用圆锥曲线极点与极线的性质解题
一点一线一世界——高考命题中圆锥曲线的极点与极线
线犾 上任一点作抛物线的两条切线 , 则直 犕, 犖 为切 点 , 线 犕犖 恒过定点 . 解析 : 因为 抛 物 线 的 准 线 和 焦 点 刚 好 是 一 对 极 点 和极线 , 由定理第 ( ) 条知直线 犕犖 恒过焦点 犉( ) 4 1, 0 .
, 动 直 线犾 与 椭 圆 犫>0) 只有一个公共 点 犘, 且 犆 点 犘 在第一象限 . ( Ⅰ )已 知 直 线 犾 的 斜率为犽, 用 犪, 犫, 犽表示 点 犘 的坐标 ; 图1
) 所对应的准线 . 对于双曲线和抛物线结论类似 . 犉( 犮, 0 焦点与准线 是 圆 锥 曲 线 的 统 一 定 义 , 我们很多人 只知道它的存在 , 却不知道 它 们 内 在 的 联 系 , 教材中潜 形匿迹 , 但 我 们 也 不 能 对 此 视 而 不 见, 我们也可借此 解题 .
2 例 2 已知抛物线 狔 过直 =4 狓 和 直 线犾: 狓= -1,
1 1 2 2 ) 即2 犕犖 的方程为 ( 狋 = ·2 狋 狓+1, 狋 狓-狔- 狋 狔+ 2 2
2 2 2 4 狋 - 狋 +2- 狋 | 于是 犱=| +2=0, =2 2 1+4 狋 槡 2 ( ) , 则 犱= =1+4 狋 狊 ≥1
槡
2 2 ( ) 1+ 狋 令 2 . 狊 1+4 狋
— —极 点 与 极 线 在 高 考 解 题 中 的 3 洗 尽 铅 华 — 应用
在近年的各地 高 考 模 拟 试 题 中 , 有关圆锥 事实上 , 曲线的极点与 极 线 问 题 也 屡 见 不 鲜 . 用普通方法可以
·6 4·
数学教育研究
2 0 1 5 年第 1 期
求解 , 但过程相对繁杂 , 如果 用 极 点 和 极 线 的 视 角 看 问 题, 则事半功倍 . 定值问题 3. 1 可以解决圆锥曲线中的定点 、 例 3 ( 2 0 1 4稽阳联谊 学校 高 三 数 学 联 考 2 1 题)
高中数学圆锥曲线技巧之极点与极线
高中数学圆锥曲线技巧之极点与极线在高中数学的学习中,圆锥曲线是一个比较复杂但又非常重要的内容。
其中,极点与极线是圆锥曲线中一个较为抽象但又极具深度的概念。
在本文中,我们将深入探讨高中数学中关于极点与极线的技巧,并通过具体的例子来帮助大家更好地理解和运用这一知识。
极点与极线是圆锥曲线中的重要概念,它们的理解和运用可以帮助我们更好地解题和应用数学知识。
在接下来的内容中,我们将从简单到复杂,由浅入深地介绍极点与极线的相关知识,让大家能够更直观地理解这一概念。
让我们从极点的定义和性质入手。
极点是在圆锥曲线上的一个特殊点,它具有一定的性质和特点。
在直角坐标系中,对于椭圆、双曲线和抛物线而言,这些曲线上都存在极点。
具体来说,在椭圆和双曲线上,极点是无限远处的点,而在抛物线上,极点是定点。
通过对极点的性质进行深入了解,我们可以更好地应用这一知识解决问题。
让我们了解极线的概念及其性质。
极线是与极点对应的直线,它们之间存在着一定的几何关系。
在椭圆和双曲线的情况下,极线是通过极点并且与曲线相切的直线,而在抛物线的情况下,极线是通过极点并且与对称轴垂直的直线。
通过对极线的性质进行深入研究,我们可以更好地掌握圆锥曲线相关问题的解题技巧。
接下来,让我们通过实例来详细讨论极点与极线的应用技巧。
以椭圆曲线为例,假设我们需要确定椭圆上关于极点和极线的一些特定问题。
在解题过程中,我们可以先确定椭圆的极点,然后求出与极点相关的极线方程,进而利用极线的性质来解决具体的问题。
通过实例的具体讲解,我们可以更好地理解并掌握极点与极线的运用技巧。
总结回顾一下,极点与极线是圆锥曲线中的重要概念,它们的理解和运用可以帮助我们更好地解题和应用数学知识。
通过对极点与极线的深入讨论和实例分析,我们能够更全面、深刻和灵活地理解这一知识,并运用于实际问题中。
对于我个人来说,极点与极线的学习过程不仅仅是对圆锥曲线知识的掌握,更是对数学思维和解题能力的提升。
圆锥曲线中的极点极线
圆锥曲线中的极点极线一、引言圆锥曲线是平面上的一类重要的几何图形,包括椭圆、双曲线和抛物线。
在这些曲线中,极点和极线是非常重要的概念。
本文将介绍圆锥曲线中的极点和极线,包括定义、性质和应用。
二、定义1. 极点:在平面直角坐标系中,对于一个圆锥曲线C,如果存在一个定点F(称为焦点),则C上的任意一条直线L与F之间都有一个交点P。
当L不经过F时,P称为L在C上的截距点;当L经过F时,P 称为C的极点。
2. 极线:对于一个圆锥曲线C和它上面的一个极点P,在平面直角坐标系中,连接P与C上所有截距点的直线称为C关于P的极线。
三、性质1. 极点性质:(1)每个圆锥曲线都有两个焦点和两条相互垂直的对称轴;(2)如果L经过焦点,则其截距为a/e或ae,其中a是离心率e所确定的参数;(3)如果L不经过焦点,则其截距为b²/a,其中b是圆锥曲线的另一个参数。
2. 极线性质:(1)对于每个圆锥曲线C和它上面的任意一个点P,P关于C的极线与P到C的距离相等;(2)对于每个圆锥曲线C和它上面的任意一条直线L,L关于C的极点与L到C的距离相等;(3)对于每个圆锥曲线C和它上面的任意两个点P、Q,它们关于C 的极线交于一点。
四、应用1. 极点和极线可以用来求解圆锥曲线上的各种几何问题,例如求解切线、法线、渐近线等;2. 极点和极线也可以用来描述圆锥曲线之间的关系,例如共轭圆锥曲线、互为反形图形等。
五、总结本文介绍了圆锥曲线中的极点和极线,包括定义、性质和应用。
在几何学中,圆锥曲线是非常重要的几何图形之一,在许多领域都有广泛应用。
掌握了极点和极线这一重要概念,可以更好地理解和应用圆锥曲线。
圆锥曲线极点极线过定点
圆锥曲线极点极线过定点对于圆锥曲线,极点和极线是很重要的概念。
极点是指在平面上固定一个点P,并取出一条直线L,对于平面上所有点Q,连结P和Q,并延长这条连接线,使其与直线L相交,如果这样的交点存在,则点P就是曲线的极点,直线L就是曲线的极线。
下面证明极线过定点的结论。
假设圆锥曲线的极点为P,极线为L,并且经过点A。
那么,我们需要证明L一定经过一个定点B。
首先,任取曲线上另外一个点Q,并连接PQ。
因为P是极点,所以PQ与极线L垂直,所以PQ的斜率是L的斜率的倒数。
设斜率为m,则可以表示为:m = -1/k其中k是L的斜率。
因为Q和A都在曲线上,所以它们的坐标(xQ,yQ)和(xA,yA)必须满足曲线的方程。
设曲线的方程是F(x,y)=0,则有:F(xQ,yQ) = 0F(xA,yA) = 0由于Q在极线上,所以PQ过点A的中垂线L'也必须经过点Q。
因此,L'的斜率是QA的斜率的相反数,即:k' = - (yA-yQ)/(xA-xQ)而L'与L垂直,所以k'×k=-1。
将k'代入上式可得:(xA-xQ)/(yA-yQ)×k = 1解出k:k = (yA-yQ)/(xA-xQ)将k代入第一式中,可得:m = - (xA-xQ)/(yA-yQ)将m和曲线的方程代入PQ的直线方程中,得到:(y-yQ)/(x-xQ) = - (xA-xQ)/(yA-yQ)×(dF/dx)/(dF/dy)其中dF/dx和dF/dy分别是曲线上点Q处的偏导数。
这是PQ的直线方程,我们要找到L的方程。
由于L是曲线的极线,所以L也要与PQ垂直,即它的斜率也满足:kL = -1/k = - (yA-yQ)/(xA-xQ)将kL带入直线的一般式,有:y - yP = kL(x - xP)代入kL,有:y - yP = - (yA-yQ)/(xA-xQ)×(x - xP)化简之后,可得L的方程:y = - (yA-yQ)/(xA-xQ)×(x - xP) + yP因为Q是曲线上的点,所以可以将曲线的方程代入L的方程中,消去x和y,得到:y = (yA-yQ)/(xA-xQ)×x + (xAyQ-xQyA)/(xA-xQ)这是L的标准式,可以看出它是一个直线。
用圆锥曲线极点与极线的性质解题
用圆锥曲线极点与极线的性质解题
邹生书
【期刊名称】《河北理科教学研究》
【年(卷),期】2011(000)001
【摘要】@@ 本文介绍圆锥曲线极点和极线的几何性质在解题中的应用,以飨读者.1 圆锥曲线极点和极线的定义已知圆锥曲线C:Ax2+Cy2+2Dx+2Ey+F=0,则称点P(x0,y0)和直线l:Ax0x+Cyoy+D(x+x0)+E(y+y0)+F=0是圆锥曲线C的一对极点和极线.
【总页数】2页(P13-14)
【作者】邹生书
【作者单位】湖北省阳新县高级中学,435200
【正文语种】中文
【相关文献】
1.用圆锥曲线极点与极线的性质解题 [J], 黄彩红
2.简述与圆锥曲线的极点和极线有关的性质 [J], 彭世金
3.高观点下再看问题本质——圆锥曲线极点与极线的一个性质应用 [J], 黄嘉欣
4.探解圆锥曲线问题的有效工具:极点与极线的性质 [J], 项燕英
5.用圆锥曲线极点与极线的性质解题 [J], 黄彩红;
因版权原因,仅展示原文概要,查看原文内容请购买。
极点、极线与圆锥曲线试题的命制
极点、极线与圆锥曲线试题的命制发布时间:2022-05-11T13:35:11.792Z 来源:《中国教师》2022年6月作者:卢光明[导读] 高中圆锥曲线经常会遇见直线与曲线相切的问题,最常见的有两种形式:第一种直线与圆锥曲线相切,切点在曲线上;另一种是过曲线外一点作圆锥曲线切线有两条,切点分别是A、B两点,过A、B两点可以确定一条直线,发现两种形式的切线是同一形式,从而找出其它一些性质特点,来源于课本练习题。
卢光明江西省宜春中学【摘要】高中圆锥曲线经常会遇见直线与曲线相切的问题,最常见的有两种形式:第一种直线与圆锥曲线相切,切点在曲线上;另一种是过曲线外一点作圆锥曲线切线有两条,切点分别是A、B两点,过A、B两点可以确定一条直线,发现两种形式的切线是同一形式,从而找出其它一些性质特点,来源于课本练习题。
【关键词】极点,极线,圆锥曲线中图分类号:G688.2 文献标识码:A 文章编号:ISSN1672-2051(2022)6-135-03一、极点与极线的定义定义1 (代数定义)已知圆锥曲线Γ:Ax2+Cy2+2Dx+2Ey+F=0,则称点P(x0,y0)和直线l:Ax0x+Cy0y+D(x+x0)+E(y+y0)+F=0是圆锥曲线Γ的一对极点和极线.事实上,在圆锥曲线方程中,以x0x替换x2,以(x0+x)/2替换x(另一变量y也是如此),即可得到点P(x0,y0)的极线方程.特别地:对于椭圆 ,与点P(x0,y0)对应的极线方程为 ;对于双曲线 ,与点P(x0,y0)对应的极线方程为;对于抛物线y2=2px,与点P(x0,y0)对应的极线方程为y0y=p(x0+x).定义2 (几何定义)如图1,P是不在圆锥曲线上的点,过P点引两条割线依次交圆锥曲线于四点E,F,G,H,连接EH,FG交于N,连接EG,FH交于M,则直线MN为点P对应的极线.若P为圆锥曲线上的点,则过P点的切线即为极线.由图1可知,同理PM为点N对应的极线,PN为点M所对应的极线,MNP称为自极三点形.若连接MN交圆锥曲线于点A,B,则PA,PB恰为圆锥曲线的两条切线.二、极点与极线的基本性质定理1 (1)当P在圆锥曲线Γ上时,其极线l是曲线Γ在P点处的切线;(2)当P在Γ外时,其极线l是曲线Γ从点P所引两条切线的切点所确定的直线(即切点弦所在直线);(3)当P在Γ内时,其极线l是曲线Γ过点P的割线两端点处的切线交点的轨迹.证明 (1)假设同以上代数定义,对Γ:Ax2+Cy2+2Dx+2Ey+F=0的方程,两边求导得2Ax+2Cyy’+2D+2Ey’=0,解得y’=- ,于是曲线Γ的P点处的切线斜率为k=- ,故切线l的方程为y-y0=- (x-x0),化简得Ax0x+Cy0y-Ax20-Cy20+Dx+Ey-Dx0-Ey0=0.又点P在曲线Γ上,故有Ax20+Cy20+2Dx0+2Ey0+F=0,从中解出Ax20+Cy20,然后代入前式可得曲线Γ在P点处的切线为l:Ax0x+Cy0y+D(x+x0)+E(y+y0)+F=0.根据代数定义,此方程恰为点P的极线方程.(2)设过点P所作的两条切线的切点分别为M(x1,y1),N(x2,y2),则由(1)知,在M,N处的切线方程分别为Axx1+Cyy1+D(x1+x)+E(y1+y)+F=0和Axx2+Cyy2+D(x2+x)+E(y2+y)+F=0,又点P在切线上,所以有Ax0x1+Cy0y1+D(x1+x0)+E(y1+y0)+F=0,Ax0x2+Cy0y2+D(x2+x0)+E(y2+y0)+F=0.观察这两个式子,可发现点M(x1,y1),N(x2,y2)都在直线Ax0x+Cy0y+D(x+x0)+E(y+y0)+F=0上,又两点确定一条直线,故切点弦MN所在的直线方程为Ax0x+Cy0y+D(x+x0)+E(y+y0)+F=0.根据代数定义,此方程恰为点P对应的极线方程.(3)设曲线Γ过P(x0,y0)的弦的两端点分别为S(x1,y1),T(x2,y2),则由(1)知,曲线在这两点处的切线方程分别为Ax1x+Cy1y+D(x1+x)+E(y1+y)+F=0,Ax2x+Cy2y+D(x2+x)+E(y2+y)+F=0.设两切线的交点为Q(m,n),则有Ax1m+Cy1n+D(x1+m)+E(y1+n)+F=0,Ax2m+Cy2n+D(x2+m)+E(y2+n)+F=0.观察两式,可发现S(x1,y1),T(x2,y2)都在直线Axm+Cyn+D(x+m)+E(y+n)+F=O上,又两点确定一条直线,所以直线ST的方程为Axm+Cyn+D(x+m)+E(y+n)+F=0.又直线ST过点P(x0,y0),所以Ax0m+Cy0n+D(x0+m)+E(y0+n)+F=O上,这意味着点Q(m,n)在直线Ax0x+Cy0y+D(x0+x)+E(y0+y)+F=0上.所以,两切线的交点的轨迹方程是Ax0x+Cy0y+D(x0+x)+E(y0+y)+F=0.3.特殊的极点与极线①圆锥曲线的焦点与其相应的准线是该圆锥曲线的一对极点与极线.譬如,对于椭圆 =1而言,右焦点F(c,0)对应的极线为 =1,即x= ,恰为椭圆的右准线.②对于椭圆 =1而言,点M(m,0)对应的极线方程为x= ;对于双曲线 =1而言,点M(m,0)对应的极线方程为x= ;(3)对于抛物线y2=2px而言,点M(m,0)对应的极线方程为x=-m.定理4 如图6,设圆锥曲线Γ的一个焦点为F,与F相应的准线为l.若过点F的直线与圆锥曲线Γ相交于M,N两点,则Γ在M,N两点处的切线的交点Q在准线l上,且FQ⊥MN;(2)若过准线l上一点Q作圆锥曲线Γ的两条切线,切点分别为M,N,则直线MN过焦点F,且FQ⊥MN;(3)若过焦点F的直线与圆锥曲线Γ相交于M,N两点,过F作FQ⊥MN交准线l于Q,则连线QM,QN是圆锥曲线Γ的两条切线.下面给出椭圆情形下结论(1)的证明,其余皆同理可证.设Γ: (a>b>0),则F(c,0),l:x= .由于焦点F的极线为l,故切线MQ,NQ的交点Q一定在直线l上,设Q( ,yQ),则点Q的极线为 ,即y= . 再设MN:y=k(x-c),则k= ,即有yQ= ,从而Q点的坐标为 ,于是kFQ= ,kFQ•KMN=-1,故FQ⊥MN.过点(3,1)作圆的两条切线,切点为A,B则直线AB的方程为()解析:法一、因为过点(3,1)作圆的两条切线,切点分别为A,B所以圆的一条切线方程为,切点之一为(1,1)排除BD,另一个切点的坐标在(1,1)的右侧,所以切线的斜率为负,排除C 故选A法二、切点弦AB所在直线就是点(3,1)对应的极线,故其方程为即故选A过椭圆内一点M(3,2)做直线AB与椭圆交于点A,B作直线CD与椭圆交于点C,D,过A,B分别作椭圆的切线交于点P,过C,D分别作椭圆的切线交于点Q,求PQ的直线方程。
圆锥曲线的极点与极线问题
圆锥曲线的极点与极线问题圆锥曲线的极点与极线问题导言圆锥曲线是数学中的一个重要分支,其所涵盖的概念和性质有着深远的研究价值。
其中,圆锥曲线的极点与极线问题是一个具有特殊意义的主题。
在本文中,我将以深度和广度的方式来探讨圆锥曲线的极点与极线,希望能够使读者对这一问题有全面、深刻和灵活的理解。
一、圆锥曲线的基本定义与性质1.1 什么是圆锥曲线圆锥曲线是由一个平面与一个平行于它的不相交的直线切割圆锥所得到的曲线。
根据切割的方式和角度不同,圆锥曲线可以分为椭圆、双曲线和抛物线三类。
1.2 圆锥曲线的焦点与离心率圆锥曲线的焦点是指在其上的特殊点,其具有特殊的几何性质。
离心率是一个衡量圆锥曲线形状的参数,也是圆锥曲线性质的重要指标。
二、极点与极线的基本概念2.1 极点的定义与性质在平面上给定一个圆锥曲线,其直角坐标系中的原点O被称为该圆锥曲线的极点。
极点在圆锥曲线的研究中具有重要的地位,它与曲线的各种性质密切相关。
2.2 极线的定义与性质对于圆锥曲线上的任意一点P,以极点为中心,作直线OP,称为圆锥曲线的极线。
极线是一个与极点相关的直线,它与曲线的位置和特性有着密切的联系。
三、不同类型曲线的极点与极线问题3.1 椭圆的极点与极线对于椭圆,其极点为原点O,极线为过原点O的直线。
椭圆的极点处于其主轴的中点位置,其极线是关于两个焦点的对称直线。
3.2 双曲线的极点与极线对于双曲线,其极点为原点O,极线为过原点O的渐近线。
双曲线的极点处于离心率之间的位置,其极线是关于两个焦点的渐近线。
3.3 抛物线的极点与极线对于抛物线,其极点为其焦点,极线为过焦点的直线。
抛物线的极点位于抛物线的顶点位置,其极线是关于焦点的直线。
四、个人观点与理解圆锥曲线的极点与极线问题是一个十分有趣且具有挑战性的数学问题。
通过研究圆锥曲线的极点与极线,我们能够更深入地理解曲线的性质和特性。
极点是曲线的重要几何特征,它能够从不同的角度揭示出曲线的各种性质。
极点极线在高考圆锥曲线试题中的应用
极点极线在高考圆锥曲线试题中的应用宋雅静㊀冯福存(宁夏师范学院数学与计算机科学学院ꎬ宁夏回族自治区固原756000)摘㊀要:圆锥曲线是解析几何和高等几何的主要研究内容ꎬ近些年以高等几何知识为背景的几何试题频频出现在高考中.本文从高等几何中极点极线的角度ꎬ对近三年高考中的一些圆锥曲线问题的解法进行探究ꎬ为教师和学生提供参考.关键词:极点ꎻ极线ꎻ调和点列ꎻ调和线束ꎻ圆锥曲线中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)10-0039-03收稿日期:2023-01-05作者简介:宋雅静(1997-)ꎬ女ꎬ河南省新乡人ꎬ硕士研究生ꎬ从事中学数学教学研究ꎻ冯福存(1977-)ꎬ女ꎬ宁夏中卫人ꎬ副教授ꎬ从事几何学㊁矩阵理论及其应用研究.基金项目:宁夏自然科学基金项目资助(项目编号:2022AAC03334)ꎬ宁夏高等学校一流学科建设(教育学学科)研究项目资助(项目编号:NXYLXK2021B10).㊀㊀许多高考数学试题都有高等数学的背景ꎬ其中ꎬ高等几何中的极点㊁极线与调和点列就是高考数学圆锥曲线试题命制的一个主要来源.因此ꎬ很多学者将高等几何的方法与初等几何联系起来解决问题.文献[1]中阐述了极点与极线的基本性质ꎬ指出极点㊁极线是圆锥曲线的基本特征ꎬ是圆锥曲线试题命制的背景ꎻ文献[2]中对极点与极线的概念进行了解读并且对衍生性质给予证明ꎬ最后将其运用到具体的高考真题中ꎻ文献[3]中对2020年北京高考真题的高等解法进行了探究.本文在前人研究的基础上ꎬ阐述极点与极线的基本理论ꎬ并且从极点㊁极线视角对2020年高考数学全国Ⅰ卷理科第20题㊁2021年高考数学全国乙卷理科第21题㊁2022年高考数学全国乙卷理科第21题进行解决.1预备知识在平面上ꎬ由二元二次方程F(xꎬy)=a11x2+2a12xy+a22y2+2a13x+2a23y+a33=0所表示的曲线叫做二次曲线ꎬ对应的矩阵为A=a11a12a13a12a22a23a13a23a33æèçççöø÷÷÷.若Aʂ0ꎬ则方程所表示的曲线为非退化的二次曲线ꎬ即圆锥曲线(椭圆㊁双曲线㊁抛物线).齐次坐标㊀笛卡儿坐标为(xꎬy)的点的二维齐次坐标(x1ꎬx2ꎬx3)是指由任意适合x1x3=xꎬx2x3=y的三个数x1ꎬx2ꎬx3组成的有序三数组(x1ꎬx2ꎬx3)ꎬ其中x3ʂ0.一点的齐次坐标有无数组.极点与极线的代数定义㊀已知圆锥曲线a11x2+2a12xy+a22y2+2a13x+2a23y+a33=0ꎬ则称平面内任意一点P0(x01ꎬx02ꎬx03)和直线l:(x01ꎬx02ꎬx03)a11a12a13a12a22a23a13a23a33æèçççöø÷÷÷x1x2x3æèçççöø÷÷÷=0是圆锥曲线的一对极点与极线.极点与极线的几何定义㊀点P不是圆锥曲线93上的点ꎬ过点P引两条割线依次交圆锥曲线于点EꎬFꎬGꎬHꎬ连接EHꎬFG交于点Nꎬ连接EGꎬFH交于点Mꎬ则直线MN为点P对应的极线ꎬ同理直线MP为点N对应的极线ꎬ直线NP为点M的极线.为方便理解ꎬ本文以椭圆为例作图ꎬ如图1.图1特别地ꎬ若P是圆锥曲线上的点ꎬ则过点P的切线即为极线ꎻ圆锥曲线的焦点和准线恰巧是一组极点与极线.调和点列的定义㊀若同一直线上四点AꎬBꎬCꎬD的交比满足(ACꎬBD)=AB CDCB AD=-1ꎬ即ACCB=ADDB时ꎬ称点CꎬD调和分割线段ABꎬAꎬBꎬCꎬD为调和点列.定理㊀点P不在圆锥曲线上ꎬ过点P的任一直线与该圆锥曲线交于AꎬB两点ꎬ与点P关于该圆锥曲线的极线交于点Qꎬ则AꎬBꎬPꎬQ是调和点列.调和线束的定义㊀若AꎬBꎬCꎬD是调和点列ꎬ直线外一点M与它们的连线统称为调和线束ꎬ即直线MAꎬMBꎬMCꎬMD为一簇调和线束.调和线束的性质1㊀平面内若一条直线与调和线束中的一条平行而与其余三条相交ꎬ则相交线段被平分.调和线束的性质2㊀平面内若一条直线与调和线束都相交ꎬ且交于不同的四个点ꎬ则相应的交点也成调和点列.2在高考试题中的应用例1㊀(2020年高考数学全国Ⅰ卷理科第20题)已知AꎬB分别为椭圆E:x2a2+y2=1(a>1)的左㊁右顶点ꎬG为E上的顶点ꎬ其中AGң GBң=8.P为直线x=6上的动点ꎬPA与E上的另一交点为CꎬPB与E的另一交点为D.(1)求E的方程ꎻ(2)证明:直线CD过定点.解析㊀(1)E的方程为x29+y2=1.图2(2)如图2ꎬ设AB与CD交于点Mꎬ延长CBꎬAD交于点Qꎬ由极点㊁极线的几何定义可得点M和PQ所在的直线是一对极点极线.由题意可知A=190001000-1æèççççöø÷÷÷÷.设极点M的坐标为(mꎬ0)ꎬ点M齐次坐标为(mꎬ0ꎬ1)ꎬ则PQ所在的直线方程为(mꎬ0ꎬ1)190001000-1æèççççöø÷÷÷÷x1x2x3æèçççöø÷÷÷=0.即x=9m.因为P为直线x=6上的动点ꎬ则m=32ꎬ即直线CD恒过定点(32ꎬ0).例2㊀(2021年高考数学全国乙卷理科第21题)已知抛物线C:x2=2py(p>0)的焦点为Fꎬ且F与圆M:x2+(y+4)2=1上的点的距离的最小值为4.(1)求pꎻ(2)若点P在M上ꎬPAꎬPB是C的两条切线ꎬAꎬB是切点ꎬ求әPAB面积的最大值.解析㊀(1)由题意可得p=2.(2)如图3ꎬ由(1)可得抛物线C为x2=4yꎬ若点P为极点ꎬ则AB所在的直线为点P关于抛物线的极线ꎬ若动点P沿y轴运动ꎬ则ABʅy轴运动.设点P的齐次坐标为(0ꎬmꎬ1)ꎬ由题意得04A=10000-20-20æèçççöø÷÷÷.则P所对应的极线方程为(0ꎬmꎬ1)10000-20-20æèçççöø÷÷÷x1x2x3æèçççöø÷÷÷=0.即y=-mꎬ可得极点与极线在x轴的两侧且到x轴的距离相等.由此极点和极线之间的距离越大ꎬ所求三角形的面积越大ꎬ得m=-5时ꎬΔPAB的面积最大ꎬ此时x2=20ꎬ解得x=ʃ5ꎬ即AB=45.所以SәPAB=12ˑ10ˑ45=205.图3例3㊀(2022年高考数学全国乙卷理科第21题)已知椭圆E的中心为坐标原点ꎬ对称轴为x轴ꎬy轴ꎬ且过A(0ꎬ-2)ꎬB(32ꎬ-1)两点.(1)求E的方程ꎻ(2)设过点P(1ꎬ-2)的直线交E于MꎬN两点ꎬ过M且平行于x轴的直线与线段AB交于点Tꎬ点H满足MTң=THңꎬ证明:直线HN过定点.解析㊀(1)椭圆方程为x23+y24=1.图4(2)如图4ꎬ若点P(1ꎬ-2)为极点ꎬ齐次坐标为P(1ꎬ-2ꎬ1)ꎬ由题意可知A=1300014000-1æèçççççöø÷÷÷÷÷.则极点P对应的极线方程为(1ꎬ-2ꎬ1)1300014000-1æèçççççöø÷÷÷÷÷x1x2x3æèçççöø÷÷÷=0.即y=23x-2ꎬ经验证点AꎬB在此极线上ꎬ即AB所在的直线即为点P的极线.连接AMꎬ设MP与AB相交于点Qꎬ则PꎬNꎬQꎬM为调和点列ꎬ所以APꎬABꎬAMꎬAN为调和线束ꎬMT为截线ꎬ因为MTң=THңꎬ所以T为MH的中点ꎬ由调和线束的性质可得MHʊAPꎬ在射影平面内ꎬMH与AP相交于无穷远点ꎬ连接ANꎬAN的延长线必然交于点Hꎬ此时ꎬAꎬNꎬH三点共线ꎬ即直线HN过定点A.高考圆锥曲线压轴题普遍是学生思维的难点和计算的痛点ꎬ在解题时容易出错.如果能从更高的角度去认识和分析它ꎬ有助于学生形成对问题的深刻理解并掌握问题的本质ꎬ在解决问题时直入主题ꎬ减少运算ꎬ从而轻松解题ꎬ还为之后的高等几何的学习甚至工作奠定相应的理论和思维基础ꎬ实现真正意义上的素质教育ꎻ有助于教师把握题目的设计意图和本质ꎬ增强学科知识储备ꎬ提高学科专业素质ꎬ更好地服务教学.参考文献:[1]王文彬.极点㊁极线与圆锥曲线试题的命制[J].数学通讯ꎬ2015(08):62-66.[2]于涛.极点与极线视角下的高考圆锥曲线试题[J].中学数学研究(华南师范大学版)ꎬ2019(01):13-16.[3]柏任俊ꎬ贾春花ꎬ毛井.高等几何背景下的解析几何试题探究[J].中学数学ꎬ2022(09):20-22.[责任编辑:李㊀璟]14。
漫谈圆锥曲线的极点与极线——两高考试题的统一背景与解法
抛物线 x 2 , = Y 则点 P 二 'o 对应的极线方程 2 P (。y ) 为:( 一py o = 0 二二 ( +Y ) ; 若抛物线 犷 二2x 则点 P 二 +0 对应的极线方 p, ((y) , 程为:o "( +二 ) 0 YY p二 。 = . - 命题 2 圆锥曲线中极线共点于 尸 则这些极线相 , 应的极点共线于点 尸相应的极线. 反之亦然. 称为极点 与相应极线对偶性. 如题 1 A 图,B绕焦点F转动, A 则 B相应的极点 P
中学数学教学
相交, 两个交点的纵坐标为 Y .2求 l , Y
20 年第 6 06 期
证Y 2 . I= Y -厂
作为课本一习题,01年全 国卷 20
i 题以此题为背景命题, s 利用此结论
可迅速证 明该题. (0 1年 全 国 卷 理 科 1 20 9题 ) 设 抛 物 线 Y 2=
、 Yi一 Y2)
所以 声" 方=x ( : 1 一 2 y 一 Y )“ 0 F A px 一x ) ( : 1 .
() 扫方程为,-1 x 逆用命题 1 B对 2 设A Y =k , 得A
应 的极点为(k 一1 , =k 十1 2 , )把y x 代人 x = 并由 2 y 4
2 3 竞赛中抛头露面, . 显山露水
2x p 0 的焦点为 F 过焦点 F的直线交抛物线于 p ( > ) , A, B两点 , C在抛物线的准线上, B〕 点 且 (平行x轴, 证
明直线 A C过原点. 下面利用命题 12 , 给出例 1 的证明:
标 ( 2 为线上点 点 对 的线 为奋 ) ,动, 尸应极 ,直 P 则 A必( 2 B过2卜 1 设B 程 一 ( , 恤1 方:卜‘ )用 , A的 , 一合 逆 得 A 应极 设 (,一) A 人; B 的杆可为 夸 2把B C 对 夸 ・ 代
1.极点、极线与圆锥曲线试题的命制
圆锥曲线一组性质及猜想的简证与推广曾建国(江西省赣州市赣南师范大学数学与计算机科学学院,341000) 一、引言文[1]将有关圆锥曲线切线、割线的一组性质进行了推广,证明了更为一般化的结论(为节省篇幅,仅列出有关椭圆的结论,参见图1)命题1 设点F(x0,y0)(非坐标原点)为椭圆Γ:x2a2+y2b2=1(a>b>0)内一点,过点F任作两直线AC,BD分别与椭圆Γ交于A,C,B,D,设直线AB,CD交于点P.过直线PF上任意一点M作直线l:x0xa2+y0yb2=1的平行线,与直线PA,PC分别交于点G,H,则直线PF平分线段GH.图1图2文[1]末作者猜想命题1的极限情形结论成立,但因未能找到严格、规范的证法及简捷证法而留下“一丝遗憾”(参见图2).猜想 设点F(x0,y0)(非坐标原点)为椭圆Γ:x2a2+y2b2=1(a>b>0)内一点,过点F任作一直线与椭圆Γ交于A,B,设A,B处的两条切线交于点P.过直线PF上任意一点M作直线l:x0xa2+y0yb2=1的平行线,与直线PA,PB分别交于点G,H,则直线PF平分线段GH.文[2]通过引进“调和线束”、“完全四边形的调和性”等“高观点”,完美地证明了上述猜想.但美中不足的是文[2]的证法仍算不上“简捷证法”.本文拟利用调和点列的一个性质,给出命题1及猜想的简证并将结论进一步推广.二、有关调和点列的概念和性质定义1[3][4] 对于线段AB的内分点C与外分点D,若ACCB=ADDB,则称C、D调和分割线段AB(或线段AB被C、D调和分割),或称点列A、B、C、D为调和点列.根据定义1易知,若线段AB被C、D调和分割,则线段CD也被A、B调和分割.调和点列与圆锥曲线的极线概念密切相关.事实上,根据高等几何知识我们有(参见图3):图3图4定义2[3] 设两点C、D的连线与圆锥曲线Γ相交于A、B,若线段AB被C、D调和分割,则称C、D是关于圆锥曲线Γ的一对调和共轭点.定义3[3] 一点P关于圆锥曲线Γ的所有调和共轭点的轨迹为一条直线p,称直线p为点P(关于Γ)的极线,点P为直线p(关于Γ)的极点.我们知道,点F(x0,y0)(非坐标原点)关于椭圆x2a2+y2b2=1的极线方程为x0xa2+y0yb2=1(参阅文[1]的引理1).因此,在命题1及猜想中,直线l就是点F关于椭圆Γ的极线.特别地,圆锥曲线焦点的极线就是与之对应的准线.当P在Γ外时,其极线p是从点P所引曲线Γ的两条切线的切点所确定的直线(即切点弦所在直线)[3].如图3,过一点C作圆锥曲线Γ的割线分别与曲线Γ及C点的极线交于点A、B及D,则根据上述定义易知,C、D、A、B为调和点列.定义4[3][5] 如图4,若A、B、C、D为调和点列,过此点列所在直线外任一点P作射线PA、PB、PC、PD,则称这四条射线为调和线束.反过来,任一直线与调和线束相交所截的四个点构成调和点列.调和点列有一个特殊性质(参见图5):图5图6引理1[3][5] 如果PA、PB、PC、PD为调和线束,且PD平行于AB,则PC必平分线段AB.三、命题1与猜想的简证及推广命题1的简证 如图1,依题设知,直线l就是F关于椭圆Γ的极线.设直线BD与l交于Q,根据定义2和定义3知,B,D,F,Q是调和点列,由定义4知,PB,PD,PF,PQ是调和线束.因为GH∥PQ交PF于M,则调和线束也就是PG,PH,PM,PQ.根据引理1即知,M为线段GH的中点.猜想的简证 依题设知,图2中l是F关于椭圆Γ的极线,于是A,B,F,Q是调和点列,以下与命题1证法类似,同理可得M为线段GH的中点.从上面的证明我们不难发现,命题1及猜想中没必要限制点F在椭圆内,即它们可以推广为下面的结论(点F在椭圆外的情形见图6、图7,上面的证法完全适用,证明略).命题2 设点F关于椭圆Γ的极线为l,过点F任作两直线AC,BD,分别与椭圆Γ交于A,C,B,D,设直线AB,CD交于点P.过直线PF上任意一点M作直线l的平行线,与直线PA,PC分别交于点G,H,则GM=MH.命题3 设点F关于椭圆Γ的极线为l,过点F任作一直线与椭圆Γ交于两点A,B,设A,B处的两条切线交于点P.过直线PF上任意一点M作直线l的平行线,与直线PA,PB分别交于点G,H,则图7图8GM=MH.在引理1中,显而易见,(图5中)与点列所在直线AB平行的直线PD可以换成调和线束中的任一条,也能得到类似的结论.因此,命题2及命题3也可以通过变换所作的平行线得到新的命题.例如命题2中换成作PA的平行线就得(见图8,证明略):命题4 设点F关于椭圆Γ的极线为l,过点F任作两直线AC,BD,分别与椭圆Γ交于A,C,B,D,设直线AB,CD交于点P.过直线PC上任意一点M作直线PA的平行线,与直线l,PF分别交于点G,H,则GM=MH.类似这样的命题还可以写出很多;另外,椭圆Γ也可以换成其他圆锥曲线,得到一系列命题,这里不再赘述.以上命题的结论不仅揭示了圆锥曲线的有趣性质,也为我们编制圆锥曲线试题提供了丰富的素材,例如2017年北京高考圆锥曲线试题就是以此为素材编制的[6].参考文献:[1] 干志华.圆锥曲线中的一个割线性质再探究[J].数学通讯(上半月),2017(6):41-43.[2] 李伟健.椭圆的一个结论的演变历程[J].数学通讯(上半月),2017(12):38-40.[3] 朱德祥.高等几何[M].北京:高等教育出版社,1998.[4] 沈毅.与调和点列有关的平面几何问题[J].中等数学,2009(2):6-10.[5] 郑春筱.调和点列的一个特殊性质及应用[J].数学通讯(上半月),2017(4):53-55.[6] 曾建国.调和点列:一道2017年北京高考题的背景分析及应用[J].数学通讯(上半月),2017(12):59-60.(收稿日期:2018-02-25)。
高中数学圆锥曲线系统讲解第33讲《极点与极线》练习及答案
第33讲 极点与极线知识与方法极点极线是射影几何中的重要内容,在中学教材中并未提及,但纵观历年高考的解析几何大题,可以发现诸多试题都有极点极线的背景,所以了解极点极线,可以让我们站在更高处来看待问题.这一小节我们先介绍极点极线的几何定义、代数定义和一些常用的性质,再辅以若干典型的高考真题的极点极线观点,来加深大家的理解.1.极点极线的几何定义:以椭圆为例,如图1所示,设P 为椭圆外一点,过P 作椭圆的两条割线分别与椭圆相交于A 、B 和C 、D 四点,AC 与BD 交于点M ,AD 与BC 交于点N ,则称点P 为直线MN 关于椭圆的极点,直线MN 为点P 关于椭圆的极线.另一方面,图1也可以这么来看,从椭圆外的点N 作椭圆的两条割线分别交椭圆于A 、D 和B 、C 四点,AC 与BD 交于点M ,AB 与CD 交于点P ,所以点N 和直线PM 也是一对极点极线,事实上,点M 和直线PN 也是一对极点极线,因此在PMN 中,以其中一个顶点作为极点,那么该顶点的对边所在的直线就是对应的极线,从而我们将PMN 称为“自极三角形”,为了加以区分,图中画成了虚线.这个图形有两种特殊情况:(1)如图2所示,当四边形ABCD 有一组对边平行时,如AD BC ∥,此时我们看成AD 和BC 的交点N 在无穷远处,那么以M 为极点,对应的极线是图2中的2PN ,其中2PN BC ∥;以P 为极点,那么极线是1MN ,其中1MN BC ∥;(2)如图3所示,当其中一条割线变成切线时,此时D 、M 、N 几个点就都与切点C 重合,从而点C 和切线PC 是一对极点极线.2.极点极线的代数定义:在平面直角坐标系xOy 中,设有圆锥曲线C (圆、椭圆、双曲线、抛物线均可)和不与C 的对称中心重合的点()00,P x y ,在圆锥曲线C 的方程中,用0x x 替换2x ,0y y 替换2y ,02x x +替换x ,02y y+替换y ,得到的方程即为以P 作为极点的极线l 的方程.例如,设椭圆C 的方程为2212x y +=,极点为()2,4P ,则与P 对应的极线为2412x y +=,即410x y +−=;又如,设抛物线C 的方程为22y x =,极点为()2,4P ,则与P 对应的极线为2422xy +=⋅,即420x y −+=.可以看到,极点与极线是一个成对的概念,且若给定极点,求极线的规则是统一的,与圆锥曲线的类型无关,与极点P 的位置无关,下面以椭圆为例,说明极点P 在不同位置时,极线l 的情形:(1)当点P 在椭圆C 上时,极线l 为椭圆C 在P 处的切线,如图4所示;(2)当点P 在椭圆C 外部时,极线l 为点P 对椭圆C 的切点弦所在直线,如图5所示;(3)当点P 在椭圆C 内部时,过点P 任作椭圆C 的一条割线交C 于A 、B 两点,椭圆C 在A 、B 两点处的切线交于点Q ,则当割线AB 绕着点P 旋转时,点Q 的轨迹就是极线l ,如图6所示.3.极点极线的常用性质:(下面以椭圆为例)(1)如图7所示,O 为椭圆中心,点P 在椭圆内,延长OP 交椭圆于点Q ,交椭圆与点P 对应的极线l 于点M ,则OP 、OQ 、OM 成等比数列;当P 恰好为弦AB 的中点时,直线AB 的方程为2200002222x x y y x y a b a b+=+,且极线l 和椭圆在点Q 处的切线均与AB 平行.(2)调和分割性:如图8所示,设极点P 的极线是直线l ,过P 作椭圆的一条割线交椭圆于A 、B 两点,交极线l 于点Q ,则P 、A 、Q 、B 成调和点列,即PA QA PBQB=(或写成211PQ PA PB=+) (3)配极原理:若点P 关于椭圆的极线过点Q ,则点Q 关于椭圆的极线也过点P .由此出发,我们可以得出共线点的极线必然共点,共点极线的极点必然共线,如图9所示,极点1P 、2P 、3P 的极线分别为1l 、2l 、3l ,则1P 、2P 、3P 共线⇔1l 、2l 、3l 共点.提醒:极点极线的分析方法只能让我们在看到问题时能够迅速“窥得天机”,不能作为正式的作答,我们在学习时,仍然应该以基本方法为主,技巧偏方为辅,不能本末倒置.典型例题【例1】(2021·新高考Ⅱ卷·多选)已知直线2:0l ax by r +−=与圆222:C x y r +=,点(),A a b 则下列说法正确的是( )A.若点A在圆C上,则直线l与圆C相切B.若点A在圆C内,则直线l与圆C相离C.若点A在圆C外,则直线l与圆C相离D.若点A在直线l上,则直线l与圆C相切【解析】解法1:A项,若点A在圆C上,则222a b r+=,圆心C到直线l的距离d r=,所以直线l与圆C相切,故A项正确;B项,若点A在圆C内,则222a b r+<,圆心C到直线l的距离2d r==>,所以直线l与圆C相离,故B项正确;C项,若点A在圆C外,则222a b r+>,圆心C到直线l的距离2d r==<,所以直线l与圆C相交,故C项错误;D项,若点A在直线l上,则2220a b r+−=,即222a b r+=,圆心C到直线l的距离d r==,所以直线l与圆C相切,故D项正确.解法2:显然对于圆C,以(),A a b作为极点,那么极线就是2:0l ax by r+−=A项,若极点A在圆C上,则极线l是圆C的切线,故A项正确;B项,若极点A在圆C内,则极线l与圆C相离,故B项正确;C项,若极点A在圆C外,则极线l是圆C的切点弦,应与圆C相交,故C项错误;D项,若极点A在直线l上,这是极线恰好为切线,极点为切点的情形,故D项正确.【答案】ABD【例2】(2011·四川)椭圆有两个顶点()1,0A−,()1,0B,过其焦点()0,1F的直线l与椭圆交于C、D两点,并与x轴交于点P,直线AC与BD交于点Q.(1)当CD=时,求直线l的方程;(2)当P点异于A、B两点时,证明:OP OQ⋅为定值.【解析】(1)由题意,椭圆的短半轴长1b=,半焦距1c=,所以长半轴长a =,故椭圆的方程为2212y x +=,当2CD =时,易得直线l 与x 轴垂直,故可设l 的方程为1y kx =+()0,1k k ≠≠±, 设()11,C x y ,()22,D x y ,联立22112y kx y x =+⎧⎪⎨+=⎪⎩消去y 整理得:()222210k x kx ++−=, 判别式()2810k ∆=+>,由韦达定理,1221222212k x x k x x k ⎧+=−⎪⎪+⎨⎪=−⎪+⎩①②,所以12CD x x =−==k =所以直线l 的方程为1y =+.(2)极点极线看问题:设(),0P m ,以P 为极点,则对应的极线为1mx =,即1x m=, 显然点Q 在极线上,所以1Q x m =,不难发现101Q OP OQ m y m⋅=⋅+⋅=. 注意:上面的过程不能作为正式的作答,卷面上可以按下面两个解法来写.解法1:直线AC 的斜率为111AC y k x =+,其方程为()1111yy x x =++③,直线BD 的斜率为221BD y k x =−,其方程为()2211yy x x =−−④,用式③除以式④整理得:()()21121111y x x x y x ++=−−,即()()21121111Q Q x y x x y x ++=−−, 而()()()()()()212112211212121211111111y x kx x kx x kx x y x kx x kx x kx x ++++++==−+−−+−,所以122112121111Q Q x kx x kx x x kx x kx x ++++=−−+−,由①知12222kx x k =−−+, 故()()()()()()222222222222122111122212121111222Q Q k k k kkx x k x x k k k k k k k k x k k x x k x k k k −−−+−−++−+−+++===−+−+⎛⎫−−−−+−++ ⎪+++⎝⎭,解得:Q x k =−,易得1,0P k ⎛⎫− ⎪⎝⎭,故()11P Q OP OQ x x k k ⋅==−⋅−=,即OP OQ ⋅为定值1.解法2:直线AC 的斜率为111AC y k x =+,其方程为()1111yy x x =++③,直线BD 的斜率为221BD y k x =−,其方程为()2211yy x x =−−④,用式③除以式④整理得:()()21121111y x x x y x ++=−−,即()()21121111Q Q x y x x y x ++=−−⑤ 所以()()()()()()()()()()()()222222121211212222212121212122111111111111211Q Q x x x y x x x x x x x x x x x x x x y x x x −+⎛⎫+++++++==== ⎪ ⎪−−−−++−−−⎝⎭ 22222121122121122kk k k k k k k −−+−⎛⎫++= ⎪+⎝⎭−++++, 因为1x ,()21,1x ∈−,所以12101x x +<−,结合⑤可得11Q Q x x +−与21y y 异号, 又()()()()()222212121212222221122211112222k k k k k y y kx kx k x x k x x k k k k +−−=++=+++=−−+==++++()2221121k k k k +−=−⋅++, 所以12y y 与11k k −+异号,即21y y 与11k k −+异号,从而11Q Q x x +−与11k k −+同号,所以1111Q Q x k x k +−=−+,解得:Q x k =−,易得1,0P k ⎛⎫− ⎪⎝⎭,故()11P Q OP OQ x x k k ⋅==−⋅−=,即OP OQ ⋅为定值1.【例3】(2020·新课标Ⅰ卷)已知A 、B 分别为椭圆()222:11x E y a a+=>的左、右顶点,G为E 的上顶点,8AG GB ⋅=,P 为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)由题意,(),0A a −,(),0B a ,()0,1G ,故(),1AG a =,(),1GB a =−, 所以218AG GB a ⋅=−=,解得:3a =或3−(舍去),故E 的方程为2219x y +=.(2)极点极线看问题:如图1,设AB 和CD 交于点Q ,AD 和CB 交于点M ,则PQM 为自极三角形,所以点Q 和直线PM 是一对极点极线,设(),0Q m ,则极线PM 的方程为19mx=,即9x m =,又点P 在直线6x =上,所以96m =,从而32m =,故3,02Q ⎛⎫⎪⎝⎭,这样就得到了直线CD 过定点3,02⎛⎫⎪⎝⎭.注意:上面的过程不能作为正式的作答,卷面上可以按下面两个解法来写. 解法1:由(1)知()3,0A −,()3,0B ,设()6,P t ,()11,C x y ,()22,D x y ,当0t ≠时,直线PA 的方程为93x y t =−,代入2219x y +=消去x 化简得:22815490y y t t ⎛⎫+−= ⎪⎝⎭, 解得:0y =或269t t +,所以269C ty t =+,故22927339C C t x y t t −=−=+,从而2222736,99t t C t t ⎛⎫− ⎪++⎝⎭,直线PB 的方程为33x y t =+,代入2219x y +=消去x 化简得:2291890y y t t ⎛⎫++= ⎪⎝⎭,解得:0y =或221t t −+,所以221D t y t =−+,从而2233331D D t x y t t −=+=+,故222332,11t t D t t ⎛⎫−− ⎪++⎝⎭,设3,02T ⎛⎫ ⎪⎝⎭,则()2222796,929t t TC t t ⎛⎫− ⎪= ⎪++⎝⎭,()222392,121t t TD t t ⎛⎫− ⎪=− ⎪++⎝⎭,即()22319t TC TD t +=−+,故TC TD ∥,所以T 、C 、D 三点共线,从而直线CD 过定点3,02T ⎛⎫⎪⎝⎭,当0t =时,易得C 、D 分别与B 、A 重合,所以直线CD 即为x 轴,显然直线CD 也过点T ,综上所述,直线CD 过定点3,02T ⎛⎫⎪⎝⎭解法2:由(1)知()3,0A −,()3,0B ,设()11,C x y ,()22,D x y ,()06,P y当00y ≠时,由图2可知点C 不与点B 重合,因为221119x y +=,所以()2211199y x =−,故CA 、CB 的斜率之积为2111211113399CA CB y y y k k x x x ⋅=⋅==−+−−① 又PA 的斜率09PA CA y k k ==,PB 的斜率03PB BD y k k ==,所以13CA BD k k =, 代入式①化简得:BC 、BD 的斜率之积13BC BD k k ⋅=−,显然CD 不与y 轴垂直,否则AC 与BD 的交点在y 轴上,故可直线CD 的方程为x my t =+,联立2219x ty x my ⎧⎪⎨+==+⎪⎩消去x 整理得:()2229290m y mty t +++−=, 判别式()()222244990m t m t ∆=−+−>,所以2290m t +−>, 由韦达定理,12229mt y y m +=−+,212299t y y m −=+,所以()121221829t x x m y y t m +=++=+,()22221212122999t m x x m y y mt y y t m −=+++=+,()1212121212133393BC BD y y y y k k x x x x x x ⋅=⋅==−−−−++,故()121212339y y x x x x −=−++,即22222299918339999t t m t m m m −−−⋅=−⋅++++,整理得:22990t t −+=,解得:32t =或3,若3t =,则C 、D 中有一个点与B 重合,不合题意,所以32t =,满足0∆>,即直线CD 过定点3,02⎛⎫⎪⎝⎭,当00y =时,易得C 、D 分别与B 、A 重合,所以直线CD 即为x 轴,也过点3,02⎛⎫ ⎪⎝⎭,综上所述,直线CD 过定点3,02⎛⎫ ⎪⎝⎭【例4】(2018·新课标Ⅰ卷)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于A 、B 两点,点M 的坐标为()2,0.(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.【解析】(1)由题意,()1,0F ,当l 与x 轴垂直时,其方程为1x =, 由22112x x y =⎧⎪⎨+=⎪⎩解得:y =,即点A的坐标为1,2⎛⎫ ⎪ ⎪⎝⎭, 当点A的坐标为2⎛ ⎝⎭时,直线AM的方程为2y x =, 当点A的坐标为1,⎛ ⎝⎭时,直线AM的方程为y =−. (2)极点极线看问题:如图,设A '、B '分别为A 、B 关于x 轴的对称点, 则显然四边形AA BB ''构成等腰梯形,其对角线的交点为F ,以()1,0F 为极点, 则对应的极线为1012xy ⋅+⋅=,即2x =,而BA '和B A '的交点应该在极线上, 从而()2,0M 就是BA '和B A '的交点, 由图形的对称性不难发现OMA OMB ∠=∠. 且这一结论还可以推广,若F 不是焦点, 而是椭圆内x 轴正半轴上的一个一般的点, 比如可设为(),0t ,那么它的极线为012txy +⋅=,即2x t =,所以点2,0M t ⎛⎫⎪⎝⎭必定也能使OMA OMB ∠=∠注意:上面的过程不能作为正式的作答,卷面上可以按下面的解法来写. 解:当l y ⊥轴时,易得0OMA OMB ∠=∠=︒当l 不与y 轴垂直时,可设其方程为1x my =+,设()11,A x y ,()22,B x y , 联立22112x my x y =+⎧⎪⎨+=⎪⎩消去x 整理得:()222210m y my ++−=,易得判别式0∆>, 由韦达定理,12222m y y m +=−+,12212y y m =−+, ()()()()()()()122112211212121212222222222AM BM y x y x x y x y y y y yk k x x x x x x −+−+−++=+==−−−−−− 而()1221122x y x y y y +−+()()()()12211212121122my y my y y y my y y y =+++−+=−+ 22122022m m m m ⎛⎫⎛⎫=⋅−−−= ⎪ ⎪++⎝⎭⎝⎭,所以0AM BM k k +=,从而OMA OMB ∠=∠, 综上所述,OMA OMB ∠=∠.【例5】(2008·安徽)设椭圆()2222:10x y C a b a b+=>>过点)M,且左焦点为()1F .(1)求椭圆C 的方程;(2)当过点()4,1P 的动直线l 与椭圆C 相交于两个不同的点A 、B 时,在线段AB上取点Q ,满足AP QB AQ PB ⋅=⋅,求证:点Q 在某定直线上.【解析】(1)由题意,22222211a b ab ⎧−=⎪⎨+=⎪⎩,解得:24a =,22b =,所以椭圆C 的方程为22142x y +=. (2)极点极线看问题:因为AP QB AQ PB ⋅=⋅,所以AP AQ PBQB=,故P 、A 、Q 、B 是一组调和点列,从而点Q 必定在点P 的极线上,因为点P 的坐标为()4,1,所以它的极线为41142x y⋅+=,化简得:220x y +−=,从而点O 在定直线220x y +−=上. 注意:上面的过程不能作为正式的作答,卷面上可以按下面的定比点差法来写. 解:设(),Q x y ,()11,A x y ,()22,B x y 因为AP QB AQ PB ⋅=⋅,所以AP AQ PBQB=,设AP AQ PBQBλ==()0,1λλ>≠,则PA PB λ=,AQ QB λ=,而()114,1PA x y =−−,()224,1PB x y =−−,()11,AQ x x y y =−−,()22,QB x x y y =−−所以()()12124411x x y y λλ⎧−=−⎪⎨−=−⎪⎩,且()()1212x x x x y y y y λλ⎧−=−⎪⎨−=−⎪⎩,从而12124111x x y y λλλλ−⎧=⎪⎪−⎨−⎪=⎪−⎩①②,且121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩③④,①×③得:22212241x x x λλ−=−,②×④得:2221221y y y λλ−=−,所以22222212122224211x x y y x yλλλλ−−+⋅=+−−,即()222221122222421x y x y x y λλ+−+=+−⑤ 又A 、B 在椭圆C 上,所以22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 从而221122222424x y x y ⎧+=⎪⎨+=⎪⎩,代入⑤的:2244421x y λλ−=+−, 化简得:220x y +−=,即点Q 始终在直线220x y +−=上.强化训练1.(★★★)对于抛物线2:2C y x =,设点()00,P x y 满足2002y x <,则直线00:l y y x x =+与抛物线C ( ) A.恰有1个交点B.恰有2个交点C.没有交点D.有1个或2个交点【解析】显然直线l 是点P 对应的极线,因为2002y x <,所以点P 在抛物线内部,从而直线l 与抛物线C 没有交点. 【答案】C2.(★★★)已知椭圆22:12x C y +=的右焦点为F ,过点()2,2A 的直线与椭圆C 在x 轴上方相切于点B ,则直线BF 的方程为______.【解析】由题意,()1,0F ,以F 为极点,则极线为12x=,即2x =,所以点A 在极线上,根据配极原理,以A 为极点的极线过点F ,所以该极线就是BF ,其方程为2212xy +=,即21x y +=【答案】21x y +=3.(★★★)过点()2,1P 的直线l 与椭圆2214x y +=相交于点A 和B ,且AP PB λ=,点Q 满足AQ QB λ=−,若O 为原点,则OQ 的最小值为________.【解析】由题意,PA QA PBQAλ==所以点Q 是对应极点P 的极线与直线l 的交点,如图,易求得极线l 的方程为214xy +=,即220x y +−=,所以点Q在该极线上,从而min 5OQ ==.【答案】54.(★★★★)设椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为A 、B ,上顶点为D ,点P 是椭圆C 上异于顶点的动点,已知椭圆C的离心率e =,短轴长为2. (1)求椭圆C 的方程; (2)如下图所示,直线AD 与直线BP 交于点M ,直线DP 与x 轴交于点N ,证明:直线MN 过定点,并求出该定点.【解析】(1)由题意,22b =,所以1b =,椭圆C的离心率e =,所以2a =,故椭圆C 的方程为2214x y +=.(2)极点极线看问题:如图,连接AP 、BD 交于点Q ,显然点Q 的极线是直线MN , 当P 在椭圆上运动的过程中,点Q 会在直线BD 上运动,根据共线极点的极线必然共点不难发现直线MN 是过定点的直线,易求得直线BD 的方程为22x y +=,所以可设()22,Q t t −,那么极线MN 的方程为()2214t xty −+=,整理得:()220x t x y −−−=,所以直线MN 过的定点是()2,1.下面给出规范的作答过程.解:由(1)可得()0,1D ,()2,0B ,()2,0A −,可设直线BP 的方程为2x my =+()0,2m m ≠≠±, 联立22214x my x y =+⎧⎪⎨+=⎪⎩消去x 整理得:()22440m y my ++=,解得:0y =或244m m −+,所以244p m y m =−+,从而228224p p m x my m −=+=+,故222824,44m m P m m ⎛⎫−− ⎪++⎝⎭,从而直线DP 的斜率为()222224144248282224DP mm m m m k m m m m −−−−−++===−−−+故直线DP 的方程为()2122m y x m +=+−,联立()02122y m y x m =⎧⎪+⎨=+⎪−⎩解得:()222m x m −=+,所以()22,02m N m −⎛⎫ ⎪+⎝⎭, 直线AD 的方程为121x y +=−,即220x y −+=,联立2202x y x my −+=⎧⎨=+⎩,解得:24242m x m y m +⎧=−⎪⎪−⎨⎪=−⎪−⎩,所以点M 的坐标为244,22m m m +⎛⎫−− ⎪−−⎝⎭,设()2,1G , 则42,22mm GM m m +⎛⎫=−− ⎪−−⎝⎭,4,12m GN m ⎛⎫=−− ⎪+⎝⎭, 从而22m GM GN m +=−,故G 、M 、N 三点共线, 即直线MN 过定点()2,1G .【反思】求解这道题时,可以先在草稿纸上用极点极线的知识去找到定点()2,1G ,那么在严格求解时,心中就有答案了,可以通过证明GM 与GN 共线,从而得出直线MN 过定点G . 5.(★★★★)如下图所示,椭圆22:143x y E +=的左、右顶点分别为A 、B ,左焦点为F ,过F 的直线与椭圆E 交于不与A 、B 重合的C 、D 两点,记直线AC 和BD 的斜率分别1k ,2k ,证明:12k k 为定值.【解析】极点极线看问题:由题意,()1,0F −,椭圆E 的极点F 对应的极线为10143x y−⋅⋅+=,即4x =−,如图,AC 与BD 的交点P 应在极线上,所以可设()04,P y −,显然()2,0A −,()2,0B ,所以直线AC 的斜率012PA y k k ==−,直线BD 的斜率026PB yk k ==−, 从而123k k =.下面给出严格求解过程. 解:由题意,()1,0F −,直线CD 不与y 轴垂直,可设其方程为1x my =−,设()11,C x y ,()22,D x y ,联立221431x y x my =+=−⎧⎪⎨⎪⎩消去x 整理得:()2234690m y my +−−=, 易得判别式0∆>, 由韦达定理,122634m y y m +=+,122934y y m =−+, 所以()121232my y y y =−+ 显然()2,0A −,()2,0B ,所以直线AC 的斜率1112y k x =+, 直线BD 的斜率2222y k x =−, 从而()()()()()()121121212112121212122122123933233222333121222y y y y y y x y my k my y y k x y my y my y y y y y y y −+−−−−−−======+++−++−−.6.(★★★★)已知椭圆()2222:10x y C a b a b +=>>的上、下顶点分别为A 和B ,左焦点为F , 原点O 到直线FA的距离为2. (1)求椭圆C 的离心率; (2)设2b =,直线4:l y kx =+与椭圆C 交于不同的两点M 、N ,证明:直线BM 与直线AN 的交点G 在定直线上.【解析】(1)由题意,原点O 到直线FA的距离OA OF bc d AFa ⋅===, 所以椭圆C的离心率2c e a ==. (2)极点极线看问题:由题意,直线l 与y 轴交于定点()0,4P ,显然点G 在点P 对应的极线上,当2b =时,易求得椭圆C 的方程为22184x y +=,从而该极线的方程为04184x y ⋅+=,即1y =,所以点G 在定直线1y =上.下面给出严格求解过程.解:由题意,()0,2A ,()0,2B −,设()11,M x y ,()22,N x y , 联立224184y kx x y =+⎧⎪⎨+=⎪⎩消去y 整理得:()221216240k x kx +++=,判别式()()2216412240k k ∆=−+⨯>所以2k <或2k >,由韦达定理,12212216122412k x x k x x k ⎧+=−⎪⎪+⎨⎪=⎪+⎩①②直线BM 的方程为1122y y x x ++=,直线AN 的方程为2222y y x x −−=,联立11222222y y x x y y xx +⎧+=⎪⎪⎨−⎪−=⎪⎩消去x 可得:()()12212222y x y y y x ++=−−,从而()()()()1212122212112126262222G G y x kx x y kx x x y y x kx x kx x x ++++===−−++③, 接下来给出以下两种计算非对称结构12212162kx x x kx x x ++的方法:法1:由①②知()121232kx x x x =−+, 代入式③得:()()122121221211211233966222331322222x x x x x kx x x kx x x x x x x x −++−++===−+−++−, 从而232G G y y +=−,解得:1G y =,所以点G 在定直线1y =上. 法2:由①知1221612kx x k =−−+代入式③得:22221221212222224246661212382416222121212k kx x kx x x k k k k k kx x x x x k k k +++++===−+⎛⎫−−+−− ⎪+++⎝⎭从而232G G y y +=−−,解得:1G y =,所以点G 在定直线1y =上.。
漫谈圆锥曲线的极点与极线——两高考试题的统一背景与解法
浙江省绍兴县鲁迅中学
本文源于两道高考压轴题 : 题 1( 2006 年全国Ⅱ卷题 21) 已知抛物线 x 2 = 4 y 的 焦点 为F , A 、 B 是抛物线 上的 两动 点 , B 两 且 AF = KFB ( K> 0 ) . 过 A 、 点分别 作抛 物线 的 切 线 , 设其 交 点为 P. ( 1) 证明 FP # AB 为定值 ; ( 2) 设 v A BP 的面积为 S , 写出 S = f ( K ) 的表达 式 , 并求 S 的最小值 . 题 2( 2005 年江西卷题 22) 设抛物 线 C: y = x 2 的 焦点 为 F, 动点 P 在直线 l: x - y - 2 = 0 上 运动 , 过 P 作 C 的 两 条 切 线 PA 、 PB , 且 与抛物线 C 分别相切于 A 、 B 两点 . ( 1) 求 v AP B 的重心 G 的轨迹方程 . ( 2) 证明 N PFA = N PFB . 这是一类解析几何常见题 , 两题 非常类 似 , 笔者还 发现它们含有相同的高等数学背 景 . 按射影 几何观 点 , 题中点 P 与直线 A B 称为圆锥曲线 相应的极点与极线 , 两者蕴涵了圆锥曲 线的 内在 特征 . 本文 拟以 极点 与极 线的两个命题给出 试题 统一 解法 , 并讨 论该 性质 在中 学数学中的现状及应用 . 1 1. 1 关于极点与极 线 极点与极线的定义与 作图 开. 虽然中学数学中没有提 到极点 与极线 , 但 事实上 , 它的身影随处可见 , 只是没有点破而已 . 下面利 用上 述两 个命题 , 给出 两考题 统一 简解 以 及该命题在教材、 竞赛等方面的应用 . 2 2. 1 中学数学中极点与极线知识的现状与应用 教材内改名换姓 , / 视0 而不/ 见0 双 曲线 程为 :
圆锥曲线极点极线结论
圆锥曲线极点极线结论1. 引言圆锥曲线是平面解析几何中的重要内容,包括椭圆、双曲线和抛物线。
在研究圆锥曲线的性质时,极点和极线是常常涉及的概念。
本文将详细介绍圆锥曲线极点和极线的定义、性质和应用。
2. 极点和极线的定义在解析几何中,给定一个圆锥曲线和一条直线,如果直线上的点到圆锥曲线的每个点的距离都相等,那么这条直线称为圆锥曲线的极线,而直线上的点称为圆锥曲线的极点。
3. 极点和极线的性质3.1 极点的性质•极点和圆锥曲线上的点的连线与圆锥曲线的切线垂直。
•极点和圆锥曲线上的点的连线与圆锥曲线的法线平行。
•极点关于圆锥曲线的中心对称。
3.2 极线的性质•极线是直线。
•极线上的任意两点都是圆锥曲线上的极点。
•极线上的点到圆锥曲线上的任意一点的距离相等。
4. 极点和极线的应用4.1 极坐标表示极点和极线的概念在极坐标表示中有广泛的应用。
在极坐标系中,极点就是坐标原点,极线就是极轴。
通过极坐标表示,可以简化对圆锥曲线的描述和计算。
4.2 极点和极线的图形推导通过极点和极线的概念,可以推导出圆锥曲线的一些重要性质。
例如,通过极点和极线的定义,可以证明椭圆是一个凸曲线,而双曲线和抛物线是非凸曲线。
4.3 极点和极线的几何意义极点和极线的概念对于解析几何中的问题求解有重要的几何意义。
例如,在求解圆锥曲线的方程和性质时,可以通过极点和极线的关系来简化问题,从而得到更简洁的解法。
5. 结论圆锥曲线的极点和极线是解析几何中重要的概念,它们有着许多重要的性质和应用。
通过极点和极线的定义,我们可以更好地理解圆锥曲线的性质和特点,从而在解析几何的问题求解中得到简化和优化。
因此,掌握圆锥曲线极点极线的结论对于学习和应用解析几何具有重要意义。
以上就是关于圆锥曲线极点极线结论的全面介绍。
希望本文能够对读者理解和应用圆锥曲线极点极线提供帮助。
谢谢阅读!参考文献[1] 吴骏,王艺璇. 解析几何[M]. 高等教育出版社,2016. [2] 李志民,刘明才. 解析几何[M]. 高等教育出版社,2018.。
极点与极线法解高中圆锥曲线
极点与极线背景下的高考试题极点与极线是高等几何中的重要概念,当然不是《高中数学课程标准》规定的学习内容,也不属于高考考查的范围,但由于极点与极线是圆锥曲线的一种基本特征,因此在高考试题中必然会有所反映,自然也会成为高考试题的命题背景.1.从几何角度看极点与极线定义1 如图1,设P 是不在圆锥曲线上的一点,过P 点引两条割线依次交圆锥曲线于四点,,,E F G H ,连接,EH FG交于N ,连接,EG FH 交于M ,则直线MN 为点P 对应的极线. 若P 为圆锥曲线上的点,则过P 点的切线即为极线.由图1同理可知, PM 为点N 对应的极线,PN 为点M 所对应的极线.因而将MNP 称为自极三点形.设直线MN 交圆锥曲线 于点,A B 两点,则,PA PB 恰为圆锥曲线的两条切线.定理1 (1)当P 在圆锥曲线Γ上时,则点P 的极线是曲线Γ在P 点处的切线;(2)当P 在Γ外时,过点P 作Γ的两条切线,设其切点分别为,A B ,则点P 的极线是直线AB (即切点弦所在的直线);(3) 当P 在Γ内时,过点P 任作一割线交Γ于,A B ,设Γ在,A B 处的切线交于点Q ,则点P 的极线是动点Q 的轨迹.定理2 如图2,设点P 关于圆锥曲线Γ的极线为l ,过点P 任作一割线交Γ于,A B ,交l 于Q ,则PA PBAQ BQ= ①;反之,若有①成立,则称点,P Q 调和分割线段AB ,或称点P 与Q 关于Γ调和共轭,或称点P (或点Q )关于圆锥曲线 Γ的调和共轭点为点Q (或点P ).点P 关于圆锥曲线Γ的调和共轭点是一条直线,这条直线就是点P 的极线.推论1 如图2,设点P 关于圆锥曲线Γ的调和共轭 点为点Q ,则有211PQ PA PB =+ ②;反之,若有②成立, 则点P 与Q 关于Γ调和共轭. 可以证明①与②是等价的.事实上,由①有11AQ BQ PQ PA PB PQ PQ PQ PA PB PA PB PA PB --=⇒=⇒-=-11()2PQ PA PB ⇒⋅+= 211PQ PA PB⇒=+.特别地,我们还有推论2 如图3,设点P 关于有心圆锥曲线Γ(设其中心为O )的调和共轭点为点Q ,PQ 连线经过圆锥曲线的中心,则有2OR OP OQ =⋅ ,反之若有此式成立,则点P 与Q 关于Γ调和共轭.证明:设直线PQ 与Γ的另一交点为R ',则PR PR OP OR OP ORRQ R Q OR OQ OR OQ '-+=⇒='-+,化简图1图2即可得2OR OP OQ =⋅.反之由此式可推出PR PR RQ R Q'=',即点P 与Q 关于Γ调和共轭. 推论3 如图4,,A B 圆锥曲线Γ的一条 对称轴l 上的两点(不在Γ上),若,A B 关于Γ调 和共轭,过B 任作Γ的一条割线,交Γ于,P Q 两点,则PAB QAB ∠=∠.证明:因Γ关于直线l 对称,故在Γ上存在,P Q 的对称点,P Q ''.若P '与Q 重合,则Q '与P也重合,此时,P Q 关于l 对称,有PAB QAB ∠=∠;若P '与Q 不重合,则Q '与P 也不重合,由于,A B关于Γ调和共轭,故,A B 为Γ上完全四点形PQ QP ''的对边交点,即Q '在PA 上,故,AP AQ 关于直线l 对称,也有PAB QAB ∠=∠.定理3 (配极原则)点P 关于圆锥曲线Γ的极线p 经过点Q ⇔点Q 关于Γ的极线q 经过点P ;直线p 关于Γ的极点P 在直线q 上⇔直线q 关于Γ的极点Q 在直线p 上.由此可知,共线点的极线必共点;共点线的极点必共线. 以上未加证明的定理,可参阅有关高等几何教材,如【1】,其中定理1的初等证法可参阅文【2】.2.从代数角度看极点与极线定义2 已知圆锥曲线22:220Ax Cy Dx Ey F Γ++++=,则称点00(,)P x y 和直线0000:()()0l Ax x Cy y D x x E y y F ++++++=是圆锥曲线Γ的一对极点和极线.事实上,在圆锥曲线方程中,以0x x 替换2x ,以02x x +替换x ,以0y y 替换2y ,以02y y+替换y 即可得到点00(,)P x y 的极线方程. 特别地:(1)对于椭圆22221x y a b +=,与点00(,)P x y 对应的极线方程为00221x x y y a b+=;(2)对于双曲线22221x y a b -=,与点00(,)P x y 对应的极线方程为00221x x y y a b -=;(3)对于抛物线22y px =,与点00(,)P x y 对应的极线方程为00()y y p x x =+. (4)如果圆锥曲线是椭圆22221x y a b+=,当00(,)P x y 为其焦点(,0)F c 时,极线恰为椭圆的准线;如果圆锥曲线是双曲线22221x y a b-=,当00(,)P x y 为其焦点(,0)F c 时,极线恰为双曲线的准线;如果圆锥曲线是抛物线22y px =,当00(,)P x y 为其焦点(,0)2p F 时,极线恰为抛物线的准线.3.从极点与极线角度看圆锥曲线试题图4 R【例1】(2010江苏卷文理18)在平面直角坐标系xOy 中,如图,已知椭圆15922=+y x 的左右顶点为,A B ,右焦点为F .设过点(,)T t m 的直线,TA TB 与此椭圆分别交于点1122(,),(,)M x y N x y ,其中0m >,1200y y ><,.(1)设动点P 满足422=-PB PF ,求点P 的轨迹;(2)设12123x x ==,,求点T 的坐标;(3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).分析与解:前面两问比较简单,这里从略. 对于(3),当9=t 时,T 点坐标为(9,)m ,连MN ,设直线AB 与MN 的交点为K ,根据 极点与极线的定义可知,点T 对应的极线经过K , 又点T 对应的极线方程为9195x m y⋅⋅+=,即 15m yx ⋅+=,此直线恒过x 轴上的定点K (1,0), 从而直线MN 也恒过定点K (1,0). 【例2】 (2008安徽卷理22)设椭圆2222:1(0)x y C a b a b+=>>过点M ,且左焦点为1(F .(1)求椭圆C 的方程;(2)当过点(4,1)P 的动直线l 与椭圆C 交于两个不同的点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB ⋅=⋅,证明点Q分析与解:(1)易求得答案22142x y +=. (2)由条件可有PA PBAQ BQ=,说明点,P Q 关于 圆锥曲线C 调和共轭.根据定理2,点Q 的轨迹就是点P 对应的极线,即41142x y ⋅⋅+=,化简得220x y +-=. 故点Q 总在定直线220x y +-=上.【例3】( 1995全国卷理26)已知椭圆22:12416x y C +=,直线:1128x y l +=,P 是l 上一点,射线OP 交椭圆于点R ,又点Q 在OP 上且满足2OQ OP OR ⋅=,当点P 在l 上移动时,求点Q 的轨迹方程.,并说明轨迹是什么曲线.分析与解:由条件知2OR OP OQ =⋅可知点,P Q 关于圆锥曲线C 调和共轭,而点Q 可看作是点P 的极线与直线OP 的交点.设(12,88)P t t -,则与P 对应的极线方程为12(88)12416t x t y⋅-⋅+=,化简得 (1)2tx t y +-= ③图5,)m图6x又直线OP 的方程为8812ty x t-=,化简得 223ty x t-=④ 解由③④联立方程组得22654244542t x t t tx t t ⎧=⎪⎪-+⎨-⎪=⎪-+⎩,消去t 得222346x y x y +=+,可化为22(1)(1)15523x y --+=(,x y 不同时为0),故点Q 的轨迹是以(1,1)为中心,,且长轴平行于x 轴的椭圆,但需去掉坐标原点.【例4】(2006年全国卷II 理21)已知抛物线24x y = 的焦点为F ,,A B 是抛物线上的两动点,且AF FB λ=(0)λ>,过,A B 两点分别作抛物线的切线,并设其交点为P . (1)证明FP AB ⋅为定值;(2)设ABP ∆的面积为S ,写出()S f λ=的表达式, 并求S 的最小值.分析与解:(1)显然,点P 的极线为AB ,故可设点0(,1)P x -,再设1122(,),(,)A x y B x y ,,,F A B 三点对应的极线方程分别为1y =-,112()x x y y =+,222()x x y y =+,由于,,A B F 三点共线,故相应的三极线共点于0(,1)P x -,将1y =-代入后面两个极线方程得1012022(1)2(1)x x y x x y =-⎧⎨=-⎩,两式相减得12012()2()x x x y y -=-.又02121(,2),(,)FP x AB x x y y =-=--,故02121()2()0FP AB x x x y y ⋅=---=. (2)设AB 的方程为1y kx =+,与抛物线的极线方程002()x x y y =+对比可知直线AB对应的极点为(2,1)P k -,把1y kx =+代入24x y =并由弦长公式得24(1)AB k =+,所以212(12ABP S AB FP k ∆==+. 显然,当0k =时,S 取最小值4. 【例5】(2005江西卷理22)设抛物线2:C y x = 的焦点为F ,动点P 在直线:20l x y --=上运动,过P 作抛物线的两条切线,PA PB ,且与抛物线分别相切于,A B 两点. (1)求APB ∆的重心G 的轨迹方程; (2)证明PFA PFB ∠=∠.分析与解:(1)设点001122(,),(,),(,)P x y A x y B x y , 与002y y x x +=对比可知直线:20l x y --=对应的极点为1(,2)2,P 为直线l 上的动点,则点P 对应的极线AB 必恒过点1(,2)2.图8图9设1:2()2AB y k x -=-,可化为2222k y k x +-=,故直线AB 对应的极点为(,2)22k k P -,将直线AB 的方程代入抛物线方程得2202kx kx -+-=,由此得2121212,(1)44x x k y y k x x k k +=+=+-+=-+,APB ∆的重心G 的轨迹方程为122212223322422222333k k x x k k x k k k y y k k k y ⎧+++⎪===⎪⎪⎨⎪++--++--+⎪===⎪⎩,消去k 即得 21(42)3y x x =-+.(2)设221122(,),(,)A x x B x x ,由(1)知1212,22k x x k x x +==-,又1(0,)4F ,由(1)知(,2)22k k P -,即1212(,)2x x P x x +,所以2111(,)4FA x x =-,12121(,)24x x FP x x +=-,2221(,)4FB x x =-.221211************111111()()()()244444cos 11()()4x x x x x x x x x x x FP FA PFA FP FA FP FP x FP x x ++--+++⋅∠====⋅++-.同理1214cos x x FP FB PFB FP FB FP+⋅∠==⋅. 所以有PFA PFB ∠=∠.。
圆锥曲线中的极点极线问题(学生版)
圆锥曲线中的极点极线问题考情探究命题规律及备考策略【命题规律】本节内容是新高考卷的选考内容,设题不定,难度中等或偏难,分值为5-17分【备考策略】1.理解、掌握圆锥曲线极点极线的定义2.理解、掌握圆锥曲线的极点极线问题及其相关计算【命题预测】本节内容是新高考卷的常考内容,小题和大题都会作为载体命题,同学们要会结合公式运算,需强化训练复习知识讲解1.极点极线的定义如图,设P 是不在圆雉曲线上的一点,过P 点引两条割线依次交圆锥曲线于四点E ,F ,G ,H ,连接EH ,FG 交于N ,连接EG ,FH 交于M ,则直线MN 为点P 对应的极线.若P 为圆雉曲线上的点,则过P 点的切线即为极线.同理,PM 为点N 对应的极线,PN 为点M 所对应的极线.因而将△MNP 称为自极三点形.设直线MN 交圆锥曲线于点A ,B 两点,则P A ,PB 恰为圆锥曲线的两条切线.2.其他定义对于圆锥曲线C :Ax 2+Bxy +Cy 2+Dx +Ey +F =0,已知点P x 0,y 0 (非中心)及直线l :Ax 0x +B ⋅x 0y +y 0x 2+Cy 0y +D ⋅x +x 02+E ⋅y 0+y 2+F =0,则称点P x 0,y 0 是直线l 关于圆锥曲线C 的极点,直线l 称为点P 关于圆锥曲线C 的极线。
配极原则:共线点的极线必共点,共点线的极点必共点。
3.替换原则x0x →x 2,x 0y +y 0x 2→xy ,y 0y →y 2,x +x 02→x ,y +y 02→y .4.极点极线的几何意义(以椭圆为例)已知椭圆方程:x2a2+y2b2=1,设点P x0,y0的极线l:x0xa2+y0yb2=1.(1)当点P x0,y0在椭圆上时,极线l是以点P为切点的切线。
(极点在极线上)(2)当点P在椭圆外时,极线l与椭圆相交,且为由P点向椭圆所引切线的切点弦所在直线。
(3)当点P在椭圆内时,极线l与椭圆相离,极线l为经过点P的弦在两端点处的切线交点的轨迹,且极线l与以点P为中点的弦所在的直线平行。
圆锥曲线的极点与极线——2020高考北京卷解析试题背景探究
圆锥曲线的极点与极线——2020高考北京卷解析试题背景探究圆锥曲线的极点与极线问题是解析几何中的一个重要内容,它在高考数学试题中的应用较为广泛。
2020年北京高考卷中的相关题目考查了这一知识点,其背景可以从以下几个方面进行探究:
1. 理论背景:圆锥曲线的极点与极线理论是高等数学中的一个经典内容,它涉及到定值、定点以及三点共线等问题,这些都是解析几何中的基础性质。
2. 教育意义:在高中数学教学中,圆锥曲线的极点与极线不仅是解析几何的重要内容,也是培养学生逻辑思维和空间想象能力的重要工具。
通过对这一问题的研究,学生可以加深对圆锥曲线性质的理解,提高解决复杂几何问题的能力。
3. 考试应用:在高考数学试题中,圆锥曲线的极点与极线问题常被用来设计具有一定难度的题目,考查学生的综合运用知识解决问题的能力。
这类题目往往需要学生具备较强的几何直觉和解题技巧。
4. 解题方法:解决圆锥曲线的极点与极线问题,通常需要运用坐标法、向量法等解析几何的方法,有时还需要结合代数变换技巧。
这些方法的综合运用能够有效地解决相关问题。
5. 教学研究:教师和教育研究者通过对圆锥曲线的极点与极线问题的深入研究,可以探索更多有效的教学方法和解题策略,以帮助学生更好地掌握这一知识点。
综上所述,圆锥曲线的极点与极线问题在高考数学试题中的背景是多方面的,不仅涉及理论知识的深入探讨,也包括教学方法和解题技巧的研究与应用。
对于准备高考的学生来说,掌握这一知识点是非常必要的。
极点与极线法解高中圆锥曲线
极点与极线法解高中圆锥曲线极点与极线在高等几何中是重要的概念,虽然不是《高中数学课程标准》规定的研究内容,也不属于高考考查的范围,但由于极点与极线是圆锥曲线的一种基本特征,因此在高考试题中必然会有所涉及,自然也会成为高考试题的命题背景。
从几何角度来看,极点与极线的定义如下:设P是不在圆锥曲线上的一点,过P点引两条割线依次交圆锥曲线于四点E、F、G、H,连接EH、FG交于N,连接EG、FH交于M,则直线MN为点P对应的极线。
若P为圆锥曲线上的点,则过P点的切线即为极线。
由图1同理可知,PM为点N对应的极线,PN为点M所对应的极线。
因此,将MNP称为自极三点形。
设直线MN交圆锥曲线于点A、B两点,则PA、PB 恰为圆锥曲线的两条切线。
定理1如图1,当P在圆锥曲线上时,则点P的极线是曲线在P点处的切线;当P在圆锥曲线外时,过点P作圆锥曲线的两条切线,设其切点分别为A、B,则点P的极线是直线AB(即切点弦所在的直线);当P在圆锥曲线内时,过点P任作一割线交圆锥曲线于A、B,设圆锥曲线在A、B处的切线交于点Q,则点P的极线是动点Q的轨迹。
定理2如图2,设点P关于圆锥曲线的极线为l,过点P任作一割线交圆锥曲线于A、B,交l于Q,则①成立;反之,若有①成立,则称点P、Q调和分割线段AB,或称点P与Q关于圆锥曲线的调和共轭,或称点P(或点Q)关于圆锥曲线的调和共轭点为点Q(或点P)。
点P关于圆锥曲线的调和共轭点是一条直线,这条直线就是点P的极线。
推论1如图2,设点P关于圆锥曲线的调和共轭点为点Q,则有②成立;反之,若有②成立,则点P与Q关于圆锥曲线调和共轭。
可以证明,①与②是等价的。
事实上,由①可得到②,由②可得到①。
特别地,我们还有推论2如图3,设点P关于有心圆锥曲线(其中心为O)的调和共轭点为点Q,PQ连线经过圆锥曲线的中心,则有OR²=OP×OQ,反之若有此式成立,则点P与Q关于圆锥曲线调和共轭。
1.极点、极线与圆锥曲线试题的命制
交知b >a).不妨设 A(t,t),B(-t,-t),其中t=
ab .
槡b2 -a2
先考虑直 线 PA、PB 的 斜 率 均 存 在 的 情 况.此
时,若直线 PA、PB 中有一条斜率为 0,则 另 一 条 斜
率必不存在,这 不 适 合 直 线 PA、PB 的 斜 率 均 存 在
[6]曾建 国.圆 锥 曲 线 一 组 性 质 及 猜 想 的 简 证 与 推 广 [J].数 学 通 讯 (下 半 月 ),2018(07):封 底 .
(收 稿 日 期 :2018-09-23)
对一个数学问题的探究性学习
郑丽生
(福 建 省 仙 游 第 一 中 学 ,351200)
《普 通 高 中 数 学 课 程 标 准》(2017)指 出:“数 学 探究活动是运用数学知识解决数学问题的一类综合 实 践 活 动 ,也 是 高 中 阶 段 数 学 课 程 的 重 要 内 容 ”,“数 学探究活动是围绕某 个 具 体 的 数 学 问 题,开 展 自 主 探 究 、合 作 研 究 并 最 终 解 决 问 题 的 过 程 ”.
广泛的 应 用 性,文 [2]曾 将 这 一 性 质 的 高 等 几 何 中
的证明翻译成平面几 何 语 言.目 的 是 希 望 这 一 性 质
为 读 者 所 理 解 并 加 以 应 用 .下 面 给 出 问 题 2 的 证 明 .
证明 在完全四 边 形 AMBN 中,F、G 调 和 分 割A、B,所以 H、G 调和分割C、D 和P、Q,即
[J].数 学 通 讯 (下 半 月 ),2011(11):17-18.
[4]孔 繁 文.对 一 道 省 际 大 联 考 试 题 的 推 广 探 究 [J].数 学 通 讯 (下 半 月 ),2018(05):32-34.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ⅳ.过圆锥曲线特定直线(极线)上任意一点引圆锥曲线 的切线,则切点弦直线恒过定点(极点).
上述证明可参考《高等几何》,此处不再展开,这里重在说 明其应用.
例1 已知椭圆c:每+y2—1的两焦点为,点P(如,Yo)
ቤተ መጻሕፍቲ ባይዱ
满足.则1PF,l+lPF。j的取值范围为——,直线等+yoy=
1与椭圆C的公共点个数——.
一条直线都有一个极点.
2.标准方程下圆锥曲线极点与相应极线的方程
,2
..2
椭圆争+寺一1,则点p(x。,Y c,)对应的极线方程为:
掣+掣一1.
Ⅱ。
D”
双曲线≥一y62—1,则点p(z。,Y。)对应的极线方程为:
Xo工 口2
yoY一1
b2
1‘
抛物线Y2=2px。则点p(氙,Y。,)对应的极线方程为:
P(X0,yo).还有学生看到竿+yoy一1这样的结构,认为是 切线,所以判断有一个公共点.事实上,下J。o 31"+yoY一1是
~2
P(z。,Y。)对应的极线,P(z。,Y。)在椭圆c:等+y2—1的内 部,此直线与椭圆相离,故交点数为0个,问题能够快速解决.
而常规方法只能联立方程用判别式判断,计算比较复杂.
引用本文格式:黄彩红 用圆锥曲线极点与极线的性质解题[期刊论文]-中学生数理化(学研版) 2013(10)
点共线.由极点与极线性质知相应的三极线共点于P.
f竿一y,一一,1
P(T。,一1),代入极线方程得:<
I—'/72:广X(I—y2一一1.
两式相减得:塑1二竽堕一(y。一y:). L
所以讳·蕊一T。(z:一z。)一2(弘一y1)一o.
(2)设AB方程:y一1一kx,则AB对应的极点为(2k, 1).把AB代人C:,一4y.
物线上的两动点,且葡一A商
(A>O).过A、B两点分别作抛 物线的切线,设其交点为P.
(1)证明讳·蕊为定值;
(2)设△ABP的面积为S,
写出s—f(2)的表达式,并求S
k∥ 中学生数理亿.掌饼版
\V
1
P
的最小值.
图1
解析:(1)设点P(x。,Y(,),A(xl,Y1),B(x2,Y2),三点对应
的极线方程分别是:y一一l,y一等一M(i一1,2),A,F·B三
万方数据
解析:第一个I司题,依题意知,点P在椭圆内部.圊出图
形,由数形结合可得范围为[2,啦).
第二个问题,是一道涉及点、直线与圆锥曲线的位置关系 的判定的考题.其实是非常容易做错的题目.因为P(z。,Y。)
一?
在椭圆C:寻+y2—1的内部,所以很多学生误以为直线与椭
圆一定有两个交点,但直线下XOX+YoY一1并不经过
例2已知直线等一帅y一1与双曲线虿07"-一Y2—1没有
一2
公共点,则等一So的取值范围是——.
解析:因为极线等一yoy一1与双曲线等一Y2—1没有
公共点,所以对应极点(z。,y。)在双曲线内部,所以有等一
,.2
Yj>1,故等一y:的取值范围是(1,+。。).
例3如图1,已知抛物线
,
z!一4y的焦点为F,A、B是抛
用圆锥曲线极点与极线的性质解题
■黄彩红
由于中学数学教材中没有提及极点与极线,因而大多数
老师和学生对此“视而不见”,并未进行深入探讨,但事实上,
极点与极线的身影随处可见,只是没有被点破而已.如果我们 能够了解一些圆锥曲线的极点与极线知识,不仅可以帮助我
们更快地找到解决问题的方向,还可以帮助我们快速得到结
由弦长公式得:1ABI一4(1+k2),
.。.s^∞P一2(1+女2)√4(1+k2). 显然女一0时,S取最小值为4.
作者单位:江苏省丹阳市珥陵高级中学
簿
用圆锥曲线极点与极线的性质解题
作者: 作者单位: 刊名:
英文刊名: 年,卷(期):
黄彩红 江苏省丹阳市珥陵高级中学
中学生数理化(学研版) MATH PHYSICS&CHEMISTRY FOR MIDDLE SCHOOL STUDENTS(SENIOR HIGH SCHOOL EDITION) 2013(10)
Yoy一声(_r—}To). 其他形式的圆锥曲线标准方程对应的极线方程与上述情
况类似. 3.圆锥曲线极点和极线的几何性质
性质1:圆锥曲线中极线共点于P,则这些极线相应的极 点共线于点P相应的极线,反之亦然.称为极点与相应极线对
偶性.
性质2:已知点和直线是圆锥曲线的一对极点与极线. (1)若极点在曲线上,则极线与曲线的相切于点;(2)若极点在
论.鉴于这个原因,笔者试着对极点与极线的知识作了一些整
理,希望对大家有所帮助.
1.极点与极线的定义
如果曲线切于A,B两点的切线相交于P点,那么P点称
为直线AB关于该曲线的极点(pole)。直线AB称为P点的极
线(polar).极点和极线的思想是曲线上点和过该点切线的思
想的一般化.任何一点关于一般的代数曲线都有一条极线,每
曲线内,则极线与曲线的相离;(3)若极点在曲线外,则极线与 曲线的相交.
性质3:
I.圆锥曲线过定点(极点)弦的端点之切线交点的轨迹 为直线(极线);
Ⅱ.圆锥曲线过定点(极点)的弦AB的中点向极线作垂
线交点为P.则PA,PB与圆锥曲线相切,反之亦然;
Ⅲ.圆锥曲线极线上的任意一点P与极点F连线交圆锥
曲线于A、B的两点测胤=甜;