测井曲线与沉积相的关系

合集下载

测井曲线沉积相分析

测井曲线沉积相分析

6.1 单井沉积相分析沉积相是沉积环境的物质表现,即指一定的沉积环境以及在该环境中形成的沉积物特征的综合。

沉积相标志的获取和确定主要来自三个方面:地质、地震与钻井。

钻井资料——岩心与测井是地下沉积相确定的最直接、最可靠的相标志,也是进行层序划分的核心内容之一。

综合地质与测井特征两方面的研究,结合区域地质研究资料,研究了单井的沉积相发育特征,总结出其纵向演化和横向相变规律。

6.1.1 测井沉积相研究6.1.1.1 测井相分析的基本原理和方法测井相分析的基本原理就是从一组能反映地层特征的测井响应中,提取测井曲线特征,包括幅度大小、形态、接触关系及组合特征,结合其它测井解释结论将地层剖面划分为有限个测井相,并用岩心资料加以验证,从而建立用测井资料描述地层沉积相的模式。

岩心或岩相分析是测井识别沉积相或微相的地质基础。

由于各类测井曲线所反映的地质特征不同,因而在相识别中所发挥的作用也存在明显的差异(表6-1),如自然电位、自然伽马、电阻率可以反映沉积物垂向粒序、韵律以及沉积结构特征和水动力能量的变化;地球化学测井、能谱测井可反映岩石组分的成熟度,进而分析母岩性质、古地理背景、源区的远近。

另外测井曲线在垂向上的组合规律也是判断沉积微相组合规律的有效方法。

6.1.1.2 表征岩性、层序特征的测井相标志碎屑岩储层沉积相分析常用的测井曲线是反应岩性变化的自然伽马(GR)和自然电位(SP),有时也配合电阻率,当然不同的地区也有区别,因地而异。

各类测井曲线所反映的地质特征不同:SP、GR、电阻率曲线主要反应沉积物在垂向上的粒序变化和韵律,以及沉积结构特征和水动力能量的变化。

通过分析测井曲线的组合形态、幅度、顶底接触关系、光滑程度等基本要素来确定单井测井相特征,综合分析后确定单井沉积相的类型。

本地区可以识别出来的曲线形态包括以下几种:(1)钟形曲线下部最大,往上越来越小,是水流能量逐渐减弱或物源供应越来越少的表现。

其特点底部突变、顶部渐变,即为向上变细的韵律,反映出正粒序结构,典型的代表为曲流河点坝或河道充填沉积的产物(图6-1a)。

测井曲线识别沉积相

测井曲线识别沉积相

二、沉积相的测井响应
前缘席状砂沉积相与测井相关系图
19
二、沉积相的测井响应
前缘席状砂沉积相与测井相关系图
20
沉积相在测井曲线的响应特征 测井相分析
结论
21
三、结论
从以上实例可以看出, 将岩芯资料结合测井曲线来识别沉 积微相确实是可行的、有效的。它能反映沉积物的岩性、流体 性质等多种地质信息, 能够较好的实现岩性- 电性的转化。值得 注意的是, 并不是所有的测井曲线的形态与沉积微相是一一对 应的关系, 因此在判相时要结合多种资料来相互补充、相互验 证。
22
谢谢!
23
3
一、沉积相在测井曲线的响应特征
利用测井曲线判别沉积相可以从以下几个方面来分析:
1、曲线幅度:测井曲线的幅度能够较好地反映沉积物粒度、泥质含量 及分选性等,通常分为高幅、中幅、低幅。一般颗粒较粗的砂岩,曲 线呈中~高幅,颗粒较细、泥岩含量高则呈低幅。通过测井曲线的幅度 解释, 可反映水动力强度、物源供给、沉积分选等特征。
二、沉积相的测井响应
1、水下分流河道沉积:水下分流河道沉积为平原环境中灾变 期间形成的水上分流河道在水下的延伸,一般以砂岩、含砾砂 岩为主,砾岩相对较少、较细,其层序表现为底部为冲刷面。 在测井曲线特征方面主要表现为: 自然伽马、自然电位、视电 阻率和声波时差为箱形,,上圆锥形和钟形,,越往上游其幅度 值越大。
利用测井曲线特征 识别沉积相
2012年6月
1
汇报内容
沉积相在测井曲线的响应特征 测井相分析
结论
2
一、沉积相在测井曲线的响应特征
沉积微相研究必须依靠大量的岩芯资料和测井资料。在 识别大相、亚相的前提下, 岩芯资料是地下沉积相研究最重要 的信息。但是, 研究区内取芯资料往往是有限的, 对沉积微相的 平面展布必须借助测井信息, 根据测井曲线的形态、幅度、光 滑程度、组合特征等方面进行测井相的分析, 识别不同的沉环 境对应的测井响应。

测井资料在三角洲前缘不同沉积微相中的应用

测井资料在三角洲前缘不同沉积微相中的应用

测井资料在三角洲前缘不同沉积微相中的应用摘要:研究三角洲前缘不同沉积微相主要通过岩芯资料和测井资料两种形式。

在识别沉积相类型中,岩芯资料是最有效的依据。

考虑到取芯资料往往是有限的,对沉积微相确定往往要运用测井信息,依据测井曲线的形态、幅度、光滑程度、组合特征等特征进行测井相的分析,识别不同的沉积环境对应的测井响应。

在确立相标志划分的基础上,通过测井资料分析确立出微相类型。

关键词:测井资料;沉积微相;沉积特征;测井曲线0前言测井相分析是综合性的工作。

它是由一组恢复地层的岩性剖面和沉积环境的测井曲线组成。

当在一个井段确立了岩性剖面之后,就应将测井相转化为其有地质意义的概念[1,2]。

这首先要了解沉积环境及沉积过程,熟悉其沉积特征和相分析方法,在岩芯分析等地质资料的刻度下建立匹配准则,实现从测井相到沉积微相的转换。

储层的岩性、物性与其相应沉积环境密切相关,而利用测井曲线可以研究储层沉积环境,测井曲线的幅度特征、形态特征、变化特征,可以定性地反映地层岩性、粒度、泥质含量变化和垂向组合关系等特征,不仅可以用于沉积微相研究,也可以识别地层划分和对比的标志[3]。

常用的测井曲线有自然电位、自然伽马、电阻率、中子、密度、声波等。

充分利用测井资料,发挥测井方法多样、精度高、易识别、检测完整等优点,对于研究储集砂体沉积微相具有十分重要的意义[4]。

1测井相标志测井曲线是岩石各种物理性质沿井孔深度变化的物理响应,反映了岩石的岩性、粒度、泥质含量及垂向序列等重要信息[5]。

在不能全部取芯的条件下,测井资料较易获取,测井能获得所需研究井段的全部测井曲线。

在沉积相研究过程中,常应用自然电位曲线、自然伽玛曲线、微电极曲线等研究沉积相、分析沉积层的粒度变化趋势、非均质性和韵律性等,从而识别出沉积相和沉积环境(表1)。

3沉积微相及其特征三角洲前缘是三角洲最主要的骨架部分,是河流和湖泊共同作用的结果,砂层类型繁多且发育集中[8]。

沉积微相研究方法

沉积微相研究方法

一、沉积微相研究方法沉积微相研究可从以下几个方面入手:1.1.基础地质资料当在一定的区域范围内对某一地层单位进行沉积相或沉积微相或沉积环境分析时:1.1.1应从最基础的地质工作入手,研究岩层本身的性质,诸如成分、颜色、结构、沉积构造、分选性、组成颗粒的特征(圆度、球度、表面微观特征)、层序特征(如向上变细或向上变粗,交互层等),分析其岩相特征。

1.1.2应仔细研究岩层中所含的各种生物化石的特征,尤其是生态特征,它可以更多地反映古生物的生存环境。

这里所讲的生物化石也包括各种遗迹化石,在许多情况下,生物遗迹化石更为常见,其重要性已为大家所共识。

这些工作主要依靠大量的野外露头观察和钻井岩芯描述来进行。

1.1.3 如果条件允许,在进行相分析时应将其与地球物理方法相结合。

1.2利用地球物理测井资料目前,利用地球物理测井资料进行相分析,已成为研究工作中不可缺少的重要手段之一。

1979年,法国地质学家O.Serra首先提出“电相”(即测井相),他定义“电相”是:表征地层特征,并可使该地层与其它地层区分开来的一组测井响应特征。

“电相”分析就是利用各测井响应的定性特征和定量参数来描述地层的沉积相。

能用于沉积相分析的测井资料,如视电阻率、自然伽马、声波时差、感应等近十种测井信息,其中以自然电位、电阻率和自然伽马曲线在相分析中的效果最为理想。

在研究中主要利用曲线的幅度、形态、组合形态,适当参照接触关系和次级关系等参数,并密切与岩芯和岩屑录井资料相结合。

1.3 综合分析的方法除此之外,利用地震资料、地球化学分析资料等也可以对沉积相进行研究。

当然,地质科学是一门综合性很强的科学,对于古代沉积相和沉积体系的研究,需要利用各种手段,也就是综合的方法,而不是单纯依赖某一种方法。

事实上,由于自然环境的复杂性和各种地质作用之间的相互作用与影响,对地层记录的认识很不容易,需要考虑的因素很多,决不能失之于片面、主观。

研究工作要结合研究区目的层的特征,大量搜集野外及室内资料,通过取芯井详细的岩芯描述和室内测井沉积相的划分,并结合岩芯分析测试资料对研究区目的层先建立单井沉积微相柱状剖面,然后通过连井剖面分析,最后作出平面沉积微相展布图。

测井曲线与沉积相的关系

测井曲线与沉积相的关系

①钟型:自然伽马曲线形态呈钟状。

曲线从下往上幅度突然变高,然后逐渐下降,慢慢恢复到泥岩基线,它反映出沉积环境从低能突然变为高能,之后又从高能缓慢恢复到低能的情况。

岩性具正粒序结构,底部与泥岩呈突变接触关系,一般对应于底冲刷,顶部与泥岩渐变接触,反映了逐渐减弱的水动力特征,是由中—粗粒砂岩至中—细砂岩组成的、由粗变细的曲流河边滩或辫状河心滩砂体上部的沉积特征。

如由多个冲刷面、叠置的边滩或心滩与薄泥岩夹层组合在一起,因每个叠置砂体的粒级及含泥量的韵律性变化,可使钟形曲线多次叠加而呈宏观的圣诞树形;②光滑箱型:自然伽马曲线形态呈箱状,它反映沉积过程中物源丰富和水动力条件较强。

砂岩层顶、底均为突变接触。

根据箱型曲线是否齿化,可进一步分为光滑箱型和锯齿状箱型两种曲线形态。

光滑箱型自然伽马曲线光滑或微齿化,内部结构较均匀,岩性较单一,无粉砂或泥岩夹层,曲线底部呈突变关系,顶部突变或略显正韵律变化特征,反映物源充足、强而稳定的水动力特征,在本区多是由含砾粗砂岩和中—粗粒砂岩组成的具有多韵律叠置的辫状河心滩沉积特征;③锯齿状箱型:与上面的光滑箱型非常相似,自然伽马曲线齿化,岩性组合通常是有多个向上变细的正旋回组成,内部结构不均匀,可能发育有多个泥岩夹层,反映了水动力条件强但不稳定、强弱平凡交替的特征,在本区指示了由中—粗粒砂岩或中—细粒砂岩组成的多韵律叠置辫状河心滩和河道充填沉积特征;④漏斗型:自然伽马曲线形态呈漏斗状,反映沉积环境的能量从弱到强,然后突然变弱的变化特征。

岩性主要为反韵律的薄层砂岩、粉砂岩、泥岩互层,对应砂体厚度小(2m左右),砂体顶部与泥岩突变接触,底部与泥岩渐变接触,砂岩主要发育于上部,反映突发性的洪水流溢岸沉积,如决口扇和决口河道,多个决口扇的连续发育可形成叠置漏斗型曲线。

⑤指型曲线:自然伽马曲线形态呈指状,曲线幅度高,表明物源少而沉积环境能量强。

岩性一般为细一中砂岩,厚度一般小于2m与上下泥岩突变接触,是决口扇和决口河道的典型曲线特征。

储层“四性”关系与电测油层的解释

储层“四性”关系与电测油层的解释

五、储层“四性"关系与电测油层的解释(一)、储层的“四性”关系储层的“四性”关系是指储层的岩性、物性、含油性与电性之间的关系。

沉积相是控制岩性、物性和含油性的主要因素,电性是对其三者的综合反映,不同的沉积相带,决定了不同岩性、物性和含油性,并决定了不同的电性特征.只有正确地认识岩性,准确地掌握沉积环境、沉积规律和所处的沉积相带,认清各种岩性在电测曲线上的反应,才能正确地认识它的物性和含油性,才能与电性特征进行有机的结合,正确地进行油水层判断,提高解释符合率和钻井成功率.测井曲线能反映不同的岩性,尤其对储集层及其围岩有较强的识别能力。

南泥湾油田松700井区长4+5、长6储集层测井显示:自然电位曲线为负异常,自然伽玛低值,微电极两条曲线分开,声波时差曲线相对较低,而且比较稳定,电阻率曲线随含油性不同而变化。

泥岩表现为:自然电位为基线,自然伽玛高值,微电极两条曲线重合,声波时差曲线相对较高,且有波动,电阻率曲线表现为中-高阻.过渡岩性的特征界于纯砂岩与泥岩之间.储层的钙质夹层显示为,声波时差低值,自然伽玛低值,电阻率高值;而泥质、粉砂质夹层显示为,自然伽玛增高,电阻率增大。

普通视电阻率曲线的极大值对应高阻层底界面。

感应曲线及八侧向曲线在储集层由于侵入而分开,而在泥岩及致密层3条曲线较接近。

但是,由于该区大部分井采用清水泥浆,所以,井径曲线在渗透层曲线特征不明显,微电极曲线在渗透层特征不明显。

长4+5储层岩性致密,渗透率值比较集中,在渗透性较好的储层段,一般含油性较好。

长4+5油层组含油层的曲线特征比较明显,油、水层的特征总体上便于识别.电阻率曲线是识别油水层最重要的曲线。

理论上来说,感应曲线因其在地层中的电流线是环状的,那么,地层的等效电阻是并联的,它比普通视电阻率曲线及侧向测井更能识别相对低阻的地层。

所以,一般最好用感应测井曲线识别油水层.油层电阻率幅度大,含油段的储层电阻率是水层电阻率的1。

测井曲线识别沉积相

测井曲线识别沉积相
利用测井曲线特征 识别沉积相
2012年6月
1
汇报内容
沉积相在测井曲线的响应特征 测井相分析
结论
2
一、沉积相在测井曲线的响应特征
沉积微相研究必须依靠大量的岩芯资料和测井资料。在 识别大相、亚相的前提下, 岩芯资料是地下沉积相研究最重要 的信息。但是, 研究区内取芯资料往往是有限的, 对沉积微相的 平面展布必须借助测井信息, 根据测井曲线的形态、幅度、光 滑程度、组合特征等方面进行测井相的分析, 识别不同的沉环 境对应的测井响应。
二、沉积相的测井响应
前缘席状砂沉积相与测井相关系图
19
二、沉积相的测井响应
前缘席状砂沉积相与测井相关系图
20
沉积相在测井曲线的响应特征 测井相分析
结论
21
三、结论
从以上实例可以看出, 将岩芯资料结合测井曲线来识别沉 积微相确实是可行的、有效的。它能反映沉积物的岩性、流体 性质等多种地质信息, 能够较好的实现岩性- 电性的转化。值得 注意的是, 并不是所有的测井曲线的形态与沉积微相是一一对 应的关系, 因此在判相时要结合多种资料来相互补充、相互验 证。
4ห้องสมุดไป่ตู้
一、沉积相在测井曲线的响应特征
5
一、沉积相在测井曲线的响应特征
2、曲线形态:曲线的形态分为箱型、钟型、漏斗型、齿形、指 型等。测井曲线的形态可以反映岩性、粒度、分选性、泥质含量、 含钙与否等特征, 进而反映沉积过程水动力能量、物源供给情况 和沉积旋回类型。
6
一、沉积相在测井曲线的响应特征
7
一、沉积相在测井曲线的响应特征
二、沉积相的测井响应
1、水下分流河道沉积:水下分流河道沉积为平原环境中灾变 期间形成的水上分流河道在水下的延伸,一般以砂岩、含砾砂 岩为主,砾岩相对较少、较细,其层序表现为底部为冲刷面。 在测井曲线特征方面主要表现为: 自然伽马、自然电位、视电 阻率和声波时差为箱形,,上圆锥形和钟形,,越往上游其幅度 值越大。

各种测井曲线对不同岩性性地层的反映特征

各种测井曲线对不同岩性性地层的反映特征

小韵律很 发育,常 见但不连

中厚层-块状构造为
各种浅海
主,豹斑构造,生 波痕、冲 生物化石
物钻孔构造(水平 刷面 及化石碎
、垂直发育)

韵律 发育
水平层理为主,中薄层状构造
沿层面有 时可见化 石印痕
半深水生 物或浮游 生物为主
韵律常 不明显
水平层理为主,薄 层状构造为主
水平层“波马层序 列”
深水生物
泥、页岩或硅质层夹灰 岩、砂(砾)屑灰岩
firth estuary erosion eroding bank
bank slump
入海口 江河入海口 侵蚀
侵蚀河岸 河岸坍塌
沉积相特征对比情况表
晶、粒 结构
分选
圆 度
常见层 理特征
较差 砾、角 差 砾较多 中等
稍好
棱 角 ︱ 次 圆
多为冲刷、充填构 造,也常见泥砾构 造、花斑构造及压 扁状构造
介形虫(多 在层面上) 、藻类、 鱼化石
反韵律

粉 ︱ 细
较 好
粗、含 较 砾-泥 差 砂粉。 ︱ 但以细 中 粒为主 等
粉粒、 粉晶为 主
较 好

水退型
圆 板状层理、波状交 ︱ 错层理、波状层理 次 及透镜状构造
爪痕、波 痕、虫孔 较发育
螺蚌等浅 水生物
为反韵 律,水 进型为

正韵律
常见“波马层理序 底部冲刷
砂、泥岩间互
泥岩为主,砂岩颗粒 细,沼泽则多碳质泥 岩,见钙质结核或团块
为一套灰、深灰色粉、 细砂岩和砂质泥岩,砂 岩多为长石砂岩,钙质 胶结为主,砂岩一般占 30%,孔隙度、渗透率 较好
滨 湖浅 滩 相

测井沉积相分析基本原理和理论研究

测井沉积相分析基本原理和理论研究
沉积相由特定的相标志表示,而测井相是由特定的测井响应代表。
测井相与沉积相相当,不同的沉积相因其成分、结构、构造等不同而造成测 井响应不同,一组反映岩石的测井曲线就构成了该地质相的映象,测井系统 愈完善,反映实际地质相的映象就愈好。
但是,两者并不都是一一对应的,可能有两个或更多个电相对应一个沉积相, 也可能一个电相对应几个沉积相。
流体性质:注水开发油田由于不同次测井地层水矿化度在不断发生变化 也会造成测井曲线解释沉积环境的假象。
因此,在测井划相中应慎重利用,灵活掌握。
总之,各种测井曲线都能在一定程度上提供环境信息,也都存在多解性, 因而综合应用测井曲线判断亚相及其微相就显得十分必要。
一般作法是,利用自然电位曲线的形态、幅度、顶底面接触关系特征, 参考自然伽马曲线次一级形态标志来判断亚相及层序特征,判断它是前积、 加积或侧积层序,再依据电阻率曲线,参考微电极确定韵律特点。在均质砂 岩中,还可以依据自然伽马曲线、声波时差曲线判断粒度特征。例如箱形的 自然电位曲线形态反映小层为加积特点,据深侧向或其它视电阻率曲线又知 道向上电阻率减小显示正韵律特点时,则可定为河道。
因此,必须用已知沉积相对电相进行标定。
2、工作方法
首先,在取心井中用一系列测井曲线或参数划分为若干种“测井相”; 将这些测井相与岩心分析所得到的“岩相”进行相关对比,利用测井信息 可以归纳为不同类型及相互关系的曲线组合类型,建立测井曲线相模式; 然后,反过来在没有取芯井中用测井资料进行沉积相分析,从而进行正确 的地质解释和恢复沉积环境,确定相标志,推断水体深度,搬运介质能量、 沉积物粗细、物源供应、气候条件等标志。
除上述经常使用的常规测井、倾角测井和主要的成像测井技术以外,对 于测井沉积学研究而言,一些新的测井技术正在得到逐步的推广和应用。如 阵列感应测井仪(AIT)可探测不同深度感应曲线,反映了地层层理和侵入 特性等信息;自然伽玛和能谱伽玛测井可用于泥质含量和粒径分析,从而分 析古代沉积环境;能谱测井(70年代出现)主要用于粘土矿物和氧化还原环 境分析;地球化学测井技术已成功地用于大洋钻探计划(ODP)中,分析火 成岩和变质岩的演化及分布规律。此外,核测井的使用使测井地质应用进一 步得到发展,核测井可测量大量矿物和地球化学信息,根据元素分析结果可 计算矿物类型及进行成岩作用研究。尽管目前核测井应用范围还较小,但通 过实验室分析等手段进行标定后,核测井的应用前途是光明的。

测井相

测井相

线就构成了该沉积相的映像,测井曲线越完善,所反应的
情况越好。
2、用于测井相分析的测井曲线类型
测井曲线类型很多,如自然伽马(GR)、自然电位(SP) 、井径(CAL)、声波时差(AC)、密度(DEN)、补偿中子
(CNL)、微球型聚焦电阻率(RXO)、中感应电阻率
(RIM)、深感应电阻率(RID)等,它们可以从不同方面 反映岩层特征及所含流体性质。测井相分析一般选用 自然电位或自然伽玛曲线。
线特征:为一套低幅反向齿形,齿中线上倾、平行。 (2)主河道沉积:发育在泥石流沉积上,水流冲刷、搬运能力强.沉积
有滞留的碎屑支撑砾岩,底部常有残留的泥石流层。曲线特征:中幅、
正向或对称齿形,齿中线下倾或水平。 (3)扇中辨状河道:水浅流急,河道迁移快,以含砾砂岩为主,曲线特征
:中幅、厚层,常由几个齿叠加而成,具箱形或钟形的外貌,齿中线水平
选加好,代表砂体上部受波浪影
响。
③箱形:反映沉积过程中能量
一致,物源充足的供应条件,
是河道沙坝的曲线特征。 ④指形:代表强能量下的中层 粗粒堆积,如海滩、湖滩。
以及一些组合形式
3.接触关系
顶底接触关系反映砂体沉积初期、末期水动力能量 及物源供应的变化速度,有渐变和突变两种,渐变又分 为加速、线性和减速三种,反映曲线形态上的凸型、直 线和凹型。突变往往表示冲刷 ( 底部突变 ) 或物源的中断 (
二、测井曲线要素
通过分析取芯井典型沉积微相类型对应的测
井曲线响应,建立岩性和电性之间的对应关系。最
终实现根据测井曲线即能判别岩性和沉积相。
利用测井曲线来判别沉积相主要从曲线的幅
度、形态、顶底接触关系、齿中线以及光滑程度来
进行分析。
1.幅度:分为低幅、中幅、高幅 2.形态:①钟形:反映水流能量 向上减弱它代表河道的侧向迁移 或逐渐废弃。 ②漏斗形:反映砂体向上部建 造时水流能量加强,颗粒变粗分

测井与沉积相

测井与沉积相

六、沉积构造的成像测井解释水动力条件、岩石成因的各种沉积构造,FMI、CBIL都有不同程度的响应,这要考虑沉积构造的规模及其组成成分的变化。

一般而言,在垂向上有一定规模变化的沉积构造(如冲刷面、大型层理等),成像测井响应清楚;而规模较小或垂向上没有明显变化幅度的小型沉积构造则很难识别。

一般解释沉积构造都用1:5、1:10的比例,在成像测井图像交互解释平台上做解释。

(一)、冲刷面1.冲刷面的地质特征一般冲刷面为一凹凸不平的界面,往往其下是低能的泥岩或泥质粉砂岩,其上为将下部地层冲刷起来形成的含泥砾砂岩段。

2.FMI图像特征如某井5088.15m初形成一个凹凸不平起伏的界面,上部暗色泥砾呈扁平状略呈定向排列,其下为含膏泥岩的高阻异常岩性反映(二)、斜层理1.一般地质特征斜层理为纹层、层系交切关系不清的交错层理或单向斜层理,岩心上往往表现为一组单一倾向的纹层垂向叠合,每个纹层由成分、粒度、颜色显示,纹层规模可大可小。

2.FMI图像特征斜层理往往对应于一组有明暗条纹显示的正弦波曲线,并且可以正确计算出每个层系纹层的界面状斜层理从地质角度讲有低角度(<12o、(三)、槽状交错层理1.一般地质特征槽状交错层理为层系界面,呈弧形交切,纹层也呈弧形的较高能态形成的水流层理,岩心上往往表现为几组弧形纹层相切。

2.FMI图像特征由一套不同角度的正弦曲线显示的层系界面,两层系界面间上弧形的截切纹层,为明暗相间的条纹组成,其厚度规模随岩心上的规模而变(四)、板状交措层理1.一般地质特征板状交错层理为层系界面平行、纹层组向底部收敛的水流层理,是最直接反映古水流方向的层理类型。

岩心上往往表现为几组纹层向底部收敛的层系垂向叠复。

2.FMI图像特征在FMI井周展开图像往往识别出几个平直的层系界面,每个层板状交错层、水平层理、断续斜层理、再作用面、微错段系内纹层显示底部收敛顶部截切的明暗条纹(五)、小型沙纹交措层理1.一般地质特征为在井简范围内明显显示小规模的纹层接切线及小规模的交错层理。

测井曲线解释 (2)

测井曲线解释 (2)

主要测井曲线及其含义主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。

自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。

Rmf≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw 时,SP在渗透层表现为正异常。

自然电位测井SP曲线的应用:①划分渗透性地层。

②判断岩性,进行地层对比。

③估计泥质含量。

④确定地层水电阻率。

⑤判断水淹层。

⑥沉积相研究。

自然电位正异常Rmf<Rw时,SP出现正异常。

淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。

自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。

测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。

视电阻率曲线的应用:①划分岩性剖面。

②求岩层的真电阻率。

③求岩层孔隙度。

④深度校正。

⑤地层对比。

电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。

底部梯度电极系分层:顶:低点;底:高值。

三、微电极测井(ML)微电极测井是一种微电阻率测井方法。

其纵向分辨能力强,可直观地判断渗透层。

主要应用:①划分岩性剖面。

②确定岩层界面。

③确定含油砂岩的有效厚度。

④确定大井径井段。

⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。

微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。

四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。

利用自然电位与自然伽马测井曲线划分沉积相带及储层分布

利用自然电位与自然伽马测井曲线划分沉积相带及储层分布

对高低,可以判断砂岩中泥 质含量的多少和沉积环境能 量的强弱,进而利用SP曲线 形态识别沉积相类型。常见
曲线元纵向近似对称,上下两段的都比较陡,斜率较 大,且绝对值近似相等,幅厚比一般较大。
曲线元可以分为两段,上段较平缓,下段较陡。幅厚 比一般较大。
的典型曲线形态有四种(表 1):
曲线元可以分为两段,上段较陡,下段较平缓。幅厚 比较大。
利用自然电位与自然伽马测井曲线划分沉积相带及储层分布
1 自然电位与自然伽马测井曲线反映沉积相变特征
自然电位(SP曲线)在不含泥页岩的多孔隙地层中,SP曲线 偏离页岩基线的幅度大小与地层水含盐量和井中流体含盐量之差 有关。对于淡水泥浆,对着含盐水地层的位置,SP曲线向左偏移, 即负方向偏移。在其他条件相同的情况下,纯砂岩的负方向偏移 幅度最大,当砂岩中含泥质时,SP幅度减小,减小的幅度大体上 随泥质含量成正比,直至泥质含量为100%时,SP曲线完全和基 线一致。而当采用盐水泥浆时,含盐水地层的SP曲线很少或没有 偏移,甚至可以出现反转,即方向正向方偏移。
利用自然电位与自然伽马测井曲线划分沉积相带及储层分布
1 自然电位与自然伽马测井曲线反映沉积相变特征
砂泥岩沉积以及砂岩中泥 质含量的多少与沉积环境密 切相关。高能环境,由于强
表1 自然电位(含自然伽马)识别沉积相类型的曲线形态、特征表
曲线形态
(曲线斜率及幅厚比变化)
曲线特征描述
烈跌簸筛选,形成相对粒级 较粗纯净砂岩,其SP曲线幅
利用自然电位、自然伽马曲线评价储 集相带及其应用分布Fra bibliotek汇报人: 宋子齐
(西安石油大学 石油工程学院 陕西 西安 710065)
利用自然电位与自然伽马测井曲线划分沉积相带及储层分布

测井曲线典型形态

测井曲线典型形态

测井曲线的形态代表了地层特征,如自然电位曲线分为钟型,漏斗型,锯齿型,指型等,他们分别代表了各种信息。

但是其中SP曲线幅度又分为高幅,中幅,低幅。

请问一下这些幅度是怎样定义的。

是用公式算的还是直接看曲线的。

还有双测向曲线,声波时差,微电极曲线齿型是什么意思。

电位的形状确实可以指示出一定的沉积环境,,比如“漏斗”:有口向上的漏斗,有口向下的漏斗,这就能分出沉积顺序,逆序还是正序。

不同测井曲线的形态以及变化关系,都反映了不同的沉积环境,是沉积相的指相标志,也是层析地层划分识别的标志之一,你随便找一本层序地层学的书都有介绍幅度一般代表了当时的沉积能量;一般都指的是电位或者伽马曲线.至于曲线形态:1)钟型;底部突变接触,代表三角洲水下分流河道;2)漏斗型:顶部突变接触,代表三角洲前缘,河口坝微相;3)箱型:顶底界面均为突变接触,表示水动力条件稳定,代表潮汐砂体或者废弃水下分流河道;4)齿形:反映沉积过程中能量快速变化,一般代表河道侧翼,席状砂,分流间湾微相.1、曲线幅度高幅度:反映海湖岸的滩、坝砂岩体,由于波浪的作用淘冼、冲刷干净泥质含量少,改造彻底、分选好,中━细砂岩渗透性好,故高幅度。

中幅度:反映河道砂岩,水流冲刷强、物源丰富,分选差。

低幅度:反映河漫滩相,水流冲刷弱沉积物以细粒为主故以低幅度为主。

2、曲线形态钟形:下粗上细,反映水流能量逐渐减弱,物源供应的不断减少。

其代表相是蛇曲河点砂坝。

曲线反映底为冲刷面,上面为河道6,砾石堆积,再上为河道砂,最上是河道侧向迁移后形成的堤岸砂,漫滩泥,沉积序列为河道的正粒序结构特征。

漏斗形:下细上粗反映向上水流能量加强,分选逐渐变好。

代表相为海相滩坝砂岩体;另外反映了前积砂体的粒序结构,代表河口部位(包括水下河道河口部位)的沉积特征。

为反粒序结构箱形:反映沉积过程中物源丰富和水动力条件稳定,一种类型是正粒序特征,下部粒粗而上部分选好,因此幅度变化不大,它的代表相为支流河道砂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

①钟型:自然伽马曲线形态呈钟状。

曲线从下往上幅度突然变高,然后逐渐下降,慢慢恢复到泥岩基线,它反映出沉积环境从低能突然变为高能,之后又从高能缓慢恢复到低能的情况。

岩性具正粒序结构,底部与泥岩呈突变接触关系,一般对应于底冲刷,顶部与泥岩渐变接触,反映了逐渐减弱的水动力特征,是由中—粗粒砂岩至中—细砂岩组成的、由粗变细的曲流河边滩或辫状河心滩砂体上部的沉积特征。

如由多个冲刷面、叠置的边滩或心滩与薄泥岩夹层组合在一起,因每个叠置砂体的粒级及含泥量的韵律性变化,可使钟形曲线多次叠加而呈宏观的圣诞树形;
②光滑箱型:自然伽马曲线形态呈箱状,它反映沉积过程中物源丰富和水动力条件较强。

砂岩层顶、底均为突变接触。

根据箱型曲线是否齿化,可进一步分为光滑箱型和锯齿状箱型两种曲线形态。

光滑箱型自然伽马曲线光滑或微齿化,内部结构较均匀,岩性较单一,无粉砂或泥岩夹层,曲线底部呈突变关系,顶部突变或略显正韵律变化特征,反映物源充足、强而稳定的水动力特征,在本区多是由含砾粗砂岩和中—粗粒砂岩组成的具有多韵律叠置的辫状河心滩沉积特征;
③锯齿状箱型:与上面的光滑箱型非常相似,自然伽马曲线齿化,岩性组合通常是有多个向上变细的正旋回组成,内部结构不均匀,可能发育有多个泥岩夹层,反映了水动力条件强但不稳定、强弱平凡交替的特征,在本区指示了由中—粗粒砂岩或中—细粒砂岩组成的多韵律叠置辫状河心滩和河道充填沉积特征;
④漏斗型:自然伽马曲线形态呈漏斗状,反映沉积环境的能量从弱到强,然后突然变弱的变化特征。

岩性主要为反韵律的薄层砂岩、粉砂岩、泥岩互层,对应砂体厚度小(2m左右),砂体顶部与泥岩突变接触,底部与泥岩渐变接触,砂岩主要发育于上部,反映突发性的洪水流溢岸沉积,如决口扇和决口河道,多个决口扇的连续发育可形成叠置漏斗型曲线。

⑤指型曲线:自然伽马曲线形态呈指状,曲线幅度高,表明物源少而沉积环境能量强。

岩性一般为细—中砂岩,厚度一般小于2m,与上下泥岩突变接触,是决口扇和决口河道的典型曲线特征。

⑥锯齿型曲线:为锯齿状起伏的高伽玛值曲线,反映大套泥岩和粉砂质泥岩,其齿形为碳质、砂质以及钙质成分的反映,一般为河漫亚相泛滥平原沉积;
除上述常见的几种曲线类型外,还有很多由低伽玛值曲线组合而成的多种形态的复杂曲线类型。

本区测井相组合类型主要有以下几种(图2-19):
A 漏斗型+钟型组合:曲线下部呈钟型,上部呈漏斗型,顶、底均与泥岩呈突变接触。

岩性通常有粗—中砂岩渐变为粉-细砂岩,再渐变为粗—中砂岩,代表决口河道沉积。

B 钟型+箱型+漏斗型组合:曲线底部呈漏斗型,中部为箱型或齿化箱型,上部为钟型,反映河道沉积的组合特征。

C 钟型+箱型组合:曲线下部为箱型或齿化箱型,上部呈钟型,代表了曲流河河床沉积向边滩沉积的转化。

D 箱型+指型组合:曲线下部(或上部)为指型,上部(或中部)为箱型,反映了沉积环境能量强、物源逐渐增多(或减少)的环境,代表的沉积微相组合为决口扇向河道转化(或河道向决口扇的转化)。

相关文档
最新文档