高中数学必修5知识点总结(精品)
高中数学必修五知识点大全
知识点串讲必修五第一章:解三角形1.1.1正弦定理1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abA B =sin cC =一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
2、已知∆ABC 中,∠A 060=,a =求sin sin sin a b c A B C++++ 证明出sin sin a b A B =sin c C ==sin sin sin a b c A B C++++ 解:设sin sin a b A B =(>o)sin c k k C== 则有sin a k A =,sin b k B =,sin c k C = 从而sin sin sin a b c A B C ++++=sin sin sin sin sin sin k A k B k C A B C++++=k又sin a A =2k ==,所以sin sin sin a b c A B C++++=2 评述:在∆ABC 中,等式sin sin a b A B =sin c C ==()0sin sin sin a b c k k A B C ++=>++ 恒成立。
3、已知∆ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c(答案:1:2:3)1.1.2余弦定理1、余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即 2222cos a b c bc A =+-2222cos b a c ac B =+-2222cos c a b ab C =+-从余弦定理,又可得到以下推论:222cos 2+-=b c a A bc 222cos 2+-=a c b B ac 222cos 2+-=b a c C ba2、在∆ABC 中,已知=a c 060=B ,求b 及A⑴解:∵2222cos =+-b a c ac B=222+-⋅cos 045=2121)+-=8∴=b求A 可以利用余弦定理,也可以利用正弦定理:⑵解法一:∵cos 2222221,22+-=b c a A bc ∴060.=A解法二:∵sin 0sin sin45,=a A B b2.4 1.43.8,+=21.8 3.6,⨯=∴a <c ,即00<A <090,∴060.=A评述:解法二应注意确定A 的取值范围。
高中数学必修五知识点总结
高中数学必修五知识点总结一、代数部分:1.多项式的基本概念与运算:包括多项式的定义、次数、系数、单项式、多项式的加减乘除等。
2.因式分解与提取公因式:掌握对多项式进行因式分解与提取公因式的方法,包括一元二次、三项完全平方差、简单三项和复杂多项式的因式分解。
3.方程与不等式:掌握一元二次方程与一元二次不等式的解法,包括配方法、公式法、图像法和根与系数关系等。
4.等差数列与等比数列:了解等差数列和等比数列的概念、公式及其应用,包括求和公式、通项公式、项数和值与项数关系等。
二、函数部分:1.函数的基本概念与性质:掌握函数的定义、函数图像、值域、定义域、奇偶性等基本性质。
2.一次函数与二次函数:了解一次函数和二次函数的定义、图像、性质和特征等,包括函数的增减性、最值、交点、轴对称点等内容。
3.三角函数:熟练掌握正弦函数、余弦函数和正切函数的定义、图像、性质和应用,包括变化规律、周期、幅值、对称性和反函数等。
4.指数函数与对数函数:了解指数函数和对数函数的定义、性质和应用,包括指数函数的增减性和指数函数与对数函数的互逆关系等。
三、几何部分:1.平面向量与坐标表示:了解平面向量的定义、平移、线性运算和坐标表示方法,包括平面向量的加减、数量积和向量共线的判定等。
2.绝对值与不等式:熟练掌握绝对值的性质和变形,以及利用绝对值解决各种绝对值不等式的方法。
3.平面几何应用:包括相似三角形的判定与性质、三角形的三边、两边一角和正弦定理、余弦定理及其应用等内容。
四、概率与统计部分:1.事件与概率:了解事件和概率的基本概念和性质,包括样本空间、事件的发生、概率公理及其应用等。
2.随机变量与概率分布:掌握离散型和连续型随机变量及其概率分布的定义、性质和应用,包括离散型随机变量的期望和方差的计算等。
3.抽样与统计推断:了解统计样本、样本估计和假设检验的基本原理和方法,包括样本均值、样本比例的估计和显著性检验等。
五、数学建模部分:1.数学建模的基本步骤:掌握数学建模中的问题分析和模型假设、模型建立、模型求解和模型评价等基本步骤。
高一数学知识点总结--必修5
高中数学必修5知识点第一章:解三角形1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2c C R=;(正弦定理的变形经常用在有三角函数的等式中)③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B . 3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .4、余 定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C = 为直角三角形;②若222a b c +>,则90C < 为锐角三角形;③若222a b c +<,则90C > 为钝角三角形.第二章:数列1、数列:按照一定顺序排列着的一列数.2、数列的项:数列中的每一个数.3、有穷数列:项数有限的数列.4、无穷数列:项数无限的数列.5、递增数列:从第2项起,每一项都不小于它的前一项的数列.6、递减数列:从第2项起,每一项都不大于它的前一项的数列.7、常数列:各项相等的数列.8、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.9、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式. 10、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式.11、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差. 12、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项. 13、若等差数列{}n a 的首项是1a ,公差是d ,则()11n a a n d =+-.通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--;③11n a a d n -=-;④11n a a n d -=+;⑤n m a ad n m-=-. 14、若{}n a 是等差数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若{}n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =+;下角标成等差数列的项仍是等差数列;连续m 项和构成的数列成等差数列。
数学必修五知识点总结
数学必修五知识点总结一、函数的概念与性质1. 函数的定义- 函数的概念- 函数的表示方法:解析式、图象、表格- 函数的域与值域2. 函数的运算- 函数的四则运算- 复合函数- 反函数3. 函数的性质- 单调性- 奇偶性- 周期性- 极限与连续性二、三角函数1. 角的概念- 任意角- 弧度制与角度制的转换2. 三角函数的定义- 正弦、余弦、正切函数- 三角函数的图像与性质3. 三角恒等变换- 基本恒等式- 恒等变换的应用4. 解三角形- 正弦定理与余弦定理- 三角形的面积公式三、数列与数学归纳法1. 数列的概念- 数列的定义- 有穷数列与无穷数列2. 等差数列与等比数列- 等差数列的通项公式与求和公式 - 等比数列的通项公式与求和公式3. 数学归纳法- 数学归纳法的原理- 证明方法与步骤四、解析几何1. 平面直角坐标系- 坐标系的定义- 点的坐标与距离公式2. 直线与圆的方程- 直线的斜率与方程- 圆的方程3. 圆锥曲线- 椭圆、双曲线、抛物线的方程与性质五、概率与统计1. 随机事件与概率- 事件的概率定义- 条件概率与独立事件2. 随机变量及其分布- 离散型随机变量与连续型随机变量- 概率分布与期望值3. 统计量与抽样分布- 样本均值、方差与标准差- 抽样分布的概念4. 参数估计- 点估计与区间估计- 置信区间的计算请将以上内容复制到Word文档中,并根据需要进行编辑和格式化。
您可以添加具体的公式、图像、例题和解析来丰富文档内容。
记得在编辑时使用清晰和专业的语言风格,并确保文档的结构逻辑清晰且连贯。
必修五数学知识点总结
必修五数学知识点总结一、函数的概念与性质1. 函数的定义:一个从集合A到集合B的映射,记作f: A → B。
2. 函数的表示方法:解析式、表格、图象。
3. 函数的性质:单调性、奇偶性、周期性、有界性。
4. 函数的运算:和、差、积、商以及复合函数。
二、指数与对数函数1. 指数函数:形如y = a^x (a > 0, a ≠ 1)的函数。
2. 对数函数:形如y = log_a(x) (a > 0, a ≠ 1)的函数。
3. 指数与对数的关系:y = log_a(x) 与 x = a^y 互为反函数。
4. 指数函数的性质:单调性、特殊点、特殊值。
5. 对数函数的性质:单调性、特殊点、特殊值。
三、三角函数1. 三角函数的定义:正弦、余弦、正切等。
2. 三角函数的图象与性质:周期性、最值、单调区间。
3. 三角函数的和差公式、倍角公式、半角公式。
4. 三角函数的应用:解三角形问题、振动与波动问题。
四、数列与数学归纳法1. 数列的概念:按照一定顺序排列的一列数。
2. 等差数列与等比数列:定义、通项公式、求和公式。
3. 数列的极限:数列极限的定义、性质、计算方法。
4. 数学归纳法:证明方法、步骤、应用。
五、解析几何1. 平面直角坐标系:点的坐标、距离公式、中点公式。
2. 直线的方程:点斜式、两点式、一般式。
3. 圆的方程:标准式、一般式。
4. 圆锥曲线:椭圆、双曲线、抛物线的方程与性质。
六、概率与统计1. 随机事件与概率:事件的定义、概率的计算。
2. 条件概率与独立事件:条件概率公式、独立事件的概率。
3. 随机变量及其分布:离散型与连续型随机变量、概率分布。
4. 统计量:均值、方差、标准差、相关系数。
5. 抽样与估计:抽样方法、总体参数的估计。
七、微积分初步1. 导数的概念:函数在某一点的导数、左导数、右导数。
2. 导数的运算:和、差、积、商的导数、链式法则。
3. 函数的极值与最值:极值的定义、求导数确定极值。
数学必修五知识点总结10篇
数学必修五知识点总结数学必修五知识点总结10篇数学必修五知识点总结1一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性,(2) 元素的互异性,(3) 元素的无序性,3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1) 列举法:{a,b,c……}2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x?R| x-3>2} ,{x| x-3>2}3) 语言描述法:例:{不是直角三角形的三角形}4) Venn图:4、集合的分类:(1) 有限集含有有限个元素的集合(2) 无限集含有无限个元素的集合(3) 空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:① 任何一个集合是它本身的子集。
A?A②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A?B, B?C ,那么 A?C④ 如果A?B 同时 B?A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B 的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
(完整版)人教版高二数学必修5知识点归纳(最完整版).doc
现在的努力就是为了实现小时候吹下的牛逼——标必修五数学知识点归纳资料第一章 解三角形1、三角形的性质:①.A+B+C=,sin( A B) sin C , cos( A B) cosCA B2C sinA2 B cosC222②.在 ABC 中 , a b >c , a b < c ; A > Bsin A > sin B ,A > BcosA < cosB, a >bA >B ③.若 ABC 为锐角,则 A B > ,B+C >,A+C > ;222a 2b 2 >c 2 , b 2 c 2 > a 2 , a 2 + c 2 > b 22、正弦定理与余弦定理:①.正弦定理:abc 2R (2R 为 ABC 外接圆的直径 )sin Bsin Asin Ca 2R sin A 、b 2Rsin B 、c 2R sin C(边化角)sin Aa 、 sin Bb 、 sin Cc(角化边)2R2R 2R面积公式: S ABC1ab sin C1bc sin A1ac sin B222②. 余 弦 定 理 : a 2b 2c 2 2bc cos A、 b 2 a 2 c 22ac cos B 、c 2a 2b 22ab cosCcos A b 2 c 2 a 2 、 cos B a 2 c 2 b 2 、 cosCa 2b 2c 2 (角化边)2bc 2ac2ab补充:两角和与差的正弦、余弦和正切公式:⑴ coscos cos sin sin ;⑵ coscos cos sin sin ; ⑶ sinsin cos cos sin ;⑷ sinsin coscos sin ;⑸ tantan tan( tantantan1 tan tan);1 tantan现在的努力就是为了实现小时候吹下的牛逼——标⑹ tantan tan( tantantan1 tan tan).1 tan tan二倍角的正弦、余弦和正切公式:⑴ sin 2 2sin cos . 1 sin 2sin 2cos 22 sincos(sincos )2⑵ cos2cos 2sin 22cos 2 1 1 2sin 2升幂公式 1 cos2 cos 2 ,1 cos2 sin 222降幂公式 cos2cos2 1, sin 21 cos2 .223、常见的解题方法:(边化角或者角化边)第二章 数列1、数列的定义及数列的通项公式:①.a n( ) ,数列是定义域为 N 的函数 f (n) ,当 n 依次取 , , 时的一列函f n1 2 数值②. a n 的求法:i. 归纳法ii.a nS 1 , n 10 ,则 a n 不分段;若 S 00 ,则 a n 分段S n S n若 S 01, n 2iii. 若 a n 1pa nq ,则可设 a n 1 m p(a n m) 解得 m,得等比数列 a n miv.若 S nf (a n ) ,先求 a 1 ,再构造方程组 : S n f (a n )得到关于 a n 1 和 a n 的递推S n 1 f (a n 1 )关系式例如:2 a n 1S n 2a n 12a n 1 2a nS n 先求 a 1 ,再构造方程组:(下减上) a n 1Sn 12a n 1 12. 等差数列:① 定义: a n 1 a n = d (常数) , 证明数列是等差数列的重要工具。
高中数学必修5的知识点
2.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 3.解线性规划实际问题的步骤:
(1)将数据列成表格; ( 2)列出约束条件与目标函数; ( 3)根据求最值方法:①画:画可行域;②移:移
与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值;
( 4)验证。
两类主要的目标函数的几何意义 :
高中数学必修 5 知识点总结
(一)解三角形:
1、正弦定理:在
C 中, a 、 b 、 c 分别为角 、 、 C 的对边,,则有 a
b
c 2R
sin sin sin C
( R为
C 的外接圆的半径 )
2、正弦定理的变形公式:① a 2Rsin , b 2Rsin , c 2Rsin C ;
② sin
a , sin
ap aq Sn , S3n
S2 n 成等差数列
则 am an a p aq 3. Sn , S2n Sn , S3n
S2n 成等比
数列
(三)不等式
1、 a b 0 a b ; a b 0 a b ; a b 0 a b .
2、不等式的性质: ① a b b a ; ② a b, b c a c ; ③ a b a c b c ;
5、均值定理的应用:设 x 、 y 都为正数,则有
s2 ⑴若 x y s (和为定值) ,则当 x y 时,积 xy 取得最大值 .
4
⑵若 xy p (积为定值) ,则当 x y 时,和 x y 取得最小值 2 p .
注意:在应用的时候,必须注意“一正二定三等”三个条件同时成立。
高考试题来源: /zyk/gkst/
赠送以下资料
英语万能作文 (模板型) Along with the advance of the society more and more problems are brought to our
数学必修五知识点总结
数学必修五知识点总结1、数列概念①数列是一种特殊的函数。
其特殊性主要表现在其定义域和值域上。
数列可以看作一个定义域为正整数集N某或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a、列表法;b、图像法;c、解析法。
其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
等差数列1、等差数列通项公式an=a1+(n—1)dn=1时a1=S1n≥2时an=Sn—Sn—1an=kn+b(k,b为常数)推导过程:an=dn+a1—d令d=k,a1—d=b则得到an=kn+b2、等差中项由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。
这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷23、前n项和倒序相加法推导前n项和公式:Sn=a1+a2+a3+·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n—1)d]①Sn=an+an—1+an—2+······+a1=an+(an—d)+(an—2d)+······+[an—(n—1)d]②由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n 个)=n(a1+an)∴Sn=n(a1+an)÷2等差数列的前n项和等于首末两项的和与项数乘积的一半:Sn=n(a1+an)÷2=na1+n(n—1)d÷2Sn=dn2÷2+n(a1—d÷2)亦可得a1=2sn÷n—an=[sn—n(n—1)d÷2]÷nan=2sn÷n—a1有趣的是S2n—1=(2n—1)an,S2n+1=(2n+1)an+14、等差数列性质一、任意两项am,an的关系为:an=am+(n—m)d它可以看作等差数列广义的通项公式。
高中数学必修5知识点总结归纳8篇
高中数学必修5知识点总结归纳8篇篇1一、引言高中数学必修5是整个数学学科体系中重要的一部分,它涵盖了代数、几何、三角学等多个领域的知识点。
本文将对该课程的核心知识点进行系统的总结归纳,以便学生更好地掌握数学基础知识,提高数学应用能力。
二、代数部分1. 集合与函数:集合的运算、集合的表示方法、函数的定义、函数的性质、函数的图像等。
2. 不等式:不等式的性质、一元二次不等式的解法、绝对值不等式的解法等。
3. 数列与极限:数列的定义、等差数列与等比数列、数列的极限等。
三、几何部分1. 平面解析几何:直线的方程、圆的方程、二次曲线的方程及其性质等。
2. 立体几何:空间向量、空间角、距离公式、几何体的表面积与体积等。
四、三角学部分1. 三角函数:三角函数的定义、性质、图像,三角函数的和差公式、倍角公式等。
2. 解三角形:正弦定理、余弦定理、三角形的面积公式等。
五、知识点详解1. 代数式的化简与求值:掌握代数式的运算规则,能够对方程进行化简和求值。
2. 不等式的解法:掌握一元二次不等式和绝对值不等式的解法,能够解决实际问题中的不等式问题。
3. 数列的性质与应用:了解数列的定义、性质,掌握等差数列与等比数列的通项公式和求和公式,能够应用数列知识解决实际问题。
4. 平面解析几何:掌握直线与二次曲线的方程,能够求解与几何图形相关的问题。
5. 立体几何的体积与表面积:熟悉几何体的体积与表面积公式,能够计算不规则几何体的体积与表面积。
6. 三角函数的性质与应用:掌握三角函数的性质,如周期性、奇偶性,熟悉三角函数的和差公式和倍角公式,能够应用三角函数解决实际问题。
7. 解三角形的方法:掌握正弦定理和余弦定理,能够解决与三角形相关的问题,如三角形的角度、边长等。
六、学习方法与建议1. 掌握基础知识:牢固掌握必修5中的基本概念和性质,这是解题的基础。
2. 多做练习:通过大量的练习来巩固知识点,提高解题能力。
3. 归纳总结:对学过的知识点进行总结归纳,形成知识体系和框架。
高中数学必修5知识点总结(史上最全版)
高中数学必修5知识点第一章 解三角形1、三角形三角关系:A+B+C=180°;C=180°-(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sincos ,cos sin ,tan cot 222222A B C A B C A B C+++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C ===A B .5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))7、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.8、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.(余弦定理主要解决的问题:1.已知两边和夹角,求其余的量。
2.已知三边求角) 9、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
高二数学必修五知识点总结(最新6篇)
高二数学必修五知识点总结(最新6篇)高二数学必修五知识点总结篇一【不等关系及不等式】一、不等关系及不等式知识点1、不等式的定义在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式。
2、比较两个实数的大小两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba3、不等式的性质(1)对称性:ab(2)传递性:ab,ba(3)可加性:aa+cb+c,ab,ca+c(4)可乘性:ab,cacb0,c0bd;(5)可乘方:a0bn(nN,n(6)可开方:a0(nN,n2)。
注意:一个技巧作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方。
一种方法待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围。
高二年级数学必修五知识点总结篇二空间直线与直线之间的位置关系(1)异面直线定义:不同在任何一个平面内的两条直线(2)异面直线性质:既不平行,又不相交。
(3)异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。
两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。
(4)求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。
B、证明作出的角即为所求角C、利用三角形来求角(5)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。
(6)空间直线与平面之间的位置关系直线在平面内——有无数个公共点。
三种位置关系的符号表示:aαa∩α=Aaα(7)平面与平面之间的位置关系:平行——没有公共点;αβ相交——有一条公共直线。
高一数学必修5知识点
高一数学必修5知识点一、函数的概念与性质1. 函数的定义:描述变量间依赖关系的一种数学表达方式。
2. 函数的表示法:符号f(x)表示函数,x为自变量,f(x)为因变量。
3. 函数的性质:包括单调性、奇偶性、周期性、有界性等。
二、基本初等函数1. 幂函数:形如y = x^n的函数,n为实数。
2. 指数函数:形如y = a^x的函数,a>0且a≠1。
3. 对数函数:形如y = log_a(x)的函数,a>0且a≠1。
4. 三角函数:正弦、余弦、正切等函数。
三、函数的图像与变换1. 函数图像的绘制:通过坐标系中的点来表示函数。
2. 平移变换:函数图像沿x轴或y轴移动。
3. 伸缩变换:函数图像在x轴或y轴方向上伸缩。
4. 对称变换:函数图像关于x轴、y轴或原点对称。
四、函数的应用1. 实际问题的函数建模:将实际问题转化为函数关系进行求解。
2. 函数的最值问题:求解函数的最大值和最小值。
3. 函数的极值问题:研究函数在特定点的局部最大值或最小值。
五、三角函数的图像与性质1. 三角函数的周期性:正弦、余弦函数的周期为2π。
2. 三角函数的奇偶性:正弦函数为奇函数,余弦函数为偶函数。
3. 三角函数的和差化积:将和差形式的三角函数表达式转化为乘积形式。
4. 三角函数的积化和差:将乘积形式的三角函数表达式转化为和差形式。
六、三角恒等变换1. 基本三角恒等式:包括正弦和余弦的平方和公式等。
2. 双角公式:描述角度加倍或减半时三角函数的关系。
3. 半角公式:描述角度减半时三角函数的关系。
4. 和差公式:描述两个角度和或差时三角函数的关系。
七、解三角形1. 三角形的边角关系:利用正弦定理和余弦定理求解三角形的边和角。
2. 三角形的面积公式:根据三角形的边长或角度计算面积。
3. 三角形的判断:根据边长或角度判断三角形的形状(如直角、等腰等)。
八、数列的概念与简单表示1. 数列的定义:按照一定顺序排列的一列数。
(完整版)高中数学必修五知识点总结【经典】
《必修五知识点总结》第一章:解三角形知识重点一、正弦定理和余弦定理1C中,a b c、、C的对边,,则有a b c2R、正弦定理:在、、分别为角sin sin sin C ( R为 C 的外接圆的半径)正弦定理的变形公式:① a2Rsin, b2R sin , c2Rsin C ;② sin a, sin b, sin Cc;2 R2R 2 R③a : b : c sin :sin :sin C ;2、余弦定理:在 C 中,有a2b2c22bc cos,推论:cos Ab2a2c22ac cos B ,推论:cos Bc2a2b22ab cosC ,推论: cosC3、三角形面积公式:S C 1bc sin1ab sin C1ac sin222b2c2a22bca 2c2b22aca2b2c22ab.二、解三角形办理三角形问题,一定联合三角形全等的判断定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种状况,依据已知条件判断解的状况,并能正确求解1、三角形中的边角关系(1)三角形内角和等于 180°;(2)三角形中随意两边之和大于第三边,随意两边之差小于第三边;(3)三角形中大边对大角,小边对小角;- 1 -( 4)正弦定理中, a=2 R·sinA,b=2R·sinB,c=2R·sinC,此中 R 是△ ABC 外接圆半径 .(5)在余弦定理中 :2bccosA= b 2 c2 a2 .( 6)三角形的面积公式有 :S= 1ah,S=1absinC=1bcsinA=1acsinB ,S= P( P a) (P b)( P c)其2222中, h 是 BC 边上高, P 是半周长 .2、利用正、余弦定理及三角形面积公式等解随意三角形( 1)已知两角及一边,求其余边角,常采纳正弦定理 .( 2)已知两边及此中一边的对角,求另一边的对角,常采纳正弦定理.( 3)已知三边,求三个角,常采纳余弦定理.( 4)已知两边和它们的夹角,求第三边和其余两个角,常采纳( 5)已知两边和此中一边的对角,求第三边和其余两个角,常采纳余弦定理.正弦定理.3、利用正、余弦定理判断三角形的形状常用方法是:①化边为角;②化角为边.4、三角形中的三角变换( 1)角的变换由于在△ABC 中,A+B+C=π,因此sin(A+B)=sinC ;cos(A+B)= -cosC;tan(A+B)= -tanC。
高中数学必修5知识点总结
高中数学必修5知识点总结中国权威高考信息资源门户高中数学必修5知识点总结(一)解三角形:1、正弦定理:在C中,a、b、c分别为角、、C的对边,,则有aR为C的外接圆的半径2、正弦定理的变形公式:①a2Rin,b2Rin,c2RinC;②ininbc2RininCab,in,inCc;③a:b:cin:in:inC;2R2R2R2223、三角形面积公式:SC1bcin1abinC1acin.2222224、余弦定理:在C中,有abc2bcco,推论:cobca2bc(二)数列:1.数列的有关概念:(1)数列:按照一定次序排列的一列数。
数列是有序的。
数列是定义在自然数N*或它的有限子集{1,2,3,,n}上的函数。
(2)通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。
如:an2n21。
(3)递推公式:已知数列{an}的第1项(或前几项),且任一项an与他的前一项an-1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。
如:a11,a22,anan1an2n2。
2.数列的表示方法:(1)列举法:如1,3,5,7,9,…(2)图象法:用(n,an)孤立点表示。
(3)解析法:用通项公式表示。
(4)递推法:用递推公式表示。
3.数列的分类:常数列:an2有穷数列n按项数递增数列:an2n1,an2按单调性无穷数列递减数列:ann21摆动数列:a1n2nn4.数列{an}及前n项和之间的关系:S1,n1Sna1a2a3ananSnSn1,n25.等差数列与等比数列对比小结:等差数列一、定义等比数列anqn2an1anan1dn21.ana1n1d1.ana1qn1二、公式anamnmd,nm2.Snanamqnm,nm2.nn1na1anna1d中国权威高考信息资源门户na1q1Sna11qnaaqn1q11q1q1.a,b,c成等差2bac,称b 为a与c的等差中项1.a,b,c成等比b2ac,称b为a与c的等比中项三、2.若mn、,2.若mn、,q*)n、anaananmd;②a1ann1d;③d⑤danamnmana1n1;④nana1d1;.14、若an是等差数列,且mn、n、ana项和构成的数列成等差数列。
高中数学必修五知识点总结整理【经典最全版】.docx
《必修五知识点整理》第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1、正眩定理:在一个三角形屮,各边和它所对角的正眩的比相等,即一纟一=-^一=亠- sin A sin B sinC 正弦定理推论:①~^— = ~^— = ~^ = 2Rsin A sin B sin C®a = 2Rsm A, b = 2Rsin B, c = 2/?sinC @a:b:c = sinA:sinB: sin C ⑤ -------------------sin A sin B sin C sin A + sin B + sinC2、解三角形的概念:一般地,我们把三角形的各个角即他们所对的边叫做三角形的元素。
任何一个三角形都有六个元素:三条边(a,b,c )和三个内角(A,B,C ).在三角形中,己知三 角形的几个元素求其他元素的过程叫做解三角形。
3、正眩泄理确定三角形解的情况(/?为三角形外接圆的半径)a sin A h sin B a sin A®~ =-—,-=-—,-=-—b sin Bc sin C c sinC b c a+b+c4. 任意三角形而积公式为:=—he sin A = — acsin B = —ah sinC =2 2 21.1.2余弦定理5、余弦定理:三角形屮任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角 的余弦的积的两倍,即a 2 =b 2 +c 2 - 2bccos A , b 2 = a 2 + c 2 一 2ca cos B, c 2 = a 2 +b 2- lab cos C .6、不常用的三角函数值15° 75° 105° 165°sin erV6-V2 V6+V2 V6 + V2V6 — V24 4 4 4 COS (7V6 + V2V6-V2 —V6 + V2V6+V2 4 4 4 4 tana2-V32 + V3-2-V3-2 + V31.2应用举例(浏览即可)1、 方位角:如图1,从正北方向顺时针转到目标方向线的水平角。
数学必修5重点知识点总结
数学必修5重点知识点总结一、集合和函数1. 集合的基本概念集合是指具有一定共同性质的个体的总体。
集合可以用大写字母A、B、C等来表示,其中的元素用小写字母a、b、c等来表示。
集合中的元素可以是数字、字母、图形、颜色等具体的对象。
2. 集合的运算① 并集:集合A和集合B的并集,表示为A∪B,表示A和B中所有的元素的集合。
② 交集:集合A和集合B的交集,表示为A∩B,表示A和B共有的元素的集合。
③ 补集:集合A的补集,表示为A',表示全集中不属于A的元素的集合。
④ 差集:集合A和集合B的差集,表示为A-B,表示A中有而B中没有的元素的集合。
3. 函数的概念和表示函数是一个对应关系,对于每一个自变量,对应一个因变量。
用f(x)表示,其中f是函数名称,x是自变量,f(x)是因变量。
4. 函数的性质① 单调性:函数的单调性是指函数在定义域上的增减规律。
② 奇偶性:函数的奇偶性是指函数在定义域上的对称性。
③ 周期性:函数的周期性是指函数的值在一定的长度内重复出现的规律性。
④ 初等函数的基本性质:包括平移、伸缩和翻转等基本性质。
二、三角函数1. 角度和弧度角度是用度数来表示角的大小,而弧度是用弧长与半径的比值来表示角的大小,用π来表示。
因此,1弧度等于180/π度。
2. 三角函数的基本性质① 正弦函数:sinθ = y/r,其中θ是角度,y是对边长度,r是斜边长度。
② 余弦函数:cosθ = x/r,其中θ是角度,x是邻边长度,r是斜边长度。
③ 正切函数:tanθ = y/x,其中θ是角度,y是对边长度,x是邻边长度。
3. 三角函数的图像和性质① 正弦函数的图像是一条周期函数,呈现上下波动的波形。
它的最大值为1,最小值为-1,周期为2π。
② 余弦函数的图像是一条周期函数,呈现上下波动的波形。
它的最大值为1,最小值为-1,周期为2π。
③ 正切函数的图像是一条周期函数,呈现上下波动的波形。
它在每个周期内有无数个极值点。
数学必修五知识点归纳
数学必修五知识点归纳一、函数与导数1. 函数的定义与性质:函数的自变量、函数值、定义域、值域、奇偶性、单调性。
2. 导数的定义:导数的几何意义、代数意义、物理意义以及求导公式。
3. 导数的运算:和、差、积、商的导数运算法则。
4. 泰勒公式:泰勒公式的推导、泰勒公式的应用。
5. 高阶导数:高阶导数的定义、求导及其物理应用。
6. 函数的极值:极值的概念、求极值及其物理应用等。
二、三角函数1. 弧度制:度数制与弧度制的关系、弧度与角度之间的换算关系。
2. 基本三角函数:正弦函数、余弦函数、正切函数的定义、性质和图像。
3. 周期性与对称性:三角函数的周期、奇偶性和对称性、三角函数的正负性。
4. 三角函数的运算:三角函数的和、差、积、商等基本公式及其应用。
5. 反三角函数:反正弦函数、反余弦函数、反正切函数等的定义、性质及其应用。
三、平面向量1. 向量的概念:向量的定义、向量的长度、方向和单位向量。
2. 向量的运算:向量的加减及其物理意义、数量积和叉积的定义及其物理意义。
3. 向量的坐标表示:向量的坐标、向量的模长公式、向量的夹角及其余弦公式。
4. 平面向量的几何应用:向量表示平面图形、平面向量的线性运动及其相关问题、平面向量与解析几何的应用。
四、立体几何1. 立体几何的基本概念:立体、平面、曲线、点、直线、角、面等基本概念。
2. 立体图形的计算:立体图形的表面积、体积和重心的计算方法。
3. 空间向量的几何应用:向量的共面、共线、垂直等相关问题,空间向量与解析几何之间的关系。
4. 空间几何问题的解决技巧:立体几何问题的转化、对称性、相似性等几何思想的运用。
五、概率与统计1. 随机事件与概率:随机事件及其分类、概率的概念、基本概率公式。
2. 条件概率:相互独立事件、条件概率及其公式、事件的相互独立性及其判定。
3. 期望与方差:随机变量、离散型随机变量、连续型随机变量、期望及其性质、方差及其意义。
4. 统计分析:样本与总体、基本统计学方法、参数与统计量等基本概念,统计分类、频数、频率、直方图、分布图等基本统计图的绘制与分析。
高中数学必修5知识点总结(精品)
必修5知识点总结1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2c C R =;③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b cC C++===A +B +A B .3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac+-B =,222cos 2a b c C ab +-=.11、递增数列:12、递减数列: 13、常数列:14、摆动数列:17、等差数列符号表示:1n n a a d +-=。
注:看数列是不是等差数列有以下三种方法: ① ),2(1为常数d n d a a n n ≥=--②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数 18、若2a cb +=,则称b 为a 与c 的等差中项. 19、若等差数列{}n a 的首项是1a ,公差是d ,则()11naa n d =+-.20、通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--;③11n a a d n -=-;④11n a a n d-=+;⑤n m a a d n m -=-.21、若{}n a 是等差数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若{}n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =+.22、等差数列的前n 项和的公式:①()12n n n a a S +=;②()112n n n S na d -=+.24、等比数列,符号表示:1n na q a +=(注:①等比数列中不会出现值为0的项;②同号位上的值同号)注:看数列是不是等比数列有以下四种方法:①)0,,2(1≠≥=-且为常数q n q a a n n ②112-+⋅=n n n a a a (2≥n ,011≠-+n n n a a a )③n n cq a =(q c ,为非零常数).④正数列{n a }成等比的充要条件是数列{n x a log }(1 x )成等比数列. 25、则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项. 26、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=.27、通项公式的变形:①n mn m a a q -=;②()11n na a q --=;③11n na q a -=;④n m n ma q a -=.28、若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =⋅.29、等比数列{}n a 的前n 项和的公式:①()()()11111111n n n na q S a q a a q q q q =⎧⎪=-⎨-=≠⎪--⎩.30、对任意的数列{n a }的前n 项和n S 与通项n a 的关系:⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn附:数列求和的常用方法1. 公式法:适用于等差、等比数列或可转化为等差、等比数列的数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修5知识点总结1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2c C R =;③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b cC C++===A +B +A B . (正弦定理主要用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。
2、已知两角和一边,求其余的量。
)⑤对于已知两边和其中一边所对的角的题型要注意解的情况。
(一解、两解、无解三中情况) 如:在三角形ABC 中,已知a 、b 、A (A 为锐角)求B 。
具体的做法是:数形结合思想 画出图:法一:把a 扰着C 点旋转,看所得轨迹以AD 有无交点:当无交点则B 无解、 当有一个交点则B 有一解、 当有两个交点则B 有两个解。
法二:是算出CD=bsinA,看a 的情况: 当a<bsinA ,则B无解 当bsinA<a ≤b,则B 有两解 当a=bsinA 或a>b 时,B 有一解注:当A 为钝角或是直角时以此类推既可。
3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B . 4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac+-B =,222cos 2a b c C ab +-=.(余弦定理主要解决的问题:1、已知两边和夹角,求其余的量。
2、已知三边求角)6、如何判断三角形的形状:设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =; ②若222a b c +>,则90C <;③若222a b c +<,则90C >. 正余弦定理的综合应用:如图所示:隔河看两目标A 、B,C 、D 两点, 并测得∠ACB=75O, ∠BCD=45O, ∠ADC=30O,∠ADB=45O(A 、B 、C 、D 在同一平面内),求两目标A 、B 之间的距离。
本题解答过程略附:三角形的五个“心”; 重心:三角形三条中线交点.外心:三角形三边垂直平分线相交于一点. 内心:三角形三内角的平分线相交于一点. 垂心:三角形三边上的高相交于一点. 7、数列:按照一定顺序排列着的一列数. 8、数列的项:数列中的每一个数. 9、有穷数列:项数有限的数列. 10、无穷数列:项数无限的数列.11、递增数列:从第2项起,每一项都不小于它的前一项的数列(即:a n+1>a n ). 12、递减数列:从第2项起,每一项都不大于它的前一项的数列(即:a n+1<a n ). 13、常数列:各项相等的数列(即:a n+1=a n ).14、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 15、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式.16、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式.17、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.符号表示:1n n a a d +-=。
注:看数列是不是等差数列有以下三种方法: ① ),2(1为常数d n d a a n n ≥=--②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数18、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项. 19、若等差数列{}n a 的首项是1a ,公差是d ,则()11naa n d =+-.20、通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--;③11n a a d n -=-;④11n a a n d-=+;⑤n m a a d n m -=-.21、若{}n a 是等差数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若{}n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =+. 22、等差数列的前n 项和的公式:①()12n n n a a S +=;②()112n n n S na d -=+.③12n n s a a a =+++23、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21nn n S n a a +=+,且S S nd -=偶奇,1n n S aS a +=奇偶. ②若项数为()*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶). 24、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.符号表示:1n na q a +=(注:①等比数列中不会出现值为0的项;②同号位上的值同号)注:看数列是不是等比数列有以下四种方法:①)0,,2(1≠≥=-且为常数q n q a a n n ②112-+⋅=n n na a a (2≥n ,011≠-+n n n a a a ) ③n n cq a =(q c ,为非零常数).④正数列{n a }成等比的充要条件是数列{n x a log }(1 x )成等比数列.25、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.(注:由2G ab =不能得出a ,G ,b 成等比,由a ,G ,b ⇒2G ab =)26、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=.27、通项公式的变形:①n m n m a a q -=;②()11n na a q --=;③11n na q a -=;④n m n m a q a -=.28、若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =⋅.29、等比数列{}n a 的前n 项和的公式:①()()()11111111n n n na q S a q a a q q qq =⎧⎪=-⎨-=≠⎪--⎩.②12nn s a a a =+++30、对任意的数列{n a }的前n 项和n S 与通项n a 的关系:⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn[注]: ①()()d a nd d n a a n -+=-+=111(d 可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若d 不为0,则是等差数列充分条件).②等差{n a }前n 项和n d a n d Bn An S n ⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛=+=22122 →2d可以为零也可不为零→为等差的充要条件→若d 为零,则是等差数列的充分条件;若d 不为零,则是等差数列的充分条件.③非零..常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列) 附:几种常见的数列的思想方法:⑴等差数列的前n 项和为n S ,在0 d 时,有最大值. 如何确定使n S 取最大值时的n 值,有两种方法: 一是求使0,01 +≥n n a a ,成立的n 值;二是由n da n d S n )2(212-+=利用二次函数的性质求n 的值. 数列通项公式、求和公式与函数对应关系如下: 数列 通项公式对应函数等差数列(时为一次函数)等比数列(指数型函数)数列 前n 项和公式 对应函数等差数列(时为二次函数)等比数列(指数型函数)我们用函数的观点揭开了数列神秘的“面纱”,将数列的通项公式以及前n 项和看成是关于n 的函数,为我们解决数列有关问题提供了非常有益的启示。
例题:1、等差数列中,,则 .分析:因为是等差数列,所以是关于n 的一次函数,一次函数图像是一条直线,则(n,m ),(m,n),(m+n,)三点共线,所以利用每两点形成直线斜率相等,即,得=0(图像如上),这里利用等差数列通项公式与一次函数的对应关系,并结合图像,直观、简洁。
例题:2、等差数列中,,前n 项和为,若,n 为何值时最大?分析:等差数列前n 项和可以看成关于n 的二次函数=,是抛物线=上的离散点,根据题意,,则因为欲求最大值,故其对应二次函数图像开口向下,并且对称轴为,即当时,最大。
例题:3递增数列,对任意正整数n ,恒成立,求分析:构造一次函数,由数列递增得到:对于一切恒成立,即恒成立,所以对一切恒成立,设,则只需求出的最大值即可,显然有最大值,所以的取值范围是:。
构造二次函数,看成函数,它的定义域是,因为是递增数列,即函数为递增函数,单调增区间为,抛物线对称轴,因为函数f(x)为离散函数,要函数单调递增,就看动轴与已知区间的位置。
从对应图像上看,对称轴在的左侧也可以(如图),因为此时B 点比A 点高。
于是,,得⑵如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前n 项和可依照等比数列前n 项和的推倒导方法:错位相减求和. 例如:, (2)1)12,...(413,211n n -⋅ ⑶两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差21d d ,的最小公倍数.2. 判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n ≥2的任意自然数,验证)(11---n nn n a a a a 为同一常数。
(2)通项公式法。
(3)中项公式法:验证212-++=n n n a a a N n a a a n n n ∈=++)(221都成立。