华应龙:《圆的认识》课堂实录

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华应龙:《圆的认识》课堂实录

【教学目标】

1. 认识圆的特征,初步学会画圆,发展空间观念。

2. 在认识圆的过程中,感受研究的一般方法,享受思维的乐趣。

【教学过程】

一、情景中创造“圆”

师:同学们请看题目:“小明参加奥林匹克寻宝活动,得到一张纸条,纸条上写的是:宝物距离左脚三米。”宝物可能在哪呢?

师:有想法,你的桌子上有张白纸,上面有个红点,你们找到了吗?

生:找到了

师:那个红点代表的是小明的左脚,如果用纸上的1厘米代表实际距离的1米的话,能把你的想法在纸上表示出来吗?想,开始。(学生动手实践,师巡视。)

师:真佩服,小朋友真棒!除了你表示的那个点,还有其他可能吗?

师:好,很多同学都想好了,我们来看屏幕。红点代表小明的左脚,[课件演示:在红点右侧找出一距离红点3米的点]刚才我看到,很多同学都找到了这个点,找到的同学举手。(生纷纷举手。)

师:除了这一点,刚才我看到,还有的同学找到了这一点。[课件演示:在红点左侧找出一个距离红点3米的点]还有这一点,这一点[课件演示:分别在红点上下的距离为3米的点]我看有的同学还画了这些斜点,是吗?还有其他的可能吗?[课件演示:越来越密,最后连成了圆]

师:想到圆的举手。哇,真佩服,刚才我看有的同学都画出圆了,是吗?看屏幕,这是什么?认识吗?

生:认识,圆

二、追问中初识“圆”

师:那宝物可能在哪里呢?

生:在圆的范围内,在圆的这条线上。

师:你刚才的说法很有意思,先说“在圆的范围内”,后来改成“在圆的这条线上”。如果在范围内,距离不够3米,如果在圆上,距离够3米。那你们怎么告诉小明呢?如果宝物在圆上,怎么表达告诉小明呢?

生:可以这样对小明说:“以你的左脚为圆心,画一个半径为3米的圆。在这个圆的周厂上取任意一点,这个地方也许就是埋宝物的地方”。

师:同意吗?真厉害。刚才她说到两个词,一个是以左脚为“圆心”还有一个是半径多少?[板书:圆心,半径]

生:3米

师:就用上这两个词,就很准确地表达出了圆的位置,对吧。如果只说以左脚为圆心,不说半径3米,告诉小明,宝物啊就在以你左脚为圆心的圆上。行不行?

师:为什么不行?

生:如果只告诉左脚是圆心的话,那圆可以无限延伸。就没法掌握圆的周长是多少。

师:那个圆可以无限延伸。我理解他的意思了,你理解了吗?

生:理解了。

师:也就是说圆的半径没定,圆的大小没定。对不对。

生:对

师:这样的话,可以画多少个圆,可以无限延伸,对不对。那如果不说“以左脚为圆心”行不行?

生:不行,那样圆的位置就可以无限延伸,。

师:除了说“以左脚为圆心,半径为3米的圆上”还可以怎么说?听说过吗?

生:也可以说直径是6米。

师:同意吗?

生:同意。

师:可以说:以左脚为圆心,直径为——”

生:6米

师:对。这个“直径:也能表达圆的大小。[板书:直径]

师:为什么宝物可能所在的位置会是一个圆呢?

生:因为在一个圆内,所有的半径都相等。

师:哦,他说了这个。什么宝物可能所在的位置会是一个圆呢?

生:因为以他的左脚为圆心,他可以随便走一圈,就变成圆了。

师:哦,可以随便走一圈。方向没有定,是吧。这也是另外一个角度看问题。刚才两个同学说的都很有道理,不过要很好的说明这个问题我们可以用”圆的特点“来说明。你觉得圆有特点呢?

生:我觉得圆有无数条半径,无数条直径。

生:圆心到圆上任意一点的距离都是相等的。

师:我们说图形的特点的时候一般要和以前学过的图形作比较。一句话,有比较才有结论。[课件:三角形,正方形等]以前我们学过三角形,正方形等。我们以前说图形的时候往往从“边”和“角”两个角度来说明,那你看,从边和角的角度来看,圆有什么特点呢?

生:它既没有棱也没有角。

师:同意吗?同意的请点点头,她说圆没有棱也没有角,对吗?

师:没有棱是什么意思?

生:没有棱是说它没有边,它不象正方形有4条边。

师追问:那它是没有边吗?

生:不是,有边。

师:有边,几条边?

生:1条。

师:那你们说圆的边和我们以前学过的图形有什么不同?

生:以前学过的图形的边是直线,而圆的边是曲线构成的。

师:同意?

生:同意。

师:看来我们从角来看,圆是没有角的。从边上来看,圆有没有边?

生:有!

师:有,几条边?

生:一条边。

师:这是圆很特别的地方。其他图形,最起码有3条边,而圆呢?只有一条边。并且它的边怎样?

生:是曲线的。

师:是曲线的。其他的是直线或者说是线段围成的。

师:圆,我们从边和角来看是这样的特点。我们的祖先墨子说:圆一中同长也[板书]知道这句话什么意思吗?一中指什么?

生:圆心

师:同长,什么同长?

生:半径

师:半径同长,有人说直径也同长。同意古人说的话吗?

生:同意。

师:“圆,一中同长也”。难道说正三角形,正四边形正五边行不是“一中同长”吗?

认为是的举手,认为不是的举手。为什么不是呢?

生:这些图形中心到角的距离比到边的距离要长一些。上前面指着说。

师:这些图形是不是一中同长?

生:不是。

师,不是的理由就是:从这个中心到边上的点跟到顶点的点的距离就不一样。那有没有一样的?正三角形里有几条一样的?

生:3条。

师:正方形呢?

生:4条。

师:正五边行呢?

生:5条。

师:正六边行?

生:6条。

师指圆:

生:无数条。

师:无数条?[板书]为什么是无数条?

生:圆心到圆上的半径都相等。所以有无数条。

师:我们解决的是什么问题?

生:我们解决的问题是相等的半径有无数条。

师:为什么有无数条?

生:圆心到圆上的距离都相等。

师:圆周上有多少个点?

生:无数个。

师:这些点和圆心连起来当然就有无数条,是吧。圆周上有无数点,请问:从这到这有多少个点?[指圆弧线]

生:无数个。

师:这些图形一中同长的条数是有限的,而圆从圆心到圆上的距离都是一样的。古人说的“圆,一中同长”你认同吗?

生:认同。

师:经过我们讨论更认同了,不过刚才有同学说圆是没有角的。圆只有1条边,边是曲线。究竟哪个更重要呢?我们来看[课件出示椭圆]这个图形是不是没有角的。是不是只有1条边,边是曲线。它是圆吗?它一中同长吗?所以说一中同长是圆最重要的特征。墨子的这一发现比西方早了1000多年,谁能学古人的样子读一读??

生读。

师:圆有什么特点?

生:一中同长。

师:我们来看小明的宝藏在什么范围?我们第2个问题解决完了吗?

三、画圆中感受“圆”

相关文档
最新文档