光电信号处理- 红外热像仪
20-红外热像仪的研究和使用实验
实验二十 红外热像仪的研究和使用红外热像仪是一种利用红外线辐射而拍摄的摄像仪,热成像显示系统是一种处理热信息的微机处理系统。
红外热像技术与X 射线,B 超,CT ,磁共振和核显像原理不同,它不主动发射任何射线,而只接受物体辐射出的“热”线——红外线,从而形成物体的“热”影象,是物体的三维“热”(温度)分布图象。
热像处理技术在军事上运用很广,而且即有相当重要的地位,如,夜间跟踪目标,武器瞄准器等。
但在民用上的运用是这几年的事,比如,医学上通过热拍摄来分析人体各部分的热分布,从而找出病变的部分;电学中对电路板上各元器件的热分布的合理性的研究,从而改善各元器件的分布结构等等。
【实验目的】1. 熟悉热像仪的基本结构原理。
2. 学会使用热颜色处理热源的软件包。
3. 观察和分析电路板的热分布特性。
4. 描绘电路板的热分布图。
【实验原理】自然界存在着一种不为人们所注意的客观现象,这就是任何物体都具有一定的温度,它们都是“热”的,所不同的只是热的程度有差异而已。
在物理学中,热是用绝对温度来表示的(即用K 表示)。
因此,上述现象又可表示为:自然界不存在绝对温度为零的物体。
绝对温度=摄氏温度+273热与光,电,磁一样,具有辐射特性(热辐射),只是辐射波长有长短。
将热,光,电,磁等的辐射,按其辐射波长的长短依次排列,便是人们熟知的波谱(图1)所示。
10-5 0.2 0.4 0.75 1.00 波长(μm )图1 红外线在波谱中的位置热辐射又称红外辐射,这是因为其辐射波长的位置与可见的红光相临并在其外。
红外辐射为英国科学家赫胥尔于1800年所发现。
物体的红外辐射波长与其自身温度有关,服从维恩定律:C T m =λ (1)式中:λm-----物体红外辐射的峰值波长(um ) T ------物体的绝对温度(K ) C ------常数2898。
从式(1)中可看出,物体绝对温度越高,其辐射波长越短;反之亦然。
物体的绝对温度不仅决定了物体辐射的波长,而且也确定了物体的辐射出射度(单位面积上向外辐射的总功率),即决定温度越高,物体的辐射出射度越大(呈指数增大),二者之间的关系遵守斯蒂芬—玻尔兹曼定律:4T W εδ= (2)式中,W------辐射出射度(W/cm 2) ε------辐射率δ------斯蒂芬—玻尔兹曼常数 T------物体的绝对温度。
红外热成像仪的介绍及工作原理
1.红外热成像技术红外成像技术作为一门新技术,在电力设备运行状态检测中有着无比的优越性。
红外成像是以设备的热状态分布为依据对设备运行状态良好与否进行诊断,它具有不停运、不接触、远距离、快速、直观地对设备的热状态进行成像。
由于设备的热像图是设备运行状态下热状态及其温度分布的真实描写,而电力设备在运行状态下的热分布正常与否是判断设备状态良好与否的一个重要特征。
因此采用红外成像技术可以通过对设备热像图的分析来诊断设备的状态及其隐患缺陷。
2.什么是红外热像图一般我们人眼能够感受到的可见光波长为:0.38—0.78微米。
通常我们将比0.78微米长的电磁波,称为红外线。
自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。
同一目标的热图像和可见光图像是不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布图像,或者说,红外热图像是人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。
3.红外热像仪的原理热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,热图像的上面的不同颜色代表被测物体的不同温度。
红外热像仪的非接触式测温方式,能够在不影响轧辊工作的同时测量其实时温度,并随时采取降温措施。
红外热像仪的原理4.红外热成像的特点自然界所有温度在绝对零度(-273℃)以上的物体,都会发出红外线,红外线(或称热辐射)是自然界中存在最为广泛的辐射。
大气、烟云等吸收可见光和近红外线,但是对3~5微米和8~14微米的红外线却是透明的。
因此,这两个波段被称为红外线的“大气窗口”。
我们利用这两个窗口,可以在完全无光的夜晚,或是在烟云密布的恶劣环境,能够清晰地观察到前方的情况。
5.在线式红外热像仪采用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热像仪。
红外热像仪有哪些主要技术参数标准版资料
红外热成像原理
3.红外热成像原理
热成像系统的就是通过能够透过红外辐射的红外光学系统将景物的红 外辐射聚焦到能够将红外辐射能转换为便于测量的物理量的器件 — 红外 探测器上,红外探测器再将强弱不等的辐射信号转换成相应的电信号,然 后经过放大和视频处理,形成可供人眼观察的视频图像。红外热成像系统 将物体发射的红外辐射转变为人眼可见的热图像,从而使人眼的视觉范围 扩展到不可见的红外区,其基本原理方框图如下:
同一目标的热图像和可见光图像是不同,它不是人眼所能看到的可见 光图像,而是目标表面温度分布图像,或者说,红外热图像是人眼不能直 接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布 的热图像。
红外热成像原理
4.红外热像仪基本技术参数解释
红外热像仪分类: 按照工作温度分为制冷型和非制冷型 按照功能分为测温型和非测温型
被动红外成像: 被动红外摄像机不需要借助红外灯,它主要是探测并吸收目标物体的
红外辐射,通过光电转换和信号处理等手段转化为人眼可见的红外热图像。
被动红外摄像机
主动红外摄像机
红外热成像原理
红外探测器的分辨率: 分辨率是衡量热像仪探测器优劣的一个重要参数,表示了探测器焦平
面上有多少个单位探测元。目前市场主流分辨率为160×120,384×288 等,此外还有320×240,640×480等。分辨率越高,成像效果也就越清 晰。
目标
红外光学系统
红外探测器
显示器
图像信号处理 与显示
探测器读出电路
红外热成像原理
红外探测器输出的图像通常称为“热图像”,由于不同物体甚至同一 物体不同部位辐射能力和它们对红外线的反射强弱不同。利用物体与背景 环境的辐射差异以及景物本身各部分辐射的差异,热图像能够呈现景物各 部分的辐射起伏,从而能显示出景物的特征。
红外热像仪学习总结讲解
红外热像仪学习讲解红外热像仪(Infrared Thermography Camera),简称IRT,是一种能够通过红外辐射对物体进行测温的仪器。
它能够将红外辐射转化为可见光图像,从而实现对物体温度分布的观测和分析。
红外热像仪的应用非常广泛,在建筑、电力、医疗等领域发挥着重要作用。
本文将对红外热像仪的原理、应用以及使用方法进行讲解,并根据个人学习经验相关注意事项。
红外热像仪原理红外热像仪利用物体产生的红外辐射来测量物体的表面温度,从而形成热图像。
其核心原理是基于物体的热辐射特性,在物体的温度不同区域,会产生不同的红外辐射强度。
红外热像仪通过感应物体发出的红外辐射,并将其转换成可见光图像,通过颜色的变化直观地反映物体的温度分布。
红外热像仪使用了红外焦平面阵列(Infrared Focal Plane Array)作为传感器,在接收红外辐射的同时,能够实现对不同波长红外辐射的感应,并将其转化为电信号进行处理。
最终,将处理后的信号转换成可见光图像,供用户观察和分析。
红外热像仪的应用1. 建筑领域在建筑领域,红外热像仪被广泛应用于建筑热工学的研究和冷热损失的检测。
通过对建筑表面温度的测量,可以快速发现隐蔽的热漏点和热桥等问题,从而提高建筑的能源利用效率。
2. 电力行业在电力行业,红外热像仪可以用于电力设备的检测和维护。
通过对电力设备的红外热图像进行分析,可以及时发现设备的过热、短路等问题,从而预防事故的发生,提高电力设备的运行安全性。
3. 医疗领域在医疗领域,红外热像仪可用于体温控制、疾病筛查和诊断等方面。
通过对人体表面温度的测量,可以快速筛查出潜在的感染疾病,并加以进一步诊断和治疗。
4. 工业制造红外热像仪在工业制造中的应用十分广泛。
它可以用于发现设备的异常热点,及时采取措施防止设备损坏或生产事故的发生。
此外,红外热像仪还可以用于产品质量的控制,通过检测产品的热信号,发现可能存在的质量问题,从而提高产品的质量和可靠性。
红外热像仪原理
红外热像仪原理
红外热像仪是一种测量和记录目标物体表面温度分布的设备。
它基于热辐射原理,利用物体发射的红外辐射来获取其表面温度信息,并将其转化为热像图。
红外热像仪的工作原理可以简单概括为以下几个步骤:
1. 红外辐射接收:红外热像仪使用一种称为红外探测器的器件来接收目标物体发射的红外辐射。
红外辐射是一种电磁波,如果物体温度高于绝对零度(-273.15摄氏度),它就会发射红
外辐射。
2. 辐射转换:红外探测器接收到红外辐射后,将其转化为电信号。
这个过程是通过材料中的特殊特性实现的,例如热电效应、焦耳效应或半导体效应。
3. 电信号处理:红外热像仪将接收到的电信号进行放大和滤波等处理,以提高信噪比和图像质量。
4. 热图生成:经过处理的电信号被传送到图像处理单元,进一步转化为热图。
在热图中,不同颜色表示不同温度的区域,从而形成一幅以温度为信息的热像。
需要注意的是,红外热像仪只能感测物体表面的红外辐射,并不能穿透物体测量内部温度。
此外,由于红外辐射是相对较弱的,高温物体的辐射强度较低,因此在应用中需要根据具体情况选择适合的探测器灵敏度和镜头焦距。
红外热像仪在许多领域得到广泛应用,包括建筑检测、电气设备故障排查、火灾预警、医学诊断等。
通过获取目标物体表面的温度信息,红外热像仪可以帮助用户发现问题区域,提高工作效率,减少损失。
红外线热像仪原理和作用
下面是红外线热像仪的几个主要的探测系统组成介绍: 1、红外线热像仪成像系统 热像仪的成像系统是设备当中最重要的一个系统,多用于目标的追踪、监控,可以帮助 我们实现高效的实时追踪,可以应用在国防军事领域,属于高精密检测的设备。该设备的成 像系统对设备的功能要求是图像越清晰越好,发现目标的距离越远越好,这样才可以提高设 备的成像能力。 2、红外线热像仪成像检测系统 红外线热像仪使用的比较广泛的用途就是工业检测,对设备进行预知性检测或研究,提 高设备的使用价值,帮助设备更好的进行生产。通过成像检测系统观察热分布的图像,建立 设备的资料库、方便我们更好的进行实验。设备的监测系统能够对设备的要求是图像尽量清 晰,保持设备测量精度。 3、红外线热像仪的成像监控系统 该设备的监控系统可以用于安装于电气或机械设备内部,帮助监视设备的温度和目标物 体的具体位置,提高了对于关键区域设备的安全监控。
2.变压器:可以发现的隐患有接头松动,套管过热,接触不良(抽头变换器),过载, 三相负载不平衡,冷却管堵塞不畅。其影响为产生电弧、短路、烧毁、起火。
3.电动机、发电机:可以发现的隐患是轴承温度过高,不平衡负载,绕组短路或开路, 碳刷、滑环和集流环发热,过载过热,冷却管路堵塞。其影响为有问题的轴承可以引起铁芯 或绕组线圈的损坏;有毛病的碳刷可以损坏滑环和集流环,进而损坏绕组线圈。还可能引起 驱动目标的损坏。
70 年来,RNO 一直专门致力于热像技术的开发,RNO 热像仪工厂分别设在美国、英国、 日本和中国。RNO 夜视仪则将工厂设立在俄罗斯。
红外热像仪的使用方法和技巧及工作原理
红外热像仪的使用方法和技巧及工作原理红外热像仪的使用方法和技巧通俗地讲热像仪就是将物体发出的不可见红外能量变化为可见的热图像。
热图像的上面的不同颜色代表被测物体的不同温度。
一、红外热像仪的使用注意事项:1、确定测温范围:测温范围是热像仪比较紧要的一个性能指标。
每种型号的热像仪都有本身特定的测温范围。
因此,用户的被测温度范围确定要考虑精准、全面,既不要过窄,也不要过宽。
依据黑体辐射定律,在光谱的短波段由温度引起的辐射能量的变化将超过由发射率误差所引起的辐射能量的变化,因此,用户只需要购买在本身测量温度内的红外热像仪。
2、确定目标尺寸:红外热像仪依据原理可分为单色测温仪和双色测温仪(辐射比色测温仪)。
对于单色测温仪,在进行测温时,被测目标面积应充分热像仪视场。
建议被测目标尺寸超过视场大小的50%为好。
假如目标尺寸小于视场,背景辐射能量就会进入热像仪的视声符支干扰测温读数,造成误差。
相反,假如目标大于热像仪的视场,热像仪就不会受到测量区域外面的背景影响。
3、确定光学辨别率(距离系灵敏):光学辨别率由D与S之比确定,是热像仪到目标之间的距离D 与测量光斑直径S之比。
假如测温仪由于环境条件限制必需安装在阔别目标之处,而又要测量小的目标,就应选择高光学辨别率的热像仪。
光学辨别率越高,即增大D:S比值,热像仪的成本也越高。
确定波长范围:目标材料的发射率和表面特性决议热像仪的光谱响应或波长。
对于高反射率合金材料,有低的或变化的发射率。
在高温区,测量金属材料的较好波长是近红外,可选用0.18—1.0μm波长。
其他温区可选用1.6μm、2.2μm和3.9μm波长。
由于有些材料在确定波长是透亮的,红外能量会穿透这些材料,对这种材料应选择特别的波长。
如测量玻璃内部温度选用 1.0μm、2.2μm和3.9μm(被测玻璃要很厚,否则会透过)波长;测量玻璃内部温度选用5.0μm波长;测低温区选用8—14μm波长为宜;再如测量聚乙烯塑料薄膜选用3.43μm波长,聚酯类选用4.3μm或7.9μm波长。
红外热像仪的原理和应用
红外热像仪的原理和应用1. 红外热像仪的原理红外热像仪是一种能够将对象的红外辐射转化为可视化图像的设备。
它利用红外辐射能够通过物体的特性,通过红外探测器将这些辐射转化为电信号,再通过电子元件将电信号转化为可视化图像。
红外热像仪的原理主要包括以下几个方面:1.1 热辐射:物体在温度高于绝对零度时,会发出热辐射。
热辐射的强度和频率分布与物体的温度有关。
1.2 探测器:红外热像仪的探测器通常采用半导体材料,如铟锗(InSb)、铟镉锌(InGaAs)等。
这些材料具有对红外波长辐射的敏感性。
1.3 光学系统:红外热像仪的光学系统主要包括透镜、滤光片和光学轴等。
透镜用于聚集红外辐射,滤光片则可以屏蔽非红外波段的辐射,并通过光学轴将红外辐射传输到探测器上。
1.4 信号处理:红外热像仪的信号处理主要包括信号放大、滤波、数字化和图像处理等。
通过这些信号处理,可以将红外辐射转化为可视化的图像。
2. 红外热像仪的应用红外热像仪的应用广泛,涵盖了许多领域。
以下是红外热像仪常见的应用场景:2.1 工业检测红外热像仪在工业领域中被广泛应用于机械设备的故障检测和预防维护。
通过检测机器设备表面的温度分布,可以快速识别出异常热点,从而及时预警并采取相应的维修措施,避免机器设备的停机造成的损失。
2.2 建筑热损失检测红外热像仪可以检测建筑物的热损失情况,帮助用户识别出建筑物中的热能漏失,从而进行相应的绝热处理,提高建筑物的能源效率。
2.3 消防安全红外热像仪可用于火灾的早期探测,能够快速发现火源和烟雾,并生成可视化的热像图,帮助消防人员定位和扑灭火源,提高灭火效率和安全性。
2.4 医学诊断红外热像仪在医学领域中被用于进行体温测量、血液灌注的观察等。
通过观察人体或动物的红外辐射,可以快速检测出体温的异常变化以及血液供应的情况,提供诊断参考。
2.5 安全监控红外热像仪在安全监控领域中常用于夜视和隐蔽监控等。
它可以将物体的红外辐射转化为可视化图像,提供夜间监控的能力,并通过隐蔽的方式进行监控,更好地保护安全。
FLIR红外热像仪原理及应用
FLIR红外热像仪原理及应用FLIR(Forward-Looking InfraRed)红外热像仪是一种检测和显示目标热量分布的仪器。
其原理基于物体发射红外辐射的特性,通过捕捉和处理红外辐射图像,可以获取目标物体的温度信息,从而达到提供可见的热像的目的。
接下来,我会详细介绍FLIR红外热像仪的工作原理以及常见的应用。
红外热像仪通过感应红外辐射和转换为电信号的方式来获取目标物体的温度信息。
其工作原理如下:1.捕捉红外辐射:红外辐射是由物体的热量引起的电磁波辐射,其波长长于可见光,人眼无法感知。
FLIR红外热像仪使用感光元件(如能够感应红外波段的光敏材料)来接收并捕捉红外辐射。
2.转换成电信号:红外辐射被感光元件捕获后,会产生电信号。
这些电信号会被转换成能够被数字处理系统分析和显示的形式。
3. 创建热像:FLIR红外热像仪内部的数字处理系统将电信号转换成热像。
通常,热像以假彩色(false-color)或黑白图像的形式显示。
图像中的不同颜色或灰度对应不同的温度值,从而可观察目标物体的温度分布情况。
1.建筑结构检测:FLIR红外热像仪可以用于检测建筑物中的热桥、漏水、能量损失等问题。
通过观察建筑物表面的温度分布图像,可以发现隐蔽在墙壁、地板和屋顶等结构中的问题,提供及时的修复措施。
2.电力设备维护:电力设备过热是电力系统故障和事故的重要先兆。
FLIR红外热像仪可以用于定期监测电力设备的温度,及时发现潜在的故障迹象,避免设备过热引发的事故,并优化设备的维护计划。
3.消防救援:FLIR红外热像仪是消防员工具中的重要装备之一、在火灾现场,通过红外热像仪可以快速探测到火焰及其热辐射的分布,提供给消防员有关火势的即时信息,有助于救援行动的决策。
4.安防监控:FLIR红外热像仪可以用于建立安全监控系统,通过监测目标物体的热量变化来识别潜在的威胁。
例如,在夜间或恶劣天气条件下,红外热像仪可以侦测到人体发出的热辐射,为安防系统提供额外的监控手段。
红外热像仪培训教材-红外热像仪原理
开机与关机
开机
按下电源键,等待仪器自检完毕,即可开始使用。
关机
按下关机键,仪器开始关机程序,等待关机完毕即可。
校准与标定
校准
在每次使用前或使用一定时间后,需要对红外热像仪进行校准,以确保测量结果的准确性。
标定
对红外热像仪进行标定,以消除仪器本身的误差,提高测量精度。
图像采集与处理
图像采集
根据需要选择合适的模式和参数,进行 图像采集。
温度分辨率
总结词
温度分辨率是红外热像仪能够分辨的 最小温差。
详细描述
温度分辨率决定了热像仪对细微温度 变化的敏感程度。分辨率越高,热像 仪能够检测到的温度变化越小,测量 精度也越高。
空间分辨率
总结词
空间分辨率决定了红外热像仪能够分辨的最小目标尺寸。
详细描述
空间分辨率越高,热像仪能够识别和定位的目标越小。这对 于需要精确测量小尺寸目标的场景尤为重要,如检测电子设 备的热故障点等。
要求
具有高透过率和低畸变, 能够将目标辐射的能量高 效地传输到探测器上。
探测器
作用
将汇聚的红外能量转换为 电信号。
类型
主要有热电堆、热电偶、 光子探测器等。
要求
具有高灵敏度、低噪声和 快速响应等特点,能够将 微弱的红外能量转换为可 测量的电信号。
信号处理系统
作用
对探测器输出的电信号进行处理 ,包括放大、滤波、模数转换等 。
VS
图像处理
对采集到的图像进行预处理、分析和处理 ,提取所需的信仪的镜头和外壳,保持仪器的清洁和整 洁。
要点二
存储
将红外热像仪存放在干燥、通风的地方,避免阳光直射和 高温环境。
THANKS FOR WATCHING
红外热成像技术
红外热成像技术原理目前,新的热成像仪主要采用非致冷焦平面阵列技术,集成数万个乃至数十万个信号放大器,将芯片置于光学系统的焦平面上,无须光机扫描系统而取得目标的全景图像,从而大大提高了灵敏度和热分辨率,并进一步地提高目标的探测距离和识别能力。
1991年的海湾战争成为展示高科技武器使用先进技术的平台。
在这些新科技中,红外热成像技术就是其中最为闪亮的高科技技术之一。
红外热成像技术。
是利用各种探测器来接收物体发出的红外辐射,再进行光电信息处理,最后以数字、信号、图像等方式显示出来,并加以利用的探知、观察和研究各种物体的一门综合性技术。
它涉及光学系统设计、器件物理、材料制备、微机械加工、信号处理与显示、封装与组装等一系列专门技术。
该技术除主要应用在黑夜或浓厚幕云雾中探测对方的目标,探测伪装的目标和高速运动的目标等军事应用外,还可广泛应用于工业、农业、医疗、消防、考古、交通、地质、公安侦察等民用领域。
如果将这种技术大量地应用到民用领域中,将会引起安防领域的革命。
智能监控是计算机视觉和模式识别技术在视频监控领域的应用,它能对视频图像中的目标进行自动地监测、识别、跟踪和分析。
国外智能视频监控技术的发展动力是来源于对特殊监控场所的监控需求,9•11事件之后,出于反恐、国家安全、社会安定等多方面的需要,智能视频监控与预警技术已逐渐成为国际上最为关注的前沿研究领域。
尤其是在一些特殊的应用场所,如在恶劣天气下24h全天候监控、边防与周界入侵自动报警、火灾隐患的自动识别、被遗弃的行李和包裹等遗留物体检测、盗窃赃物查找、被埋尸体查找等等。
一.红外热成像系统的工作原理1672年,牛顿使用分光棱镜把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等各色单色光,证实了太阳光(白光)是由各种颜色的光复合而成。
1800年,英国物理学家F.W.赫胥尔从热的观点来研究各种色光时,偶然发现放在光带红光外的一支温度计,比其他色光温度的指示数值高。
红外热像仪原理 热像仪工作原理
红外热像仪原理热像仪工作原理红外热像仪原理利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上,在光学系统和红外探测器之间,有一个光机扫描机构(焦平面热像仪无此机构)对被测物体的红外热像进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热像图。
红外热像仪的进展是怎样的红外热像仪是一种用来探测目标物体的红外辐射,原理是通过光电转换、电信号处理等手段,将目标物体的温度分布图像转换成视频图像的高科技产品。
红外热像仪具有很高的应用价值和民用价值。
在市场方面,红外热像仪可应用于夜视侦查、瞄具、夜视导引、红外搜索和跟踪、卫星遥感等多个领域;在工业行业方面,红外热像仪可以用于材料缺陷的检测与评价、建筑节能评价、设备状态热诊断、生产过程监控、自动测试、减灾防灾等诸多方面。
近年来,我国红外热像仪市场需求处于一个快速增长期。
我国红外热像仪市场的潜在需求要宏大于实际需求:虽然当前我国民用红外热像仪市场的年需求约为6亿元,但从长期来看,zhongguo红外热像仪市场的潜在需求可达500—600亿元。
将来5年,估量我国红外热像仪市场的年均增长率可达20%。
随着红外热图像处理技术、在线检测技术、小型化设计技术的日益成熟以及相关组件制造成本的降低,红外热像仪也被广泛应用在各个民用领域;在工业掌控、电力检测、汽车夜视、石化安全掌控以及医学诊断等领域发挥侧紧要的作用,市场前景特别可观。
温度辨别率红外热像仪的温度辨别率是指红外热像仪使察看者能从背景中**的辨别出目标辐射的小温度AT。
通常使用NETD来表述该性能指标。
红外热像仪的温度辨别率体现了一台红外热像仪的温度敏感性,温度辨别率越小则意味着红外热像仪对温度的变化感知越明显。
因此在选择红外热像仪的时候尽量选择此参数值小的。
红外热像仪 原理
红外热像仪原理红外热像仪原理什么是红外热像仪?红外热像仪是一种能够检测和测量物体表面辐射出的红外热辐射能量,并将其转化为可视化图像的设备。
不同于可见光相机,红外热像仪可以在全天候、低光、无光或遮挡条件下进行探测,因此在许多领域有着广泛的应用,如军事、安全、建筑、医学等。
红外辐射和热能•红外辐射:物体由于温度而发出的电磁辐射,波长在微米之间,位于可见光和微波之间。
红外辐射具有独特的热能信息。
•热能:物体内部分子和原子的热运动形成的能量。
红外热像仪的工作原理红外热像仪基于物体发出的红外辐射能量,采用以下步骤来转换成可视化图像:1.接收红外辐射:红外热像仪使用一个特殊的红外探测器,如铟锗、铟锑或微阵列探测器,接收从目标物体发出的红外辐射能量。
2.辐射转换:红外辐射进入红外探测器后,被探测器转换成电信号。
3.信号放大:探测器产生的微弱电信号经过放大处理,提高信号的强度和清晰度。
4.信号处理:经过放大后的信号,经过一系列滤波、放大和修正处理,以优化图像质量并减少噪声。
5.图像重构:最后,经过信号处理后的电信号转换成图像信号,然后显示在红外热像仪的屏幕上,形成可视化的热像图。
红外热像仪的工作特点•即时成像:红外热像仪可以在几乎即时地生成热像图,让用户能够即刻观察到检测区域的温度分布。
•非接触式检测:通过红外辐射的检测,红外热像仪无需接触目标物体,避免了对目标的干扰。
•高分辨率:现代红外热像仪具备高像素和高灵敏度的特点,能够捕捉微小的温度变化。
•多功能:红外热像仪可以进行即时、连续的图像记录,还可以测量温度、进行多点测温、生成热图等。
红外热像仪的应用领域•建筑和能源:用于检测建筑物的隐蔽缺陷、能源损失和不良绝缘。
•电力和制造业:用于检测电力设备的热量分布和异常温度。
•医疗保健:用于体温测量、疾病诊断和治疗监测。
•安全和法律:用于搜索和救援、犯罪调查、边境监控等领域。
•军事和防务:用于目标探测、侦察、夜视和导航等应用。
红外热像仪原理、主要参数和应用
红外热像仪原理、主要参数和应用红外热像仪原理、主要参数和应用1. 红外线发现与分布1672年人们发现太阳光(白光)是由各种颜色的光复合而成的。
当时,牛顿做出了单色光在性质上比白光跟简单的著名结论。
我们用分光棱镜可把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等单色光。
1800年英国物理学家赫胥尔从热的观点来研究各色光时,发现了红外线。
红外线的发现标志着人类对自然的又一个飞跃。
随着对红外线的的不断探索与研究,已形成红外技术这个专门学科领域。
红外线的波长在0.76--100μM之间,按波长的范围可分为近红外、中红外、远红外、极远红外四类,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。
红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。
温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。
通过红外探测器将物体辐射的功率信号转换成电信号,成像装置的输出的就可以完全一一对应地模拟扫描物体表面温度的空间分布,经电子系统处理后传至显示屏上,得到与物体表面热分布相应的热像图。
运用这一方法,便能实现对目标进行远距离热状态图像成像和测温并进行分析判断。
2. 红外热像仪的原理红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上,在光学系统和红外探测器之间,有一个光机扫描机构(焦平面热像仪无此机构)对被测物体的红外热像仪进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换电信号,经放大处理、转换为标准视频信号通过电视屏或监测器显示红外热像图。
这种热像图与物体表面的分布场相对应;实际上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光相比缺少层次和立体感,因此,在实际动作过程中为更有效地判断被测目标的红外热场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实际校正,伪色彩描绘等高线和直方进行运算、打印等。
红外热像仪测温技术
不同的物质和目标在红外波段范围内有不同的辐射特性,因 此选择合适的波段范围对于准确测量温度至关重要。常见的 波段范围包括短波、中波和长波,分别对应不同的应用场景 。
空间分辨率
总结词
空间分辨率决定了红外热像仪能够分 辨目标细节的能力。
详细描述
空间分辨率越高,热像仪能够捕捉到 的目标细节越丰富。这有助于在复杂 背景下准确识别目标,并对其温度分 布进行更精确的测量。
红外热像仪在安全监控、消防 救援和军事侦察等领域中具有
广泛的应用。
02 红外热像仪的组成与分类
红外探测器
探测器类型
探测器阵列
红外探测器分为热探测器和光子探测 器两类,其中热探测器根据工作原理 又可以分为热电堆、热电偶、热敏电 阻等。
红外探测器阵列分为一维线阵和二维 面阵,面阵又可以分为非制冷和制冷 两种类型。
康复理疗
红外热像仪还可用于康复理疗领域, 通过红外热像仪的监测,可以对康复 治疗效果进行量化评估,为康复治疗 方案提供科学依据。
安全监控领域的应用案例
消防安全
在消防安全领域,红外热像仪能够快速定位火源、检测高温区域和人员,为灭火救援提供重要信息,提高救援效 率。
夜间监控
在夜间或低光照条件下,红外热像仪能够清晰地捕捉到目标物体的温度分布,为安全监控提供有力支持。
测温范围
总结词
测温范围决定了红外热像仪能够测量的最高和最低温度。
详细描述
测温范围越宽,热像仪的应用场景就越广泛。了解测温范围对于选择适合应用的 红外热像仪至关重要,以确保能够准确测量目标温度。
04 红外热像仪测温技术的优 势与局限性
优势
非接触式测温
响应速度快
红外热像仪通过接收物体发射的红外辐射 进行测温,无需直接接触被测物体,可在 一定距离内进行快速测量。
红外热像仪的工作范围
红外热成像仪的工作范围及背景对测温的影响红外热成像是一种可将红外图像转换为热辐射图像的技术,该技术可从图像中读取温度值,是一种无损检测技术。
它是一种用来探测目标物体的红外辐射,并通过光电转换、电信号处理等手段,将目标物体的温度分布图像转换成视频图像的高科技产品。
那红外热像仪究竟是如何工作的呢?红外热成像仪的工作范围:在自然界中,只要温度高于绝对零度(-273℃)的物体都能辐射电磁波。
红外线是自然界中的电磁波最为广泛的一种存在形式,它是一种能量,而这种能量是我们肉眼看不见的。
任何物体在常规环境下都会产生的自身的分子和原子无规则运动,并不停地辐射出热红外能量。
红外线是这些电磁波的一部分,它和可见光、紫外线、X射线、γ射线和无线电波一起,构成了一个完整连续的电磁波谱。
波长范围是0.78μm到1000μm的电磁辐射,我们称为红外线辐射。
红外辐射电磁波在空气中传播要受到大气的吸收而使得辐射的能量被衰减,如果吸收的能量过多,就无法使用热像仪进行观察。
大气、烟云等吸收红外线也跟红外辐射的波长有关,对于3~5μm和8~14μm的红外线是透明的。
因此,这两个波段被称为红外线的"大气窗口"。
利用这两个窗口,红外热像仪可以正常的环境中进行观测而不会产生红外辐射衰减的情形。
红外热成像仪的探测器不仅接受被测物体表面发射的辐射能,还可能接受周围环境经被测物体表面反射和透过被测物体的辐射能。
后两部分的辐射会直接影响到测温的准确度。
因此,当被测物体表面发射率低,背景温度高,而被测温度又和背景温度相关不大时,就会引起很大的测温误差。
为了消除背景温度对测温的影响,红外热成像仪通常系统采取了两种背景温度补偿方法:1、以背景温度不变为前提,只要知道背景温度,对背录温度的变化取平均值,通过系统软件的计算,即可得到正确的测量值。
这种补偿只适于背景温度变化不大的情况。
2、实时补偿。
当背景温度随时间变化很大、很快时,使用另外一个专门测量背景温度的传感器,再通过软件进行实时补偿。
红外热像仪原理
红外热像仪原理一、引言红外热像仪是一种能够感知并显示目标物体的红外辐射能力的仪器,它利用了红外辐射和热量分布的原理,可以在各种环境条件下实时监测、测量和显示目标物体的温度分布情况。
本文将介绍红外热像仪的原理及其应用。
二、红外辐射红外辐射是一种电磁波,其波长范围在0.75μm到1000μm之间,相比可见光波长更长。
所有物体在温度不为绝对零度时都会发射红外辐射,其强度与物体的温度密切相关。
红外辐射的强度分布与物体的温度分布有关,通过测量红外辐射的强度分布可以得到物体的温度分布信息。
三、红外热像仪的工作原理红外热像仪的工作原理是基于红外辐射的特性。
红外热像仪通过红外探测器接收目标物体发出的红外辐射,然后将其转化为电信号进行处理和显示。
红外探测器是红外热像仪的核心部件,根据工作原理的不同可以分为热电偶探测器、焦平面阵列探测器和铟锑探测器等。
热电偶探测器是一种基于热电效应的红外探测器,它利用两个不同材料的接触点形成的热电偶产生电压信号,该信号与目标物体的温度有关。
焦平面阵列探测器是一种将焦平面上的每个像素点都作为一个探测单元的红外探测器,它可以同时获得多个像素点的温度信息,从而实现对目标物体的温度分布进行快速测量。
铟锑探测器是一种基于半导体材料的红外探测器,它利用半导体材料在红外辐射下的光电效应产生电信号。
四、红外热像仪的应用红外热像仪具有广泛的应用领域,主要包括以下几个方面:1. 工业领域:红外热像仪可以用于工业设备的故障检测和预防性维护,及时发现设备的异常温度分布,避免故障的发生和设备的损坏。
2. 建筑领域:红外热像仪可以用于建筑物的热损失检测和能源管理,通过测量建筑物表面的温度分布,发现热桥和热漏点,进而采取相应的措施进行热能的节约。
3. 电力领域:红外热像仪可以用于电力设备的温度监测和故障诊断,实时监测设备的温度分布,及时发现电力设备的异常情况,保障电力系统的安全和稳定运行。
4. 医疗领域:红外热像仪可以用于医学诊断,通过测量人体皮肤表面的温度分布,可以快速发现体温异常或炎症部位,辅助医生进行诊断和治疗。
红外热像仪的组成
红外热像仪的组成红外热像仪是一种用于实现精确测量和分析物体表面温度的仪器, 它可以用于工业制造、品质控制、安全预警、科学研究、生物医学等许多领域。
它具有测量精度高、快速安全、易于使用等优点。
本文简要介绍了红外热像仪的结构及其工作原理。
一、红外热像仪的结构红外热像仪的组成部分包括热成像系统、摄像头、数据采集单元、处理器、显示单元、用户操作界面等。
1.热成像系统热成像系统是红外热像仪的核心部分, 它能探测物体表面的温度变化, 将其变化转换成可视信号和数字信号。
它包括热成像仪、聚焦系统、温度测量系统和热集成单元等。
(1)热成像仪: 它具有高精度、高灵敏度和可靠性等特点, 可以测量出精度非常高的温度信息, 可以从非常低的温度到非常高的温度提供精准的测量结果。
它可以通过光学把探测到的温度信号转换成可视的电子图像和数字信号, 可以高速地收集实时的温度信息,并在计算机中显示出来。
(2)聚焦系统: 它由精密的光学元件组成, 可以将红外辐射聚焦到热成像仪上, 以便于精准测量物体表面的温度。
(3)温度测量系统:它可以根据热成像仪探测出来的温度信号, 计算出物体表面的温度值, 并根据设定的温度阈值及外部输入信号, 实现温度的控制和调节。
(4)热集成单元:它可以实现高速的数据采集和处理, 以及将温度信息转换成不同的信号形式, 可以能够快速地收集实时的温度信息。
2.摄像头摄像头用于捕捉图像, 它具有高分辨率、快速响应及低照度和背景高动态范围等特点, 可以将视觉信号转换成数字信号, 用于数据的存储、传输和处理。
3.数据采集单元数据采集单元可以将摄像头捕捉到的信号转换成数据, 这些数据可以存储在本地或远程的服务器中, 并可以通过专用的软件来进行处理。
4.处理器处理器可以将收集到的数据进行快速的信息处理, 并将处理结果通过屏幕或其他输出设备进行显示。
5.显示单元显示单元可以将处理器处理后的信息以图形或数字的形式显示出来, 以便用户更容易进行操作。
红外热像仪 标定
红外热像仪标定红外热像仪标定引言:红外热像仪是一种能够感应并测量物体表面红外辐射能量的设备。
它通过将红外辐射转化为可视化的热图,为我们提供了一种非接触、非破坏性的测温方法。
然而,在使用红外热像仪进行测量之前,我们需要对其进行标定,以确保测量结果的准确性和可靠性。
一、红外热像仪的工作原理:红外热像仪利用特定的探测器和光学系统,将物体表面的红外辐射转化为电信号,并通过信号处理和图像显示模块,将电信号转化为可视化的图像。
红外辐射与物体的温度有关,因此红外热像仪可以通过测量物体表面的红外辐射能量,间接测量物体的温度。
二、为什么需要标定红外热像仪:红外热像仪的标定是为了消除仪器本身的误差,并确保测量结果的准确性。
在使用红外热像仪进行测量时,仪器本身的灵敏度、线性度、空间分辨率等参数都会影响测量结果。
标定过程可以校准这些参数,使红外热像仪的测量结果更加可靠。
三、红外热像仪的标定方法:1. 黑体辐射源法:使用已知温度的黑体辐射源,将其放置在红外热像仪的视场中,并通过调整红外热像仪的参数,使其测量结果与已知温度相匹配。
这种方法可以校准红外热像仪的灵敏度和线性度。
2. 灰体辐射源法:使用已知温度的灰体辐射源,将其放置在红外热像仪的视场中,并通过调整红外热像仪的参数,使其测量结果与已知温度相匹配。
这种方法可以校准红外热像仪的灵敏度和线性度。
3. 基准板法:使用已知温度的基准板,将其放置在红外热像仪的视场中,并通过调整红外热像仪的参数,使其测量结果与已知温度相匹配。
这种方法可以校准红外热像仪的灵敏度、线性度和空间分辨率。
四、红外热像仪的标定误差:红外热像仪的标定误差主要包括系统误差和随机误差。
系统误差是由于红外热像仪本身的参数不准确或者标定不完全导致的,可以通过标定过程进行校正。
随机误差是由于测量环境的变化或者仪器的稳定性不好导致的,可以通过多次测量取平均值的方法减小。
五、红外热像仪的标定验证:在完成红外热像仪的标定之后,需要进行标定验证,以确认标定结果的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
制冷器
非制冷
非制冷红外焦平面阵列探测器UFPA
非制冷焦平面热成像技术的特点 由于没有制冷系统,故具有低成本、低功耗、 长寿命、小型化和可靠性等优点, 是当前热成像技术发展和应用的热点之一。 非制冷焦平面探测器的类型 热电堆型非制冷焦平面阵列
微测辐射热计(Micro-Bolometer)非制冷焦平面阵列
由普朗克公式可以得到,探测器的电信号响应 与物体的温度之间的关系为:
V (T ) M ( , T ) R( )d
1 2
C1
5
2
1
C2 e xp( 1
T ) 1
R( )d
结论:V(T)与物体的温度T是一一对应的关系。
6.5.2 红外热像仪的构成
分为四大部分: 1.红外光学镜头 2.红外焦平面及驱动与信号处理电路 3.红外成像处理软件 4.机械结构
其辐射遵循普朗克定律、维恩位移定律和斯蒂 芬-玻尔兹曼定律。
(1)普朗克定律
普朗克辐射定律给出了黑体在给定温度T下辐 射出射度随波长λ变化的分布:
M b ( , T )
C1
5
1 C2 exp(
T ) 1
其中:
C1 3.741382 1012 w cm2
C2 1.438786cm K
红外探测器分类
按波长分:
近红外: 0.76~3μm 中波红外:3~6μm 长波红外:8~15μm
按工作温度分:制冷型和非制冷型
低温探测器 中温探测器 室温探测器——非制冷
按探测单元数分:光机扫描型和凝视型
单元探测器 多元探测器 凝视探测器阵列——电扫描
光机扫描型热像仪
探测器:单元或多元
制冷型红外热像仪
光电信号处理
光电成像信号处理
6.5 红外热像仪
红外热像仪是一种利用红外探测器将看不见 的红外辐射转换成可见图像的被动成像仪器。 红外热像仪直接测量物体表面温度及温度分 布. 将物体的温度分布转换为可视图像,并 在监视器上以灰度级或伪彩色显示出来,从 而得到被测目标的温度分布场。
红外探测器分类
按探测机理分:
(2)维恩位移定律
由黑体辐射公式可得维恩位移定律:
mT 2897.8m K
黑体的绝对温度T升高时,其辐射出射度的曲 线波峰对应的波长变短;当黑体的绝对温度T 降低时,其辐射出射度的曲线波峰对应的波长 变长。
(3) 斯蒂芬-玻尔兹曼定律
对普朗克公式进行积分,可以得到描述黑体辐 射的全辐射出射度随温度变化的规律,即:
热探测器(热电效应)
热释电摄像管(如TGS等) 热探测器阵列
热释电型非制冷焦平面阵列 微测辐射热计非制冷焦平面阵列( Micro-Bolometer ) 微测辐射热电堆
光子探测器(光电效应)
光电导探测器(PC效应) 光伏探测器(PV效应) 肖特基势垒探测器(PtSi探测器) 量子阱探测器
M (T ) M b (T )
温度为T的实际物体的辐射出射度为:
M ( , T ) M b ( , T )
C1
5
1 C exp( 2
T ) 1
(5)红外测温原理
设热像仪探测器单元接收被测目标的辐射并转 化为电信号V(T),
探测器的光谱响应率为R(λ),
M b (8 14 ) (T )
8 14
C1
5
e
1
C 2 / T
1
d
7
x 10
-5
6
5
4
M(T)
3
2
1
0 300
400
500600 T来自700800900
1000
6.5.3 红外热像仪的应用
电力应用
消防
安防
医学
红外热像仪的应用
军事应用
夜视
目标探测
光学镜头 非制冷红外焦平面阵列 驱动电路 预处理电路 图像处理及接口电路 LCD显示 SD卡
软件部分
主要包括三大部分: 图像显示处理: 直方图统计、分段线性拉伸、 灰度级压缩、伪彩变换 温度转换模块 : 灰度-温度转换, 并以点温、面温、区域温度显示 其他功能
图像处理 与显示
红外成像系统中图像采集14bit 的A/D的实时显示问题: 自适应分段灰度级压缩,实现灰 度级从214 到 28的压缩; 中值滤波,实现图像边缘平滑; 伪彩色变换,实现黑白、反色、 彩虹、热金属4种伪彩色编码
温度定标
非制冷红外探测器的响应波长为8—14µ m, 根据普朗克辐射定律,可以计算出黑体在给 定温度T下,波长为8—14µ m的辐射出射度:
红外焦平面阵列IR-FPA
非致冷红外焦平面阵列 UFPA ——第三代红外焦平面阵列传感器 基本传感原理:电阻温度效应 微测辐射热计 (Micro-Bolometer) 典型像素:640×480 320×240 160×120 120×120 响应波长: 8—14μm 温度分辨率:0.02K
硬件部分
微测辐射热计非制冷焦平面探测器
美国Honeywell公司电阻型VOx非制冷焦平面探 测器(90年代初) 法国Sofradir公司研制并批量生产多晶硅型非制 冷焦平面; 澳大利亚国防科技署采用非晶、微晶和多晶等 研制成功单片式非致冷焦平面; 加拿大国家光子实验室
6.5.1 红外测温原理
红外辐射理论 凡是温度大于绝对零度的物体都会发出红外辐 射,其辐射能量的强弱程度由物体的温度以及 物体自身的辐射能力决定。 黑体是理想化的辐射体,它是指发射率等于1 的物体,它的辐射分布只依赖于辐射波长及其 温度,与物体的构成材料无关。
M bb (T ) M b (, T )d T 4
0
5.67 10-12 w cm-2 K-4
黑体的全辐射出射度与其绝对温度的四次方成 正比 。
(4)实际物体的红外辐射
实际物体的红外辐射量与探测波长和物体温度相关, 除此之外,还取决与构成物体的材料。在此引入一 个与材料的属性相关的系数,物体的发射率。 所谓发射率,就是实际物体与同温黑体在相同条件 下的辐射功率之比。