机数为1,出现反面表示产生的随机数为2.小王抛两次,则出现的随机数之和为3的概率为( )A.12B .13 C.14D .15解析:选A 抛掷硬币两次,产生的随机数的情况有(1,1),(1,2),(2,1),(2,2)共四种,其中随机数之和为3的情况有(1,2),(2,1)两种,故所求概率为24=12. 2.已知某射击运动员每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器算出0~9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:5727 0293 7140 9857 03474373 8636 9647 1417 46980371 6233 2616 8045 60113661 9597 7424 6710 4281据此估计,该射击运动员射击4次至少击中3次的概率为( )A .0.85B .0.819 2C .0.8D . 解析:选D 该射击运动员射击4次至少击中3次,考虑该事件的对立事件,故看这20组数据中含有0和1的个数多少,含有2个或2个以上的有5组数,故所求概率为1520=0.75. 3.一个正方体,它的表面涂满了红色,在它的每个面上切两刀,可得27个小正方体,从中任取一个它恰有一个面涂有红色的概率是________.解析:恰有一个面涂有红色在每一个侧面上只有一个,共有6个,故所求概率为29. 答案:294.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________.解析:从5个数中任取两个,共有10种取法,两个数相差1的有1,2;2,3;3,4;4,5四种,故所求概率为410=25. 答案:255.盒中有大小、形状相同的5只白球2只黑球,用随机模拟法求下列事件的概率:(1)任取一球,得到白球;(2)任取三球,都是白球.解:用1,2,3,4,5表示白球,6,7表示黑球.(1)步骤:①利用计算器或计算机产生1到7的整数随机数,每一个数一组,统计组数n ;②统计这n 组数中小于6的组数m ;③任取一球,得到白球的概率估计值是m n .(2)步骤:①利用计算器或计算机产生1到7的整数随机数,每三个数一组,统计组数n ;②统计这n 组数中,每个数字均小于6的组数m ;③任取三球,都是白球的概率估计值是m n. [课时达标检测]一、选择题1.袋子中有四个小球,分别写有“巴”“西”“奥”“运”四个字,有放回地从中任取一个小球,取到“奥”就停止.用随机模拟的方法估计直到第二次才停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出的小球上分别写有“巴”“西”“奥”“运”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 2123 13 32 21 24 42 13 32 21 34据此估计,直到第二次才停止概率为( )A.15B.14C.13D.12答案:B2.用计算机模拟随机掷骰子的试验,估计出现2点的概率,下列步骤中不.正确的是( ) A .用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间取整数值的随机数x ,如果x =2,我们认为出现2点B .我们通常用计数器n 记录做了多少次掷骰子试验,用计数器m 记录其中有多少次出现2点,置n =0,m =0C .出现2点,则m 的值加1,即m =m +1;否则m 的值保持不变D .程序结束.出现2点的频率作为概率的近似值答案:A3.从3名男生和2名女生中任选3人参加演讲比赛,则这三人中恰有一名男生的概率是( )A.310B.35C.25D.13答案:A4.从2,4,6,8,10这5个数中任取3个,则这三个数能成为三角形三边的概率是( ) A.25B.710C.310D.35 答案:C5.甲、乙两人一起去游济南趵突泉公园,他们约定,各自独立地从1号到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( )A.136B.19C.536D.16 答案:D二、填空题6.某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.则他乘上上等车的概率为________.解析:共有6种发车顺序:①上、中、下;②上、下、中;③中、上、下;④中、下、上;⑤下、中、上;⑥下、上、中(其中画横线的表示袁先生所乘的车),所以他乘坐上等车的概率为36=12. 答案:127.某小组有五名学生,其中三名女生、两名男生,现从这个小组中任意选出两名分别担任正、副组长,则正组长是男生的概率是________.解析:从五名学生中任选两名,有10种情况,再分别担任正、副组长,共有20个基本事件,其中正组长是男生的事件有8种,则正组长是男生的概率是820=25. 答案:258.现有五个球分别记为A ,B ,C ,D ,E ,随机取出三球放进三个盒子,每个盒子只能放一个球,则D 或E 在盒中的概率是________.解析:从5个球中取3个,有10种取法,再把3个球放入3个盒子,有6种放法,基本事件有60个,D 和E 都不在盒中含6个基本事件,则D 或E 在盒中的概率P =1-660=910. 答案:910三、解答题9.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.解:(1)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为P =310. (2)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为P =815.10.甲盒中有红、黑、白三种颜色的球各3个,乙盒子中有黄、黑、白三种颜色的球各2个,从两个盒子中各取1个球.(1)求取出的两个球是不同颜色的概率;(2)请设计一种随机模拟的方法,来近似计算(1)中取出两个球是不同颜色的概率(写出模拟的步骤).解:(1)设A 表示“取出的两球是相同颜色”,B 表示“取出的两球是不同颜色”.则事件A 的概率为:P (A )=3×2+3×29×6=29. 由于事件A 与事件B 是对立事件,所以事件B 的概率为:P (B )=1-P (A )=1-29=79. (2)随机模拟的步骤:第1步:利用抽签法或计算机(计算器)产生1~3和2~4两组取整数值的随机数,每组各有N 个随机数.用“1”表示取到红球,用“2”表示取到黑球,用“3”表示取到白球,用“4”表示取到黄球.第2步:统计两组对应的N 对随机数中,每对中两个数字不同的对数n .第3步:计算n N 的值,则n N就是取出的两个球是不同颜色的概率的近似值. 11.先后随机投掷2枚正方体骰子,其中x 表示第1枚骰子出现的点数,y 表示第2枚骰子出现的点数.(1)求点P (x ,y )在直线y =x -1上的概率;(2)求点P (x ,y )满足y 2<4x 的概率.解:(1)每颗骰子出现的点数都有6种情况,所以基本事件总数为6×6=36个.记“点P (x ,y )在直线y =x -1上”为事件A ,A 有5个基本事件:A ={(2,1),(3,2),(4,3),(5,4),(6,5)},∴P (A )=536. (2)记“点P (x ,y )满足y 2<4x ”为事件B ,则事件B 有17个基本事件:当x =1时,y =1;当x =2时,y =1,2;当x =3时,y =1,2,3;当x =4时,y =1,2,3;当x =5时,y =1,2,3,4;当x=6时,y=1,2,3,4.∴P(B)=1736.。

高二数学古典概率

高二数学古典概率
多少种? (3)向上的点数之和是7的概率是多
少?
36;6;1/6.
典例讲评
例4 某种饮料每箱装6听,如果其中有2 听不合格,质检人员依次不放回从某箱 中随机抽出2听,求检测出不合格产品的 概率.
P(A)=8/30+8/30+2/30=0.6
典例讲评
例5 甲、乙两人参加法律知识竟答,共 有10道不同的题目,其中选择题6道,判断 题4道,甲、乙依次各抽一道. (1)甲抽到选择题、乙抽到判断题的概率
高中数学必修3第三章《概率》
3.2 古典概率
温故知新
1、如果事件A与事件B互斥,
则P(A∪B)= P(A)+P(B)
.
2、如果事件A与事件B互为对立事件,
则 P(A)与P(B)关系是P(A)+P(B)=1.
3、若P(A∪B)= P(A)+P(B)=1,则事
件A与事件B的关系是( C ) (A)互斥不对立 (B)对立不互斥
典例讲评
例2 单选题是标准化考试中常用的 题型,一般是从A,B,C,D四个选项中 选择一个正确答案.如果考生掌握了考 查的内容,他可以选择唯一正确的答案, 假设考生不会做,他随机地选择
一个答案,问他答对的概率是多少?
0.25
典例讲评
例3 同时掷两个骰子,计算: (1)一共有多少种不同的结果? (2)其中向上的点数之和是7的结果有
(C)互斥且对立 (D)以上答案都不对
4、由经验可知,在某建设银行营业窗 口排队等候存取款的人数及其概率如下:
排队
41人
人数 0~10人 11~20人 21~30人 31~40人 以上
概率 0.12 0.27 0.30 0.23 0.08
计算:(1)至多20人排队的概率?

北师大版高中数学必修3课件3.2互斥事件课件(数学北师大必修3)

北师大版高中数学必修3课件3.2互斥事件课件(数学北师大必修3)
北京师范大学出版社 高二 | 必修3
第三章 · 概率
§2.3 互斥事件
北京师范大学出版社 高二 | 必修3
学目标
1.理解互斥事件、对立事件的含义,会判断所给事件的类型; 2.掌握互斥事件的概率加法公式并会应用; 3.正确理解互斥、对立事件的关系并能正确区分、判断.
北京师范大学出版社 高二 | 必修3
理由是:从40张扑克牌中,任意抽取1张,“抽出红色牌”与“抽出黑色牌
”,两个事件不可能同时发生,且其中必有一个发生,所以它们既是互斥事 件,又是对立事件.
北京师范大学出版社 高二 | 必修3
(3)不是互斥事件,当然不可能是对立事件.
理由是:从40张扑克牌中任意抽取 1张,“抽出的牌的点数为 5的倍数”与 “抽出的牌的点数大于9”这两个事件可能同时发生,如抽得点数为10,因 此,二者不是互斥事件,当然不可能是对立事件.
P(A1)+P(A2)+… +P(An)
北京师范大学出版社 高二 | 必修3
3.对立事件 (1)两个互斥事件必有一个发生,则称这两个事件为对立事件,事件A的对立 事件记为. (2)对立事件A与必有一个发生,故A+是必然事件,从而,我们可以得到一 个重要公式:P()=1-P(A).
北京师范大学出版社 高二 | 必修3
m = ,几何概型的概率计算公式为P 2.古典概型的概率计算公式为P=P _______ n
d的测度 P= D的测度 =____________.
北京师范大学出版社 高二 | 必修3
知新益能
1.互斥事件
不能同时发生 的两个事件称为互斥事件. (1)_______________ (2) 如 果 事 件 A1 , A2 , … , An 中 的 任何两个都是 _____________ 互斥事件 ,就说事件A1,A2,…,An彼此互斥. __________ (3) 设 A , B为互斥事件,若事件 A , B__________ 至少有一个 发生,我们把这个事件记 作A+B.

人教A版高中数学必修三3

人教A版高中数学必修三3

反思与感悟
解析答案
跟踪训练2 种植某种树苗成活率为0.9,若种植这种树苗5棵,求恰好成 活4棵的概率.设计一个试验,随机模拟估计上述概率.
解析答案
返回
达标检测
1.与大量重复试验相比,随机模拟方法的优点是( A )
A.省时、省力
B.能得概率的精确值
C.误差小
D.产生的随机数多Fra bibliotek1 2345
答案
2.用随机模拟方法估计概率时,其准确程度决定于( B )
A.产生的随机数的大小
B.产生的随机数的个数
C.随机数对应的结果
D.产生随机数的方法
解析 随机数容量越大,实际数越接近概率,故选B.
1 2345
解析答案
1 2345
3.在用计算器模拟抛硬币试验时,假设计算器只能产生0~9之间的随机数, 则下列说法错误的是( C ) A.可以用0,2,4,6,8来代表正面 B.可以用1,2,3,6,8来代表正面 C.可以用4,5,6,7,8,9来代表正面 D.产生的100个随机数中不一定恰有50个偶数
述概率. 解 利用计算机或计算器产生0到9之间取整数值的随机数,用1,2,3,4,5,6表
示投中,用7,8,9,0表示未投中,这样可以体现投中的概率是60%,
因为投篮4次,所以每4个随机数作为1组. 例如5727,7895,0123,…,4560,4581,4698,共100组这样的随机数,
若所有数组中没有7,8,9,0或只有7,8,9,0中的一个数的数组的个数为n,则至 少投中3次的概率近似值为1n00.
6807 9706 5774 5725 6576 5929 9768 6071 9138 6754 如果在一组随机数中恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目 标,则四次射击中恰有三次击中目标的概率约为( D )

高中数学必修3课件:3.2.1 古典概型

高中数学必修3课件:3.2.1 古典概型
栏目 导引
第三章 概率
想一想 “在区间[0,10]上任取一个数,这个数恰为2的概率是多少”?这 个概率模型属于古典概型吗? 提示:不是.因为在区间[0,10]上任取一个数,其试验结果有 无限个,故其基本事件有无限个,所以不是古典概型.
栏目 导引
第三章 概率
做一做 2.投掷一枚骰子,恰好数字6正面向上的概率是________. 解析:由于骰子每一个面向上的可能性相等,故数字 6 正面向 上的概率是16. 答案:16
栏目 导引
第三章 概率
【解】 从 7 人中选出数学、物理、化学成绩优秀者各 1 名, 其一切可能的结果组成的 12 个基本事件为: (A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2), (A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2), (A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2). C1 恰被选中有 6 个基本事件: (A1,B1,C1),(A1,B2,C1),(A2,B1,C1),(A2,B2,C1), (A3,B1,C1),(A3,B2,C1), 因而 P(M)=162=12.
第三章 概率
1.基本事件 (1)定义:在一次试验中,所有可能出现的基本结果中不能 再分的最简单的___随__机____事件称为该次试验的基本事件. (2)特点:一是任何两个基本事件是_互__斥___的;二是任何事 件(除不可能事件)都可以表示成基本事件的__和___.
栏目 导引
第三章 概率
做一做 1.袋中有红、白色球各一个,每次任取一个,有放回地抽三 次,所有的基本事件数是________. 解析:所有的基本事件有(红红红)(红红白)(红白红)(白红红)( 红白白)(白红白)(白白红)(白白白),共8个. 答案:8

高中数学第三章不等式32一元二次不等式及其解法第2课时一元二次不等式的解法的应用课件新人教A版必修

高中数学第三章不等式32一元二次不等式及其解法第2课时一元二次不等式的解法的应用课件新人教A版必修

2.含参数一元二次不等式有解的讨论方法 (1)当二次项系数不确定时,要分二次项系数_等__于__零_、 _大__于__零___、_小__于__零___三种情况进行讨论. (2)判别式不确定时,要分判别式大于零、等于零、小 于零三种情况进行讨论. (3)判别式大于零时,只需讨论两根大小.
1.若集合
它的同解不等式为xx--22≠x0-,5≥0, ∴x<2 或 x≥5. ∴原不等式的解集为{x|x<2 或 x≥5}.
【方法规律】1.对于比较简单的分式不等式,可直接转 化为一元二次不等式或一元一次不等式组求解,但要注意分母 不为零.
2.对于不等号右边不为零的较复杂的分式不等式,先 移项再通分(不要去分母),使之转化为不等号右边为零,然后 再用上述方法求解.
【答案】B
3.不等式x+x 1≤3 的解集为________. 【答案】x|x<0或x≥12
4.若函数f(x)=log2(x2-2ax-a)的定义域为R,则a的 取值范围为________.
【答案】(-1,0) 【解析】已知函数定义域为R,即x2-2ax-a>0对任意 x∈R恒成立,∴Δ=(-2a)2+4a<0,解得-1<a<0.
y=200a(1+2x%)(10-x)%=215a(50+x)(10-x)(0<x<10). (2)原计划税收为 200a·10%=20a(万元).依题意得215a(50
+ x)(10 - x)≥20a×83.2% , 化 简 得 x2 + 40x - 84≤0 , ∴ - 42≤x≤2.又 0<x<10,∴0<x≤2.∴x 的取值范围是{x|0< x≤2}.
)
A.x|1t <x<t
B.x|x>1t 或x<t
C.x|x<1t 或x>t
D.x|t<x<1t

高中数学 第三章 概率 3.2 古典概型 3.2.1 古典概型的特征和概率计算公式课件 北师大版必修3

高中数学 第三章 概率 3.2 古典概型 3.2.1 古典概型的特征和概率计算公式课件 北师大版必修3

对于选项A,因为发芽与不发芽的概率不同,所以不是古典概型;
对于选项
B,因为摸到白球与黑球的概率都是
1 2
,
所以是古典概
型;
对于选项C,因为基本事件有无限个,所以不是古典概型;
对于选项D,因为命中10环,命中9环,……,命中0环的概率不相同,
所以不是古典概型.
答案:B
题型一
题型二
题型三
题型四
古典概型的概率计算 【例3】 某商场举行购物抽奖促销活动,规定每位顾客从装有编 号为0,1,2,3四个相同小球的抽奖箱中,每次取出一个球记下编号后 放回,连续取两次.若取出的两个小球号码相加之和等于6,则中一等 奖;若等于5,则中二等奖;若等于4或3,则中三等奖. (1)求中三等奖的概率; (2)求中奖的概率. 分析:分别写出所有基本事件,利用古典概型的概率计算公式求 出概率.
【做一做2-1】 袋中有2个红球,2个白球,2个黑球,从里面任意摸 出2个小球,下列事件不是基本事件的是( )
A.{正好2个红球} B.{正好2个黑球} C.{正好2个白球} D.{至少1个红球} 解析:至少1个红球包含:一红一白或一红一黑或2个红球,所以{至 少1个红球}不是基本事件,其他事件都是基本事件. 答案:D
【做一做2-2】 已知一个家庭有两个小孩,则所有的基本事件是
() A.(男,女),(男,男),(女,女) B.(男,女),(女,男) C.(男,男),(男,女),(女,男),(女,女) D.(男,男),(女,女) 解析:用坐标法表示:将第一个小孩的性别放在横坐标位置,第二
个小孩的性别放在纵坐标位置,可得4个基本事件(男,男),(男,女),(女, 男),(女,女).
【做一做1】 下列试验中,是古典概型的有( ) A.抛掷一枚图钉,发现钉尖朝上 B.某人到达路口看到绿灯 C.抛掷一粒均匀的正方体骰子,观察向上的点数 D.从10 cm3水中任取1滴,检查有无细菌 答案:C

高中数学必修3第三章:概率3.2古典概型

高中数学必修3第三章:概率3.2古典概型

验,如果这2个元素没有顺序,那么这次试验共有
nn-1 2

基本事件;如果这2个元素有顺序,那么这次试验有n(n-1)
个基本事件.可以作为结论记住(不要求证明),在选择题或
填空题中可以直接应用.
计算基本事件个数的常用法
1.列举法 列举法也称枚举法.对于一些情境比较简单,基本事件 个数不是很多的概率问题,计算时只需一一列举即可得出随 机事件所含的基本事件数.但列举时必须按一定顺序,做到 不重不漏.
球,d,e为黑球.
列表如下:
a
b
c
d
e
a
(a,b) (a,c) (a,d) (a,e)
b (b,a)
(b,c) (b,d) (b,e)
c (c,a) (c,b)
(c,d) (c,e)
d (d,a) (d,b) (d,c)
(d,e)
e (e,a) (e,b) (e,c) (e,d)
由于每次取两个球,每次所取两个球不相同,而摸(b,a) 与(a,b)是相同的事件,故共有10个基本事件.
新课引入 “三门问题”是美国一个经典的电视游戏节目,内容如 下:现有三扇门,其中一扇后面有一辆汽车,另外两扇门后 各有一只羊,参赛者选中车门就得车,选中羊门就得羊,首 先参赛者选一扇门,然.后主持人故意打开剩下两门中的一 扇羊门(主持人知道车在何处),接着主持人给参赛者选择机 会,是坚持原门还是换另一扇门?
[解析] 第1个概率模型不是古典概型,因为从区间[1,10] 内任意取出一个数,有无数个对象可取,所以不满足“有限 性”.
第2个概率模型是古典概型,因为试验结果只有10个, 而且每个数被抽到的可能性相等,即满足有限性和等可能 性;
第3个概率模型不是古典概型,而是以后将学的几何概 型;

人教版高中数学必修三 3.2.1《古典概型》要点梳理+考点探究

人教版高中数学必修三 3.2.1《古典概型》要点梳理+考点探究

人教版高中数学必修三 第三章 统计 3.2.1《古典概型》要点梳理与考点探究【学习目标】1.了解基本事件的特点.2.理解古典概型的定义.3.会应用古典概型的概率公式解决实际问题.【要点梳理·夯实知识基础】1.基本事件(1)基本事件的定义:一次试验中可能出现的试验结果称为一个基本事件.基本事件是试验中不能再分的最简单的随机事件.(2)基本事件的特点:①任何两个基本事件是__________;②任何事件(除不可能事件)都可以表示成________的和. [答案](2)①互斥的 ②基本事件 2.古典概型如果某类概率模型具有以下两个特点:(1)试验中所有可能出现的基本事件__________. (2)每个基本事件出现的__________.将具有这两个特点的概率模型称为古典概率模型.[答案](1)只有有限个 (2)可能性相等 3.古典概型的概率公式对于任何事件A ,P(A)=________________________________. [答案]A 包含的基本事件的个数基本事件的总数 [常用结论]确定基本事件个数的三种方法(1)列举法:此法适合基本事件较少的古典概型.(2)列表法(坐标法):此法适合多个元素中选定两个元素的试验. (3)树状图法:适合有顺序的问题及较复杂问题中基本事件个数的探求.[学练结合]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(2)从-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同.()(3)利用古典概型的概率可求“在边长为2的正方形内任取一点,这点到正方形中心距离小于或等于1”的概率.() [答案](1)×(2)√(3)×2.从1,2,3,4,5中随机取出三个不同的数,则其和为偶数的基本事件个数为() A.4 B.5 C.6 D.7答案: C解析: 任取三个数和为偶数共有:(1,2,3),(1,2,5),(1,3,4),(1,4,5),(2,3,5),(3,4,5)共6个,选C.3.袋中装有6个白球,5个黄球,4个红球,从中任取一球,则取到白球的概率为()A.25 B.415 C.35 D.23答案: A解析: 从袋中任取一球,有15种取法,其中取到白球的取法有6种,则所求概率为P=615=52.4.一个口袋内装有2个白球和3个黑球,则在先摸出1个白球后放回的条件下,再摸出1个白球的概率是________.答案:52解析: 先摸出1个白球后放回,再摸出1个白球的概率,实质上就是第二次摸到白球的概率,因为袋内装有2个白球和3个黑球,因此概率为2 5.5.现从甲、乙、丙3人中随机选派2人参加某项活动,则甲被选中的概率为________.答案:32 解析: 从甲、乙、丙3人中随机选派2人参加某项活动,有甲乙,甲丙,乙丙三种可能,则甲被选中的概率为32.【考点探究·突破重点难点】考点一:基本事件的计数问题1.在1,2,3,4,5这5个数字中,同时任取两个数,则有 个基本事件,其中“两数都是奇数”有 个基本事件. 答案:10 3解析:一共有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10个基本事件,两数都是奇数包含(1,3),(1,5),(3,5)3个基本事件. 考点二:古典概型的概率求法【例1】 (1)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A.110B.15C.310D.25(2)袋中有形状、大小都相同的4个球,其中1个白球,1个红球,2个黄球,从中一次随机摸出2个球,则这2个球颜色不同的概率为________.(1)D (2)56 [(1)从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,∴所求概率P =1025=25. 故选D.(2)设取出的2个球颜色不同为事件A ,基本事件有:(白,红),(白,黄),(白,黄),(红,黄),(红,黄),(黄,黄),共6种,事件A 包含5种,故P (A )=56.](3)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.①若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;②若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.[解]①由题意知,从6个国家中任选两个国家,其一切可能的结果组成的基本事件有:{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A1,B3},{A2,A3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},{B1,B2},{B1,B3},{B2,B3},共15个.所选两个国家都是亚洲国家的事件所包含的基本事件有:{A1,A2},{A1,A3},{A2,A3},共3个,则所求事件的概率为P=315=15.②从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有:{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},共9个.包括A1但不包括B1的事件所包含的基本事件有:{A1,B2},{A1,B3},共2个,则所求事件的概率为P=2 9.[拓展探究](1)本例(2)中,若将4个球改为颜色相同,标号分别为1,2,3,4的四个小球,从中一次取两球,求标号和为奇数的概率.(2)本例(2)中,若将条件改为有放回地取球,取两次,求两次取球颜色相同的概率.[解](1)基本事件数仍为6.设标号和为奇数为事件A,则A包含的基本事件为(1,2),(1,4),(2,3),(3,4),共4种,所以P(A)=46=23.(2)基本事件为(白,白),(白,红),(白,黄),(白,黄),(红,红),(红,白),(红,黄),(红,黄),(黄,黄),(黄,白),(黄,红),(黄,黄),(黄,黄),(黄,白),(黄,红),(黄,黄),共16种,其中颜色相同的有6种,故所求概率P=616=38.[(1)判断本试验的结果是否为等可能事件,设出所求事件A;(2)分别求出基本事件的总数n与所求事件A中所包含的基本事件个数m;(3)利用公式,求出事件A的概率.[跟踪练习]1. 小红打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A.815 B.18 C.115 D.1302. 从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.110 B.15 C.310 D.251.C2.D[1.∵Ω={(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5)},∴事件总数有15种.∵正确的开机密码只有1种,∴P=1 15.2.如表所示第二次第一次123451(1,1)(1,2)(1,3)(1,4)(1,5)2(2,1)(2,2)(2,3)(2,4)(2,5)3(3,1)(3,2)(3,3)(3,4)(3,5)4(4,1)(4,2)(4,3)(4,4)(4,5)5(5,1)(5,2)(5,3)(5,4)(5,5)总计有25所以所求概率为1025=25.故选D.]3.下列试验中是古典概型的是()A.在适宜的条件下,种下一粒种子,观察它是否发芽B.在一口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从中任取一球C.向一个圆面内随机地投一个点,该点落在圆内任意一点都是等可能的D.甲、乙两队进行一场足球赛,甲队比赛结果为甲队赢、平局、甲队输 答案:B解析:对于A,发芽与不发芽概率不同;对于B,摸到白球与黑球的概率相同,均为21;对于C,基本事件有无限个;对于D,由于受甲、乙两队运动员水平的影响,甲队赢、输、平局的概率不相等,因而选B.4.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A.21B.31C.41 D.61 答案:B解析:由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为31.5.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(1)从该班随机选1名同学,该同学至少参加上述一个社团的概率为 ;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,A 1被选中且B 1未被选中的概率为 .答案:(1)31 (2)152解析:(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加上述一个社团的共有45-30=15人.所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为 P=4515 =31. (2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2}, {A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 4,B 1}, {A 4,B 2},{A 4,B 3},{A 5,B 1},{A 5,B 2},{A 5,B 3}, 共15个.根据题意,这些基本事件的出现是等可能的.事件“A 1被选中且B 1未被选中”所包含的基本事件有:{A 1,B 2},{A 1,B 3},共2个.因此A 1被选中且B 1未被选中的概率为P=152. 考点三:古典概型与统计的综合应用【例1】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)频率分布直方图中a 的值为 ;(2)该企业的职工对该部门评分不低于80的概率的估计值为 ; (3)从评分在[40,60)的受访职工中,随机抽取2人,此2人的评分都在[40,50)的概率为 .答案:(1)0.006 (2)0.4 (3)101 解析:(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以a=0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4. (3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A 1,A 2,A 3; 受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B 1,B 2. 从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2},又因为所抽取2人的评分都在[40,50)的结果有1种,即{B 1,B 2},故所求的概率为P=101. 【例2】 空气质量指数(Air Quality Inde x ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.一环保人士记录2018年某地某月10天的AQI 的茎叶图如图所示.(1)利用该样本估计该地本月空气质量优良(AQI ≤100)的天数;(按这个月总共30天计算)(2)若从样本中的空气质量不佳(AQI >100)的这些天中,随机地抽取两天深入分析各种污染指标,求该两天的空气质量等级恰好不同的概率.[解] (1)从茎叶图中发现该样本中空气质量优的天数为1,空气质量良的天数为3,故该样本中空气质量优良的频率为410=25,估计该月空气质量优良的频率为25,从而估计该月空气质量优良的天数为30×25=12.(2)该样本中为轻度污染的共4天,分别记为a 1,a 2,a 3,a 4;为中度污染的共1天,记了b ;为重度污染的共1天,记为c .从中随机抽取两天的所有可能结果有:(a 1,a 2),(a 1,a 3),(a 1,a 4),(a 1,b ),(a 1,c ),(a 2,a 3),(a 2,a 4),(a 2,b ),(a 2,c ),(a 3,a 4),(a 3,b ),(a 3,c ),(a 4,b ),(a 4,c ),(b ,c ),共15个.其中空气质量等级恰好不同的结果有(a 1,b ),(a 1,c ),(a 2,b ),(a 2,c ),(a 3,b ),(a 3,c ),(a 4,b ),(a 4,c ),(b ,c ),共9个.所以该两天的空气质量等级恰好不同的概率为915=35. [求解古典概型与统计交汇问题的思路(1)依据题目的直接描述或频率分布表、频率分布直方图、茎叶图等统计图表给出的信息,提炼出需要的信息.(2)进行统计与古典概型概率的正确计算.[跟踪练习]交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,且保费与上一年度车辆发生道路交通事故的情况相联系.发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:60辆车龄已满三年该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:(1)求一辆普通6(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5 000元,一辆非事故车盈利10 000元.且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:①若该销售商店内有6辆(年龄已满三年)该品牌二手车,某顾客欲在店内随机挑选2辆车,求这2辆车恰好有一辆为事故车的概率;②若该销售商一次购进120辆(年龄已满三年)该品牌二手车,求一辆车盈利的平均值.[解](1)一辆普通6座以下私家车第四年续保时保费高于基本保费的频率为15+5 60=1 3.(2)①由统计数据可知,该销售商店内的6辆该品牌(年龄已满三年)的二手车有2辆事故车,设为b1,b2.4辆非事故车设为a1,a2,a3,a4.从6辆车中随机挑选2辆车的情况有(b 1,b 2),(b 1,a 1),(b 1,a 2),(b 1,a 3),(b 1,a 4),(b 2,a 1),(b 2,a 2),(b 2,a 3),(b 2,a 4),(a 1,a 2),(a 1,a 3),(a 1,a 4),(a 2,a 3),(a 2,a 4),(a 3,a 4),共15种.其中2辆车恰好有一辆为事故车的情况有(b 1,a 1) ,(b 1,a 2),(b 1,a 3),(b 1,a 4),(b 2,a 1),(b 2,a 2),(b 2,a 3),(b 2,a 4),共8种.所以该顾客在店内随机挑选2辆车,这2辆车恰好有一辆为事故车的概率为815.②由统计数据可知,该销售商一次购进120辆该品牌(车龄已满三年)的二手车有事故车40辆,非事故车80辆,1120[(-5 000)×40+10 000×80]=5 000(元).【连线真题·提升解题能力】1.从2名男同学和3名女同学中任选2人参加社会服务,则选中的2人都是女同学的概率为( )A .0.6B .0.5C .0.4D .0.3 答案:D解析:将2名男同学分别记为x ,y,3名女同学分别记为a ,b ,c .设“选中的2人都是女同学”为事件A ,则从5名同学中任选2人参加社区服务的所有可能情况有(x ,y ),(x ,a ),(x ,b ),(x ,c ),(y ,a ),(y ,b ),(y ,c ),(a ,b ),(a ,c ),(b ,c ),共10种,其中事件A 包含的可能情况有(a ,b ),(a ,c ),(b ,c ),共3种,故P (A )=310=0.3.故选D.]2.一枚均匀的硬币连续掷三次,则至少出现一次正面向上的概率是( )A.87B.83C.81D.31 答案:A解析:一枚均匀的硬币连续掷三次,出现的所有可能情况是(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反),共8种,至少出现一次正面的有7种,所以所求概率为87.3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56 答案:C解析:从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种法有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种法有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P =46=23,故选C. 4.已知集合A={-1,0,1},点P(x,y),其中x ∈A,y ∈A,记点P 落在第一象限为事件M,则P(M)=( ) A.31 B.61 C.91 D.92 答案:C 解析:所有可能的点是(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共9个,其中在第一象限的有1个,因此P(M)=91. 5.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120答案: C解析: 从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110.故选C.6. 一商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A 1,A 2和1个白球B 的甲箱与装有2个红球a 1,a 2和2个白球b 1,b 2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖.(1)用球的标号列出所有可能的摸出结果.(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.解:(1)所有可能的摸出结果是{A 1,a 1},{A 1,a 2},{A 1,b 1},{A 1,b 2},{A 2,a 1},{A 2,a 2},{A 2,b 1},{A 2,b 2},{B,a 1},{B,a 2},{B,b 1},{B,b 2}.(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为{A 1,a 1},{A 1,a 2},{A 2,a 1},{A 2,a 2},共4种,所以中奖的概率为124=31,不中奖的概率为1-31=32>31.故这种说法不正确.[。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.2古典概型学习目标1.理解古典概型及其概率计算公式.2.会计算一些随机事件所含的基本事件数及事件发生的概率.3.理解(整数值)随机数(random numbers)的产生.知识点一 基本事件思考 掷一枚质地均匀的硬币两次,观察哪一面向上,结果有哪些? 答案 结果有4个,即正正、正反、反正、反反. 梳理 基本事件(1)定义:在一次试验中,所有可能出现的基本结果中不能再分的最简单的随机事件称为该次试验的基本事件.(2)特点:①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和.知识点二 古典概型 古典概型(1)定义:古典概型满足的条件:①试验中所有可能出现的基本事件只有有限个; ②每个基本事件出现的可能性相等.(2)计算公式:对于古典概型,任何事件的概率为 P (A )=A 包含的基本事件的个数基本事件的总数.知识点三 随机数的产生 1.随机数的产生(1)标号:把n 个大小、形状相同的小球分别标上1,2,3,…,n . (2)搅拌:放入一个袋中,把它们充分搅拌. (3)摸取:从中摸出一个.这个球上的数就称为从1~n 之间的随机整数,简称随机数. 2.伪随机数的产生(1)规则:依照确定算法.(2)特点:具有周期性(周期很长).(3)性质:它们具有类似随机数的性质.计算机或计算器产生的随机数并不是真正的随机数,我们称为伪随机数.3.产生随机数的常用方法(1)用计算器产生.(2)用计算机产生.(3)抽签法.4. 随机模拟方法(蒙特卡罗方法)利用计算机或计算器产生的随机数来做模拟试验,通过模拟试验得到的频率来估计概率,这种用计算机或计算器模拟试验的方法称为随机模拟方法或蒙特卡罗方法.1.任何一个事件都是一个基本事件.(×)2.每一个基本事件出现的可能性相等.(√)3.古典概型中的任何两个基本事件都是互斥的.(√)类型一基本事件的计数问题例1将一枚骰子先后抛掷两次,则:(1)一共有几个基本事件?(2)“出现的点数之和大于8”包含几个基本事件?考点基本事件题点求基本事件的个数解方法一(列举法):(1)用(x,y)表示结果,其中x表示骰子第1次出现的点数,y表示骰子第2次出现的点数,则试验的所有结果为(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36个基本事件.(2)“出现的点数之和大于8”包含以下10个基本事件:(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6).方法二(列表法):如图所示,坐标平面内的数表示相应两次抛掷后出现的点数的和,基本事件与所描点一一对应.(1)由图知,基本事件总数为36.(2)点数之和大于8包含10个基本事件(已用虚线圈出).方法三(树状图法):一枚骰子先后抛掷两次的所有可能结果用树状图表示.如图所示:(1)由图知,共36个基本事件.(2)点数之和大于8包含10个基本事件(已用“√”标出).反思与感悟基本事件的三个探求方法(1)列举法:把试验的全部结果一一列举出来.此方法适合于较为简单的试验问题.(2)列表法:将基本事件用表格的方式表示出来,通过表格可以弄清基本事件的总数,以及要求的事件所包含的基本事件数.列表法适用于较简单的试验问题,基本事件数较多的试验不适合用列表法.(3)树状图法:树状图法是使用树状的图形把基本事件列举出来的一种方法,树状图法便于分析基本事件间的结构关系,对于较复杂的问题,可以作为一种分析问题的主要手段,树状图法适用于较复杂的试验问题.跟踪训练1一个口袋内装有大小相同的5个球,其中3个白球,2个黑球,从中一次摸出2个球.(1)共有多少个基本事件?(2)2个都是白球包含几个基本事件?考点基本事件题点求基本事件的个数解方法一(1)采用列举法.分别记白球为1,2,3号,黑球为4,5号,则有以下基本事件:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个(其中(1,2)表示摸到1号、2号).(2)“2个都是白球”包含(1,2),(1,3),(2,3)三个基本事件.方法二(1)采用列表法.设5个球的编号为a,b,c,d,e,其中a,b,c为白球,d,e为黑球.列表如下:a b c d ea (a,b)(a,c)(a,d)(a,e)b (b,a)(b,c)(b,d)(b,e)c (c,a)(c,b)(c,d)(c,e)d (d,a)(d,b)(d,c)(d,e)e (e,a)(e,b)(e,c)(e,d)由于每次取2个球,因此每次所得的2个球不相同,而事件(b,a)与(a,b)是相同的事件,故共有10个基本事件.(2)“2个都是白球”包含(a,b),(b,c),(a,c)三个基本事件.类型二古典概型的概率计算例2将一枚质地均匀的正方体骰子先后抛掷两次观察出现点数的情况.(1)一共有多少种不同的结果?(2)点数之和为5的结果有多少种?(3)点数之和为5的概率是多少?考点古典概型计算公式题点古典概型概率公式的直接应用解(1)将一枚质地均匀的正方体骰子抛掷一次,得到的点数有1,2,3,4,5,6,共6种结果,故先后将这枚骰子抛掷两次,一共有6×6=36(种)不同的结果.(2)点数之和为5的结果有(1,4),(2,3),(3,2),(4,1),共4种.(3)正方体骰子是质地均匀的,将它先后抛掷两次所得的36种结果是等可能出现的,其中点数之和为5(记为事件A)的结果有4种,因此所求概率P(A)=436=1 9.反思与感悟 首先,阅读题目,收集题目中的各种信息;其次,判断基本事件是否为等可能事件,并用字母A 表示所求事件;再次,求出基本事件的总数n 及事件A 包含的基本事件的个数m ;最后,利用公式P (A )=A 包含的基本事件的个数基本事件的总数=m n ,求出事件A 的概率.跟踪训练2 从1,2,3,4,5这5个数字中任取三个不同的数字,求下列事件的概率: (1)事件A ={三个数字中不含1和5}; (2)事件B ={三个数字中含1或5}. 考点 古典概型计算公式题点 古典概型概率公式的直接应用解 这个试验的基本事件为(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),所以基本事件总数n =10. (1)因为事件A ={(2,3,4)}, 所以事件A 包含的事件数m =1. 所以P (A )=m n =110.(2)因为事件B ={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,5),(2,4,5),(3,4,5)}, 所以事件B 包含的基本事件数m =9. 所以P (B )=m n =910.类型三 整数随机模拟与应用例3 盒中有大小、形状相同的5个白球和2个黑球,用随机模拟方法求下列事件的概率: (1)任取一球,得到白球; (2)任取三球,恰有两个白球;(3)任取三球(分三次,每次放回再取),恰有3个白球. 考点 (整数值)随机数的应用 题点 (整数值)随机数的应用解 用计算器或计算机产生1到7之间取整数值的随机数,用1,2,3,4,5表示白球,6,7表示黑球.(1)统计随机数个数N 及小于6的个数N 1,则N 1N即为任取一球,得到白球的概率的近似值.(2)三个数一组(每组内不重复),统计总组数M 及恰好有两个数小于6的组数M 1,则M 1M 即为任取三个球,恰有两个白球的概率的近似值.(3)三个数一组(每组内可重复),统计总组数K 及三个数都小于6的组数K 1,则K 1K 即为任取三球(分三次,每次放回再取),恰有3个白球的概率的近似值. 反思与感悟 (1)做整数随机模拟试验时应注意的相关事项做整数随机模拟试验时,首先要确定随机数的范围,明确哪个数字代表哪个试验结果. ①当试验的基本结果的可能性相等时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;②当研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及范围. (2)抽签法、利用计算器或计算机产生随机数方法的比较:抽签法、利用计算器或计算机均可产生随机数、但抽签法能保证机会均等,而计算器或计算机产生的随机数为伪随机数,不能保证等可能性,当总体容量非常大时,常用这种方式近似代替随机数,但结果有一定误差.跟踪训练3 袋子中有四个小球,分别写有“春、夏、秋、冬”四个字,从中任取一个小球,取到“冬”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出的小球上分别写有“春、夏、秋、冬”四个字,每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数: 13 24 12 32 43 14 24 32 31 21 23 13 32 21 24 42 13 32 21 34 据此估计,直到第二次就停止的概率为( ) A.15 B.14 C.13D.12考点 (整数值)随机数的应用 题点 (整数值)随机数的应用 答案 B解析 20组随机数中,第一次不是4且第二次是4的数共有5组,故估计直到第二次就停止的概率为520=14.1.从长度分别为1,2,3,4的四条线段中,任取三条不同的线段,以取出的三条线段为边可组成三角形的概率为( ) A.0 B.14 C.12D.34考点 古典概型计算公式题点 古典概型概率公式的直接应用 答案 B解析 从中任取三条线段共有4种取法,能构成三角形的只有长度为2,3,4的线段,所以P =14,故选B. 2.在国庆阅兵中,某兵种A ,B ,C 三个方阵按一定次序通过主席台,若先后次序是随机排定的,则B 先于A ,C 通过的概率为( ) A.16 B.13 C.12 D.23 考点 古典概型计算公式题点 古典概型概率公式的直接应用 答案 B解析 用(A ,B ,C )表示A ,B ,C 通过主席台的次序,则所有可能的次序有(A ,B ,C ),(A ,C ,B ),(B ,A ,C ),(B ,C ,A ),(C ,A ,B ),(C ,B ,A ),共6种,其中B 先于A ,C 通过的有(B ,C ,A )和(B ,A ,C ),共2种,故所求概率P =26=13.3.袋子里有两个不同的红球和两个不同的白球,从中任取两个球,则这两个球颜色相同的概率为________.考点 古典概型计算公式题点 古典概型概率公式的直接应用 答案 13解析 设两个红球分别为A ,B ,两个白球分别为C ,D ,从中任取两个球,有如下取法: (A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D ),共6种情形,其中颜色相同的有(A ,B ),(C ,D ),共2种情形,故P =26=13.4.从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率为________. 考点 古典概型计算公式题点 古典概型概率公式的直接应用 答案 16解析 从2,3,8,9中任取2个分别记为(a ,b ),则有(2,3),(3,2),(2,8),(8,2),(2,9),(9,2),(3,8),(8,3),(3,9),(9,3),(8,9),(9,8),共有12种情况,其中符合log a b 为整数的有log 3 9和log 2 8两种情况, ∴P =212=16.5.现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.求所取的2道题不是同一类题的概率. 考点 几类常见的古典概型 题点 与顺序无关的古典概型解 将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,基本事件为{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.用B 表示“不是同一类题”这一事件,则B 包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P (B )=815.1.古典概型是一种最基本的概型,也是学习其他概型的基础,这也是我们在学习、生活中经常遇到的题型.解题时要紧紧抓住古典概型的两个基本特征,即有限性和等可能性.在应用时,关键是正确理解基本事件与事件A的关系,从而求出m,n.公式P(A)=mn2.求某个随机事件A包含的基本事件的个数和试验中基本事件的总数常用的方法是列举法(画树状图和列表),注意做到不重不漏.3.对于用直接方法难以解决的问题,可以先求其对立事件的概率,进而求得其概率,以降低难度.一、选择题1.一个袋中装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同色的概率为()C.14D.25考点 几类常见的古典概型 题点 与顺序有关的古典概型 答案 A解析 把红球标记为红1、红2,白球标记为白1、白2,本试验的基本事件共有16个,其中2个球同色的事件有8个:红1、红1,红1、红2,红2、红1,红2、红2,白1、白1,白1、白2,白2、白1,白2、白2,故所求概率为P =816=12.2.甲、乙两人有三个不同的学习小组A ,B ,C 可以参加,若每人必须参加并且仅能参加一个学习小组(两人参加各小组的可能性相同),则两人参加同一个学习小组的概率为( ) A.13 B.14 C.15 D.16 考点 古典概型计算公式题点 古典概型概率公式的直接应用 答案 A解析 甲、乙两人参加学习小组,若以(A ,B )表示甲参加学习小组A ,乙参加学习小组B ,则一共有(A ,A ),(A ,B ),(A ,C ),(B ,A ),(B ,B ),(B ,C ),(C ,A ),(C ,B ),(C ,C ),共9种情形,其中两人参加同一个学习小组共有3种情形,根据古典概型概率公式,得P =13. 3.先后抛掷两颗骰子,所得点数之和为7的概率为( ) A.13 B.112 C.16D.536考点 古典概型计算公式题点 古典概型概率公式的直接应用 答案 C解析 抛掷两颗骰子,一共有36种结果,其中点数之和为7的共有6种结果,根据古典概型的概率公式,得P =16.4.袋中有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率为( )C.25D.15考点 古典概型计算公式题点 古典概型概率公式的直接应用 答案 C解析 设袋中红球用a 表示,2个白球分别用b 1,b 2表示,3个黑球分别用c 1,c 2,c 3表示,则从袋中任取两球所含基本事件为(a ,b 1),(a ,b 2),(a ,c 1),(a ,c 2),(a ,c 3),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3),共15个.两球颜色为一白一黑的基本事件有(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),共6个.∴其概率为615=25.5.某班准备到郊外野营,为此向商店订了帐篷,如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的,只要帐篷如期运到,他们就不会淋雨,则下列说法正确的是( ) A.一定不会淋雨 B.淋雨机会为34C.淋雨机会为12D.淋雨机会为14考点 古典概型计算公式题点 古典概型概率公式的直接应用 答案 D解析 用A ,B 分别表示下雨和不下雨,用a ,b 表示帐篷运到和运不到,则所有可能情形为(A ,a ),(A ,b ),(B ,a ),(B ,b ),则当(A ,b )发生时就会被雨淋到,∴淋雨的概率为P =14. 6.若以连续掷两颗骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 落在圆x 2+y 2=9内的概率为( ) A.536 B.29 C.16 D.19 考点 古典概型计算公式 题点 与顺序有关的古典概型 答案 D解析 掷骰子共有6×6=36(种)可能情况,而落在x 2+y 2=9内的情况有:(1,1),(1,2),(2,1),(2,2),共4种,故所求概率P =436=19.7.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为x ,y ,则log 2x y =1的概率为( ) A.16 B.536 C.112 D.12 考点 古典概型计算公式 题点 与顺序有关的古典概型 答案 C解析 所有基本事件的个数为6×6=36.由log 2x y =1得2x =y ,其中x ,y ∈{1,2,3,4,5,6},所以⎩⎪⎨⎪⎧ x =1,y =2或⎩⎪⎨⎪⎧ x =2,y =4或⎩⎪⎨⎪⎧x =3,y =6,满足log 2x y =1,故事件“log 2x y =1”包含3个基本事件, 所以所求的概率为P =336=112.8.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( ) A.19 B.29 C.718 D.49 考点 几类常见的古典概型 题点 与顺序有关的古典概型 答案 D解析 首先要弄清楚“心有灵犀”的实质是|a -b |≤1,由于a ,b ∈{1,2,3,4,5,6},则满足要求的事件可能的结果有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),(4,5),(5,4),(5,5),(5,6),(6,5),(6,6),共16种,而依题意得,基本事件的总数有36种.因此他们“心有灵犀”的概率为P =1636=49.9.某车间共有6名工人,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数,日加工零件个数大于样本平均数的工人为优秀工人.从该车间6名工人中,任选2人,则至少有1名优秀工人的概率为( )A.815B.49C.35D.19 考点 几类常见的古典概型 题点 与顺序无关的古典概型 答案 C解析 由茎叶图可知6名工人日加工的零件个数为17,19,20,21,25,30.平均数为16×(17+19+20+21+25+30)=22,因为日加工零件个数大于22的为25,30, 所以优秀工人有2人.从该车间6名工人中,任取2人共有15种取法:(17,19),(17,20),(17,21),(17,25),(17,30),(19,20),(19,21),(19,25),(19,30),(20,21),(20,25),(20,30),(21,25),(21,30),(25,30). 其中至少有1名优秀工人的共有9种取法:(17,25),(17,30),(19,25),(19,30),(20,25),(20,30),(21,25),(21,30),(25,30). 由概率公式可得P =915=35.故选C.二、填空题10.从三男三女共6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率为________. 考点 几类常见的古典概型 题点 与顺序无关的古典概型 答案 15解析 用A ,B ,C 表示三名男同学,用a ,b ,c 表示三名女同学,则从6名同学中选出2人的所有选法为AB ,AC ,Aa ,Ab ,Ac ,BC ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,ab ,ac ,bc ,,共15种,2名都是女同学的选法为ab ,ac ,bc ,共3种,故所求的概率为315=15.11.从1,2,3,4,5这5个数字中不放回地任取两数,则两数都是奇数的概率是________. 考点 古典概型计算公式 题点 不放回型古典概型的计算 答案310解析 从5个数字中不放回地任取两数,基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个.因为都为奇数的基本事件有(1,3),(1,5),(3,5),共3个,所以所求概率P =310.三、解答题12.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下表数据:单价x (元) 3 4 5 6 7 销量y (件)7872696863由表中数据,求得线性回归方程为y ^=-6x +a ^,若在这些样本点中任取一点,求它在回归直线左下方的概率. 考点 古典概型计算公式题点 古典概型概率公式的直接应用 解答 x =15×(3+4+5+6+7)=5,y ^=15×(78+72+69+68+63)=70. ∵线性回归方程为y ^=-6x +a ^, ∴70=-6×5+a ^,解得a ^=100, ∴线性回归方程为y ^=-6x +100,数据(3,78),(4,72),(5,69),(6,68),(7,63),5个点中有3个点在直线的左下方,即(3,78),(4,72),(5,69).故在这些样本点中任取一点,则它在回归直线左下方的概率为P =35.故选C.13.海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A B C 数量50150100(1)求这6件样品中来自A ,B ,C 各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.考点 古典概型计算公式题点 古典概型概率公式的直接应用解 (1)因为样本容量与总体中的个体数的比是650+150+100=150,所以样本中包含三个地区的个体数量分别是 50×150=1,150×150=3,100×150=2,所以A ,B ,C 三个地区的商品被抽取的件数分别为1,3,2.(2)设6件来自A ,B ,C 三个地区的样品分别为A 1;B 1,B 2,B 3;C 1,C 2,则抽取的这2件商品构成的所有基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,C 1},{A 1,C 2}, {B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3}, {B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2}, 共15个.每个样品被抽到的机会均等,因此这些基本事件出现的机会是等可能的.记事件D :“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有 {B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个. 所以P (D )=415,即这2件商品来自相同地区的概率为415.四、探究与拓展14.袋中装有球,从袋中不放回地取球,有三种游戏规则,具体规则如下:规则编号游戏①袋中球数 1个红球和1个白球规则 取1个球,取出的球是红球,则获胜规则编号 游戏② 袋中球数 2个红球和2个白球规则 取2个球,取出的球同色,则获胜规则编号 游戏③ 袋中球数 3个红球和1个白球规则取2个球,取出的球不同色,则获胜若每个同学可选择参加两项游戏,则你选择哪两项游戏?并说出理由. 解 游戏①获胜的概率P 1=12;游戏②获胜的概率P 2=26=13;游戏③获胜的概率P 3=36=12,所以选择参加游戏①与③.15.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.解 (1)从袋中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的两个球的编号之和不大于4的事件有1和2,1和3,共2个.因此所求事件的概率P =26=13.(2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n )有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.其中满足条件n ≥m +2的事件有(1,3),(1,4),(2,4),共3个.所以满足条件n ≥m +2的事件的概率P 1=316.故满足条件n <m +2的事件的概率为1-P 1=1-316=1316.。

相关文档
最新文档