动量守恒定律综合练习
动量守恒定律练习题
动量守恒定律练习题1.把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,如下说法正确的答案是[ ]A .枪和子弹组成的系统动量守恒B .枪和车组成的系统动量守恒C .子弹、枪、小车这三者组成的系统动量守恒D .子弹的动量变化与枪和车的动量变化一样2.两辆质量一样的小车A 和B ,置于光滑水平面上,一人站在A 车上,两车均静止.假设这个人从A 车跳到B 车上,接着又跳回A 车,仍与A 车保持相对静止,如此此时A 车的速率〔 〕A .等于零B .小于B 车的速率C .大于B 车的速率D .等于B 车的速率3.如下列图,位于光滑水平桌面上的小滑块P 和Q 都可视作质点,质量相等。
Q 与轻质弹簧相连。
设Q 静止,P 以某一初速度向Q 运动并与弹簧发生碰撞。
在整个碰撞过程中,弹簧具有的最大弹性势能等于( ) A P 的初动能 B P 的初动能的1/2C P 的初动能的1/3D P 的初动能的1/44.如下列图,光滑地面上停有一辆带弧形槽的小车,车上有一木块自A 处由静止下滑,最后停在B 处.如此此后小车将 ( )A .向左运动B .向右运动C .仍然不动D .条件不足,无法确定小车的运动5.放在光滑水平面上的A. B 两小车中间夹了一压缩轻质弹簧,用两手分别控制小车处于静止状态,下面说法正确的答案是〔〕A 、两个手同时放开后,两车的总动量为零;B 、先放开右手,后放开左手 ,两 车的总动量向右;C 、先放开左手,后放开右手,两 车的总动量向右;D 、两手同时放开,两车总动量守恒;两手放开有先后,两 车总动量不守恒。
6.如下列图,木块A 静置于光滑的水平面上,其曲面局部MN 光滑,水平局部NP 是粗糙的,现有一物体B 自M 点由静止下滑,设NP 足够长,如此以下表示正确的答案是〔〕A. A 、B 最终以同一速度〔不为零〕运动B. A 、B 最终速度均为零C. A 物体先做加速运动,后做减速运动D. A 物体先做加速运动,后做匀速运动7.如图示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追与并发生相碰后速度分别Q P v为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律.8.两块厚度一样的木块A 和B ,并列紧靠着放在光滑的水平面上,其质量分别为m A =2.0kg ,m B =0.90kg .它们的下底面光滑,上外表粗糙.另有质量m C =0.10kg 的铅块C(其长度可略去不计)以v C =10m/s 的速度恰好水平地滑到A 的上外表(如下列图),由于摩擦,铅块最后停在本块B 上,测得B 、C 的共同速度为v =0.50m/s ,求木块A 的速度和铅块C 离开A 时的速度.9.质量为M 的小船以速度V 0行驶,船上有两个质量皆为m 的小孩a 和b ,分别静止站在船头和船尾. 现小孩a 沿水平方向以速率v 〔相对于静止水面〕向前跃入水中,然后小孩b 沿水平方向以同一速率v 〔相对于静止水面〕向后跃入水中. 求小孩b 跃出后小船的速度.10.图中,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。
动量-动量守恒定律专题练习(含答案)
动量-动量守恒定律专题练习(含答案)动量 动量守恒定律一、动量和冲量1、关于物体的动量和动能,下列说法中正确的是:A 、一物体的动量不变,其动能一定不变B 、一物体的动能不变,其动量一定不变C 、两物体的动量相等,其动能一定相等D 、两物体的动能相等,其动量一定相等2、两个具有相等动量的物体A 、B ,质量分别为m A 和m B ,且m A >m B ,比较它们的动能,则:A 、B 的动能较大 B 、A 的动能较大C 、动能相等 D 、不能确定3、恒力F 作用在质量为m 的物体上,如图所示,由于地面对物体的摩擦力较大,没有被拉动,则经时间t ,下列说法正确的是:A 、拉力F 对物体的冲量大小为零;B 、拉力F 对物体的冲量大小为Ft ;C 、拉力F 对物体的冲量大小是Ftcosθ;D 、合力对物体的冲量大小为零。
F4、如图所示,PQS 是固定于竖直平面内的光滑的14圆周轨道,圆心O 在S 的正上方,在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑。
以下说法正确的是 A 、a 比b 先到达S ,它们在S 点的动量不相等B 、a 与b 同时到达S ,它们在S 点的动量不相等C 、a 比b 先到达S ,它们在S 点的动量相等D 、b 比a 先到达S ,它们在S 点的动量不相等二、动量守恒定律1、一炮艇总质量为M ,以速度v 0匀速行驶,从船上以相对海岸的水平速度v 沿前进方向射出一质量为m 的炮弹,发射炮弹后艇的速度为v /,若不计水的阻力,则下列各关系式中正确的是 。
A 、'0()Mv M m v mv =-+B 、'00()()MvM m v m v v =-++ C 、''0()()Mv M m v m v v =-++ D 、'0Mv Mv mv =+2、在高速公路上发生一起交通事故,一辆质量为1500kg 向南行驶的长途客车迎面撞上了一辆质量为3000kg 向北行驶的卡车,碰后两车接在一起,并向南O P S Q5、光滑的水平面上有两个小球M和N,它们沿同一直线相向运动,M球的速率为5m/s,N球的速率为2m/s,正碰后沿各自原来的反方向而远离,M球的速率变为2m/s,N球的速率变为3m/s,则M、N两球的质量之比为A、3∶1B、1∶3C、3∶5D、5∶76、如图所示,一个木箱原来静止在光滑水平面上,都具有一定的质量。
动量守恒定律练习题及答案
动量守恒定律练习一、选择题1、关于系统动量守恒正确的说法是:A.只要系统所受的合外力的冲量为零,系统动量就守恒B.只要系统内有摩擦力,动量就不可能守恒C.系统所受合外力不为零,其动量一定不守恒,但有可能在某一方向上守恒D.各物体动量的增量的矢量和一定为零2、ab两球在光滑的水平面上沿同一直线发生正碰,作用前动量Pa=10kgm/s,Pb=0,碰撞过程中,动量变化△P=-20kgm/s,则作用后Pb为:A.-20 kgm/s B.-10kgm/s C.20kgm /s D.10kgm/s3、两物体ma=2mb,中间有一压缩弹簧,放在光滑的水平面上,现由静止同时放开后一小段时间内:A.a的速率是b的一半B.a的动量大C.a的受力大D.系统总动量为零4、质量为m的子弹水平飞行击穿一块原静止在光滑水平面上质量为M的木块,在子弹穿透木块的过程中:A.m和M所受的冲量相等B.子弹和木块的速度的变化量相等C.子弹和木块的动量变化量大小相等D.子弹和木块作为系统的总动量守恒5、1kg的物体在距地面高5m处自由下落,落在正以5m /s沿光滑水平面匀速前进的砂车中,砂车质量为4kg,则当物体与车相对静止后,车速为:A.3m/s B.4m/s C.5m/s D.6m /s6、质量为m的小球A以速度v与质量为3m的静止小球B发生正碰后以v/2的速度被反弹回,则正碰后B球的速度大小是:A、v/6B、2vC、v/2 D、v/37、m的M碰撞前后的s-t图如图所示,由图可知:A.m:M=1: 3 B.m:M=3:1C.m:M=l:1 D、m:M=l:28、质量为m的人站在长为L的船M一端,系统原来静止。
当人从船一端走到另一端过程中,不计水的阻力A.人速度大,船后退的速度也大B.人突然停止,船也突然停止C.人突然停止时,船由于惯性仍在运动D.人从一端走到另一端时,船后退了mL/(M+m)9、如图所示,A、B两物体彼此接触静止于光滑的水平桌面上,物体A的上表面是半径为R的光滑圆形轨道,物体C由静止开始从A上圆形轨道的右侧最高点下滑,则有:A.A和B不会出现分离现象B.当C第一次滑到圆弧最低点时,A和B开始分离C.A将会在桌面左边滑出D.A不会在桌面上滑出10、如图所示,A、B两质量相等的物体静止在平板小车C上,A、B之间有一根被压缩的弹簧,A、B与平板车的上表面间的滑动摩擦力之比为3:2,地面光滑,当压缩弹簧突然释放后,则:A.A、B系统动量守恒B.小车向左运动C.A、B、C系统动量守恒D.小车向右运动二、填空题11、质量为m=70kg的人从质量为M=140kg的小船船头走到船尾。
动量守恒定律的综合应用练习及答案
1.如图所示,以质量m=1kg 的小物块(可视为质点),放置在质量为M=4kg 的长木板,左侧长木板放置在光滑的水平地面上,初始时长木板与木块一起,以水平速度v ₀=2m/s 向左匀速运动。
在长木板的左侧上方固定着一个障碍物A ,当物块运动到障碍物A 处时与A 发生弹性碰撞(碰撞时间极短,无机械能损失),而长木板可继续向左运动,重力加速度g=10m/s ²。
(1)设长木板足够长,求物块与障碍物第1次碰撞后,物块与长木板速度相同时的共同速率 1.2m/s(2)设长木板足够长,物块与障碍物发生第1次碰撞后,物块儿向右运动能到达的最大距离,s=0.4m ,求物块与长木板间的动摩擦因数以及此过程中长木板运动的加速度的大小.1.25m/s2(3)要使物块不会从长木板上滑落,长木板至少为多长?2m2.如图所示为一根直杆弯曲成斜面和平面连接在一起的轨道,转折点为C,斜面部分倾角为30度,平面部分足够长,滑块A,B 放在斜面上,开始时A,B 之间的距离为1米,B 与C 的距离为0.6米,现将A B 同时由静止释放.已知A 、B 与轨道的动摩擦因数分别为√3/5和√3/2 ,A 、B 质量均为m ,g 取10m/s²,设最大静摩擦力等于滑动摩擦力,A 、B 发生碰撞时为弹性碰撞。
物体A,B 可以看作是质点,不计在斜面与平面转弯处的机械能损失,则(1)经过多长时间滑块A,B 第1次发生碰撞. 1s(2)滑块B 停在水平轨道上的位置与C 点儿的距离是多少?m 1033.如图所示,光滑的轨道固定在竖直平面内,其O 点左边为水平轨道,O 点右边的曲面轨道高度h 等于0.45米,左右两段轨道在O 点平滑连接.质量m=0.10kg 的小滑块a 由静止开始从曲面轨道的顶端沿轨道下滑,到达水平段后与处于静止状态的质量M=0.30kg 的小滑块b 发生碰撞,碰撞后现小滑块a 恰好停止运动,取重力加速度g=10m/s²,求(1)小滑块a 通过O 点时的速度大小3m/s (2)碰撞后小滑块b 的速度大小1m/s(3)碰撞后碰撞过程中小滑块a 、b 组成的系统损失的机械能。
动量守恒定律练习题及答案
一、选择题(每小题中至少有一个选项是正确的)1.在下列几种现象中,动量守恒的有( )A .原来静止在光滑水平面上的车,从水平方向跳上一个人,人车为一系统B .运动员将铅球从肩窝开始加速推出,以运动员和球为一系统C .从高空自由落下的重物落在静止于地面上的车厢中,以重物和车厢为一系统D .光滑水平面上放一斜面,斜面光滑,一个物体沿斜面滑下,以重物和斜面为一系统2.两物体组成的系统总动量守恒,这个系统中( )A .一个物体增加的速度等于另一个物体减少的速度B .一物体受的冲量与另一物体所受冲量相同C .两个物体的动量变化总是大小相等,方向相反D .系统总动量的变化为零3.砂子总质量为M 的小车,在光滑水平地面上匀速运动,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为 ( ) A .v 0 B .m M Mv -0 A .m M mv -0 A .M v m M 0)(-4.A 、B 两个相互作用的物体,在相互作用的过程中合外力为0,则下述说法中正确的是( )A .A 的动量变大,B 的动量一定变大 B .A 的动量变大,B 的动量一定变小C .A 与B 的动量变化相等D .A 与B 受到的冲量大小相等5.把一支枪水平固定在小车上,小车放在光滑的水平地面上,枪发射子弹时,关于枪、子弹、车的下列说法正确的有( )A. 枪和子弹组成的系统动量守恒B.枪和车组成的系统动量守恒C .枪、弹、车组成的系统动量守恒D .若忽略不计弹和枪筒之间的摩擦,枪、车组成的系统动量守恒6.两球相向运动,发生正碰,碰撞后两球均静止,于是可以判定,在碰撞以前( )A .两球的质量相等B .两球的速度大小相同C .两球的动量大小相等D .以上都不能断定7.一只小船静止在水面上,一个人从小船的一端走到另一端,不计水的阻力,以下说法正确的是( )A .人在小船上行走,人对船的冲量比船对人的冲量小,所以人向前运动得快,小船后退得慢B .人在小船上行走时,人的质量比船的质量小,它们受到的冲量大小是一样的,所以人向前运动得快,船后退得慢C .当人停止走动时,因为小船惯性大,所以小船要继续后退D .当人停止走动时,因为总动量守恒,所以小船也停止后退8.如图所示,在光滑水平面上有一静止的小车,用线系一小球,将球拉开后放开,球放开时小车保持静止状态,当小球落下以后与固定在小车上的油泥沾在一起,则从此以后,关于小车的运动状态是 ( )A .静止不动B .向右运动C .向左运动D .无法判断*9.木块a 和b 用一根轻弹簧连接起来,放在光滑水平面上,a 紧靠在墙壁上,在b 上施加向左的水平力使弹簧压缩,如图所示,当撤去外力后,下列说法中正确的是( )A .a 尚未离开墙壁前,a 和b 系统的动量守恒B .a 尚未离开墙壁前,a 与b 系统的动量不守恒C .a 离开墙后,a 、b 系统动量守恒D .a 离开墙后,a 、b 系统动量不守恒*10.向空中发射一物体.不计空气阻力,当物体的速度恰好沿水平方向时,物体炸裂为a,b 两块.若质量较大的a 块的速度方向仍沿原来的方向则 ( )A .b 的速度方向一定与原速度方向相反B .从炸裂到落地这段时间里,a 飞行的水平距离一定比b 的大C .a ,b 一定同时到达地面D .炸裂的过程中,a 、b 中受到的爆炸力的冲量大小一定相等二、填空题11.质量分别为m 1、m 2的两物体在光滑水平面上碰撞 , 碰撞前两物体的速度分别为V 1、V 2,当两物体发生碰撞后速度分别为V 1/ 、V 2/。
物理动量守恒定律题20套(带答案)及解析
物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
高中物理动量守恒定律题20套(带答案)及解析
高中物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
第一章动量守恒定律单元综合练习-高二下学期物理人教版选择性必修第一册
动量守恒定律单元综合练习一、单选题1.将质量为0.5 kg的小球以20 m/s的初速度竖直向上抛出,不计空气阻力,g取10m/s2,以下判断正确的是()A.小球从被抛出至到达最高点受到的冲量大小为10 N·sB.小球从被抛出至落回出发点动量的变化量大小为零C.小球从被抛出至落回出发点受到的冲量大小为10 N·sD.小球从被抛出至落回出发点动量的变化量大小为10 N·s2.关于物体的动量,下列说法中正确的是()A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向B.物体的加速度不变,其动量一定不变C.动量越大的物体,其速度一定越大D.动量越大的物体,其质量一定越大3.如图所示为冲击摆实验装置,一飞行子弹射入沙箱后与沙箱合为一体,共同摆起一定的高度,则下面有关能量的转化的说法中正确的是()A.子弹的动能转变成沙箱和子弹的内能B.子弹的动能转变成了沙箱和子弹的热能C.子弹的动能转变成了沙箱和子弹的动能D.子弹的动能一部分转变成沙箱和子弹的内能,另一部分转变成沙箱和子弹的机械能4.如图所示,质量为m的子弹以某一速度水平射入放在光滑水平地面上静止的木块后不再穿出,此时木块动能增加了 5.5J,木块质量为M,那么此过程产生的内能可能为()A .1JB .5 JC .3JD .7J5.如图1所示,在水平地面上有甲、乙两物块(均可视为质点)相向运动,运动一段时间后发生碰撞,碰撞后两物块继续运动直到均停止在地面上。
整个过程中甲、乙两物块运动的速度-时间图象如图2所示,0=t 时刻甲、乙间距为1x ,均停止后间距为2x ,已知重力加速度10g =m/s 2。
下列说法正确的是( )A .两物块与地面间的动摩擦因数相同B .两物块的质量之比为12m m =甲乙 C .两物块间的碰撞为弹性碰撞D .乙在整个过程中的位移大小312x x x =-6.如图所示,在光滑水平面上,有一质量为m 的静止小球A 与墙之间用轻弹簧连接,并处于静止状态。
(完整版)动量守恒定律综合专题练习与解答
动量守恒定律综合专题练习与解答1.如图所示,光滑水平面上有一带半径为R 的1/4光滑圆弧轨道的滑块,其质量为2m ,一质量为m 的小球以速度v 0沿水平面滑上轨道,并从轨道上端飞出,求 ⑴小球上升的到离水平面的最大高度H 是多少?⑵小球离开轨道的瞬间,轨道的加速度大小a 是多少?解答:⑴小球到达最高点时,球与轨道在水平方向有相同的速度,设为v 。
由于小球和滑块组成的系统在水平方向不受外力作用,故系统在水平方向动量守恒,由根据动量守恒定律有 ()02mv m m v =+ 由机械能守恒有22201112222mv mv m v mgh =+⋅⋅+ 联立上述方程可得 203v h g=⑵小球离开轨道的瞬间,轨道的圆心没有竖直方向的速度,小球相对于轨道圆心在竖直方向的速度大小为小球的竖直分速度,设为v 竖。
水平方向的速度和轨道速度相同。
由运动的可逆性知道 ()2v g h R =-竖在轨道最高点,弹力提供做向心力,则有22022()23v mv m N m g h R mg R R R==⋅-=-竖由运动定律可得,小球对轨道的水平弹力大小为20223mv N'mg R=-由运动定律得轨道的加速度为 2023v N'a g m R==-2.如图所示,abc 是光滑的轨道,其中ab 是水平的,bc 为与ab 相切的、位于竖直平面内的半圆,半径R =0.30m ,质量m =0.20kg 的小球A 静止在轨道上,另一质量M =0.60kg ,速度v 0=5.5m/s 的小球B 与小球A 正碰。
已知相碰后小球A 经过半圆的最高点c 落到轨道上距b 点为L =42R 处,重力加速度g =10m/s 2,求 ⑴碰撞结束时,小球A 和B 的速度大小。
⑵试论证小球B 是否能沿着半圆轨道到达c 点。
解答:设A 球过C 点时的速度为v A ,平抛后的飞行时间为t ,则242122A R v t R gt⎧=⋅⎪⎨=⎪⎩ 解得2226m/s A v gR ==设碰撞结束后,小球A 、B 的速度分别为v 1和v 2。
(完整版)动量守恒定律综合练习(附答案)
动量守恒定律综合练习1、质量为M 的木块在光滑的水平面上以速度1v 向右运动,质量为m 的子弹以速度2v 水平方向迎面向左射击过来,并嵌在其中,要使木块停下来,必须发射多少发子弹。
2、质量kg 100的小船静止在水面上,船两端载着kg m 401=和kg m 602=的游泳者,同在一水平线上,以相对于岸的相同速率s m /3向前和向后跃入水中,求船的速度大小与方向。
3、质量为M ,长度为L 的车厢,静止于光滑的水平面上,车厢内在一质量为m 的物体以初速度0v 向右运动,与车厢壁来回碰撞了n 次后静止在车厢中,这时车厢的速度有多大?4、用长为L 的细线悬挂质量为M 的木块处于静止,现有一质量为m 的子弹自左向右水平射穿此木块,穿透前后子弹的速度分别为0v 和v ,求:(1)子弹穿过后,木块的速度大小;(2)子弹穿过后瞬间,细线所受拉力的大小。
5、如图,在高为m h 10=的平台上,放一质量为kg M 9.9=的木块,它与平台边缘的距离m L 1=。
今有一质量kg m 1.0=的子弹,以水平向右的速度0v 射入木块(时间极短)并留在木块中,木块向右滑行并冲出平台,最后落到离平边缘水平距离m x 24=处,已知木块与平台间的动摩擦因数209=μ,g 取2/10s m 。
求(1)木块离开平台边缘时的速度;(2)子弹射入木块时的初速度。
6、手榴弹在离地高h 处的速度方向恰好沿水平方向向左,速度大小为0v ,此时,手榴弹炸成质量相等的两块,设消耗的火药质量不计,爆炸后前半块的速度速度方向仍沿水平向左,速度大小为v 3。
那么,两块弹片落地点之间的水平距离多大?7、有一光滑的水平轨道与光滑的竖直的半圆形(半径为m R 5.2=)轨道相连,在水平轨道上放置一质量为kg M 9.4=的木块,今有一质量为kg m 1.0=、速度为s m v /25000=的子弹自左水平射入木块且留在木块中。
求:(1)木块能否到达轨道的最高点,如能,在最高点对轨道的压力是多大。
物理动量守恒定律练习题20篇
物理动量守恒定律练习题20篇一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求:①物块C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J 【解析】试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.4.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.5.如图,足够大的光滑水平面上固定着一竖直挡板,挡板前L 处静止着质量m 1=1kg 的小球A ,质量m 2=2kg 的小球B 以速度v 0运动,与小球A 正碰.两小球可看作质点,小球与小球及小球与挡板的碰撞时间忽略不计,且碰撞中均没有机械能损失.求(1)第1次碰撞后两小球的速度;(2)两小球第2次碰撞与第1次碰撞之间的时间; (3)两小球发生第3次碰撞时的位置与挡板的距离.【答案】(1)043v 013v 方向均与0v 相同 (2)065L v (3)9L 【解析】 【分析】(1)第一次发生碰撞,动量守恒,机械能守恒;(2)小球A 与挡板碰后反弹,发生第2次碰撞,分析好位移关系即可求解;(3)第2次碰撞过程中,动量守恒,机械能守恒,从而找出第三次碰撞前的初始条件,分析第2次碰后的速度关系,位移关系即可求解. 【详解】(1)设第1次碰撞后小球A 的速度为1v ,小球B 的速度为2v ,根据动量守恒定律和机械能守恒定律:201122m v m v m v =+222201122111222m v m v m v =+ 整理得:210122m v v m m =+,212012m m v v m m -=+解得1043v v =,2013v v =,方向均与0v 相同. (2)设经过时间t 两小球发生第2次碰撞,小球A 、B 的路程分别为1x 、2x ,则有11x v t =,22x v t =由几何关系知:122x x L += 整理得:065Lt v =(3)两小球第2次碰撞时的位置与挡板的距离:235x L x L =-= 以向左为正方向,第2次碰前A 的速度043A v v =,B 的速度为013B v v =-,如图所示.设碰后A 的速度为A v ',B 的速度为B v '.根据动量守恒定律和机械能守恒定律,有1212A B A B m v m v m v m v ''+=+; 2222121211112222A B AB m v m v m v m v ''+=+ 整理得:12212()2A B A m m v m v v m m -+'=+,21112()2B A B m m v m v v m m -+'=+解得:089A v v '=-,079B v v '=设第2次碰后经过时间t '发生第3次碰撞,碰撞时的位置与挡板相距x ',则B x x v t '''-=,A x x v t '''+=整理得:9x L '=6.如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N ,滑板两端为半径R=0.45m 的1/4圆弧面.A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑.小滑块P 1和P 2的质量均为m .滑板的质量M=4m ,P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P 2向左滑行距离:22222.25m 2v s a '==所以P 1、P 2静止后距离:△S=L-S 1-S 2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.7.28.如图所示,质量为m a=2kg的木块A静止在光滑水平面上。
高中物理:动量守恒定律练习题(可编文档+参考答案)
高中物理:动量守恒定律一、选择题(在每小题给出的四个选项中. 1~8题只有一项符合题目要求; 9~11题有多项符合题目要求。
) 1.如图所示,跳水运动员从某一峭壁上水平跳出,跳入湖水中,已知运动员的质量m =70kg ,初速度v 0=5m/s 。
若经过1s 时,速度为v =5m/s ,则在此过程中,运动员动量的变化量为(g =10m/s 2,不计空气阻力): ( ) A. 700 kg·m/s B. 350 kg·m/s C. 350(-1) kg·m/s D. 350(+1) kg·m/s2.如图所示,光滑平面上有一辆质量为4m 的小车,车上左右两端分别站着甲、乙两人,他们的质量都是m ,开始两个人和车一起以速度v 0向右匀速运动.某一时刻,站在车右端的乙先以相对地面向右的速度v 跳离小车,然后站在车左端的甲以相对于地面向左的速度v 跳离小车.两人都离开小车后,小车的速度将是: ( ) A. 1.5v 0 B. v 0 C. 大于v 0,小于1.5v 0 D. 大于1.5v 03.如图所示,两个质量相等的物体,在同一高度沿倾角不同的两个光滑斜面由静止自由滑下到达斜面底端的过程中,相同的物理量是 : ( )A. 重力的冲量B. 弹力的冲量C. 到达底端的动量D. 到达底端的动能4.如图所示,竖直墙壁两侧固定着两轻质弹簧,水平面光滑,一弹性小球在两弹簧间往复运动,把小球和弹簧视为一个系统,则小球在运动过程中: ( ) A. 系统的动量守恒,动能守恒B. 系统的动量守恒,机械能守恒C. 系统的动量不守恒,机械能守恒D. 系统的动量不守恒,动能守恒5.A 、B 两物体发生正碰,碰撞前后物体A 、B 都在同一直线上运动,其位移—时间图象如图所示。
由图可知,物体A 、B 的质量之比为: ( ) A. 1∶1 B. 1∶2 C. 1∶3 D. 3∶16.在光滑水平地面上匀速运动的装有砂子的小车,小车和砂子总质量为M ,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为: ( ) A. v 0 B.0Mv M m - C. 0mv M m - D. ()0M m v M-7.一个质量为0.5kg 的篮球从离地面5m 高处自由落下,与地面碰撞后上升的最大高度为3.2m ,设球与地面接触时间为0.2s ,则地面对球的平均作用力为(不计空气阻力,g 取10m/s 2): ( ) A. 30N B. 45N C. 50N D. 60N8.如图所示,在光滑水平面上停放质量为m装有弧形槽的小车。
(完整版)动量守恒定律综合练习(附答案)
动量守恒定律综合练习1、质量为的木块在光滑的水平面上以速度向右运动,质量为的子弹以速度水M 1v m 2v 平方向迎面向左射击过来,并嵌在其中,要使木块停下来,必须发射多少发子弹。
2、质量的小船静止在水面上,船两端载着和的游泳者,同kg 100kg m 401=kg m 602=在一水平线上,以相对于岸的相同速率向前和向后跃入水中,求船的速度大小与方s m /3向。
3、质量为,长度为的车厢,静止于光滑的水平面上,车厢内在一质量为的物体以M L m 初速度向右运动,与车厢壁来回碰撞了次后静止在车厢中,这时车厢的速度有多大?0v n 4、用长为L 的细线悬挂质量为的木块处于静止,现有一质量为的子弹自左向右水平M m 射穿此木块,穿透前后子弹的速度分别为和,求:(1)子弹穿过后,木块的速度大0v v 小;(2)子弹穿过后瞬间,细线所受拉力的大小。
5、如图,在高为的平台上,放一质量为的木块,它与平台边缘的距m h 10=kg M 9.9=离。
今有一质量的子弹,以水平向右的速度射入木块(时间极短)m L 1=kg m 1.0=0v 并留在木块中,木块向右滑行并冲出平台,最后落到离平边缘水平距离处,已m x 24=知木块与平台间的动摩擦因数,取。
209=μg 2/10s m 求(1)木块离开平台边缘时的速度;(2)子弹射入木块时的初速度。
6、手榴弹在离地高处的速度方向恰好沿水平方向向左,速度大小为,此时,手榴弹h 0v 炸成质量相等的两块,设消耗的火药质量不计,爆炸后前半块的速度速度方向仍沿水平向左,速度大小为。
那么,两块弹片落地点之间的水平距离多大?v 37、有一光滑的水平轨道与光滑的竖直的半圆形(半径为)轨道相连,在水平轨m R 5.2=道上放置一质量为的木块,今有一质量为、速度为kg M 9.4=kg m 1.0=的子弹自左水平射入木块且留在木块中。
s m v /25000=求:(1)木块能否到达轨道的最高点,如能,在最高点对轨道的压力是多大。
动量守恒练习题全
动量守恒定律考练题(1)命题人 徐宏斌 审核人 田素云1.在做“用气垫导轨探究碰撞中的不变量”实验中,需要用的测量工具有【 】A.天平 B.弹簧测力计 C.秒表 D.光电计时器2.若一个物体的动量发生了变化,则物体运动的(质量不变)【 】A.速度的大小一定改变了B.速度的方向一定改变了C.速度一定变化了D.加速度一定不为零3.质量为0.5kg的小球竖直下落,撞到地面时的速度为10m/s,竖直向上弹起的速度是8m/s.设向下为正方向时,小球动量变化的大小和方向是【 】A.9kg·m/s,向下 B.9kg·m/s,向上C.1kg·m/s,向下 D.1kg·m/s,向上4.关于物体的动量,下列说法正确的是【 】A.物体的动量越大,其惯性也越大B.同一物体的动量越大,其速度一定越大C.物体的加速度不变,其动量一定不变D.运动物体在任一时刻的动量方向,一定是该时刻的速度方向5.对于任何一个质量不变的物体,下列说法正确的是【 】A.物体的动量发生变化,其动能一定变化B.物体的动量发生变化,其动能不一定变化C.物体的动能发生变化,其动量一定变化D.物体的动能发生变化,其动量不一定变化6.两球相向运动,正碰后两球变为静止,则碰前两球的【 】A.质量一定相等B.动量一定相等C.动能一定相等D.动量大小相等7.在以下几种运动中,相等的时间内物体的动量变化相等的是【 】A.匀速圆周运动B.自由落体运动C.平抛运动D.单摆的摆球沿圆弧运动8.用和分别表示两个相互作用物体的初动量,和分别表示它们的末动量,和分别为两物体动量的变化,表示系统总动量的变化,c为不等于零的常数,若系统动量守恒,则下列等式中正确的是【 】 A. B.C. D.9.在光滑的水平面上有两个小球A和B,它们的质量分别是2kg和4kg。
(1)如果两小球沿同一直线向同一方向运动,速率分别为5m/s和2m/s,它们碰撞前的总动量是多大? kg·m/s,方向与哪个小球动量相同?。
关于动量守恒定律练习题
关于动量守恒定律练习题一、选择题A. 系统不受外力作用B. 系统受到平衡力作用C. 系统内各物体间相互作用力为内力D. 系统内各物体间相互作用力为外力A. 动能B. 动量C. 重力势能D. 弹性势能3. 质量为m的物体以速度v与静止的质量为2m的物体发生完全非弹性碰撞,碰撞后两物体的共同速度为:A. v/3B. v/2C. 2v/3D. v二、填空题1. 动量守恒定律的内容是:在_________的情况下,系统的总动量_________。
2. 质量为m1的物体以速度v1与质量为m2的物体发生弹性碰撞,碰撞后两物体的速度分别为v1'和v2',则动量守恒定律表达式为:_________。
3. 在光滑水平面上,质量为m的物体受到一个恒力F作用,经过时间t后,物体的速度为_________。
三、计算题1. 质量为2kg的物体A以6m/s的速度向右运动,与质量为3kg的物体B发生完全非弹性碰撞,物体B初始静止。
求碰撞后两物体的共同速度。
2. 质量为1kg的物体以10m/s的速度沿光滑水平面向右运动,与质量为2kg的物体发生弹性碰撞,碰撞后第二个物体速度为8m/s。
求第一个物体碰撞后的速度。
3. 在光滑水平面上,质量为m1的物体以速度v1向右运动,质量为m2的物体以速度v2向左运动。
两物体发生完全非弹性碰撞后,求碰撞后两物体的共同速度。
四、应用题1. 一颗子弹以一定速度射入固定在光滑水平面上的木块中,子弹和木块一起运动。
求子弹射入木块后,子弹和木块的共同速度。
2. 在光滑水平面上,质量为m的物体A以速度v向右运动,与质量为2m的物体B发生弹性碰撞。
碰撞后,物体B的速度为v/2,求物体A碰撞后的速度。
3. 质量为m1和m2的两个物体分别以速度v1和v2在光滑水平面上相向而行,发生完全非弹性碰撞后,求碰撞后两物体的共同速度。
五、判断题1. 若一个系统受到的外力为零,则该系统的总动量一定守恒。
()2. 在弹性碰撞中,不仅系统的总动量守恒,而且系统的总动能也守恒。
动量守恒定律经典习题(带答案)
动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。
(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。
设小车足够长,求:(1)木块和小车相对静止时小车的速度。
(2)从木块滑上小车到它们处于相对静止所经历的时间。
(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。
例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。
游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。
为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。
若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1.分析:以物体和车做为研究对象,受力情况如图所示。
在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。
因此地面给车的支持力远大于车与重物的重力之和。
系统所受合外力不为零,系统总动量不守恒。
但在水平方向系统不受外力作用,所以系统水平方向动量守恒。
以车的运动方向为正方向,由动量守恒定律可得:车 重物 初:v 0=5m/s 0末:v v ⇒Mv 0=(M+m)v⇒s m v m N M v /454140=⨯+=+=即为所求。
动量和动能守恒定律综合练习题
动量和动能守恒定律综合练习题问题一一辆质量为500 kg的汽车以20 m/s的速度向东行驶。
如果汽车的速度由20 m/s变为15 m/s,请计算汽车的动量变化。
解答一根据动量守恒定律,系统内外的合力为零时动量守恒。
汽车的质量不变,因此动量的变化只与速度有关。
动量的计算公式为:动量 = 质量 ×速度初始动量 = 500 kg × 20 m/s = 10,000 kg·m/s最终动量 = 500 kg × 15 m/s = 7,500 kg·m/s汽车的动量变化为:最终动量 - 初始动量 = 7,500 kg·m/s - 10,000 kg·m/s = -2,500 kg·m/s问题二一个物体质量为2 kg,初速度为10 m/s,从高度10 m的平台上自由落下,求物体着地时的动能。
解答二根据动能守恒定律,当只有重力做功时,动能守恒。
物体自由落下时只有重力做功,将势能转化为动能。
物体的重力势能的计算公式为:重力势能 = 质量 ×重力加速度×高度重力加速度的近似值为9.8 m/s^2重力势能 = 2 kg × 9.8 m/s^2 × 10 m = 196 J当物体着地时,重力势能转化为动能,因此物体着地时的动能为196 J。
问题三一个质量为1 kg的物体以2 m/s的速度向东运动,一个质量为2 kg的物体以4 m/s的速度向西运动,它们发生碰撞,碰撞后两个物体的速度分别是多少?解答三根据动量守恒定律和动能守恒定律,可以解决这个问题。
根据动量守恒定律,碰撞前后整个系统的动量守恒,即两个物体的动量之和保持不变。
质量为1 kg的物体的初始动量 = 1 kg × 2 m/s = 2 kg·m/s质量为2 kg的物体的初始动量 = 2 kg × (-4 m/s) = -8 kg·m/s碰撞后两个物体的总动量 = 2 kg·m/s - 8 kg·m/s = -6 kg·m/s因为整个系统的动量守恒,所以两个物体的动量之和为-6 kg·m/s。
动量守恒定律练习题(含答案)
动量守恒定律复习测试题1.如图所示,质量为M的小船在静止水面上以速率v0向右匀速行驶,一质量为m 的救生员站在船尾,相对小船静止.若救生员以相对水面速率v水平向左跃入水中,则救生员跃出后小船的速率为()A.v0+mM v B.v0-m M vC.v0+mM(v0+v) D.v0+mM(v0-v)2.在2010年温哥华冬奥会上,首次参赛的中国女子冰壶队喜获铜牌,如图13-1-8为中国队员投掷冰壶的镜头.在某次投掷中,冰壶运动一段时间后以0.4 m/s 的速度与对方的静止冰壶发生正碰,碰后对方的冰壶以0.3 m/s的速度向前滑行.若两冰壶质量相等,规定向前运动的方向为正方向,则碰后中国队冰壶获得的速度为()A.0.1 m/s B.-0.1 m/sC.0.7 m/s D.-0.7 m/s3.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则()A.左方是A球,碰撞后A、B两球速度大小之比为2∶5B.左方是A球,碰撞后A、B两球速度大小之比为1∶10C.右方是A球,碰撞后A、B两球速度大小之比为2∶5D.右方是A球,碰撞后A、B两球速度大小之比为1∶104.如图所示,轻质弹簧的一端固定在墙上,另一端与质量为m的物体A相连,A放在光滑水平面上,有一质量与A相同的物体B,从高h处由静止开始沿光滑曲面滑下,与A相碰后一起将弹簧压缩,弹簧复原过程中某时刻B与A分开且沿原曲面上升.下列说法正确的是()A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh 2C .B 能达到的最大高度为h 2D .B 能达到的最大高度为h5.如图,大小相同的摆球a 和b 的质量分别为m 和3m ,摆长相同,并排悬挂,平衡时两球刚好接触.现将摆球a 向左拉开一小角度后释放,若两球的碰撞是弹性的,下列判断正确的是( )A .第一次碰撞后的瞬间,两球的速度大小相等B .第一次碰撞后的瞬间,两球的动量大小相等C .第一次碰撞后,两球的最大摆角不相同D .发生第二次碰撞时,两球在各自的平衡位置6.如图所示,光滑水平直轨道上有三个滑块A 、B 、C ,质量分别为m A =m C =2m ,m B =m ,A 、B 用细绳连接,中间有一压缩的轻弹簧(弹簧与滑块不拴接).开始时A 、B 以共同速度v 0运动,C 静止.某时刻细绳突然断开,A 、B 被弹开,然后B 又与C 发生碰撞并粘在一起,最终三滑块速度恰好相同.求B 与C 碰撞前B 的速度.7.如图所示,光滑水平桌面上有长L =2 m 的挡板C ,质量m C =5 kg ,在其正中央并排放着两个小滑块A 和B ,m A =1 kg ,m B =3 kg ,开始时三个物体都静止.在A 、B 间放有少量塑胶炸药,爆炸后A 以6 m/s 速度水平向左运动,A 、B 中任意一块与挡板C 碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A 、B 都与挡板C 碰撞后,C 的速度是多大;(2)A 、C 碰撞过程中损失的机械能.8.如图所示,在光滑水平面上有质量均为m 的两辆小车A 和B ,A 车上表面光滑水平,其上表面左端有一质量为M 的小物块C (可看做质点).B 车上表面是一个光滑的14圆弧槽,圆弧槽底端的切线与A 的上表面相平.现在A 和C 以共同速度v 0冲向静止的B 车,A 、B 碰后粘合在一起,之后物块C 滑离A ,恰好能到达B 的圆弧槽的最高点.已知M =2m ,v 0=4 m/s ,取g =10 m/s 2.求圆弧槽的半径R .动量守恒复习题答案1.如图所示,质量为M的小船在静止水面上以速率v0向右匀速行驶,一质量为m 的救生员站在船尾,相对小船静止.若救生员以相对水面速率v 水平向左跃入水中,则救生员跃出后小船的速率为()A.v0+mM v B.v0-m M vC.v0+mM(v0+v) D.v0+mM(v0-v)【解析】小船和救生员组成的系统满足动量守恒:(M+m)v0=m·(-v)+Mv′解得v′=v0+mM(v0+v)故C项正确,A、B、D三项均错.【答案】 C2.在2010年温哥华冬奥会上,首次参赛的中国女子冰壶队喜获铜牌,如图13-1-8为中国队员投掷冰壶的镜头.在某次投掷中,冰壶运动一段时间后以0.4 m/s的速度与对方的静止冰壶发生正碰,碰后对方的冰壶以0.3 m/s的速度向前滑行.若两冰壶质量相等,规定向前运动的方向为正方向,则碰后中国队冰壶获得的速度为() A.0.1 m/s B.-0.1 m/sC.0.7 m/s D.-0.7 m/s【解析】设冰壶质量为m,碰后中国队冰壶速度为v x,由动量守恒定律得mv0=mv+mv x解得v x=0.1 m/s,故选项A正确.【答案】 A3.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则()A .左方是A 球,碰撞后A 、B 两球速度大小之比为2∶5B .左方是A 球,碰撞后A 、B 两球速度大小之比为1∶10C .右方是A 球,碰撞后A 、B 两球速度大小之比为2∶5D .右方是A 球,碰撞后A 、B 两球速度大小之比为1∶10【解析】 由m B =2m A ,p A =p B 知碰前v B <v A若左为A 球,设碰后二者速度分别为v ′A 、v ′B由题意知p ′A =m A v ′A =2 kg·m/sp ′B =m B v ′B =10 kg·m/s 由以上各式得v ′A v ′B =25,故正确选项为A. 若右为A 球,由于碰前动量都为6 kg·m/s ,即都向右运动,两球不可能相碰.【答案】 A4.如图所示,轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从高h 处由静止开始沿光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是( )A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh 2C .B 能达到的最大高度为h 2D .B 能达到的最大高度为h【解析】 根据机械能守恒定律可得B 刚到达水平地面的速度v 0=2gh ,根据动量守恒定律可得A 与B 碰撞后的速度为v =12v 0,所以弹簧被压缩时所具有的最大弹性势能为E pm =12·2mv 2=12mgh ,即A 错,B 正确;当弹簧再次恢复原长时,A 与B 将分开,B 以v 的速度沿斜面上滑,根据机械能守恒定律可得mgh ′=12mv 2,B 能达到的最大高度为h /4,即D 错误.【答案】 B5.如图,大小相同的摆球a 和b 的质量分别为m 和3m ,摆长相同,并排悬挂,平衡时两球刚好接触.现将摆球a 向左拉开一小角度后释放,若两球的碰撞是弹性的,下列判断正确的是( )A .第一次碰撞后的瞬间,两球的速度大小相等B .第一次碰撞后的瞬间,两球的动量大小相等C .第一次碰撞后,两球的最大摆角不相同D .发生第二次碰撞时,两球在各自的平衡位置【解析】 弹性碰撞遵守能量守恒和动量守恒,设第一次碰撞前,a 的速度为v ,第一次碰撞后a 的速度为v 1、b 的速度为v 2,根据动量守恒,得mv =mv 1+3mv 2① 根据能量守恒,得:12mv 2=12mv 21+12×3mv 22② ①②联立得:v 1=-12v ,v 2=12v ,故A 选项正确;第一次碰撞后瞬间,a 的动量大小为12mv ,b 的动量大小为32mv ,故B 选项错误;由于第一次碰撞后瞬间的速度大小相等,根据机械能守恒可知,两球的最大摆角相等,C 选项错误;由于摆长相同,两球的振动周期相等,所以第二次碰撞时,两球在各自的平衡位置,D 选项正确.【答案】 AD6.如图所示,光滑水平直轨道上有三个滑块A 、B 、C ,质量分别为m A =m C =2m ,m B =m ,A 、B 用细绳连接,中间有一压缩的轻弹簧(弹簧与滑块不拴接).开始时A 、B 以共同速度v 0运动,C 静止.某时刻细绳突然断开,A 、B 被弹开,然后B 又与C 发生碰撞并粘在一起,最终三滑块速度恰好相同.求B 与C 碰撞前B 的速度.【解析】 设共同速度为v ,球A 与B 分开后,B 的速度为v B ,由动量守恒定律(m A +m B )v 0=m A v +m B v B ①m B v B =(m B +m C )v ②联立①②式,得B 与C 碰撞前B 的速度v B =95v 0.7.如图所示,光滑水平桌面上有长L =2 m 的挡板C ,质量m C =5 kg ,在其正中央并排放着两个小滑块A 和B ,m A =1 kg ,m B =3 kg ,开始时三个物体都静止.在A 、B 间放有少量塑胶炸药,爆炸后A 以6 m/s 速度水平向左运动,A 、B 中任意一块与挡板C 碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A 、B 都与挡板C 碰撞后,C 的速度是多大;(2)A 、C 碰撞过程中损失的机械能.【解析】 (1)A 、B 、C 系统动量守恒0=(m A +m B +m C )v C , v C =0.(2)炸药爆炸时A 、B 系统动量守恒m A v A =m B v B解得:v B =2 m/s A 、C 碰撞前后系统动量守恒m A v A =(m A +m C )v v =1 m/sΔE =12m A v 2A -12(m A +m C )v 2=15 J.8.如图所示,在光滑水平面上有质量均为m 的两辆小车A 和B ,A 车上表面光滑水平,其上表面左端有一质量为M 的小物块C (可看做质点).B 车上表面是一个光滑的14圆弧槽,圆弧槽底端的切线与A 的上表面相平.现在A 和C 以共同速度v 0冲向静止的B 车,A 、B 碰后粘合在一起,之后物块C 滑离A ,恰好能到达B 的圆弧槽的最高点.已知M =2m ,v 0=4 m/s ,取g =10 m/s 2.求圆弧槽半径R .【解析】 设A 、B 碰后的共同速度为v 1,C 到达最高点时A 、B 、C 的共同速度为v 2,A 、B 碰撞过程动量守恒:mv 0=2mv 1C 冲上圆弧最高点过程系统动量守恒:Mv 0+2mv 1=(M +2m )v 2机械能守恒:12Mv 20+2×12mv 21=12(M +2m )v 22+MgR 联立以上三式解得:R =v 2016g代入数据得:R =0.1 m。
第68讲动量定理动量守恒——综合练习
动量定理、动量守恒—综合练习一、学习目标(1)运用动量定理,动量守恒来解决各种类型题目;(2)能够解决综合性比较强的题目。
二、例题解析【例1】(2014,福建)一枚火箭搭载着卫星以速率v0进入太空预定位置,由控制系统使箭体与卫星分离。
已知前部分的卫星质量为m1,后部分的箭体质量为m2,分离后箭体以速率v2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v1为()。
【例2】(2015,新课标2卷)滑块a、b沿水平面上同一条直线发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段。
两者的位置x随时间t变化的图像如图所示。
求:(ⅰ)滑块a、b的质量之比;(ⅱ)整个运动过程中,两滑块克服摩擦力做的功与因碰撞而损失的机械能之比。
【例3】(2014,山东卷)如图,光滑水平直轨道上两滑块A、B用橡皮筋连接,A的质量为m。
开始时橡皮筋松弛,B静止,给A向左的初速度v0。
一段时间后,B与A同向运动发生碰撞并粘在一起。
碰撞后的共同速度是碰撞前瞬间A的速度的两倍,也是碰撞前瞬间B的速度的一半。
求:(ⅰ)B的质量;(ⅱ)碰撞过程中A、B系统机械能的损失。
三、课后习题1.下列相互作用的过程中,可以认为系统动量守恒的A B C D2.一弹丸在飞行到距离地面5 m高时仅有水平速度v=2 m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1。
不计质量损失,取重力加速度g=10 m/s2,则下列图中两块弹片飞行的轨迹可能正确的是( )3.在空间某一点以大小相等的速度分别竖直上抛、竖直下抛、水平抛出质量相等的小球,不计空气阻力,经过t秒(设小球均未落地)()A .做上抛运动的小球动量变化最大B .做下抛运动的小球动量变化最小C .三个小球动量变化大小相等D .做平抛运动的小球动量变化最小4.如图所示,在光滑的水平面上,有两个质量都是M 的小车A 和B ,两车之间用轻质弹簧相连,它们以共同的速度v0向右匀速运动,另有一质量m=2M 的粘性物体,从高处自由落下,正好落在A 车上,并与之粘合在一起,求这以后的运动过程中,弹簧获得的最大弹性势能Ep 。
物理动量守恒定律专题练习(及答案)含解析
①求弹簧恢复原长时乙的速度大小; ②若乙与挡板 P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板 P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I=8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为 和 ,对两滑块及弹簧组成的系统,设向 左的方向为正方向,由动量守恒定律可得:
又知
(2 分)
因为子弹在射穿第一块钢板的动能损失为 ΔE 损 1=f·d=
mv
2 0
(1
分),
由能量守恒得:
1 2
mv
2 1
+
1 2
mV
2 1
=
1 2
mv
2 0
-ΔE
损 1(2
分)
且考虑到 v1 必须大于 V1,
解得:v1= ( 1 3 ) v0 26
设子弹射入第二块钢板并留在其中后两者的共同速度为 V2,
物理动量守恒定律专题练习(及答案)含解析
一、高考物理精讲专题动量守恒定律
1.在图所示足够长的光滑水平面上,用质量分别为 3kg 和 1kg 的甲、乙两滑块,将仅与甲 拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板 P.现将两滑块由静止释放,当弹簧 恢复原长时,甲的速度大小为 2m/s,此时乙尚未与 P 相撞.
(1)求物块 M 碰撞后的速度大小; (2)若平台表面与物块 M 间的动摩擦因数 μ=0.5,物块 M 与小球的初始距离为 x1=1.3 m, 求物块 M 在 P 处的初速度大小. 【答案】(1)3.0m/s(2)7.0m/s 【解析】 试题分析:(1)碰后物块 M 做平抛运动,设其平抛运动的初速度为 V
6.如图所示,光滑平行金属导轨的水平部分处于竖直向下的 B=4T 的匀磁场中,两导轨间 距 L=0.5m,导轨足够长金属棒 a 和 b 的质量都为 m=1kg,电阻 Ra Rb 1 .b 棒静止于轨 道水平部分,现将 a 棒从 h=80cm 高处自静止沿弧形轨道下滑,通过 C 点进入轨道的水平 部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求 a、b 两棒的最 终速度大小以及整个过程中 b 棒中产生的焦耳热(已知重力加速度 g 取 10m/s2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量守恒定律练习一选择题1、下面关于冲量的说法中正确的是( )A.物体受到很大的冲力时,其冲量一定很大B.当力与位移垂直时,该力的冲量为零C.不管物体做什么运动,在相同时间内重力的冲量相同D.只要力的大小恒定,其相同时间内的冲量就恒定2、质量为m的小球在竖直光滑圆形内轨道中做圆周运动,周期为T,则以下说法正确的是( )A.每运转一周,小球所受重力的冲量的大小为0B.每运转一周,小球所受重力的冲量的大小为mgTC.每运转一周,小球所受合力的冲量的大小为0D.每运转半周,小球所受重力的冲量的大小一定为mgT/23、一粒钢珠从静止状态开始自由落体,然后陷入泥潭中。
若把它在空中自由落体的过程称为Ⅰ,进入泥潭直到停止的过程称为Ⅱ,则( )A.过程Ⅰ中钢珠动量的改变量小于重力的冲量B.过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小C.过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小D.过程Ⅱ中钢珠的动量改变量等于阻力的冲量4、光滑的水平面上两个同一直线上相向运动的小球,甲球的质量2 kg,乙球的质量1 kg,碰撞前后乙球的速度随时间变化如图所示。
两球发生正碰后,甲球静止不动,规定向左为正方向,则碰前甲球速度的大小和方向为 。
(填选项前的字母)A.0.5 m/s,向右 B.0.5 m/s,向左C.1.5 m/s,向左 D.1.5 m/s,向右5、运送人造卫星的火箭开始工作后,火箭加速运动的原因是( )A.燃料燃烧,推动空气,空气反作用推动火箭B.火箭发动机将燃料燃烧生成的气体向后推出,气体的反作用推动火箭C.火箭燃料燃烧发热,加热空气,空气膨胀推动火箭D.火箭吸入空气,然后向后排出,空气对火箭反作用推动火箭6、一位质量为m的运动员从下蹲状态向上起跳,经时间,身体伸直并刚好离开地面,速度为.在此过程中,A.地面对他的冲量为,地面对他做的功为B. 地面对他的冲量为,地面对他做的功为零C. 地面对他的冲量为,地面对他做的功为D. 地面对他的冲量为,地面对他做的功为零7、(2013·天津八中高三第二次月考,7题)一质量为m的铁锤,以速度v竖直打在木桩上,经过Δt时间而停止,则在打击时间内,铁锤对木桩的平均冲力的大小是( )A.mgΔt B.C.+mg D-mg8、如图6所示,一小车静止在光滑水平面上,甲、乙两人分别站在左右两侧,整个系统原来静止。
则当两人同时相向走动时A.要使小车向左运动,甲的速度大小一定比乙大B.要使小车向左运动,甲的质量一定比乙大C.要使小车向左运动,甲的动量大小一定比乙大D.要使小车保持静止,甲、乙的动量大小一定相等9、矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,如图所示,质量为m的子弹以速度v水平射向滑块,若射击上层,子弹刚好不射出,若射击下层,则子弹整个儿刚好嵌入,由上述两种情况相比较,正确的说法是A.两次子弹对滑块做功一样多B.第一次滑块受的冲量大C.子弹嵌入下层对滑块做功较多D.子弹嵌入上层时,系统产生的热量较多10、在光滑的水平面上有A、B两个小球,它们间始终存在着与二者距离有关的相互吸引力的,且引力随距离的减小而增大。
起始A固定,将B在距A较远处由静止释放。
某时刻,B球的速度是,试分析此后在B与A相碰前,B的速度变化情况可用下图中的哪一个图表示11、如图所示,质量为m的人立于平板车上,人与车的总质量为M,人与车以速度v1在光滑水平面上向东运动。
当此人相对于车以速度v2竖直跳起时,车向东的速度大小为 ( )A. B.C. D.v112、如图是一种升降电梯的示意图,A为载人箱,B为平衡重物,它们的质量均为M,由跨过滑轮的钢索系住,在电动机的牵引下使电梯上下运动.若电梯中乘客的质量为m,匀速上升的速度为v,在电梯即将到顶层前关闭电动机,靠惯性再经时间t停止运动卡住电梯,不计空气和摩擦阻力,则t为( )A.B.C.D.13、如图2所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M,顶端高度为h.今有一质量为m的小物块,沿光滑斜面下滑,当小物块从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是()A.mh/(M+m)B.Mh/(M+m)C.mh/[(M+m)tanα]D.Mh/[(M+m)tanα]14、如图13-1-1所示,一辆小车静止在光滑水平面上,A、B两人分别站在车的两端.当两人同时相向运动时( ).图13-1-1A.若小车不动,两人速率一定相等B.若小车向左运动,A的动量一定比B的小C.若小车向左运动,A的动量一定比B的大D.若小车向右运动,A的动量一定比B的大15、如图所示,一光滑地面上有一质量为m′的足够长的木板ab,一质量为m的人站在木板的a端,关于人由静止开始运动到木板的b端(M、N表示地面上原a、b对应的点),下列图示正确的是( )16、如图1所示,用细线挂一质量为M的木块,有一质量为m的子弹自左向右水平射穿此木块,穿透前后子弹的速度分别为和v(设子弹穿过木块的时间和空气阻力不计),木块的速度大小为()A.B.C.D.17、如图所示,质量为M的斜面放在光滑的水平面上,质量为m的物体由静止开始从斜面的顶端滑到底端,在这过程中( )A.M、m组成的系统满足动量守恒B.m对M的冲量等于M的动量变化C.m、M各自的水平方向动量的增量的大小相等D.M对m的支持力的冲量为零二、填空题18、质量为M的小船上站有一个质量为m的人,船相对于岸以v0的速度在平静的水面上向左缓缓漂动,如图所示。
某时刻人以相对于岸向右的速度v水平跳出,则人跳船前后船的动量变化方向是_______,船速变化的大小为_______。
19、质量的物体,以某一初速度在水平面上滑行,与另一物体相碰,碰撞前后它们的位移随时间变化的情况如图1所示,则。
三、实验,探究题20、气垫导轨上有A、B两个滑块,开始时两个滑块静止,它们之间有一根被压缩的轻质弹簧,滑块间用绳子连接(如同甲所示).绳子烧断后,两个滑块向相反方向运动,图乙为它们运动过程的频闪照片,频闪的频率为10Hz.由图可知:(1)A、B离开弹簧后,应该做_ _ __运动,已知滑块A、B的质量分别为200g、300g.根据照片记录的信息,从图中应该可以看出闪光照片有明显与事实不相符合的地方是:.(2)若不计此失误,分开后,A的动量大小为__ _ ___kg・m/s,B的动量的大小为 kg・m/s.本实验中得出“在实验误差范围内,两木块组成的系统动量守恒”这一结论的依据是 ____ .21、验证动量守恒实验装置的示意图如图所示。
(1)在以下选项中,哪些是本次实验必须测量的物理量( )A.两球的质量m A、m BB.A球的释放点离斜槽末端的竖直高度hC.线段OM、OP、ON的长度D.斜槽末端离纸面的竖直高度H(2)在本实验中,根据实验测得的数据,当关系式 成立时,即可验证碰撞过程中动量守恒。
(3)在本实验中,为了尽量减小实验误差,在安装斜槽轨道时,应让斜槽末端保持水平,这样做的目的是( )A.入射球与被碰小球碰后均能从同一高度飞出B.入射球与被碰小球碰后能同时飞出C.入射球与被碰小球离开斜槽末端时的速度为水平方向D.入射球与被碰小球碰撞时的动能不损失若OM=2.68cm,OP=8.62cm,ON=11.50cm,并知A、B两球的质量比为2:1,则未放B球时A球落地点是记录纸上的 点,系统碰撞前总动量p与碰撞后总动量p’的百分误差= %(结果保留一位有效数字)22、在“验证碰撞中的动量守恒”的实验中,让质量为m1的小球从斜槽轨道上某处自由滚下,与静止在轨道末端的质量为m2的小球发生对心碰撞(如图所示),则(1)两小球质量及大小关系应满足 ;A、m1=m2B、m1>m2C、m1<m2D、大小相等E、没有限制(2)实验必须满足的条件是 ;A、轨道末端必须是水平的B、斜槽轨道(不含水平部分)必须尽可能光滑C、斜槽轨道的水平部分必须尽可能光滑D、入射球m1每次必须是从同一高度由静止释放(3)实验中必须测量的物理量是 ;A、小球的质量m1和m2B、桌面离地面的高度HC、小球m1的初始高度hD、小球m1单独落下的水平距离OBE、小球m1和m2碰后的水平距离OA、OC F.测量小球m1或m2的直径(4)本实验我们要验证等式: 是否成立。
四、计算题23、一宇航员在国际空间站内做了如下实验:选取两个质量分别为m A=0.lkg、m B=0.2kg的小球A、B和一根轻质短弹簧,弹簧的一端与小球A 粘连,处于锁定状态,一起以速度v o=0.1 m/s做匀速直线运动。
如图所示,经过一段时间后,突然解除锁定(解除锁定时没有机械能损失),两球仍然沿直线运动,从弹簧与小球B刚刚分离开始计时,经过时间t=3.0s,两球之间的距离增加了s=2.7m,求:①弹簧与小球B刚刚分离时两小球的速度分别为多大;②原先弹簧锁定时的弹性势能E p?24、如图所示,质量分别为m、2m的小球A、B,中间用轻弹簧相连,连接球A的轻绳悬于足够高的天花板上,现让球B自弹簧自然长度处由静止释放后,在竖直方向做振幅为x0的简谐运动。
当B球运动至最低点时剪断轻绳,经过时间t,A、B两球的加速度第一次相同,球A的速度为υA,重力加速度为g,求:⑴此时B球的速度⑵球A下落的距离25、一质量为m的小球,以初速度沿水平方向射出,恰好垂直地射到一倾角为的固定斜面上,并立即反方向弹回。
已知反弹速度的大小是入射速度大小的,求在碰撞中斜面对小球的冲量大小26、如图所示,A B C是光滑轨道,其中BC部分是半径为R的竖直放置的半圆.一质量为M的小木块放在轨道水平部分,木块被水平飞来的质量为m的子弹射中,并滞留在木块中.若被击中的木块沿轨道能滑到最高点C,已知木块对C点的压力大小为(M+m)g,求:子弹射入木块前瞬间速度的大小.27、静止的湖面上有一只长度为L、质量为M的小船,船上质量为m的人从船尾缓慢走到船首,不计水对船的阻力,则在此过程中小船后退的距离为多大?28、如图所示,光滑水平地面上停着一辆平板车,其质量为2m,长为L,车上右端(A点)有一块静止的质量为m的小金属块。
金属块与平板车的上表面之间存在摩擦,以上表面的中点C为分界点,已知金属块与AC段间的动摩擦因数为μ,与CB段的动摩擦因数为未知。
现给车一个向右的水平恒力F=5μmg,使车向右运动,同时金属块在车上也开始滑动,当金属块滑到中点C时,立即撤去这个水平恒力F,最后金属块恰好停在车的左端(B点)。
已知重力加速度为g,求:(1)撤去力F的瞬间,金属块的速度v1、车的速度v2分别为多少? (2)金属块与CB段的动摩擦因数μ′。
29、如图所示,已知水平面上的P点右侧光滑,左侧与滑块m1间的动摩擦因数为μ。