第四章乳状液及微乳状液PPT课件
合集下载
第四章++乳状液
(4)滤纸润湿法 对于某些重油与水构成的乳状液可用此 法:在滤纸上滴一滴乳状液,若液体快 速展开,并在中心留下一小滴油,则为 O/W乳状液;若液滴不展开,则为W/O 乳状液。 但此法对于某些易在滤纸上铺展的油(如 苯、环己烷、甲苯等轻油)所形成的乳状 液则不适用。 对乳状液类型的鉴别应采取多种方法。
d、液滴大小的分布 相同体积的分散相分散成大小不同的液滴时大液 滴体系比小液滴体系的界面积小,界面能低。因而具 有较大的热力学稳定性。当乳状液体系中大小液滴同 时存在,小液滴有自动减小,大液滴有增大的趋势。 若此过程不断地发展,最终将会破乳。因此,液滴大 小分布均一的乳状液比平均大小相等但液滴大小分布 宽的乳状液稳定性好。乳状液液滴大小对稳定性的影 响还表现在体系黏度的变化。体系黏度(主要是连续相 黏度)的增加使液滴扩散系数减小,液滴碰撞频率和聚 集速度降低,乳状液稳定性增加。
c、空间稳定作用 用聚合物作为乳化剂时界面层厚度大,如同在 液滴周围形成厚厚的亲液性保护层,这种保护层构 成了液滴靠近和接触的空间障碍。聚合物分子的亲 液性也使得保护层中含有相当量的连续相液体,类 似于凝胶体。因而界面区域有较高的界面黏度和良 好的黏弹性,这将对阻止液滴合并,保持其稳定性 有利。即使有的液滴发生聚结,聚合物乳化剂常以 纤维状或结晶的形式聚集于变小了的界面上,使得 液滴的界面膜加厚,可防止液滴的进一步聚结。
3 ) 3 Cl
d1/ d2
1.32 0.50
类型
O/W W/O
C 16 H 33 N(C 8 H 17 ) 2 C 3 H 7 l
乳化剂的溶解度—Bancroft规则 一定温度下,乳化剂在水相和油相中的溶解度 之比为常数,称之为分配常数。
乳化剂
C 16 H 33 N(CH
乳状液(详细分析:乳状液)共7张PPT
F-O表示乳化剂膜和油的界面张力 §9 - 9 乳状液
• “大头”朝外形成两种类型的乳状
亲水基是“大头液”, O / W
憎水基是“大头”, W/O
如K, Na等碱金属皂类 00-8-1 一价的银肥皂例外.
如Ca, Mg, Zn等两价金属皂
类.
3
形成定向楔的界面
1.乳状液的稳定性
(1)降低界面张力
(2)形成定向楔的界面 (3)形成扩散双电层
若 F-O > F-W , 则形成O/W型乳化剂
一价碱金属皂类易溶于水难溶于油
若F-W > F-O , 则形成W/O型乳化剂
高价金属皂类易溶于油难溶于水 00-8-1
<
→
2 1.乳状液的稳定性
1.乳状液的稳定性
§9 - 9 乳状液
(1)降低界面张力
(2)形成定向楔的界面
乳化剂的亲水端和憎水端的截面积常大小不等. 当它吸附在乳状液内
§9 - 9 乳状液
乳化剂负离子定向吸附在油-水界面上, 带电的一端指向水, 反离 子则呈扩散状分布, 形成扩散双电层, 它一般具有较大的热力学电势 及较厚的双电层, 使乳状液处于较稳定的状态.
(4)界面膜的稳定作用
乳化过程也可以理解为分散相液滴表面的成膜过程, 界面膜的 厚度, 特别是膜的强度和韧性, 对乳状液的稳定性起着举足轻重的 作用.
的界面层时, 常呈现“大头”朝外, “小头”朝里的构型, 如同一个个楔子
密集地钉在圆球上. 这种构型使得分散相液滴的面积最小, 界面吉布斯函
(§数49)界- 最9面乳膜低状的液稳,定而作用且界面膜更牢固.
高价金属皂类易溶于油难溶于水 一种液体分散到另一种互不相溶的液体中, 产生大量新的液-液界面, 表面吉布斯函数增大. 固体颗粒在油-水界面上的三种润湿情况 当粒子易被油润湿时, 粒子大部分处于油中, W / O乳状液, 如炭黑, 石墨粉等. 加入某些能与乳化剂发生化学反应的物质, 消除乳化剂的保护作用. (左) >90 , 颗粒不能被水润湿而更多地进入油中; 如牛奶, 含水石油, 炼油厂的废水, 乳化农药等. (右) < 90 , 颗粒能被水润湿而更多地进入水中. §9 - 9 乳状液 破乳或去乳化作用: 使乳状液破坏的过程. (右) < 90 , 颗粒能被水润湿而更多地进入水中. 此外, 加热, 加入高价电解质, 加强搅拌, 离心分离, 以及电泳法等皆可加速分散相的聚结, 达到破乳的目的.
• “大头”朝外形成两种类型的乳状
亲水基是“大头液”, O / W
憎水基是“大头”, W/O
如K, Na等碱金属皂类 00-8-1 一价的银肥皂例外.
如Ca, Mg, Zn等两价金属皂
类.
3
形成定向楔的界面
1.乳状液的稳定性
(1)降低界面张力
(2)形成定向楔的界面 (3)形成扩散双电层
若 F-O > F-W , 则形成O/W型乳化剂
一价碱金属皂类易溶于水难溶于油
若F-W > F-O , 则形成W/O型乳化剂
高价金属皂类易溶于油难溶于水 00-8-1
<
→
2 1.乳状液的稳定性
1.乳状液的稳定性
§9 - 9 乳状液
(1)降低界面张力
(2)形成定向楔的界面
乳化剂的亲水端和憎水端的截面积常大小不等. 当它吸附在乳状液内
§9 - 9 乳状液
乳化剂负离子定向吸附在油-水界面上, 带电的一端指向水, 反离 子则呈扩散状分布, 形成扩散双电层, 它一般具有较大的热力学电势 及较厚的双电层, 使乳状液处于较稳定的状态.
(4)界面膜的稳定作用
乳化过程也可以理解为分散相液滴表面的成膜过程, 界面膜的 厚度, 特别是膜的强度和韧性, 对乳状液的稳定性起着举足轻重的 作用.
的界面层时, 常呈现“大头”朝外, “小头”朝里的构型, 如同一个个楔子
密集地钉在圆球上. 这种构型使得分散相液滴的面积最小, 界面吉布斯函
(§数49)界- 最9面乳膜低状的液稳,定而作用且界面膜更牢固.
高价金属皂类易溶于油难溶于水 一种液体分散到另一种互不相溶的液体中, 产生大量新的液-液界面, 表面吉布斯函数增大. 固体颗粒在油-水界面上的三种润湿情况 当粒子易被油润湿时, 粒子大部分处于油中, W / O乳状液, 如炭黑, 石墨粉等. 加入某些能与乳化剂发生化学反应的物质, 消除乳化剂的保护作用. (左) >90 , 颗粒不能被水润湿而更多地进入油中; 如牛奶, 含水石油, 炼油厂的废水, 乳化农药等. (右) < 90 , 颗粒能被水润湿而更多地进入水中. §9 - 9 乳状液 破乳或去乳化作用: 使乳状液破坏的过程. (右) < 90 , 颗粒能被水润湿而更多地进入水中. 此外, 加热, 加入高价电解质, 加强搅拌, 离心分离, 以及电泳法等皆可加速分散相的聚结, 达到破乳的目的.
胶体和乳状液
小
外加电解质 不敏感,加入大量造成 敏感,加入少量引起聚沉 离子的影响 盐析
(二)高分子化合物溶液对溶胶的保护作用
高分子化合物分子将溶胶胶粒包裹起来,在胶 粒表面形成保护膜,削弱了胶粒聚集的可能性
意义:保护作用在生命体中非常重要。
例: 1. 医用胃肠道造影的硫酸钡合剂是阿拉伯胶 保护的硫酸钡溶胶。 2. 如微溶电解质MgCO3或Ca3(PO4)2等,在血 液中的浓度比在体外纯水中的浓度高了近5倍,这 是因为它们在血液中被蛋白质保护的缘故。当保 护蛋白质减少时,这些溶胶状态的微溶就会因聚 沉而形成结石。
用量多, 一定范 需要一定 围内可 的助表面 与油水 活性剂 混合 用量相对 不混溶 少,不需 要助表面 活性剂
微乳液特征:
1.
具有超低的表面活性
稳定
2.有很大的增容量
W/O型油增量5%,O/W型油增量60%
3.粒子直径小 4.热力学稳定
煮沸As2S3溶胶,会有As2S3的黄色沉淀。
第三节 高分子化合物溶液
一、高分子化合物溶液及其稳定性 高分子化合物(polymer)指相对分子质量大于1万的化 合物
高分子化合物在液态的分散介质中形成的单相分子、 离子分散系统称为高分子化合物溶液。 高分子化合物溶液的分散粒径在1~100nm的胶体分 散系范围内,所以也有一些胶体分散系共有的性质。
(三)表面活性剂
表面活性剂:凡是能显著降低溶液的表面张
力,产生正吸附的物质(表面活性物质)
表面活性剂的结构特征
表面活性剂分子结构上的特征:
既含有亲水的极性基团——亲水基,如-OH、 -COOH、-NH2、 -SH、-SO3H等;
又含有疏水的非极性基团——疏水基,一些直 链的或带侧链的有机烃基
外加电解质 不敏感,加入大量造成 敏感,加入少量引起聚沉 离子的影响 盐析
(二)高分子化合物溶液对溶胶的保护作用
高分子化合物分子将溶胶胶粒包裹起来,在胶 粒表面形成保护膜,削弱了胶粒聚集的可能性
意义:保护作用在生命体中非常重要。
例: 1. 医用胃肠道造影的硫酸钡合剂是阿拉伯胶 保护的硫酸钡溶胶。 2. 如微溶电解质MgCO3或Ca3(PO4)2等,在血 液中的浓度比在体外纯水中的浓度高了近5倍,这 是因为它们在血液中被蛋白质保护的缘故。当保 护蛋白质减少时,这些溶胶状态的微溶就会因聚 沉而形成结石。
用量多, 一定范 需要一定 围内可 的助表面 与油水 活性剂 混合 用量相对 不混溶 少,不需 要助表面 活性剂
微乳液特征:
1.
具有超低的表面活性
稳定
2.有很大的增容量
W/O型油增量5%,O/W型油增量60%
3.粒子直径小 4.热力学稳定
煮沸As2S3溶胶,会有As2S3的黄色沉淀。
第三节 高分子化合物溶液
一、高分子化合物溶液及其稳定性 高分子化合物(polymer)指相对分子质量大于1万的化 合物
高分子化合物在液态的分散介质中形成的单相分子、 离子分散系统称为高分子化合物溶液。 高分子化合物溶液的分散粒径在1~100nm的胶体分 散系范围内,所以也有一些胶体分散系共有的性质。
(三)表面活性剂
表面活性剂:凡是能显著降低溶液的表面张
力,产生正吸附的物质(表面活性物质)
表面活性剂的结构特征
表面活性剂分子结构上的特征:
既含有亲水的极性基团——亲水基,如-OH、 -COOH、-NH2、 -SH、-SO3H等;
又含有疏水的非极性基团——疏水基,一些直 链的或带侧链的有机烃基
乳状液与微乳液型制剂
WENKU DESIGN
WENKU DESIGN
2023-2026
ONE
KEEP VIEW
乳状液与微乳液型制 剂
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
https://
CATALOGUE
目 录
• 乳状液型制剂简介 • 微乳液型制剂简介 • 乳状液与微乳液型制剂的比较 • 乳状液与微乳液型制剂的制备技术 • 乳状液与微乳液型制剂的发展趋势与展望
于形成稳定的乳状液。
高透光性
微乳液外观透明或半透明,具有较 高的透光性,可透过光线。
热稳定性
微乳液对温度变化有一定的稳定性, 不易因温度升高而发生相分离。
微乳液的应用领域
化妆品
药物传递
微乳液在化妆品中广泛 应用,如面霜、防晒霜、
洗发水等。
微乳液作为药物载体, 可提高药物的溶解度和
生物利用度。
农业领域
PART 02
微乳液型制剂简介
定义 活性剂和助表面活性剂按适当比例混 合而成的透明或半透明的液体体系。
分类
根据组成和结构,微乳液型制剂可分 为单相和多相微乳液。
微乳液的物理性质
低界面张力
微乳液的界面张力较低,通常在 10^-7~10^-3 N/m之间,有利
微乳液的制备技术
热力学法
利用热力学原理,通过调节油、水、 表面活性剂和助表面活性剂的比例, 形成微乳液。
快速混合法
将油、水、表面活性剂和助表面活性 剂快速混合,通过高速搅拌形成微乳 液。
超声波法
利用超声波的振动和空化作用,使油、 水、表面活性剂和助表面活性剂混合 形成微乳液。
薄膜法
将油、水、表面活性剂和助表面活性 剂分别通过薄膜,在薄膜的挤压下形 成微乳液。
WENKU DESIGN
2023-2026
ONE
KEEP VIEW
乳状液与微乳液型制 剂
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
https://
CATALOGUE
目 录
• 乳状液型制剂简介 • 微乳液型制剂简介 • 乳状液与微乳液型制剂的比较 • 乳状液与微乳液型制剂的制备技术 • 乳状液与微乳液型制剂的发展趋势与展望
于形成稳定的乳状液。
高透光性
微乳液外观透明或半透明,具有较 高的透光性,可透过光线。
热稳定性
微乳液对温度变化有一定的稳定性, 不易因温度升高而发生相分离。
微乳液的应用领域
化妆品
药物传递
微乳液在化妆品中广泛 应用,如面霜、防晒霜、
洗发水等。
微乳液作为药物载体, 可提高药物的溶解度和
生物利用度。
农业领域
PART 02
微乳液型制剂简介
定义 活性剂和助表面活性剂按适当比例混 合而成的透明或半透明的液体体系。
分类
根据组成和结构,微乳液型制剂可分 为单相和多相微乳液。
微乳液的物理性质
低界面张力
微乳液的界面张力较低,通常在 10^-7~10^-3 N/m之间,有利
微乳液的制备技术
热力学法
利用热力学原理,通过调节油、水、 表面活性剂和助表面活性剂的比例, 形成微乳液。
快速混合法
将油、水、表面活性剂和助表面活性 剂快速混合,通过高速搅拌形成微乳 液。
超声波法
利用超声波的振动和空化作用,使油、 水、表面活性剂和助表面活性剂混合 形成微乳液。
薄膜法
将油、水、表面活性剂和助表面活性 剂分别通过薄膜,在薄膜的挤压下形 成微乳液。
微乳状液
混合膜理论
• 1.在油-水界面中加入表面活性剂后,在界 面上形成一层单分子膜,油-水界面的表面 张力为Po/w,加入表面活性剂后降至p1,则 相应的表面膜压π与它们的关系为: p1=Po/w-π • 2.再加入助表面活性剂后,则界面就是由表 面活性剂,助表面活性剂和油组成的混合 膜。在混合膜的两侧,形成了不同特性的 油/膜界面(O/M)和水/膜界面(W/M),因此 这种膜又叫双层膜。Po/w降至P(o/w)a,π升 至πG,总的界面张力为:Pt=P(o/w)a-πG
多,一般需加 助表面活性剂
浓度大于CMC 即可。
体系组成
三组分: 表面活性剂 +油+水
三组分: 二组分: 非离子表面活性剂+ 表面活性剂+ 油+水(或盐水) 水(或油) 四组分:离子型表面活性 三组分: 表面活性剂+ 剂+油+助表面活性剂 +水(或盐水) 油+水 与油、水在一定 范围内可混溶 能增溶油或水 直至达到饱和
2014-6-20
微乳状液的制备
• 微乳状液形成时不需要外力,主要是匹配成分中的各种成分。目前采 用HLB法,PLT法,表面活性剂分配法,盐度扫描法等来寻找这种匹 配关系。 • 例:盐度扫描法 当水-油-乳化剂-助表面活性剂以一定比例确定后,向该体系中按浓 度由低到高顺序加入盐,体系呈三种状态: WinsorⅠ、WinsorⅡ和Winsor Ⅲ(见图)。
2014-6-20
混合膜理论
• π’w<π'o,油侧的展开程度比水侧的大,导致 Ao>Aw,从而形成W/O微乳状结构。 • 若体系中部分膜π’w>π'o,另一部分π’w<π'o, 则形成双连续相结构。 • π’w=π'o,则形成层状液晶结构。 • 可以认为,在油-双层膜-水三相平衡体系中,πGπ>0是形成微乳状液的必要条件, • 而π’w不等于π'o是形成微乳状液的充分条件。
乳状液(emulsion)
2012-5-2
4
●补充材料之一
乳状液的分层、 乳状液的分层、变型及破乳
——乳状液理论中,一个重要的问题是其分层、变形和破乳。它们 是乳状液不稳定性的三种表现方式,每个过程皆代表一种不同情况 。特殊情况下它们又可能是相关的
A、分层(creaming) 、分层( ) ( 1)定义 )
一种乳状液变成了两种乳状液,一层中分散相比原 来的多,另一层中相反。分层过程中,界面膜未破坏,故分层并未 破乳,但分层最终将导致破乳
(3)破乳技术 )
——引入 工业生产中常遇到破乳问题,如采出的原油是W/O 型乳状液,必须破乳脱水后才能进炼油厂加工。常用的破乳方法有
2012-5-2 7
●添加无机盐 在一些乳状液中添加无机盐会引起破乳作用, 对不同的乳化剂,作用机理有所不同 ●温度变化 ——升温 可增加乳化剂的溶解度,降低在界面的吸附量,削 弱保护膜;升温还可降低外相粘度,增加液滴碰撞机会,利于破乳 ——冷冻 也能破乳。非离子型乳化剂的乳状液在相转变温度 时处于不稳定状态,不充分搅拌就会破乳 ●添加酸 以碱性皂作为乳化剂的乳状液中添加酸,皂变为脂 肪酸析出,失去乳化作用而破乳 ●过滤 用分散相易润湿的过滤材料过滤乳状液,液滴润湿过 滤材料聚集成薄膜,导致乳状液破坏。例,W/O型乳状液通过填 充碳酸钙的过滤层,O/W型乳状液通过塑料网,都可能会引起破 乳
●类型 乳状液中一相为水,用“W”表示。另一相为有机物,
如苯、苯胺、煤油,皆称为“油”,用“O”表示。油作为不连续 相分散在水中,称水包油型,用O/W表示;水作为不连续相分散 在油中,称油包水型,用W/O表示。多重型,例,W/O/W
2012-5-2 1
●乳化剂(emulsifier)
——定义 能使乳状液较稳定存在的物质。乳化剂能使乳状液比 较稳定存在的作用,称乳化作用 ——类型 多为表面活性剂,及某些固体粉末
微乳液PPT课件
• 表活剂用量= 0.4% 采出量为72.6ml(油)/g(表活剂), 成本太高 • 表活剂用量= 0.25% 采油量只占水驱残余油的37.4%,效果不好 • 表活剂用量= 0.4% 采出量为127ml/g,驱油效果好
• 胶囊和微胶囊技术
–
胶囊以延迟破胶剂在油田中应用,改善裂缝导流能力,提高 33
油气井产量。
3
乳状液的结构
• 简单乳状液 • 双重或多重乳状
液:相当于简单乳
液的分散相(内相) 中又包含了尺寸更 小的分散质点,通 称包胶相,常用作 活性组分的贮器。
4
乳状液的制备 —— 混合方式
• 机械搅拌:以4000~8000r/min速度,设备简单、 操作方便;但分散度低、不均匀,易溶入空气。
• 胶体磨:国产设备可制取10mm左右的液滴。 • 超声波乳化器: • 均化器(homogenizer):是机械加超声波的复
中相微乳状液的特点:
•同时增溶油和水,可达60%~70%
•存在两个界面且界面张力均很低,约<10-2 mN/m
•大部分表面活性剂存在于中相微乳状液相中
在石油工业中,中相微乳状液的驱油效率最高,可达90%。
通过测定相图和界面张力,来研究影响因素。
26
水-表面活性剂-助表面活性剂三元系一般相图
各向异性 单相区
– 当盐量增加时,表活剂和油受到“盐析”,压缩 双电层,使O/W型微乳液的增溶量增加,油滴密 度下降而上浮,形成“新相”。
– 也可改变其它组分,来寻找匹配关系。
28
微乳状液的应用
• 石油工业:三次采油(?) • 能 源:提高辛烷值等 • 生化工程: • 日用工业:化妆品等
29
微乳状液的研究现状
医用化学第6版第四章课件
乳
性剂和助表面活 性剂等物质按适
液 当的比例混合,
液滴直径 不透明 100-500nm, 分布不均匀, 普同显微镜
自发形成的一种 下可见
歌向同性,透明,
低粘度,稳定的
特殊乳状液
热力学 用量相对 o/w型 不稳定, 少,不需 与油不 易离心 要表面助 混溶, 分层 活性剂 w/o型
与水不 混溶
❖ 微乳作为难溶药物的载体,可以大大提高药物的增 溶量,不管是水溶性还是油溶性药化物,在微乳中 的增溶量远远大于在谁中和在油中的溶解度之和。 另外微乳在化学反应,化状品,洗涤剂,农药,石 油的开采,纺织工业,食品工业等领域有了广泛的 应用。
❖ 应用:分离蛋白质,如在血清中分别加入浓度为2 .0mol/L、3.5mol/L的硫酸铵,可使血清中球蛋 白、清蛋白分步沉淀而分离.
(二) 高分子溶液对溶胶的保护作用
❖ 高分子溶液对溶胶的保护作用具体体现为在溶胶 中加入一定量的高分子溶液,能显著地提高溶胶 对电解质的稳定性。如:
1)在含有明胶的硝酸银溶液中加入适量的氯化钠 溶液,形成氯化银胶体溶液,而不是沉淀;
不能透过半透膜
粗分散 系
悬浊液 乳状液
固体颗粒 小液滴
>100nm 非均相,不透明、不均匀、 泥浆水
扩散慢,不稳定,粒子不 油水,乳
能透过滤纸和半透膜
胶
第二节 溶 胶
➢ 溶胶是难溶性固体分散在介质中所形成的胶体分 散系。
➢按分散介质不同,可分为液溶胶、气溶胶、固溶胶。 分散介质是液体的溶胶称为液溶胶,简称溶胶,如硅 酸、氢氧化铁溶胶等。
三种情况: 分散相粒子直径>>入射光波长 反射现象 粗分散系
分散相粒子直径<<入射光波长 透射现象 离子或分子 分散系
表面物理化学微乳状液
注意: 实验表明,若用离子型表面活性剂,则需要一定量 得助表面活性剂(有机醇、胺、酸等)才能制备出微乳 状液。对于非离子型或碳氢短链离子型表面活性剂,不 需要助表面活性剂也能制备出微乳状液。
5、3 微乳状液得类型与结构
微乳状液有水包油型(O/W)和油包水型(W/O),微乳状 液还有双连续相,即油和水都就是连续得。
该模型认为,当含水量在渗滤阈值之上时,油包水型 中水得液滴增多,导致液滴间发生频繁得黏性碰撞,结果 就是在油连续相中形成许多细小得水通道,溶液中反离 子也能够通过,使得溶液导电能力迅速上升。含水量继 续增加,κ值也相应增加,一直达到最大κ值时微乳转变为 O/W型。
此时对应水得质量分数约为0、64,再继续增加水量, 体系得κ值反而下降,这就是因为稀释得作用,使溶液中 离子浓度下降,电导率下降。
(2)扩散系数(D)与微乳结构 下图就是水、甲苯和十二烷基硫酸钠(SDS)在甲苯
-水-SDS-丁醇-盐五元体系中自扩散系数随盐浓度 得变化情况。
在低盐浓度时,水得自扩散 系数较大,就是WinsorⅠ型。 在高盐浓度时,油(甲苯)得 自扩散系数较大,为 WinsorⅡ型。曲线得中间 段为WinsorⅢ型。
(2)助表面活性剂得影响
单碳氢链得离子型表面活性剂在形成微乳时,需要加 入助表面活性剂(中等长度碳氢链得醇),主要就是起调节 主表面活性剂临界堆积参数得作用。
助表面活性剂亲水基较小,插入表面活性剂定向单层 后,形成混合膜,使该混合界面膜得临界堆积参数变大,有 利于微乳液得形成
(3)反离子得影响
将阴离子表面活性剂得反离子由钠离子改为钾离子, 也能促进O/W型微乳液形成。原因就是钠离子与水得结 合能力大于钾离子,即水化钠离子大于水化钾离子。换 成钾离子后,表面活性剂阴离子与反离子一起占得面积 变小,头基变小,有利于O/W型微乳得形成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二价碱金属皂类,极 性基团为:
亲水端为小头,作为乳 化剂,容易形成W/O型 乳状液
上一内容 下一内容 回主目录
水 油
返回
2020/5/10
• 注:定向楔理论做为一种假说尚存在不足 之处,其中之一就是一价金属皂的极性头并不 一定比非极性尾粗大,因此有许多例外情况。
上一内容 下一内容 回主目录
返回
2020/5/10
上一内容 下一内容 回主目录
返回
2020/5/10
相体积
一些乳状液的内相浓度可以超过0.74 很多,却并不发生变型。
(a) 不均匀液珠形成的密堆积乳状液示意图 (b) 形成多面体后密堆积乳状液示意图
上一内容 下一内容 回主目录
返回
2020/5/10
二、乳化剂分子构型
乳化剂分子的空间构型(分子中极性基 团和非极性基团截面积之比)对乳状液的类 型起重要作用。
染色法微观示意图(以苏丹Ⅲ为例)
上一内容 下一内容 回主目录
返回
2020/5/10
乳状液类型
检验水包油 乳状液
加入水溶性染料 如亚甲基蓝,说 明水是连续相。
加入油溶性的 染料红色苏丹 Ⅲ,说明油是 不连续相。
上一内容 下一内容 回主目录
返回
2020/5/10
3.电导法
通常O/W型乳状液有较好的导电性 能,而W/O型乳状液的导电性能却很差。 (但若乳状液中有离子型乳化剂,也有 较好导电性)。
将乳化剂比喻为两头大小不等的楔子, 若要楔子排列的紧密且稳定,截面积小的 一头总是指向分散相,截面积大的一头留 在分散介质中,此即为楔子理论。
例外:一价银肥皂,作为乳化剂形成W/O型乳状液
上一内容 下一内容 回主目录
返回
2020/5/10
乳化剂分子构型
一价碱金属皂类, 形状是:
油 水
亲水端为大头, 作为乳化剂时,容易 形成O/w型乳状液。
返回
2020/5/10
乳状液的类型
在适当的乳化剂条件下,可形成O/W (水包油型)或W/O (油包水型)乳状液。
O/W型: 牛奶、鱼肝油乳剂、农药乳剂等;
W/O型: 油剂青霉素注射液、原油等。
上一内容 下一内容 回主目录
返回
2020/5/10
W/O型和O/W型两类乳状液通常可用以下 几种方法鉴别:
乳白色液体。
上一内容 下一内容 回主目录
返回
2020/5/10
§4.2 影响乳状液类型的因素
一、相体积
乳状液的分散相被称为内相,分散介 质被称为外相。
在1910年,Ostward根据立体几何的观 点提出“相体积理论”,他指出:如果分散 相均为大小一致的,根据液珠不变型的球型 立体几何计算,任何大小的球形最紧密堆积 的液珠体积只能占总体积的74.02%。
容易被水润湿的固 体,如粘土、Al2O3 ,可形成O/W乳状 液。
油 水
上一内容 下一内容 回主目录
返回
2020/5/10
乳化剂溶解度
容易被油润湿的炭黑、石墨粉等,可作 为W/O型乳状液的稳定剂。
水
油
上一内容 下一内容 回主目录
返回
2020/5/10
四、聚结动力学因素
1957年Davies提出了一个关于乳状液 类型的定量理论:
4.滤纸润湿法 由于滤纸容易被水所润湿,将O/W型 乳状液滴在滤纸上后会立即辅展开来,而 在中心留下一滴油;如果不能立即辅展开 来,则为W/O,对于易在滤纸上铺展的油 如苯、环己烷等,不宜采用此法鉴别。
上一内容 下一内容 回主目录
返回
2020/5/10
三、乳状液的物理性质
• 一、黏度性质
• 乳状液的黏度取决于组成、浓度、内相与外相的 黏度以及乳化剂的性质。
三、乳化剂溶解度
Bancroft提出,油水两相中,对乳化 剂溶度大的一相成为外相。
例如:碱金属的皂类是水溶性的,故 形成O/W型乳状液,二价与三价金属皂足 油溶性的,它们都形成W/O型乳状液。
上一内容 下一内容 回主目录
返回
2020/5/10
乳化剂溶解度
以固体粉末为乳化剂时,若要使固体微 粒在分散相周围排列成紧密固体膜,固体粒 子大部分应当在分散介质中。
• 二.电性质
• 乳状液的电导取决于分散介质即外相的电导, 因此O/W型乳状液的电导明显高于W/O乳状液的电导
• 三、光学性质
•
乳状液属于粗分散体系,由于分散相的尺寸处
于胶体粒子大小上限以上,通常为0.1~10μm或更
大,而可见光波波长介于0.4~0.8 μm之间,因此
有较强的光反射行为,故一般的乳状液是不透明的
第四章 乳状液与微乳状液
§4.1 乳化作用及乳状液的类型 §4.2 影响乳状液类型的因素 §4.3 乳状液的稳定性 §4.4 乳化剂的选择 §4.5 乳状液的制备 §4.6 乳状液的转型与破坏 §4.7 乳状液的应用 §4.8 微乳状液
上一内容 下一内容 回主目录
返回
2020/5/10
§4.1 乳化作用及乳状液的类型
1.稀释法
水加到O/W乳状液中,乳状液被稀 释;若水加到W/O型乳状液中,乳状液 变稠甚至被破坏。
如牛奶能被水稀释所以它是O/W型乳状液。
上一内容 下一内容 回主目录
返回
2020/5/10
2.染色法
将极微量的油溶性染料加到乳状液中, 若整个乳状液带有染料颜色的是W/O型乳状 液,如果只有液滴带色的是O/W型乳状液。 若用水溶性染料其结果恰好相反。
上一内容 下一内容 回主目录
返回
2020/5/10
相体积
若分散相相体积大于74.02%, 乳状液 就会变型。
如水的体积占总体积的26~74.02%时 O/W型、W/O型两种乳状液都有形成的可 能性。若小于26%只能形成W/O型乳状液, 若大于74.02%只能形成O/W型乳状液。此 理论有一定的实验基础。
一、乳化作用
乳化作用是在一定条件下使不相 混溶的两种液体形成有一定稳定性的 液液分散体系的作用。
上一内容 下一内容 回主目录
返回
2020/5/10
二、乳状液的类型
乳状液是一种液体以直径大 于100nm 的细小液滴(分散相)在另 一种互不相溶的 液体(分散介质)中 所形成的粗粒分散系。
如牛奶,含水石油,乳化农药等。
仅仅两种不相容的纯液体(如油和水) 并不能形成乳状液,它们必须在乳化剂 (如肥皂)的作用下才能稳定。
上一内容 下的类型
乳状液 可分为 两大类型
水包油,O/W,油分散在水中 油包水,W/O,水分散在油中
O/W (水包油型)
上一内容 下一内容 回主目录
W/O (油包水型)