实数 第二课时教案(新人教版七年级下)
人教版数学七年级下册《6-3实数第2课时 》教案
人教版数学七年级下册《6-3实数第2课时》教案一. 教材分析人教版数学七年级下册《6-3实数第2课时》主要介绍实数的概念和性质。
本节课的内容是对实数的基本认识和理解,包括实数的分类、实数的运算规则以及实数在数轴上的表示方法。
通过本节课的学习,学生能够掌握实数的基本概念,理解实数的运算规律,并能够运用实数解决一些实际问题。
二. 学情分析七年级的学生已经掌握了实数的基本概念和运算规则,但对实数的深入理解和运用还需要进一步的引导和培养。
学生在学习过程中可能对实数的分类和运算规则有一定的困惑,需要通过具体的例子和练习来进行巩固和理解。
三. 教学目标1.知识与技能:学生能够掌握实数的基本概念,理解实数的运算规律,并能够运用实数解决一些实际问题。
2.过程与方法:学生能够通过观察、实验、推理等方法来探索实数的性质和运算规律。
3.情感态度与价值观:学生能够培养对数学的兴趣和好奇心,培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.实数的分类和运算规则是本节课的重点。
2.实数在数轴上的表示方法是本节课的难点。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题和解决实际问题来引导学生学习和探索实数的概念和性质。
2.使用多媒体课件和实物模型辅助教学,帮助学生直观地理解实数的概念和运算规律。
3.学生进行小组讨论和合作学习,促进学生之间的交流和合作。
六. 教学准备1.准备多媒体课件和实物模型,用于辅助教学。
2.准备相关的练习题和实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过提出实际问题,如“小明家的苹果重2千克,小红家的苹果重3千克,小明和小红家的苹果一共重多少千克?”引导学生思考和探索实数的概念。
2.呈现(10分钟)使用多媒体课件呈现实数的基本概念和运算规则,通过具体的例子和动画来引导学生理解和掌握实数的概念和运算规律。
3.操练(10分钟)学生进行小组讨论和合作学习,让学生通过实际操作和练习来巩固和运用所学的知识。
近年学年七年级数学下册6.3实数(第2课时)教案新人教版(2021学年)
2017学年七年级数学下册6.3 实数(第2课时)教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017学年七年级数学下册6.3 实数(第2课时)教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017学年七年级数学下册 6.3 实数(第2课时)教案(新版)新人教版的全部内容。
6.3实数(第2课时)教学内容实数的运算.一、导入新课1.用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律。
2.用字母表示有理数的加法交换律和结合律。
3。
平方差公式、完全平方公式.4。
有理数的混合运算顺序。
复习以前知识,导入新课的教学.二、实例探究1. 思考:(1)2的相反数是 ,-π的相反数是 ,0的相反数是。
(2)2= ,-π= ,0=。
数A的相反数是-a,这里A表示任意一个实数.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即设A表示一个实数,则2。
例题例1 (1)分别写出-6,π-3。
14的相反数;(2)指出-5,1-33各是什么数的相反数;(3)求364-的绝对值;(4) 已知一个数的绝对值是3,求这个数.当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开方运算,任意一个实数可以进行开立方运算. 在进行实数的运算时,有理数的运算法则及运算性质等同样适用.例2 计算下列各式的值:(1);(-3+ (2)33+23.22)在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似的有限小数去代替无理数,再进行计算.三、课堂小结1. 实数的运算法则及运算律;2.实数的相反数和绝对值的意义。
初中数学人教版七年级下册6.3实数第2课时 教案 教学设计
6.3 实数第2课时教学目标【知识与技能】1.了解实数范围内的相反数和绝对值的意义,会求一个实数的相反数和绝对值.2.学会比较两个实数的大小.3.了解在有理数范围内的运算及运算法则\,运算性质等在实数范围内仍然成立,能熟练地进行实数运算.【过程与方法】在实数运算时,根据问题的要求取其近似值,转化为有理数进行计算.【情感态度】通过创设情境,激发学生学习兴趣,培养学生主动探究意识和创新精神,形成良好的心理品质.教学重难点【教学重点】有理数的大小比较和运算.【教学难点】带有绝对值的有理数的运算.课前准备无教学过程一、情境导入,初步认识同学们,我们在七年级的时候学习了有理数相反数,绝对值的概念,那么,这一法则能否推广到实数呢?答案是肯定的,数a 的相反数是-a (a 表示任意一个实数,一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0) 教师讲解课本例1【教学说明】教师可让同学们先计算-6,5.8,2111 有理数的绝对值与相反数,从而导出实数相反数和绝对值的法则.二、思考探究,获取新知【教学导语】在数拓展到实数后,有理数范围内的法则、规律、公式仍然适用于实数范围,请同学们共同回忆,归纳在实数范围内适用的公式,法则.1.在数轴上表示的数,右边的数总比左边的大.2.两个正实数,绝对值较大的值也大;两个负实数,绝对值大的值反而小;正数大于0,负数小于0,正数大于负数.3.运算律:(1)加法交换律:a+b=b+a.(2)加法结合律:(a+b)+c=a+(b+c).(3)乘法交换律:ab=ba.(4)乘法结合律:(ab)c=a(bc).(5)分配律:a(b+c)=ab+ac.例1比较下列各实数的大小:【教学说明】实数比较大小常用以下方法:(1)两个负数比较,绝对值大的反而小;(2)被开方数大,它的算术平方根也大;(3)立方数大原数也大.例2计算下列各题:分析:先逐个化简后,再按照计算法则计算.【教学说明】实数的运算同有理数的运算律和运算性质、运算顺序一样.【教学说明】教师指导学生归纳得到下列结论:(1)非负数的和等于零的条件是当且仅当每个非负数的值都等于0.(2)任何实数的绝对值是一个非负数,任何一个非负数的算术平方根也是一个非负数.三、运用新知,深化理解1.(1)绝对值等于3的实数是 ,绝对值是22的实数是 . (2)257 的相反数是 ,绝对值是 . 2.比较2010-1与1949+1的大小.3.由于水资源缺乏,B,C 两地不得不从河上的抽水站A 处引水,这就需要在A,B,C 之间铺设地下管道.有人设计了三种方案:如图甲,图中实线表示管道铺设线路,在图乙中,AD ⊥BC 于D,在图丙中,OA=OB=OC,为减少渗漏\,节约水资源,并降低工程造价,铺设线路尽量缩短.已知△ABC 是一个边长为a 的等边三角形,请你通过计算.判断哪个铺设方案好.【教学说明】第1题较易,2、3题稍难,教师可引导学生完成.四、师生互动,课堂小结让学生回顾本节知识,思考整个学习过程,看看知道了什么,还有什么疑惑?课后作业1.布置作业:从教材“习题6.3”中选取.2.完成练习册中本课时的练习.教学反思本课时教学应从学生已有的认识出发,借助有理数知识,拓展延伸到实数范围内的知识认识,注重学生间的自主探究、交流,从而完成对实数知识的理解.实数的运算是有理数运算的扩展,引领学生适时地把有理数的运算法则延伸到实数运算领域,理解二者间的联系与区别.。
人教版数学七年级下册教案6.3《 实数》
人教版数学七年级下册教案6.3《实数》一. 教材分析《实数》是人教版数学七年级下册的一章内容,主要介绍了实数的概念、性质和运算。
本章内容包括有理数、无理数和实数的分类,以及实数的运算规则。
通过本章的学习,学生能够理解实数的概念,掌握实数的性质和运算规则,为后续的数学学习打下基础。
二. 学情分析学生在学习本章内容前,已经学习了有理数的概念和运算规则,对数学运算有一定的基础。
但是,学生可能对无理数的概念和性质较为陌生,需要通过实例和讲解来加深理解。
此外,学生可能对实数的分类和运算规则有一定的困惑,需要通过具体的例题和练习来进行巩固。
三. 教学目标1.了解实数的概念和性质,能够对实数进行分类。
2.掌握实数的运算规则,能够进行实数的加减乘除运算。
3.能够运用实数的概念和运算规则解决实际问题。
四. 教学重难点1.实数的分类:有理数、无理数和实数的区别和联系。
2.实数的运算规则:实数的加减乘除运算规则。
五. 教学方法采用问题驱动法和案例教学法,通过提问和举例引导学生思考和探索实数的概念和性质,通过具体的例题和练习来讲解和巩固实数的运算规则。
六. 教学准备1.PPT课件:实数的概念、性质和运算规则的讲解和例题。
2.练习题:针对实数的分类和运算的练习题。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念和运算规则,为新课的学习做好铺垫。
2.呈现(15分钟)讲解实数的概念和性质,通过具体的例子来阐述实数的分类,如有理数、无理数和实数的区别和联系。
3.操练(20分钟)讲解实数的运算规则,通过具体的例题来演示和解释实数的加减乘除运算,引导学生进行思考和提问。
4.巩固(10分钟)学生进行实数的分类和运算的练习,教师进行个别指导和讲解,确保学生能够掌握实数的分类和运算规则。
5.拓展(10分钟)通过实际问题引导学生运用实数的概念和运算规则进行解决问题,培养学生的应用能力和创新思维。
6.小结(5分钟)对本节课的内容进行总结和回顾,强调实数的概念、性质和运算规则的重点和难点。
人教版七年级数学下册 教学设计6.3 第2课时《实数》
人教版七年级数学下册教学设计6.3 第2课时《实数》一. 教材分析人教版七年级数学下册第6.3节《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统的认识。
本节内容主要介绍实数的定义、性质以及实数与数轴的关系。
通过本节课的学习,使学生掌握实数的概念,了解实数的性质,能够利用实数和数轴解决一些实际问题。
二. 学情分析学生在之前的学习中已经掌握了有理数和无理数的概念,对数的运算也有一定的了解。
但学生在理解实数与数轴的关系方面可能存在一定的困难。
因此,在教学过程中,要注重引导学生利用数轴理解实数的概念和性质。
三. 教学目标1.知识与技能:理解实数的定义,掌握实数的性质,能够运用实数和数轴解决一些实际问题。
2.过程与方法:通过数轴引导学生直观地理解实数的概念和性质。
3.情感态度价值观:培养学生的逻辑思维能力,激发学生学习数学的兴趣。
四. 教学重难点1.重点:实数的定义和性质。
2.难点:实数与数轴的关系。
五. 教学方法1.情境教学法:通过数轴引导学生直观地理解实数的概念和性质。
2.启发式教学法:在教学过程中,引导学生积极思考,提高学生的逻辑思维能力。
3.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队合作意识。
六. 教学准备1.教师准备:准备好数轴的图片和相关实数的例子。
2.学生准备:预习实数的相关内容,了解实数的概念和性质。
七. 教学过程1.导入(5分钟)利用数轴引导学生回顾有理数和无理数的概念,为新课的学习做好铺垫。
2.呈现(10分钟)介绍实数的定义和性质,让学生初步认识实数。
实数包括有理数和无理数,它们都可以用数轴上的点表示。
实数具有以下性质:–实数是数轴上的点,每个实数对应数轴上的一个唯一点。
–实数具有大小和方向,可以进行加、减、乘、除等运算。
–实数按照大小顺序排列,相邻两个实数之间存在无数个实数。
3.操练(10分钟)让学生在数轴上表示实数,并进行实数的运算。
例1:在数轴上表示-2、3、√2等实数。
6.3 实数(第二课时)--(课件)
则|a|= 3
所以a=± 3
所以绝对值为 3的数为 3和- 3 。
第五步:巩固反馈
− − − (−) +
−
3
4
【环节1 :师友检测】
− + − + (−)
(−) −
+ −
+ − − − + − .
3
问题二:指出− 5,1 − 3分别是什么数的相反数。
解: − − 5 = 5
3
-( 1 − 3 )=
3
3
3 -1
所以,− 5和1 − 3的相反数分别为 5,
3
3 -1
第二步:互助探究
【环节2 :教师讲解】
当数从有理数扩充到实数以后,实数之间不仅可以进
行加、减、乘、除(除数不为0)、乘方运算,又增加了非
【详解】
3
3
−27 − 32 − (−1)2 + 8 = −3 − 3 − 1 + 2 = −5;
2 5−
5 − 2 + 5 − 3 + (−5)2 = 2 5 − 5 + 2 − 5 + 3 + 5 = 10.
3
(−3)2 − 8 + 1 − 2 = 2.
18 + 1 − 2 − 2−3 + − 1
负数的开平方运算,任意实数可以进行开立方运算.进行
实数运算时,有理数的运算法则及性质等同样适用。
实数的运算顺序
(1)先算乘方和开方;
(2)再算乘除,最后算加;
(3)如果遇到括号,则先进行括号里的运算.
第三步:分层提高
最新实数--第二课时教案(新人教版七年级下)
课题:实数(第二课时)学习目标1.知识目标(1)知道实数与数轴上的点是一一对应的(2)会用有理数估计一个无理数的大致范围.(3)对实数进行大小比较.2.能力目标知道实数与数轴上的点是一一对应的,能够对实数进行大小比较.3.情感目标渗透数形结合及分类的思想,体验数系的扩展源于实际,又服务于实际的辩证关系。
学习重点、难点重点:实数与数轴上的点是一一对应的,对实数进行大小比较.难点:对实数进行大小比较.节前预习教材P106页图17—2,探讨以下问题:OA=AB=BC=CD=DE=EF=FG=GH=1计算各直角三角形斜边的长.OB= , OC= ,OD= ,OE= ,OF= ,OG= ,OH=其中,是无理数,是有理数。
归纳:有理数可以表示线段的长度,无理数也可以表示线段的长度。
基础练习1.在数轴上分别画出表示10和20-的点2.分别写出所有适合下列条件的数(1)5和-5之间的整数:(2)小于26的正整数:(3)绝对值小于21的整数:(4)大于3小于4的一个无理数:3.比较下列各组数中两个实数的大小:(1)-1.4和2(2)327π--和彩云旅行网-酒店客栈、景点门票、餐饮美食、农家乐、当地特产、旅游目的地,旅游度假,旅游线路,跟团游、游记攻略、旅游资讯、促销信息、旅游目的地、旅行生活、彩云、乡村旅游、周末休闲、周末去哪、交友分享、游记攻略、约伴旅游、拼车一站式快乐旅行,七彩生活能力创新数a、b在数轴上的位置如图所示,化简:222)()1()1(baba---++课堂小结-4 -3 -2 -1 0 1 2 3输血过程质量管理监控及效果评价制度一、输血护理服务的规定1、血液必须保存在指定的血库冰箱内,温度应保持在4℃,保存温度不当可能导致血细胞破坏或细菌感染,血液自血库取出后应在30分钟内输入。
2、严格遵守无菌操作原则和无菌操作技术规程。
3、严格执行双人查对制度。
4、根据医嘱进行输血,应向患者解释输血的目的及过程,要求患者及时报告不良反应。
喜德县第一中学七年级数学下册第六章实数6.3实数第2课时实数的运算法则教案新版新人教版7
第2课时实数的运算法则实数的运算法则.重点掌握实数的运算法则.难点实数运算法则的正确应用.一、创设情境,引入新课师:有理数的运算法则是什么?生:先算高级运算,同级运算从左至右,遇有括号的先算括号内.二、讲授新课师:很好.有理数运算法则仍适用于实数,请大家看几个题目:展示课件:【例1】计算下列各式的值:(1)(3+2)-2;(2)33+2 3.学生活动:尝试独立完成,两名学生上黑板板演,其余学生在位上做.教师活动:巡视、指导.师生共同完成:(1)(3+2)-2=3+(2-2)(加法结合律)=3+0= 3(2)33+2 3=(3+2) 3 分配律=5 3师:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.【例2】计算(结果保留小数点后两位):(1)5+π;(2)3· 2.学生尝试独立计算,一学生上黑板板演.教师巡视、纠正.师生共同完成:(1)5+π≈2.236+3.142≈5.38(2)3· 2≈1.732×1.414≈2.45三、随堂练习课本第56页第4题,第57页第4、5、6题.四、课堂小结通过本节课的学习,你有哪些收获?首先通过课本引例问题,旨在使学生通过自己的探究活动,经过老师的引导,感受并经历实数的运算、化简;让学生根据实例进行探索,通过学生互相交流合作,得出两个化简的公式,培养他们的合作精神和探索能力,也让他们获得成功的体验,充分调动、发挥学生主动性的多样化学习方式,促进学生在老师指导下主动地、富有个性地学习.典型例题:平行线的特征例1 两条直线被第三条直线所截,则( )A .同位角必相等B .内错角必相等C .同旁内角必互补D .同位角不一定相等例2 解答下列问题:①如果一个角的两边分别平行于另一角的两边,则这两个角( )A .相等B .互补C .相等或互补D .这两个角无数量关系②已知:(如图所示),则不正确的是:( )A .21∠=∠ ,∴43∠=∠B .52∠=∠ ,∴76∠=∠C .︒=∠+∠18085 ,∴21∠=∠D .︒=∠+∠18043 ,∴21∠=∠例3 如图,︒=∠︒=∠70,60,//BAE C CD AB ,求x ∠的度数.例4 如图:︒=∠651,//,//3221l l l l ,求2∠的度数.例5 如图,已知直线b a //,直线︒=∠1051,//d c ,求32∠∠、的度数.例6 试说明平行于同一条直线的两条直线平行.例7 如图,AD ABC ADC ,18021,︒=∠+∠∠=∠为FDB ∠的平分线,试说明BC 为DBE ∠的平分线.例8 潜望镜中的两个镜子MN 和PQ 是互相平行(如图)放置的,光线AB 经镜面反射时,43,21∠=∠∠=∠,试说明,进入的光线AB 与射出的光线CD 平行吗?为什么?参考答案例1 分析:这题是考查学生审题是否仔细,概念是否清楚,可举例说明.如图,直线A.b 被直线c 所截,显然同位角21∠≠∠,内错角32∠≠∠,同旁内角︒≠∠+∠18042,故A.B.C 均不正确.只有两平行直线被第三条直线所截,才有同位角必相等,内错角必相等,同旁内角必互补.故选D .例2 解析:①应选C (如图所示)②选D .A .21∠=∠ ,∴b a //,∴43∠=∠正确B .52∠=∠ ,∴b a //,∴76∠=∠正确C .︒=∠+∠18085 ,∴b a //,∴21∠=∠D .不正确,不能推出21∠=∠例3 分析:由CD AB //,可得︒=∠+∠180BAC C ,从而求出x ∠的度数.解:因为CD AB //,所以︒=∠+∠180BAC C ,即1806070=++x所以50=x ,答:x ∠等于50°.说明:平行线的特征必须是在两条直线平行的前提下,才存在后面的结论,所以在应用两条直线平行的特征时,必须先找到平行这个条件.例4 分析:由21//l l ,可得32∠=∠,由32//l l 可得31∠=∠,所以有21∠=∠,故求出2∠.解:因为21//l l ,所以32∠=∠;又因为32//l l ,所以13∠=∠;所以︒=∠=∠=∠65132.答:2∠是65°.说明:这是应用两条直线平行,内错角相等这一结论,在应用时应注意找出结论存在的条件.例5 分析:这里要利用平行线的条件弄清321∠∠∠、、与直线d 之间的关系才能解决问题.解:b a // (已知),∴12∠=∠(两直线平行,内错角相等).︒=∠1051 (已知),∴︒=∠1052(等量代换).d c // (已知),∴23∠=∠(两直线平行,同位角相等).∴︒=∠1053(等量代换).例6 分析:如图,3231//,//l l l l ,画直线a 截321,,l l l ,得3,2,1∠∠∠,则有32,31∠=∠∠=∠,所以21∠=∠,所以21//l l .解:作3231//,//l l l l ,直线a 截321,,l l l ,得3,2,1∠∠∠. 因为3231//,//l l l l ,所以32,31∠=∠∠=∠,所以21∠=∠,所以21//l l .即平行于同一直线的两条直线平行.说明:(1)这类通过单纯文字给出的题,我们在说明时应先根据题意画出图形;(2)该题既用到了平行线的特征,也用到了两直线平行的条件;在应用时我们要注意二者的区别.例7 解:︒=∠+∠18021 (已知),而︒=∠+∠18032(补角意义),∴31∠=∠(同角的补角相等).∴CF AE //(同位角相等,两直线平行).∴︒=∠+∠180C ABC (两直线平行,同旁内角互补).又ABC ADC ∠=∠(已知),∴︒=∠+∠180C ADC (等量代换).∴BC AD //(同旁内角互补,两直线平行).∴65,4∠=∠∠=∠A (两直线平行,同位角、内错角相等).又CF AE // (已证),∴7∠=∠A (两直线平行,内错角相等).∴74∠=∠(等量代换).又AD 为FDB ∠的平分线(已知),∴76∠=∠(角平分线的意义).∴54∠=∠(等量代换).∴BC 为DBE ∠的平分线.例8 解析:光线CD AB //,PQ MN // (已知)∴32∠=∠(两直线平行,内错角相等)又43,21∠=∠∠=∠ (已知)∴4321∠+∠=∠+∠∴65∠=∠(平角定义)∴CD AB //(内错角相等,两直线平行)【知识与技能】1.了解等式的两条性质.2.会用等式的性质解简单的(用等式的一条性质)一元一次方程.【过程与方法】1.渗透“化归”的思想.2.培养学生观察、分析、概括及逻辑思维能力.【情感态度】培养言必有据的思维能力和良好的思维品质.【教学重点】理解和应用等式的性质.【教学难点】应用等式的性质把简单的一元一次方程化成“x=a”.一、情境导入,初步认识用估算的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1)3x-5=22;(2)0.28-0.13y=0.27y+1.【教学说明】第(1)题要求学生给出解答,第(2)题较复杂,估算比较困难,此时教师提出:我们必须学习解一元一次方程的其他方法.二、思考探究,获取新知1.实验演示:教师先提出实验的要求:请同学们仔细观察实验的过程,思考能否从中发现规律,再用自己的语言叙述你发现的规律,然后按教科书第81页图3.1-1的方法演示实验.教师可以进行两次不同物体的实验.2.归纳:请几名学生回答前面的问题.在学生叙述发现的规律后,教师进一步引导:等式就像平衡的天平,它具有与上面的事实同样的性质.比如“8=8”,我们在两边都加上6,就有“8+6=8+6”;两边都减去11,就有“8-11=8-11”.3.表示:问题1你能用文字来叙述等式的这个性质吗?在学生回答的基础上,教师必须说明:等式两边加上的可以是同一个数,也可以是同一个式子.问题2等式一般可以用a=b来表示.等式的性质1怎样用式子的形式来表示?在学生观察图3.1-2时,必须注意图上两个方向的箭头所表示的含义.观察后再请一名学生用实验验证.然后让学生用两种语言表示等式的性质2.问题3你能再举几个运用等式性质的例子吗?如:用5元钱可以买一支钢笔,用2元钱可以买一本笔记本,那么用7元钱就可以买一支钢笔和一本笔记本,15元钱就可以买3支钢笔.相当于:“5元=买1支钢笔的钱;2元=买1本笔记本的钱.5元+2元=买1支钢笔的钱+买1本笔记本的钱.3×5元=3×买1支钢笔的钱.”问题4方程是含有未知数的等式,我们怎样运用上面等式的性质来解方程呢?我们来看一下教科书第82页例2中的第(1)、(2)题.通过分析,我们知道所谓“解方程”,就是要求出方程的解“x=?”因此我们需要把方程转化为“x=a(a为常数)”的形式.设问1:怎样才能把方程x+7=26转化为x=a的形式?学生回答,教师板书:解:两边减7,得:x+7-7=26-7,x=19.设问2:式子“-5x”表示什么?我们把其中的-5叫做这个式子的系数.你能运用等式的性质把方程-5x=20转化为x=a的形式吗?用同样的方法给出方程的解.小结:请你归纳一下解一元一次方程的依据和步骤.【归纳结论】由上面的问题我们可以看出,利用等式的性质解简单的一元一次方程的步骤一般分为两步:一是在方程两边同时加或减同一个数或式子,使一元一次方程左边是未知项,右边是常数;二是方程左右两边同时乘未知数的系数的倒数,使未知项系数化为1,从而求出方程的解.如:(1)x+a=b,解法:方程两边同时减去a,得x=b-a. (2)ax=b(a≠0),解法:方程两边同时除以a,得x=b/a.(3)ax+b=c(a≠0),解法:方程两边同时减去b,再同时除以a,得x=c ba.【教学说明】归纳结论过程中,教师可向学生阐述以下两点:(1)方程是含有未知数的等式,故可利用等式的性质求解,求解过程实质是等式变形为x=a的过程.(2)通过将所求结果代入方程的左右两边的方法,可以检验所求结果是否正确,这一点在下面的例题中我们会讲到.三、典例精析,掌握新知例1利用等式的性质,在括号内填上适当的数或式子,并说明等号成立的依据:【分析】根据等式的性质1或性质2,在方程两边同时加上或减去相同的数或式子;或同乘一个数,或除以同一个不为0的数,结果仍相等.解:(1)根据等式的性质1,等式两边都减去3,得x=1.(2)根据等式的性质2,等式两边都乘2,得x=6.(3)根据等式的性质1,等式两边都减去2a,得5a=-3.再根据等式的性质2,等式两边都除以5,得a=-3/5.(4)根据等式的性质1,等式两边都减去73y,得-2y=-4.再根据等式的性质2,等式两边都除以-2,得y=2.例2小涵的妈妈从商店买回一条裤子,小涵问妈妈:“这条裤子需要多少钱?”妈妈说:“按标价的八折是36元.”你知道标价是多少元吗?要求学生尝试用列方程的方法进行解答.在学生基本完成的情况下,教师给出示范.解:设标价是x元,则售价就是80%x元,根据售价是36元可列方程:80%x=36,两边同除以80%,得x=45.答:这条裤子的标价是45元. 例3利用等式的性质解方程:(1)0.5-x=3.4(2)-13x-5=4【教学说明】先让学生对第(1)题进行尝试,然后教师进行引导:①要把方程0.5-x=3.4转化为x=a的形式,必须去掉方程左边的0.5,怎么去?②要把方程-x=2.9转化为x=a的形式,必须去掉x前面的“-”号,怎么去?然后给出解答:解:两边减0.5,得0.5-x-0.5=3.4-0.5化简,得-x=2.9,两边同乘-1,得:x=-2.9.教师提醒学生注意:(1)这个方程的解答中两次运用了等式的性质;(2)解方程的目标是把方程最终化为x=a的形式,在运用性质进行变形时,始终要朝着这个目标去转化.你能用这种方法解第(2)题吗?在学生解答后再点评.教师向学生提问:①第(2)题能否先在方程的两边同乘“-3”?②比较这两种方法,你认为哪一种方法更好?为什么?允许学生在讨论后再回答.试一试教材第83页练习.在学生弄清题意后,教师再作分析:如果设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5xm,根据题意,你能列出方程吗?解:设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5xm,根据题意,得80×3.5+1.5x=355.化简,得280+1.5x=355,两边减280,得280+1.5x-280=355-280,化简,得1.5x=75,两边同除以1.5,得x=50.答:用余下的布还可以做50套儿童服装.【教学说明】对于许多实际问题,我们可以通过设未知数,列方程,解方程,以求出问题的解,也就是把实际问题转化为数学问题.问题:我们如何才能判断求出的答案50是否正确?在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把x=50代入方程80×3.5+1.5x=355的左边,得80×3.5+1.5×50=280+75=355.方程的左右两边相等,所以x=50是方程的解.试一试你能检验一下x=-27是不是方程-13x-5=4的解吗?四、运用新知,深化理解3.七年级(3)班有18名男生,占全班人数的45%,求七年级(3)班的学生人数.【教学说明】这些题目较简单,教师让学生口答上述题目,并给予评讲.五、师生互动,课堂小结让学生进行小结,主要从以下几个方面去归纳:1.等式的性质有哪几条?用字母怎样表示?字母代表什么?2.解方程的依据是什么?最终必须化为什么形式?3.在字母与数字的乘积中,数字因数又叫做这个式子的系数.1.布置作业::从教材习题3.1中选取.2.完成练习册中本课时的练习.本课时教学要重视学生思维的多角度培养,教师对教材中的实际问题要直观演示,指导学生观察图形,从实验中归纳结论,并用实验验证.对发现的结论用文字、数学语言分别表达出来.突出对等式性质的理解和应用,在解方程时,要求说明每一步变形的依据,解题后及时小结.扎实做到这些,可为后面教与学打下坚实基础.。
部编人教版七年级数学下册《实数(2)》教案
6.3实数第二课时一、教学目标1.核心素养通过学习实数,初步形成基本的数学抽象和数学运算的能力.2.学习目标(1).能说出实数的绝对值和相反数的意义,认识用字母表示的一个实数可以是正数、0、负数;(2).有理数的运算律和运算性质,在实数范围内仍然成立;(3).发展学生的类比和归纳能力3.学习重点(1)知道有理数的运算律和运算性质同样适合于实数的运算,并会进行简单的运算;4.学习难点(1)无理数的计算中,对绝对值的理解、应用。
二、教学设计(一)课前设计1.预习任务任务1阅读教材P55-56,回答下列问题:实数的性质:①实数a的相反数是②一个正实数的绝对值是,一个负实数的绝对值是,0的绝对值是任务2用字母表示有理数加法交换律: ;加法结合律: ;乘法交换律:;乘法结合律:;乘法分配律:。
2.预习自测1.3的倒数是()A .3B .3-C .33-D .33 【解析】:33-3-1=,选C. 2.有下列说法(1)相反数等于它本身的数只有0;(2)倒数等于它本身的数只有1;(3)绝对值等于它本身的数只有正数;(4)算术平方根等于它本身的数只有1;其中正确的个数是( )A 、1B 、2C 、3D 、4【解析】:(1)正确。
(2)错误。
倒数等于它本身的数有1和-1.(3)错误。
还有0(4)错误。
还有0,所以选A 。
3.下列说法错误的是( ) A .a 与a -相等 B .2a 与2)-(a 互为相反数 C .2a 与2)(a -相等 D .3a 与3a -互为相反数【解析】:A 正确;B 错误,应该是相等;C 正确;D 正确。
所以选B 。
(二)课堂设计1.知识回顾(1)有理数之间可以进行 、 、 、 、 、非负数的开方、任意数的开立方运算,有理数的运算中还有交换律、结合律、分配律。
(2)有理数关于相反数和绝对值的意义是什么?2.问题探究问题探究一 实数范围内,绝对值、相反数、倒数的用法有变化吗?●活动一 负号来捣乱 我们已经学习了有理数的绝对值2的相反数是分数可以写成 或者 循环小数的形式,无限小数可分为 和 两类。
2024实数人教版数学七年级下册教案
2024实数人教版数学七年级下册教案一、教学目标1.让学生理解实数的概念,掌握实数的分类及性质。
2.培养学生运用实数解决实际问题的能力。
3.培养学生的逻辑思维能力和空间想象能力。
二、教学重难点重点:实数的概念、分类及性质。
难点:实数的应用。
三、教学准备1.教学课件2.实数相关练习题3.教学道具四、教学过程第一课时:实数的概念1.导入(1)回顾小学阶段学习的自然数、整数、分数、小数等概念。
(2)提出问题:这些数之间有什么关系?它们共同构成了什么?2.讲解(1)介绍实数的概念:实数是包括有理数和无理数在内的数的总称。
(2)讲解实数的分类:有理数(整数、分数)、无理数。
(3)讲解实数的性质:实数具有有序性、稠密性和连续性。
3.互动(1)让学生举例说明实数的分类。
(2)讨论实数的性质在生活中的应用。
4.练习(1)让学生完成教材P1-2的练习题。
(2)讲解答案,纠正错误。
第二课时:实数的性质与应用1.导入(1)回顾上节课学习的实数概念及分类。
(2)提出问题:实数的性质在实际问题中有哪些应用?2.讲解(1)讲解实数的性质在比较大小、估算等方面的应用。
(2)讲解实数的性质在函数、方程等方面的应用。
3.互动(1)让学生举例说明实数的性质在实际问题中的应用。
(2)讨论如何利用实数的性质解决实际问题。
4.练习(1)让学生完成教材P3-4的练习题。
(2)讲解答案,纠正错误。
第三课时:实数的运算1.导入(1)回顾小学阶段学习的四则运算。
(2)提出问题:实数的运算与小学阶段的运算有何异同?2.讲解(1)讲解实数的加、减、乘、除运算规则。
(2)讲解实数的乘方、开方运算规则。
3.互动(1)让学生举例说明实数的运算规则。
(2)讨论如何运用实数的运算规则解决实际问题。
4.练习(1)让学生完成教材P5-6的练习题。
(2)讲解答案,纠正错误。
第四课时:实数的应用1.导入(1)回顾上节课学习的实数运算。
(2)提出问题:实数在现实生活中有哪些应用?2.讲解(1)讲解实数在物理学、化学、生物学等领域的应用。
七年级数学下册《实数》第二课时教案设计
七年级数学下册《实数》第二课时教案设计教案是教师为顺利而有效地开展教学活动,根据教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用*教学文书。
下面是小编整理的七年级数学下册《实数》第二课时教案设计,欢迎阅读参考!教学目标1.知道有效数字的概念;2.会按要求进行近似数的运算教学过程一、创设情境,导入新课1.什么叫实数?实数怎么分类?2.在有理数范围内学过的概念、运算法则、运算定律、*质,在实数范围内还适应吗?3.做一做如果正方形ABCD的面积为3平方厘米,正方形EFGH的面积为5平方厘米,这两个正方形的边长的和大约是多少厘米(精确到小数点后面第一位)?二、合作交流,探究新知1交流上面问题的做法(1)估计同学们会有两种做法:用计算器分别求的近似值,用四舍五入取到小数点后面第一位,然后相加,得:(厘米)(2)用计算器直接求出的近似值,用四舍五入取到小数点后面第一位,得:如果没有两种做法,也要想办法引出这两种做法两种做法的*不同,哪一种*正确呢?请同学们把第一种做法修改一下:将的近似值分别取到小数点后第二位,然后相加。
你发现了什么?这时两种做法的*就一样了。
从这个例子看出,在进行实数的加减运算时,如果要求*取到小数点后面第一位,那么参与运算的每一个实数的近似值应当多一位,即取到第二位,最后结果才取到小数点后面第一位。
2、引入有效数字的概念在上面运算中1.73是的近似值,它是用四舍五入得到的,1、7、3叫近似数1.73的三个有效数字。
什么叫近似数的有效数字呢?先思考:0.010256精确到小数点后面第三位,等于多少呢?0.0102560.0103近似数0.0103有三个有效数字1、0、3现在你能说说,什么叫近似数的有效数字吗?从第一个不是零点数字起到最后一个不数字止的所有数字叫近似数的有效数字。
考考你:1近似数0.03350有几个有效数字,分别是______________________.2125万保留两个有效数字等于__________3有_______个有效数字。
(新人教版)数学七年级下册:《实数》教学案
《实数》教课设计一、教课目的1.会利用结论比较两个实数的大小 .2.会利用运算律进行简单的实数运算,会取无理数的近似值进行计算.二、教课要点和难点1.要点:比较实数大小,进行简单的实数运算 .2.难点:比较实数大小 .三、教课过程(一)基本训练,稳固旧知1. 填空:每一个实数都能够用数轴上的一个来表示,反过来,数轴上的每一个点都表示一个.2.填空:(1)7的相反数是,绝对值是;(2)-7 的相反数是,绝对值是;(3)7的相反数是,绝对值是;(4)-7 的相反数是,绝对值是;(5)7-7 的相反数是,绝对值是;(6)7-7 的相反数是,绝对值是.(二)创建情境,导入新课师:初一的时候,我们学过有理数的很多结论,此刻数的范围从有理数扩大到了实数,本来对有理数来说建立的结论,对实数来说还建立吗?基本上都建立 . 比如,“一个负数的绝对值是它的相反数”,对有理数来说是对的,对实数来说还是对的 . 因此,相关实数的好多结论我们能够直接从有理数那边搬过来 . 上节课我们从有理数那边搬来了三个实数的结论,本节课我们还要从有理数那边搬几个结论来,第一我们来看两个实数怎样比较大小 .(三)试试指导,讲解新课(师出示以下图)-5-4-3-2-1012345师:(指准数轴)学习有理数的时候,我们讲过这样一个事实,数轴上右侧的数总比左侧的数大 . 比如, 4 在 3 的右侧, 4> 3;- 1 在- 4 的右侧,- 1>- 4,等等 . 数的范围从有理数扩大到实数,数轴上右侧的数仍是比左侧的数大吗?(稍停)对实数来说,数轴上右侧的数仍是比左侧的数大 . 依据这一事实,我们得出比较两个实数大小的结论 . (师出示结论 4)结论 4:正数大于 0,0 大于负数,正数大于负数;两个负数,绝对值大的反而小 . 师:请大家把这个结论读一遍(生读) .师:这个结论跟两个有理数比较大小的结论是相同的,它是直接从有理数那边搬过来的 . 下边我们就利用这个结论来比较两个实数的大小 . 例 1:比较以下各组数的大小:(1)5 和24; (2)- 5和- 6 ;(3)-3和-1.8.解: (1)24≈4.9 ,由于 5> 4.9 ,因此 5>24.(2) 5 ≈2.2, 6 ≈2.4,由于 2.2 <2.4 ,因此- 5 >- 6 .(3) 3 ≈1.7,由于 1.7 <1.8 ,因此- 3 >-1.8.(四)尝试练习,回授调理3.填“>”或“<”:(1)310 ;(2)π 3.142; (3)- 8-7 ;(4)-2-1.42 ; (5)2954;(6)23. 13234.判断对错:对的画“√”,错的画“×” .(1)有最小的正有理数.()(2)没有最小的整数.()(3)没有最小的有理数.()(4)没有最小的无理数.()(5)没有最小的实数.()(6)有绝对值最小的实数.()(五)试试指导,讲解新课师:我们知道有理数能够进行加、减、乘、除、乘方运算,相同,实数也能够进行加、减、乘、除、乘方运算,除了这些运算,实数能够进行开平方、开立方运算 . 实数之间怎么进行运算呢?有理数的运算法例和运算性质能够搬到实数的运算中来,也就是说,有理数怎么进行运算,实数就怎么进行运算.(师出示结论 5)结论 5:有理数的运算法例和运算性质,在进行实数运算时仍旧建立.师:大家把结论 5 默读一遍 . (生默读)师:比如,有理数的运算有互换律、联合律、分派律,相同实数的运算也拥有这些运算性质 . 下边我们就来做几道实数计算题 .(师出例 2)例 2:计算以下各式的值:(1)(32) 2 ;(2)332 3 .解: (1)(32) 2 = 3+2- 2 =3+0= 3;(2)33 2 3 =(3+2)3=53.((2) 题板演时,要指出运用了分派律)(师出示例 3)例 3:计算:(1) 5 +π(精准到0.01 );(2)3g 2 .(精准到0.1 ).解: (1) 5 +π≈2.236+3.142≈5.38 ;(2)3g 2 ≈1.73×1.41≈2.4.(教课时需要指出,结果假如要求精准到0.01 ,那么运算过程中取近似值要精确到 0.001 )(六)探,回授5.算:(1)2 2-3 2;(2)2322.====(七)小,部署作:上我学了数的三个,我又学了数的此外两个,数的五个是怎么得来的?基本上都是从有理数那边搬来的 . 有理数能够在数上用点表示,数也能够在数上用点表示;有理数有相反数、,数也有相反数、;有理数怎么比大小,数也怎么比大小;有理数怎么运算,数也怎么运算 .四、板数例 1例 24:⋯⋯5:⋯⋯例 3。
人教七年级下数学_《第2课时_实数》教学设计
人教版七下6.3实数(第2课时)教学设计教学内容解析教学流程图地位与作用本节内容是有理数的有关知识的巩固与延伸,随着前一节对实数概念的学习,数的范围被扩充到实数领域后,本节课很自然地过渡到解决实数的性质与运算问题.学生“原先在有理数范围内的相反数、绝对值等概念是否在实数范围内仍可沿用、实数范围内的运算又如何展开”等疑问.本节课将解决学生的这一疑问并告知学生原先在有理数范围内无法继续的运算在实数范围内将得以延续.而且它也是进一步展开实数范围内因式分解、勾股定理、三角函数等知识的基础.概念解析实数概念建立后,实数的性质也就随之确定,主要表现在(1)实数的序结构,即相反数、绝对值、大小比较等(其中大小比较分散在方根与实数概念的学习中);(2)实数的连续性,即实数与数轴上的点一一对应(这一点在上一节基本完成);(3)实数的代数结构,即有理数范围内可进行的四则运算以及这些运算所遵循的分配律,交换律、结合律等对实数仍然成立.具体地,任意实数a的相反数都是-a,当a≥0时,|a|=a;当a≤0时,|a| =-a.需要特别强调前面的性质中的a指的都是实数.对于实数的运算,要让学生体会有理数的运算律和运算性质在实数范围内仍然适用.思想方法本节内容是有理数的有关知识的巩固与延伸,数的范围从有理数扩充到实数,是完善了初中阶段数域的意义,构建了实数与数轴的完美结合与统一.本节课的学习需要运用类比的思想,类比于有理数的性质与运算,有理数的所有相关概念和运算性质在实数范围内也是适用的,这是数域扩充一致性的体现.实数的相反数、绝对值属于概念性知识,实数的运算属于定理法则.有理数的相反数、绝对值和运算的是其下位知识,教学中应突出数域由有理数扩充到实数后,前期所学的有理数的性质在实数域中的可延续性和一致性,体现知识的完美结合与统一.教学重点基于以上分析,确定本节课的教学重点:实数的相反数、绝对值.教学目标解析教学目标1.能类比有理数求实数的相反数、绝对值2.能类比有理数的运算法则及运算性质,进行实数(类似于“同类二次根式”的无理数)的简单运算.目标解析达成目标1的标志是:学生能依据数轴解释相反数和绝对值的几何意义.会求实数的相反数和绝对值,感受数形结合的思想.达成目标2的标志是:知道有理数的运算和运算性质在实数范围内仍然适用,会进行实数的运算,在涉及无理数的近似运算时,会通过取近似值,转化为有理数的运算.体会实数运算的合理性,会进行实数的运算,感受数域扩充的一致性.教学问题诊断分析具备的基础学生在七年级上册已经学习了有理数及有理数中相反数、绝对值等的一些概念并能依据数轴解释相反数和绝对值的几何意义.同时已学会有理数的加、减、乘、除、乘方的运算(包括运算律和运算性质),也已经知道实数与数轴上的点之间的一一对应关系.与本课目标的差距分析经过前期的学习,学生已会求有理数的相反数和绝对值,也会借助数轴找出有理数的相反数和绝对值,但对其几何意义上的理解是存在欠缺的,也就是说学生已具备数形结合的思想,但在解题应用中熟练运用数形结合思想的能力是欠缺的.存在的问题认识了实数,数域扩充到了实数域,学生疑惑之前所学的概念和性质是否可沿用到实数中去,如果能,为什么?教学中,如何自然地带领学生解决这一疑惑,认识到数学内容部的和谐一致性是本节课授课的关键所在.对于无理数的运算,因要运用到二次根式的性质和运算,故不宜涉及较复杂的计算,但要注意取近似数转化为有理数的运算为解决学生“之前所学的有理数的相关概念和性质是否在实数领域仍可运用”以及学生之前对几何意义认识上的欠缺,教学中应充分把握有理数被扩充到实数域的机会借助实数与数轴上的点的一一对应关系,加深学生对相反数和绝对值几何意义的理解,让学生深入感受数形结合的数学思想.教学难点本节课的教学难点是:在理解相反数和绝对值的意义时进一步体会数形结合的思想.教学支持条件分析由于无理数的概念的抽象性,为了帮助学生理解实数的相反数与绝对值的概念,可运用动态几何软件,形象地展示互为相反数的无理在数轴上的表示;可借助带有CAS系统的图形计算器,验证实数的运算律和运算结果.教学过程设计课前检测(1)5的相反数是______,_____的相反数是,相反数是本身的有理数是_____;(2)-0.5的绝对值是_____,____的绝对值是5,绝对值是本身的有理数是_______;(3)的相反数是______,绝对值是_____,它在数轴上表示的意义是_________.设计意图:检查学生对有理数相反数、绝对值概念掌握程度,如果学生对于前两个问题回答不好,则需要在课前增加有理数中相反数、绝对值概念的复习.第三个问题是引发学生思考,引发对实数相反数、绝对值的及其几何意义的必要认识.新课学习1.实数的相反数、绝对值问题1 请你解答下列问题:(1)0.5的相反数是______,_______的相反数是,相反数是本身的有理数是_______.(2)-3的绝对值是______,______的绝对值是7,绝对值是本身的有理数是________.(3)从数的角度看,相反数是指_____________________________的两个数,互为相反数;在数轴上,表示互为相反数的两个数的点分别位于________,且到________的距离相等.(4)一个数的绝对值是指数轴上表示这个数的点________.师生活动:学生自主完成,老师作必要的引导,引导学生可借助数轴完成.追问:有理数关于相反数和绝对值的意义是什么?师生活动:学生回答相反数是指只有符号不同的两个数,他们在数轴上位于原点的左右两侧,并且到原点的距离相等;绝对值是指一个数到原点的距离.设计意图:复习有理数关于相反数和绝对值的意义,为后续学习实数的相反数和绝对值进行铺垫.问题2 从上节内容的学习我们知道,“以单位长度为边长画一正方形,以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示,与负半轴的交点表示-”.与-互为相反数吗,为什么?它们的绝对值分别是多少,为什么?师生活动:教师提出问题,引导学生借助数轴从相反数和绝对值的几何意义出发,思考、讨论、交流并归纳.设计意图:引导学生通过数轴,利用数形结合思想发现实数的相反数和绝对值的意义.问题3 解答下列问题:(1)的相反数是________,-的相反数是________,0的相反数是________;(2)||=________,|-|=________,|0|=________.师生活动:学生独立完成,之后小组交流.设计意图:加深对实数的相反数和绝对值的意义的理解.追问:你能说出实数的相反数和绝对值的意义吗?师生活动:学生独立思考,之后小组交流、归纳.师生活动:师生共同归纳,数a的相反数是-a,这里a表示任意一个实数.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即设a表示一个实数,则设计意图:明确实数的相反数和绝对值的意义,让学生用式子表示实数的相反数和绝对值,以加深它们本质的认识.目标1检测(1)分别写出-,的相反数;(2)指出-,分别是什么数的相反数;(3)求的绝对值;(4)已知一个数的绝对值是,求这个数.设计意图:检测对相反数和绝对值意义的理解.对于基础一般的学生只需要求做对(1)和(3),如果不能完成,应当进行讲解或者由基础好的学生进行讲解,对于基础好的学生,要求全部完成,教师在学生给出答案的同时要求学生说明理由,特别强调求一个数的绝对值时,要先判断它的正负.2.实数的运算实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任何一个实数可以进行开立方运算,在进行实数运算时,有理数的运算法则及运算性质等同样适用.例1计算下列各式的值:(1)(+)-;(2).师生活动:教师示范讲解,让学生体会对实数运算性质的初步理解,认识表示的2倍或2个相加.同时归纳出有理数的运算律,通过计算得出有理数的运算律在实数范围内仍然适用.设计意图:初步体会实数的运算性质,让学生感受如何运用结合律、分配律进行实数运算.追问:有理数的运算顺序在实数范围是否适应呢?师生活动:学生通过对例题的运算分析得出有理数的运算顺序对实数是仍然适用的,并归纳出实数的运算顺序:先算乘方、开方,再算乘除,最后算加减,如遇括号,先算括号里面的.设计意图:初步体会实数的运算顺序,让学生感受有理数的运算与实数运算的一致性.目标2检测:设计意图:对于能够正确完成的学生可进行提高练习,并在完成提高练习后进入例3的学习.对于不能正确完成的学生,应进行讲解,讲解时强调类似合并同类项的化简方法和分配律的运用,学生在听懂讲解后跳过提高练习进入例3的学习.提高训练:设计意图:本题针对基础较好的学生设置,意在拓展提升学生的计算能力.例2计算(结果保留小数点后两位):(1);(2).师生活动:学生在教师的引导下完成,教师指出在取近似值的过程中要比结果多保留一位小数,最后四舍五入.设计意图:让学生体会可以按照所要求的精确度,将无理数用相应的近似有限小数代替后进行运算.巩固练习课堂小结计算:(1)(精确到0.01);(2)(结果保留2个小数);(3)(精确到0.01).师生活动:学生独立完成,师生共同订正,强调计算过程中近似数的取值方法.设计意图:进一步发展近似计算的能力,强调一般步骤与方法.课堂小结教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)什么是实数的相反数和绝对值?举例说明.(2)如何进行实数的运算?运算过程中,应注意什么?设计意图:让学生对本节课知识进行梳理,进一步落实相关概念.目标检测设计1.分别求下列各数的绝对值与相反数:(1)-;(2);(3);(4).2.两个实数在数轴上的对应点和原点的距离相等,则这两个数()A.一定相等B.一定不相等C.相等或互为相反数D.以上都不对3.下列说法中正确的是()A.实数-a是负数B.实数-a相反数是aC.|-a|一定是正数D.实数-a的绝对值是a4.实数a,b在数轴上所对应的点的位置如图所示,则化简|2a|-|a+b|=________.5.计算:(1);(2);(3)6.求x的值:|x﹣1|=.。
人教版数学七年级下册《6-3实数第2课时 》教学设计
人教版数学七年级下册《6-3实数第2课时》教学设计一. 教材分析人教版数学七年级下册《6-3实数第2课时》的教学内容主要包括平方根、算术平方根、立方根的概念及其性质。
这部分内容是学生在学习了有理数、无理数的概念后,对实数进行更深入探究的基础知识。
通过本节课的学习,使学生理解实数的丰富性,提高学生对实数的认识,为后续学习方程、不等式等知识打下基础。
二. 学情分析七年级的学生已经掌握了有理数、无理数的基本概念,对数的运算也有一定的了解。
但是,学生对平方根、算术平方根、立方根的概念及性质的理解还有待提高。
此外,学生对于抽象的数学概念,理解起来可能存在一定的困难,因此,在教学过程中,需要教师耐心引导,让学生逐步理解和掌握。
三. 教学目标1.知识与技能:使学生理解平方根、算术平方根、立方根的概念,掌握它们的性质,能熟练运用这些知识解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,让学生自主探究平方根、算术平方根、立方根的性质,培养学生的数学思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生积极思考、合作探究的学习态度,使学生感受数学在生活中的应用。
四. 教学重难点1.重点:平方根、算术平方根、立方根的概念及其性质。
2.难点:平方根、算术平方根、立方根性质的灵活运用。
五. 教学方法1.情境教学法:通过生活实例,引发学生对实数的思考,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、分析、归纳,培养学生的数学思维能力。
3.合作学习法:分组讨论,让学生在合作中交流,提高学生的团队协作能力。
六. 教学准备1.教师准备:对本节课的内容进行深入研究,了解学生的学情,准备相应的教学素材。
2.学生准备:预习本节课的内容,了解实数的相关知识。
七. 教学过程1.导入(5分钟)教师通过一个生活实例引入本节课的主题,如:“一块正方形的面积是25平方米,求这块正方形的边长。
”让学生思考,引发学生对实数的关注。
2019版七年级数学下册 6.3 实数(2)教案 (新版)新人教版
2019版七年级数学下册 6.3 实数(2)教案(新版)新人教版课题 6.3 实数(2)授课类型新授课标依据能求实数的相反数与绝对值;在解决实际问题中,能用计算器进行近似计算,并会按问题的要求对结果取近似值。
教学目标知识与技能会求实数的相反数与绝对值,会对实数进行简单的运算.过程与方法通过复习有理数的相反数、绝对值、运算律、运算性质,引出实数的相反数、绝对值、运算律、运算性质,并通过例题和练习题加以巩固,适当加深对它们的认识。
情感态度与价值观通过建立有理数的一些概念和运算在实数范围里也成立的意识,让学生了解在这种数的扩充中所体现的一致性,让学生充分感受数的不断发展;利用类比思想得到有理数的运算律及运算法则在实数范围内仍然成立。
教学重点难点教学重点会求实数的相反数和绝对值;会进行实数的加减法运算;会进行实数的近似计算。
教学难点认识和理解有理数的一些概念和运算在实数中仍适用的这种扩充。
教学媒体选择分析表知识点学习目标媒体类型教学作用使用方式所得结论占用时间媒体来源引入知识目标图片B B拓展知识2分钟自制讲解过程与方法图片E F建立表象5分钟下载观看过程与方法图片F C帮助理解8分钟下载理解情感态度价值观图片J E升华感情2分钟自制①媒体在教学中的作用分为:A.提供事实,建立经验;B.创设情境,引发动机;C.举例验证,建立概念;D.提供示范,正确操作;E.呈现过程,形成表象;F.演绎原理,启发思维;G.设难置疑,引起思辨;H.展示事例,开阔视野;I.欣赏审美,陶冶情操;J.归纳总结,复习巩固;K.其它。
②媒体的使用方式包括:A.设疑—播放—讲解;B.设疑—播放—讨论;C.讲解—播放—概括;D.讲解—播放—举例;E.播放—提问—讲解;F.播放—讨论—总结;G.边播放、边讲解;H.设疑_播放_概括.I讨论_交流_总结J.其他教学过程设计师生活动设计意图一、复习引入有理数关于相反数、绝对值的意义以及运算律?1、相反数:有理数a的相反数是a-。
人教版数学七年级下册6.3实数课时2教学设计 教案
《实数》第2课时教学设计一、内容和内容解析1.内容实数与数轴的对应关系,实数的绝对值、相反数.2.内容解析本节课是实数的第2课时,是在学习了无理数、实数的概念及实数的分类之后,继续学习实数与数轴的对应关系,实数的相反数、绝对值等知识.实数与数轴的对应关系类比有理数与数轴的关系进行研究,分析它们之间的联系与区别.当数的范围从有理数扩充到实数后,有理数的相反数、绝对值的意义同样适用于实数.所以,本节课的重点是在实数范围内求一个数的相反数、绝对值.二、目标和目标解析1.目标(1)理解实数与数轴上的点具有一一对应的关系.(2)能够在实数范围内求相反数、绝对值.2.目标解析达到目标(1)的标志是:将数从有理数的范围扩充到实数的范围,能够类比有理数与数轴的关系,把无理数在数轴上表示出来,从而得到实数与数轴上的点是一一对应的关系,初步体会“数形结合”的数学思想.达到目标(2)的标志是:通过复习有理数的相反数、绝对值,引出实数的相反数、绝对值,并通过例题和练习题加以巩固,适当加深对它们的认识,通过建立有理数的一些概念在实数范围里也成立的意识,让学生了解在这种数的扩充中所体现的一致性,让学生充分感受数的不断发展.三、教学问题诊断分析当数的范围由有理数扩充到实数后,注意“实数与数轴上的点具有一一对应的关系”和“每一个有理数都可以用数轴上的点表示出来”的区别和联系,有理数的相反数、绝对值在实数范围内仍然成立.教学时要注意突出这种数的扩充中体现出来的一致性;同时,教学中也要注意,随着数的范围的不断扩大,在扩大的数的范围内可以解决更多的问题,这一点在以后的教学中会更加充分的体现.所以,本节课的难点是实数与数轴上的点具有一一对应的关系.四、教学过程设计(一)问题导入我们知道,每个有理数都可以用数轴上的点来表示.无理数是否也可以用数轴上的点表示出来呢?设计意图:直接以问题的形式导入,让学生明确本节课要学习的内容.(二)探究归纳活动1如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O',点O' 对应的数是多少?(本活动可用动画《如何用数轴上的点表示一个无理数.swf》进行代替探究)从图中可以看出,图中OO'的长是这个圆的周长π,所以点O' 对应的数是π.由此我们就可以把无理数π用数轴上的点表示出来.活动2在数轴上,以单位长度为边长画一个正方形,以原点为圆心,正方形的对角线为我们可以把每一个无理数都在数轴上表示出来,数轴上有些点表示无理数.归纳:(1)实数与数轴上的点是一一对应的.即每一个实数都可以用数轴上的点来表示;反过来,数轴上的每一个点都表示一个实数.(2)对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.活动3有理数关于相反数和绝对值的意义是什么?有理数的相反数:有理数a的相反数是-a.有理数的绝对值:有理数关于相反数和绝对值的意义同样适合于实数.实数的相反数:实数a 的相反数是-a .一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0.设计意图:让学生在似曾相识的印象中加深“实数与数轴的点具有一一对应关系”以及对实数的相反数、绝对值等相关概念的理解和掌握.(三)例题解析例 (1)分别写出 3.14π-的相反数;(2)指出1(3(4解:(1)因为(-, 3.14 3.14ππ-(-)=-,所以, 3.14π- 3.14π-.(2)因为11-)所以,11的相反数.(34,所以44-=-=.(4-设计意图:通过例题的讲解,进一步掌握实数的相反数和绝对值.(四)课堂练习(五)课堂小结1.实数与数轴的对应关系.2.实数的相反数和绝对值的意义.设计意图:梳理本节课的主要知识点——实数与数轴的对应关系、实数的相反数和绝对值,让学生明确重难点.(六)布置作业1.判断下列说法是否正确:(1)所有的有理数都可以用数轴上的点来表示,反过来,数轴上所有的点都表示有理数;(2)所有实数都可以用数轴上的点来表示,反过来,数轴上所有的点都表示实数. 设计意图:考查有理数、实数与数轴的对应关系的区别和联系.2.某位老师在讲“实数”时,画了一个图(如图所示),即“以数轴的单位线段为边做一个正方形,然后以O 为圆心、正方形的对角线长为半径画弧,交数轴的正半轴于一点A ”.则OA ).A .数轴上的点和有理数一一对应B .数轴上的点和无理数一一对应C .数轴上的点和实数一一对应D .不能说明什么 21A O设计意图:考查实数与数轴的一一对应关系.作业答案:1.(1)×;(2)√.2.C .五、目标检测设计1.下列各数中,互为相反数的是( ).A .-2与2)2(-B .-2与38-C .-2与21-D .2-与2 设计意图:考查实数的相反数、绝对值.2.实数a ,b ,c 在数轴上的位置如图所示:则化简c b a +-的结果是( ). A .a -b -c B .a -b +c C .-a +b +c D .-a +b -c设计意图:考查实数与数轴的对应关系以及实数的相反数、绝对值.3.绝对值小于5的所有实数的积为 ( ).A.24B.576C.0D.10设计意图:考查实数的绝对值的性质.4.若实数x满足|x|+x=0,则x是().A.零或负数B.非负数C.非零实数D.负数.设计意图:考查实数的绝对值的性质及应用.目标检测答案:1.A.2.C.3.C.4.A.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:实数(第二课时)
学习目标
1.知识目标
(1)知道实数与数轴上的点是一一对应的
(2)会用有理数估计一个无理数的大致范围.
(3)对实数进行大小比较.
2.能力目标
知道实数与数轴上的点是一一对应的,能够对实数进行大小比较.
3.情感目标
渗透数形结合及分类的思想,体验数系的扩展源于实际,又服务于实际的辩证关系。
学习重点、难点
重点:实数与数轴上的点是一一对应的,对实数进行大小比较.
难点:对实数进行大小比较.
节前预习
教材P106页图17—2,探讨以下问题:
OA=AB=BC=CD=DE=EF=FG=GH=1
计算各直角三角形斜边的长.
OB= , OC= ,OD= ,OE= ,OF= ,OG= ,OH= 其中,是无理数,是有理数。
归纳:
有理数可以表示线段的长度,无理数也可以表示线段的长度。
基础练习
1.在数轴上分别画出表示10和20-的点
2.分别写出所有适合下列条件的数
(1)5和-5之间的整数:
(2)小于26的正整数:
(3)绝对值小于21的整数:
(4)大于3小于4的一个无理数:
3.比较下列各组数中两个实数的大小:
(1)-1.4和 2 (2)327π--和
彩云旅行网-酒店客栈、景点门票、餐饮美食、农家乐、当地特产、旅游目的地,旅游度假,旅游线路,跟团游、游记攻略、旅游资讯、促销信息、旅游目的地、旅行生活、彩云、乡村旅游、周末休闲、周末去哪、交友分享、游记攻略、约伴旅游、拼车一站式快乐旅行,七彩生活
能力创新
数a 、b 在数轴上的位置如图所示,化简:
222)()1()1(b a b a ---++
课堂小结 -4 -3 -2 -1 0 1 2 3 4。