储集层

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

储集层

概念及分类储集层的概念油气在地下是储存在岩石的孔隙、孔洞和裂缝之中的,就好像海绵充满水一样。能够储存和渗滤流体的岩层称为储集层。作为储集层,应具备两个基本特性,即孔隙性和渗透性。孔隙性的好坏直接决定着储集层储存油气的数量,而渗透性的好坏则控制了储集层内所含油气的产能。储集层的概念强调了这种岩层具备储存油气和允许油气渗滤的能力,但并不意味着其中一定储存了油气。如果储集层中含有了油气则称之为“含油气层”,若含有工业(商业)价值的油气则称为“油气层”,已经开采的油气层称为“生产层”或“产层”。

储集层的分类1)储集层的岩石类型储集层的基本特性是具有一定的孔隙和渗透能力,不论什么岩层,只要它具备了这两个特性就可以作为储集层。例如,我国大庆油田为砂岩储集层;鸭儿峡油田底部油藏为变质岩储集层;在渤海湾盆地的岩浆岩内也发现了大量油气。迄今为止,人们在几乎所有类型的岩石中都找到了油气。但从目前找到的石油储量分布来看,绝大多数油气是储存在沉积岩内的,而且主要是碎屑岩和碳酸盐岩,两者控制的油气储量与产量占世界总量的99%以上,其他岩类所控制的油气储量不足1%。储集层按岩石类型通常划分为三大类:碎屑岩储集层——主要包括砂岩、粉砂岩、砾岩等碎屑沉积岩,其中砂岩储集层是世界上分布最广的一类储集层;碳酸盐岩储集层——主要为石灰岩和白云岩。如礁灰岩储集层是世界上单井日产量最高的一类储集层;其他岩类储集层——包括火山碎屑岩、火山岩、侵入岩、变质岩和泥页岩等。

近年来,国内外的一些油田在这类储集层中获得一定产量的油气,并具有商业价值。不同的储集层类型对油气藏的形成、油气的分布以及油藏开发动态的影响是不同的,因此,对储集层进行分类并详加研究对于油气勘探和开发具有重要意义。

储层的储集空间包括3种基本类型,即孔隙、裂缝、和溶洞。在自然界中,这3种储集空间可以有不同的组合,因而可形成不同的储层类型,如孔隙型、孔隙—裂缝型、裂缝—溶洞型、孔隙—裂缝—溶洞复合型。

孔隙性的分类

石的孔隙按其大小(孔隙直径或裂缝宽度)可分为3类:

1超毛细管孔隙。指管形孔隙直径大于0.5毫米或裂缝宽度大于0.25毫米的孔隙。这种孔隙中的流体可以在重力作用下自由流动。岩石中的大裂缝、溶洞及未胶结或胶结疏松的砂岩层孔隙大部分属此类。

2毛细管孔隙。指管形孔隙直径介于0.5~0.0002毫米之间,或裂缝宽度介于0.25~0.0001毫米之间的孔隙。在这种孔隙中的流体,由于毛细管力的作用,流体不能自由流动。要使流体在其中流动,需要有明显的超过重力的外力去克服毛细管阻力。一般砂岩的孔隙属于此类。

3微毛细管孔隙。指管形孔隙直径小于0.0002毫米,或裂缝宽度小于0.0001毫米的孔隙。要使这种孔隙中的流体流动,需要非常高的剩余压力梯度,这在地下油层条件下一般是达不到的。因此,对石油、天然气的开发无意义。一般泥岩、页岩中的孔隙属于此类。

胶结作用

胶结作用是砂岩中碎屑颗粒相互联接的过程。松散的碎屑沉积物通过胶结作用变成固结的岩石。胶结作用是使储层物性变差的重要因素。

碎屑岩胶结物的成分是多种多样的,有泥质、钙质、硅质、铁质、石膏质等。一般说来,泥质、钙-泥质胶结的岩石较疏松,储油物性较好,纯钙质、硅质、硅-铁质或铁质胶结的岩石致密,储油物性较差。据松辽盆地储集层钙质含量的统计资料,一般当钙质含量大于5%时,其储油物性明显下降。不同的粘土矿物对岩石孔隙度和渗透率的影响也是不同的。在埋藏初期,从富含粘土质的孔隙水中可以沉淀出高岭石、绿泥石或伊利石形成碎屑颗粒周围的粘土膜,或充填孔隙。高岭石除了直接从孔隙水中沉淀外,还可以通过长石和云母的风化,形成自生高岭石,这种作用在颗粒边缘或顺着解理缝首先发生。在酸性孔隙水中长石更易高岭石化。这种自生的粘土矿物填塞孔隙,降低了岩石的孔隙度。由扫描电镜揭示,围绕颗粒边缘生长的伊利石是从孔隙的喉道部位向孔隙中央发展的,而高岭石往往充填在孔隙中,因此伊利石的生成对孔隙度的影响虽小,但对渗透率的影响很大,高岭石在降低岩石渗透率方面的作用比伊利石小得多。

溶解作用

在地下深处由于孔隙水成分的改变,导致长石、火山岩屑、碳酸盐岩屑和方解石、硫酸盐等胶结物的大量溶解,形成次生溶蚀孔隙,使储层孔隙度增大。这种次生溶蚀孔隙对改善储层物性的重要性近来受到愈来愈多的重视。

影响溶解作用的因素很多,如沉积时具有较粗的粒度,孔隙-渗透性好的碎屑岩;砂岩中含可溶性物质较多;地下水呈酸性而且具有一定流动速度等都有利于次生孔隙形成。其中尤以酸性水的形成最为重要。对地下酸性水的形成条件,近来提出许多新见解。Schmidt(1979)认为:干酷根热演化早期释放出大量CO2,是形成酸性水的重要原因,这种成油期前形成的酸性水溶蚀作用所造成的次生孔隙带特别有利于油气聚集。Curtis(1983)则认为:有机酸和无机质反应是形成次生孔隙的理想机理。据研究,在80-120℃时,地下水富含短链有机酸,能大大提高对高岭石的溶解度,其中二元酸(如草酸)含量达到一定浓度时,使铝的溶解度提高3个数量级。而Ⅲ型干酪根热演化过程中释放出的羧基约有40%是以草酸形式出现的。先于油、气(热成因)形成的羧基释放出有利于在相邻砂岩孔喉中清除碳酸盐、硫酸盐和硅铝酸盐的CO2,从而提高砂岩储集性。此外,在较高温度下,碳酸盐矿物之间的无机反应,亦能生成CO2;硫酸盐在脱硫菌和有机质参与下能生成H2S也有利于提高硫酸盐的溶解能力。

但是必须指出,酸性水溶解的物质只有在不断被带走的条件下,才能使溶蚀作用朝有利于形成次生孔隙方向发展。否则,随着溶质增加,溶蚀作用就会减弱,在达到过饱和时还可以再沉淀,堵塞孔隙。

相关文档
最新文档