2022年中考数学一轮复习 第四讲 函数专题之反比例函数

合集下载

2024年中考数学高频考点专题复习——反比例函数的实际应用(含解析)

2024年中考数学高频考点专题复习——反比例函数的实际应用(含解析)

2024年中考数学高频考点专题复习——反比例函数的实际应用1.如图,利用已有的一面长为的墙,用篱笆围一个面积为的矩形花圃.设的长为,的长为.(1)求y 关于x 的函数表达式和自变量x 的取值范围.(2)边和的长都是整数,若围成的矩形花圃的三边篱笆的总长不超过,试求出满足条件且用料最省的方案.2.通过实验研究发现:初中生在数学课上听课注意力指标数随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散,学生注意力指标数y 随时间x (分)变化的函数图象如图所示,当和时,图象是线段;当时,图象是双曲线的一部分,根据函数图象回答下列问题:(1)点A 的注意力指标数是 ;(2)当时,求注意力指标数y 随时间x (分)的函数解析式;(3)张老师在一节课上讲解一道数学综合题需要21分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标数都不低于36?请说明理由.5m 220m ABCD AB ()m x BC ()m y AB BC ABCD 20m 010x ≤<1020x ≤<2040x ≤≤010x ≤<3.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O 点,训练时要求A 、B 两船始终关于O 点对称.以O 为原点,建立如图所示的坐标系,x 轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线y =上运动,湖面风平浪静,双帆远影优美,训练中当教练船与A 、B 两船恰好在直线y =x 上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为A( , )、B(  ,  )和C(  ,  );(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由.4.某气象研究中心观测到一场沙尘暴从发生到减弱的过程,开始一段时间风速平均每小时增加2千米,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米,然后风速不变,当沙尘暴遇到绿色植被区时,风速y (千米/小时),时间x (小时)成反比例关系地慢慢减弱,结合风速与时间的图象,回答下列问题:(1)这场沙尘暴的最高风速是多少?最高风速维持了多长时间;(2)求出当x≥20时,风速y (千米/小时)与时间x (小时)之间的函数关系?(3)在这次沙尘暴的形成过程中,当风速不超过10千米/小时称为“安全时刻”,其余时刻是“危险时刻”.问这次风暴的整个过程中,“危险时刻”一共有多长时间?4x5.为了做好新冠疫情防控工作,某学校要求全校各班级每天对各班教室进行消毒.现有一种备选药物,根据测定,教室内每立方米空气中的药含量y (单位:mg )随时间x (单位:h )的变化情况如图所示,根据图中提供的信息,解决下面的问题.(1)如图反映的是那两个变量之间的关系?哪个是自变量?哪个是因变量?(2)什么时刻每立方米空气中药含量最多?此时药含量是多少?(3)在什么时间范围内,每立方米空气中药含量在增加?在什么时间范围内,每立方米空气中药含量在减少?(4)据测定,当空气中每立方米的药物含量降低到mg 以下时,才能保证对人身无害,若该校课间操时间为40分钟,据此判断,学校能否选用这种药物用于教室消毒?请说明理由.6.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:第1天第2天第3天第4天第5天第6天第7天第8天售价x(元/千克)400300250240200150125120销售量y(千克)30404850608096100观察表中数据,发现可以用反比例函数刻画这种海产品每天的销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?1167.某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作.已知该品牌运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示: 第1天第2天第3天第4天售价x(元/双)150200250300销售量y(双)40302420(1)观察表中数据,x,y满足什么函数关系?写出用x表示y的函数表达式;(2)若商场计划每天的销售利润为3000元,则每双运动鞋的售价应定为多少元?8.心理学家研究发现,在一节45分钟的课中,学生的注意力随教师讲课的时间的变化而变化,开始学生的注意力逐渐增强,中间学生的注意力保持稳定的状态,随后开始分散,经实验学生的注意力指数y 随时间x(分钟)的变化规律如图所示.(1)一位教师为了达到最好的上课效果,准备课前复习,要求学生的注意力指数至少达到30时,开始上新课,问他应该复习多长时间?(2)如果(1)的这位教师本节新课内容需要22分钟,为了使学生的听课效果最好,问这位教师能否在学生听课效果最好时,讲完新课内容?9.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度 与时间 之间的函数关系,其中线段 ,表示恒温系统开启阶段,双曲线的一部分 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求 与 ( )的函数表达式;(2)若大棚内的温度低于 时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多长时间,才能使蔬菜避免受到伤害?10.某小组进行漂洗实验,每次漂洗的衣服量和添加洗衣粉量固定不变实验发现,当每次漂洗用水量v(升)一定时,衣服中残留的洗衣粉量y (克)与漂洗次数x (次)满足y=(k 为常数),已知当使用5升水,漂洗1次后,衣服中残留洗衣粉2克.(1)求k 的值.(2)如果每次用水5升,要求漂洗后残留的洗衣粉量小于0.8克,求至少漂洗多少次?(3)现将20升水等分成x 次(x>1)漂洗,要使残留的洗衣粉量降到0.5克,求每次漂洗用水多少升?()C y ︒()h x AB BC CD y x 1024x ≤≤10C ︒ 2.5kv x+11.汛期到来,山洪暴发,下表记录了某水库 内水位的变化情况,其中 表示时间(单位:), 表示水位高度(单位: ),当 ( )时,达到警戒水位,开始开闸放水. 02468101214161820141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据画出水位变化图象,并写出水位高出16米的时间 的取值范围 ▲ .(精确到0.1)(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到 .12.如图,直线与双曲线交于A ,两点,点A 的坐标为,点是双曲线第一象限分支上的一点,连结并延长交轴于点,且.(1)求的值,并直接写出点的坐标;(2)点是轴上的动点,连结,,求的最小值和点坐标;(3)是坐标轴上的点,是平面内一点,是否存在点,,使得四边形是矩形?若存20h x h y m 8x =h /h x /my x 6m 32y x =(0)ky k x=≠B (3)m -,C BC xD 2BC CD =k B G y GB GC GB GC +G P Q P Q ABPQ在,请求出所有符合条件的点的坐标;若不存在,请说明理由.13.泡茶需要将电热水壶中的水先烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.(1)分别求出图中所对应的函数关系式,并且写出自变量x 的取值范围:(2)从水壶中的水烧开(100℃)降到90℃就可以泡茶,问从水烧开到泡茶需要等待多长时间?14.某种商品上市之初采用了大量的广告宣传,其销售量与上市的天数之间成正比,当广告停止后,销售量与上市的天数之间成反比(如图),现已知上市30天时,当日销售量为120万件.(1)写出该商品上市以后销售量y (万件)与时间x (天数)之间的表达式;(2)求上市至第100天(含第100天),日销售量在36万件以下(不含36万件)的天数;(3)广告合同约定,当销售量不低于100万件,并且持续天数不少于12天时,广告设计师就可以拿到“特殊贡献奖”,那么本次广告策划,设计师能否拿到“特殊贡献奖”?P答案解析部分1.【答案】(1)解:由题意得:,,已有的一面墙长为,,,y 关于x 的函数表达式为(2)解:边和的长都是整数,且, 的值可以为4、5、10、20,围成的矩形花圃的三边篱笆的总长不超过,,的值可以为4、5,当时,,则,当时,,则,满足条件且用料最省的方案为,.2.【答案】(1)24(2)解:设线段(0≤x <10)∵,,∴{b =2410k +b =48 解之:{k =125b =24∴当0≤x <10时的函数解析式为(3)解:当时,代入和得 和∵,20xy =20y x∴=5m 205x∴≤4x ∴≥∴()204y x x=≥ AB BC ()204y x x=≥x ∴ ABCD 20m 220x y ∴+≤x ∴4x =5y =224513x y +=⨯+=5x =4y =225414x y +=⨯+=∴4m AB =5m BC =AB y kx b =+:(024)A ,(1048)B ,12245y x =+36y =12245y x =+960y x=15x =2803x =806552133-=>∴他能经过适当的安排,使学生在听这道综合题的讲解时,注意力指标数都不低于36.3.【答案】(1)2;2;-2;-2;22 ;(2)解:作AD ⊥x 轴于D,连AC 、BC 和OC,∵A (2,2),∴∠AOD=45°,AO=2,∵C 在O 的东南45°方向上,∴∠AOC=45°+45°=90°,∵AO=BO ,∴AC=BC ,又∵∠BAC=60°,∴△ABC 为正三角形,∴AC=BC=AB=2AO=4,∴ ,由条件设教练船的速度为3m ,A、B 两船的速度都为4m ,则教练船所用时间为,A 、B 两船所用时间均为 = ,= , =,> ;∴教练船没有最先赶到.4.【答案】(1)解:0~4时,风速平均每小时增加2千米,所以4时风速为8千米/时;4~10时,风速变为平均每小时增加4千米,10时达到最高风速,为8+6×4=32千米/时,OC ==10~20时,风速不变,最高风速维持时间为20﹣10=10小时;答:这场沙尘暴的最高风速是32千米/时,最高风速维持了10小时(2)解:设y =, 将(20,32)代入,得32= ,解得k =640.所以当x≥20时,风速y (千米/小时)与时间x (小时)之间的函数关系为y =(3)解:∵4时风速为8千米/时,而4小时后,风速变为平均每小时增加4千米, ∴4.5时风速为10千米/时,将y =10代入y = ,得10=,解得x =64,64﹣4.5=59.5(小时).故沙尘暴的风速从开始形成过程中的10千米/小时到最后减弱过程中的10千米/小时,共经过59.5小时.答:这次风暴的整个过程中,“危险时刻”一共经过59.5小时.5.【答案】(1)解:图象反应的是时间x 和每立方米空气中的药含量y 之间的关系;自变量为时间x ;因变量为每立方米空气中的药含量y ;(2)解:从函数图象可得:当x=h 时,空气中药含量最多,最多为1mg ;(3)解:从图象可得:当0<x<h 时,每立方米空气中药含量在增加;当x≥h 时,每立方米空气中药含量在减少(4)解:不能选用这种药物消毒,理由如下:由图象可得,当x=1时,y=,∴,∴学校不能选用这种药物用于教室消毒.6.【答案】(1)解:设 , ∵当x=400时y=30,∴k=400×30=12000,kxk 20640x640x640x151515116116048405⎛⎫-⨯=> ⎪⎝⎭ky x=∴函数解析式为 .(2)解:2104-(30+40+48+50+60+80+96+100)=1600.即8天试销后,余下的海产品还有1 600千克.当x=150时, =80.1600÷80=20(天).答:余下的这些海产品预计再用20天可以全部售出.(3)解:1600-80×15=400(千克),设新确定的价格为每千克x 元. ,解得:x≤60,答:新确定的价格最高不超过60元/千克才能完成销售任务.7.【答案】(1)解:由表中数据得: ∴∴y 是x 的反比例函数,故所求函数关系式为 (2)解:由题意得: 把 代入得: 解得: 经检验, 是原方程的根;∴单价应定为240元8.【答案】(1)解:设DA 的函数关系式为y=kx+b (x≠0),∵y=kx+b 过(0,20),(10,40),∴{b =2010k +b =40,∴{b =20k =2,∴y=2x+20(0≤x≤10);当y=30时,30=2x+20,∴x=5;答:他应该复习5分钟;12000y x=12000150y =120002400x⨯≥6000xy =6000y x=6000y x =()1203000x y -=6000y x =()60001203000x x-=240x =240x =(2)解:设BC 的函数关系式(k 1≠0)(21≤x≤45),∵过B (21,40),∴,∴K 1=840,∴(21≤x≤45),当x=30时,,28﹣5=23,∵23>22,∴这位老师能在学生听课效果最好时讲完新课内容.9.【答案】(1)解:当 时,设 把 代入 得: 所以: (2)解:当 时,经检验: 是原方程的解,且符合题意,所以恒温系统最多可以关闭 小时,才能使蔬菜避免受到伤害.10.【答案】(1)解:∵使用5升水,漂洗1次后,衣服中残留洗衣粉2克,∴v=5,x=1,y=2,∴2=,∴k=-0.1.(2)解:∵v=5,∴y=, ∵反比例函数y=,在x>0的范围内y 随x 的增大而减少,∴当y<0.8时,漂洗的次数x>2.5,∴至少漂洗3次,衣服中残留的洗衣粉量小于0.8克.(3)解:由(1)得y=, 1k y x =14021k =840y x=8402830y ==1024x ≤≤k y x=()1020,k y x =,1020200k =⨯=,200.y x=10y =20010x =,20x ∴=,20x =201010∴-=,105 2.51k +0.15 2.52x x-⨯+=2x 0.1 2.5v x-+∴xy=-0.1v+2.5,即x 2y=-0.1vx+2.5x ,∵将20升水等分成x 次,∴vx=20,∴x 2y=-2+2.5x ,∵y=0.5,∴0.5x 2=-2+2.5x ,即x 2-5x+4=0,∴x 1=4,x 2=1(舍去,x >1),∴当x=4时,每次漂洗用水v=20÷4=5升.答:每次漂洗用水5升.11.【答案】(1)解:在平面直角坐标系中,根据表格中的数据水位变化图象如图所示,;4≤x <8.8(2)解:观察图象当0<x <8时,y 与x 可能是一次函数关系:设y=kx+b ,把(0,14),(8,18)代入得 {b =148k +b =18 解得: {k =12b =14 , y 与x 的关系式为: ,经验证(2,15),(4,16),(6,17)都满足 因此放水前y 与x 的关系式为: (0<x <8).观察图象当x >8时,y 与x 就不是一次函数关系:通过观察数据发现:8×18=10×14.4=12×12=16×9=18×8=144.1142y x =+1142y x =+1142y x =+因此放水后y 与x 的关系最符合反比例函数,关系式为:设 ,则 ,y 与x 的关系式为: .( )所以开闸放水前和放水后最符合表中数据的函数解析式为: (0<x <8)和 .( )(3)解:当y=6时, ,解得: , 因此预计24h 水位达到6m.12.【答案】(1)解:将点A 的坐标为代入直线中,得,解得:,,,B 的坐标为(2)解:如图,作轴于点E ,轴于点F ,则,,,,, ,,,,k y x =144k =144=y x8x ≥1142y x =+144=y x 8x ≥1446=x24x =()-3A m ,32y x =332m =﹣-2m =()2-3A ∴-,=-2(3)=6k ∴⨯-()23,BE x ⊥CF x ⊥BE CF BE CF DCF DBE ∴ ∽DC CF DB BE∴=2BC CD = 13DC CF DB BE ∴==()23B ,3BE ∴=1CF ∴=,作点B 关于y 轴的对称点,连接交y 轴于点G ,则即为的最小值,,设的解析式为,,,解得: ,解析式为,当时,,;(3)解:存在.理由如下:当点P 在x 轴上时,如图,设点 的坐标为 ,过点B 作轴于点M ,四边形是矩形,,()61C ∴,B 'B C 'B C 'BG GC +()()2361B C -' ,,,B C ∴=='=BG GC B C '∴+B C 'y kx b =+()()2361B C -' ,,,3216k b k b =-+⎧⎨=+⎩1452k b ⎧=-⎪⎪⎨⎪=⎪⎩∴B C '1542y x =-+0x =52y =502G ⎛⎫∴ ⎪⎝⎭,1P ()0a ,BM x ⊥ 11ABPQ 190OBP ∴∠=︒,,,,,,,,,经检验符合题意,∴点 的坐标为;当点P 在y 轴上时,过点B 作轴于点N ,如图2,设点 的坐标为,四边形是矩形,,,,,,,经检验符合题意,∴点的坐标为,1==90OMB OBP ∴∠∠︒1=BOM POB ∠∠1OBM OPB ∴ ∽1OB OM OP OB ∴=()23B ,OB ∴==2OM ==132a ∴=1P 1302⎛⎫ ⎪⎝⎭,BN y ⊥2P ()0b , 22ABP Q 290OBP ∴∠=︒2==90ONB P BO ∠∠︒ 2BON P OB ∠=∠2BON P OB ∴ ∽2OB ON OP OB∴==133b ∴=2P 1303⎛⎫⎪⎝⎭,综上所述,点P 的坐标为或.13.【答案】(1)解:停止加热 分钟后,设 , 由题意得: , 解得: ,, 当 时,解得: ,当 时, ,点坐标为 , 点坐标为 , 当加热烧水时,设 ,由题意将 点坐标 代入上式得 , 解得: ,当加热烧水时,函数关系式为 ;当停止加热时 与 的函数关系式为 ; ;(2)解:把 代入 ,得 , 因此从水壶中的水烧开 降到 可以泡茶需要等待 分钟.14.【答案】(1)解:根据题意可知:当时,设y 与x 的函数解析式为,∴,解得:,∴;当时,设y 与x 的函数解析式为,∴,解得:1302⎛⎫ ⎪⎝⎭,1303⎛⎫ ⎪⎝⎭,1k y x =5018k =900k =900y x∴=100y =9x =20y =45x =C ∴()9100,B ∴()8100,20y ax =+B ()8100,100820a =+10a =∴()102008y x x =+≤≤y x 100(89)y x =<≤900(945)y x x =<≤90y =900y x=10x =()100℃90℃1082-=030x ≤≤1y k x =112030k =14k =()4030y x x =≤≤30x ≥2k y x =212030k =23600k =∴综上所述,该商品上市以后销售量y (万件)与时间x (天数)之间的表达式为:;.(2)解:当时,令,解得:,∴,∴销量不到36万件的天数为8天;当时,令,解得: (不符合题意),∴上市至第100天(含第100天),日销售量在36万件以下(不含36万件)的天数为8天;(3)解:当时,令,解得:∴,∴销量超过100万件的天数为6天,当时,令,解得:∴,销量超过100万件的天数为6天,综上所述,销售量不低于100万件,并且持续天数为12天,广告设计师可以拿到“特殊贡献奖”.()360030y x x=≥()4030y x x =≤≤()360030y x x=≥030x ≤≤436x <9x <09x ≤<30x ≥360036x<100x >030x ≤≤4100x ≥25x ≥2530x ≤≤30x ≥3600100x≥36x ≤3036x ≤≤。

2024年中考数学一轮复习-反比例函数K值与几何面积综合(解析版)

2024年中考数学一轮复习-反比例函数K值与几何面积综合(解析版)

反比例函数K 值与几何面积综合(1)反比例函数上任何一点与轴线围城的直角三角形面积都相等|k|/2;2OCF k S S S OBN OAM ===∆∆∆图中 221K K S S PAB OAB +==∆∆图中2k ===∆∆∆S S S CBD OBD PDB 图中(2)图像上任意两点与原点构成的三角形的面积等于直角梯形的面积;【真题演练】 1.(2023•福建)如图,正方形四个顶点分别位于两个反比例函数y =和y =的图象的四个分支上,则实数n 的值为( )A .﹣3B .﹣C .D .3【答案】A【解答】解:连接正方形的对角线,由正方形的性质知对角线交于原点O,过点A,B分别作x轴的垂线.垂足分别为C、D,点B在函数y=上,如图:∵四边形是正方形,∴AO=BO,∠AOB=∠BDO=∠ACO=90°,∴∠CAO=90°﹣∠AOC=∠BOD,∴△AOC≌△BOD(AAS),∴S△AOC=S△OBD==,∵点A在第二象限,∴n=﹣3,故选:A.2.(2023•张家界)如图,矩形OABC的顶点A,C分别在y轴、x轴的正半轴上,点D在AB上,且AD=AB,反比例函数y=(k>0)的图象经过点D及矩形OABC的对称中心M,连接OD,OM,DM.若△ODM的面积为3,则k的值为()A.2B.3C.4D.5【答案】C【解答】解:解法一:∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵矩形OABC的对称中心M,∴延长OM恰好经过点B,M(,),∵点D在AB上,且AD=AB,∴D(,b),∴BD=a,∴S△BDM=BD•h=×a×(b﹣)=ab,∵D在反比例函数的图象上,∴ab=k,∵S△ODM=S△AOB﹣S△AOD﹣S△BDM=ab﹣k﹣ab=3,∴ab=16,∴k=ab=4,解法二:连接BM,因为点M是矩形的对称中心,∴三角形DMO的面积=三角形DMB的面积,则三角形DBO的面积为6,∵AD=1/4AB,∴AD:DB=1:3,∴三角形ADO的面积:三角形DBO的面积为1:3,即三角形ADO的面积为2,∴K=4.故选:C.3.(2023•黑龙江)如图,△ABC是等腰三角形,AB过原点O,底边BC∥x轴,双曲线y=过A,B两点,过点C作CD∥y轴交双曲线于点D.若S△BCD=12,则k的值是()A.﹣6B.﹣12C.﹣D.﹣9【答案】C【解答】解:设BC与y轴的交点为F,B(b,),则A(﹣b,﹣),b>0,由题意知,AO=BO,即O是线段AB的中点,过A作AE⊥BC于点E,∵AC=AB,AE⊥BC,∴BE=CE,AE∥y轴,∴CF=3BF=3b,∴C(﹣3b,),∴D(﹣3b,),∴CD=,BC=4b,∴S△BCD=,∴k=﹣.故选:C.4.(2023•宜宾)如图,在平面直角坐标系xOy中,点A、B分别在y、x轴上,BC⊥x轴,点M、N分别在线段BC、AC上,BM=CM,NC=2AN,反比例函数y=(x>0)的图象经过M、N两点,P为x轴正半轴上一点,且OP:BP=1:4,△APN的面积为3,则k的值为()A.B.C.D.【答案】B【解答】解:如图,过点N作NQ⊥x轴于点Q,过C作CT⊥y轴交y轴于T,交NQ于K,设OA=a,OP=b,BM=c,N(m,n),∵OP:BP=1:4,BM=CM,∴A(0,a),B(5b,0),M(5b,c),C(5b,2c),∵∠NCK=∠ACT,∠NKC=90°=∠ATC,∴△NKC∽△ATC,∴==,∵NC=2AN,∴CK=2TK,NK=AT,∴,解得,∴,∴,,∴,∵△APN的面积为3,∴S梯形OANQ﹣S△AOP﹣S△NPQ=3,∴,∴2ab+bc=9,将点M(5b,c),代入得:,整理得:2a=7c,将2a=7c代入2ab+bc=9得:7bc+bc=9,∴,∴,故选:B.5.(2022•日照)如图,矩形OABC与反比例函数y1=(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1﹣k2=()A.3B.﹣3C.D.【答案】B【解答】解:∵y1、y2的图象均在第一象限,∴k1>0,k2>0,∵点M、N均在反比例函数y1=(k1是非零常数,x>0)的图象上,∴S△OAM=S△OCN=k1,∵矩形OABC的顶点B在反比例函数y2=(k2是非零常数,x>0)的图象上,∴S矩形OABC=k2,∴S四边形OMBN=S矩形OABC﹣S△OAM﹣S△OCN=3,∴k2﹣k1=3,∴k1﹣k2=﹣3,故选:B.6.(2022•郴州)如图,在函数y=(x>0)的图象上任取一点A,过点A作y轴的垂线交函数y=﹣(x <0)的图象于点B,连接OA,OB,则△AOB的面积是()A.3B.5C.6D.10【答案】B【解答】解:∵点A在函数y=(x>0)的图象上,∴S△AOC=×2=1,又∵点B在反比例函数y=﹣(x<0)的图象上,∴S△BOC=×8=4,∴S△AOB=S△AOC+S△BOC=1+4=5,故选:B.7.(2022•十堰)如图,正方形ABCD的顶点分别在反比例函数y=(k1>0)和y=(k2>0)的图象上.若BD∥y轴,点D的横坐标为3,则k1+k2=()A.36B.18C.12D.9【答案】B【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图象上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图象上,D(3,a)在y=(k2>0)的图象上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B.8.(2022•黑龙江)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD的顶点B在反比例函数y=的图象上,顶点A在反比例函数y=的图象上,顶点D在x轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是()A.2B.1C.﹣1D.﹣2【答案】D【解答】解:设B(a,),∵四边形OBAD是平行四边形,∴AB∥DO,∴A(,),∴AB=a﹣,∵平行四边形OBAD的面积是5,∴(a﹣)=5,解得k=﹣2,故选:D.9.(2023•连云港)如图,矩形OABC的顶点A在反比例函数y=(x<0)的图象上,顶点B、C在第一象限,对角线AC∥x轴,交y轴于点D.若矩形OABC的面积是6,cos∠OAC=,则k=﹣.【答案】﹣.【解答】解:作AE⊥x轴于E,∵矩形OABC的面积是6,∴△AOC的面积是3,∵∠AOC=90°,cos∠OAC=,∴,∵对角线AC∥x轴,∴∠AOE=∠OAC,∵∠OEA=∠AOC=90°,∴△OEA∽△AOC,∴,∴,∴S△OEA=,∵S△OEA=|k|,k<0,∴k=﹣.故答案为:﹣.10.(2023•枣庄)如图,在反比例函数(x>0)的图象上有P1,P2,P3,…P2024等点,它们的横坐标依次为1,2,3,…,2024,分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,…,S2023,则S1+S2+S3+…+S2023=.【答案】.【解答】解:∵P1,P2,P3,...P2024的横坐标依次为1,2,3, (2024)∴阴影矩形的一边长都为1,将除第一个矩形外的所有矩形向左平移至y轴,∴S 1+S2+S3+…+S2023=,把x=2024代入关系式得,y=,即OA=,∴S矩形OABC=OA•OC=,由几何意义得,=8,∴=8﹣=.故答案为:.11.(2023•朝阳)如图,点A是反比例函数y=(k≠0,x>0)的图象上一点,过点A作AB⊥x轴于点B,点P是y轴上任意一点,连接P A,PB.若△ABP的面积等于3,则k的值为.【答案】6.【解答】解:设反比例函数的解析式为y=,∵△AOB的面积=△ABP的面积=3,△AOB的面积=|k|,∴|k|=3,∴k=±6;又∵反比例函数的图象的一支位于第一象限,∴k>0.∴k=6.故答案为:6.12.(2023•衢州)如图,点A,B在x轴上,分别以OA,AB为边,在x轴上方作正方形OACD,ABEF,反比例函数y=(k>0)的图象分别交边CD,BE于点P,Q.作PM⊥x轴于点M,QN⊥y轴于点N.若OA=2AB,Q为BE的中点,且阴影部分面积等于6,则k的值为.【答案】见试题解答内容【解答】解:设OA=4a,∵AO=2AB,∴AB=2a,∴OB=AB+OA=6a,则B(6a,0),由于在正方形ABEF中,AB=BE=2a,∵Q为BE中点,∴BQ=AB=a,∴Q(6a,a),∵Q在反比例函数y=(k>0))上,∴k=6a×a=6a2,∵四边形OACD是正方形,∴C(4a,4a),∵P在CD上,∴P点纵坐标为4a,∵P在反比例函数y=(k>0)上,∴P点横坐标为:x=,∴P(,4a),∵作PM⊥x轴于点M,QN⊥y轴于点N,∴四边形OMNH是矩形,∴NH=,MH=a,∴S矩形OMHN=NH×MH=×a=6,则k=24,故答案为:24.13.(2023•锦州)如图,在平面直角坐标系中,△AOC的边OA在y轴上,点C在第一象限内,点B为AC 的中点,反比例函数y=(x>0)的图象经过B,C两点.若△AOC的面积是6,则k的值为.【答案】4.【解答】解:过点C作CD⊥y轴于点D,如图:设点C的坐标为(a,b),点A的坐标为(0,c),∴CD=a,OA=c,∵△AOC的面积是6,∴,∴ac=12,∵点C(a,b)在反比例函数(x>0)的图象上,∴k=ab,∵点B为AC的中点,∴点,∵点B在反比例函数(x>0)的图象上,∴,即:4k=a(b+c),∴4k=ab+ac,将ab=k,ac=12代入上式得:k=4.故答案为:4.14.(2023•黄石)如图,点A(a,)和B(b,)在反比例函数y=(k>0)的图象上,其中a>b>0.过点A作AC⊥x轴于点C,则△AOC的面积为;若△AOB的面积为,则=.【答案】,2.【解答】解:因为点A(a,)在反比例函数y=的图象上,则,又a>0,解得k=5.根据k的几何意义可知,.过点B作x轴的垂线,垂足为D,则S△OBD+S梯形ACDB=S△AOC+S△AOB,又根据k的几何意义可知,S△OBD=S△AOC,则S梯形ACDB=S△AOB.又△AOB的面积为,且A(a,),B(b,),所以,即.解得.又a>b>0,所以.故答案为:,2.15.(2023•辽宁)如图,矩形ABCD的边AB平行于x轴,反比例函数y=(x>0)的图象经过点B,D,对角线CA的延长线经过原点O,且AC=2AO,若矩形ABCD的面积是8,则k的值为6.【答案】6.【解答】解:如图,延长CD交y轴于E,连接OD,∵矩形ABCD的面积是8,∴S△ADC=4,∵AC=2AO,∴S△ADO=2,∵AD∥OE,∴△ACD∽△OCE,∴AD:OE=AC:OC=2:3,∴S△ODE=3,由几何意义得,=3,∵k>0,∴k=6,故答案为:6.16.(2023•绍兴)如图,在平面直角坐标系xOy中,函数(k为大于0的常数,x>0)图象上的两点A (x1,y1),B(x2,y2),满足x2=2x1,△ABC的边AC∥x轴,边BC∥y轴,若△OAB的面积为6,则△ABC的面积是.【答案】2.【解答】解:如图,延长CA交y轴于E,延长CB交x轴于点F,∴CE⊥y轴,CF⊥x轴,∴四边形OECF为矩形,∵x2=2x1,∴点A为CE的中点,由几何意义得,S△OAE=S△OBF,∴点B为CF的中点,∴S△OAB=S矩形OECF=6,∴S矩形OECF=16,∴S△ABC=×16=2.故答案为:2.217.(2022•烟台)如图,A,B是双曲线y=(x>0)上的两点,连接OA,OB.过点A作AC⊥x轴于点C,交OB于点D.若D为AC的中点,△AOD的面积为3,点B的坐标为(m,2),则m的值为.【答案】见试题解答内容【解答】解:因为D为AC的中点,△AOD的面积为3,所以△AOC的面积为6,所以k=12=2m.解得:m=6.故答案为:6.18.(2022•黄石)如图,反比例函数y=的图象经过矩形ABCD对角线的交点E和点A,点B、C在x轴上,△OCE的面积为6,则k=.【答案】8.【解答】解:如图,过点E作EH⊥BC于H,设点A(a,),C(c,0),∵点E是矩形ABCD的对角线的交点,∴E(,),∵点E在反比例函数y=的图象上,∴=k,∴c=3a,∵△OCE的面积为6,∴OC•EH=c•=×3a•=6,∴k=8,故答案为:8.19.(2022•衢州)如图,在△ABC中,边AB在x轴上,边AC交y轴于点E.反比例函数y=(x>0)的图象恰好经过点C,与边BC交于点D.若AE=CE,CD=2BD,S△ABC=6,则k=.【答案】.【解答】解:如图,作CM⊥AB于点M,DN⊥AB于点N,设C(m,),则OM=m,CM=,∵OE∥CM,AE=CE,∴==1,∴AO=m,∵DN∥CM,CD=2BD,∴===,∴DN=,∴D的纵坐标为,∴=,∴x=3m,即ON=3m,∴MN=2m,∴BN=m,∴AB=5m,∵S△ABC=6,∴5m•=6,∴k=.故答案为:.20.(2022•宜宾)如图,△OMN是边长为10的等边三角形,反比例函数y=(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM于点B,则k的值为.【答案】9.【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,如图,∵△OMN是边长为10的等边三角形,∴OM=ON=MN=10,∠MON=∠M=∠MNO=60°设OC=b,则BC=,OB=2b,∴BM=OM﹣OB=10﹣2b,B(b,b),∵∠M=60°,AB⊥OM,∴AM=2BM=20﹣4b,∴AN=MN﹣AM=10﹣(20﹣4b)=4b﹣10,∵∠AND=60°,∴DN==2b﹣5,AD=AN=2b﹣5,∴OD=ON﹣DN=15﹣2b,∴A(15﹣2b,2b﹣5),∵A、B两点都在反比例函数y=(x>0)的图象上,∴k=(15﹣2b)(2b﹣5)=b•b,解得b=3或5,当b=5时,OB=2b=10,此时B与M重合,不符题意,舍去,∴b=3,∴k=b•b=9,故答案为:9.21.(2022•鄂尔多斯)如图,正方形OABC的顶点A、C分别在x轴和y轴上,E、F分别是边AB、OA上的点,且∠ECF=45°,将△ECF沿着CF翻折,点E落在x轴上的点D处.已知反比例函数y1=和y2=分别经过点B、点E,若S△COD=5,则k1﹣k2=.【答案】见试题解答内容【解答】解:作EH⊥y轴于点H,则四边形BCHE、AEHO都为矩形,∵∠ECF=45°,∴∠OCD+∠OCF=45°,∵∠DOC+∠OCF=45°,∴∠BCE=∠OCD,∵BC=OC,∠B=∠COD,∴△BCE≌△OCD(ASA),∴S△BCE=S△COD=5,∴S△CEH=5,S矩形BCHE=10,∴根据反比例函数系数k的几何意义得:k1﹣k2=S矩形BCHE=10,故答案为:10.22.(2022•东营)如图,△OAB是等腰直角三角形,直角顶点与坐标原点重合,若点B在反比例函数y=(x>0)的图象上,则经过点A的函数图象表达式为.【答案】y=﹣.【解答】解:如图,作AD⊥x轴于D,BC⊥x轴于C,∴∠ADO=∠BCO=90°,∵∠AOB=90°,∴∠AOD+∠BOC=90°,∴∠AOD+∠DAO=90°,∴∠BOC=∠DAO,∵OB=OA,∴△BOC≌△OAD(AAS),∵点B在反比例函数y=(x>0)的图象上,∴S△OBC=,∴S△OAD=,∴k=﹣1,∴经过点A的反比例函数解析式为y=﹣.故答案为:y=﹣.23.(2022•绍兴)如图,在平面直角坐标系xOy中,点A(0,4),B(3,4),将△ABO向右平移到△CDE 位置,A的对应点是C,O的对应点是E,函数y=(k≠0)的图象经过点C和DE的中点F,则k的值是.【答案】6.【解答】解:过点F作FG⊥x轴于点G,FH⊥y轴于点H,过点D作DQ⊥x轴于点Q,如图所示,根据题意可知,AC=OE=BD,设AC=OE=BD=a,∴四边形ACEO的面积为4a,∵F为DE的中点,FG⊥x轴,DQ⊥x轴,∴FG为△EDQ的中位线,∴FG=DQ=2,EG=EQ=,∴四边形HFGO的面积为2(a+),∴k=4a=2(a+),解得:a=,∴k=6.故答案为:6.24.(2022•内蒙古)如图,在平面直角坐标系中,Rt△OAB的直角顶点B在x轴的正半轴上,点O与原点重合,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D,连接CD.若△ACD的面积是1,则k的值是.【答案】.【解答】解:连接OD,过C作CE∥AB,交x轴于E,∵∠ABO=90°,反比例函数y=(x>0)的图象经过OA的中点C,∴S△COE=S△BOD=k,S△ACD=S△OCD=1,∵CE∥AB,∴△OCE∽△OAB,∴△OCE与△OAB得到面积比为1:4,∴4S△OCE=S△OAB,∴4×k=1+1+k,∴k=.故答案为:.。

2022年中考数学专题训练 反比例函数(含解析)

2022年中考数学专题训练 反比例函数(含解析)

反比例函数1.正比例函数y =6x 的图象与反比例函数y =6x的图象的交点位于( )A .第一象限B .第二象限C .第三象限D .第一、三象限[解析] D ∵正比例函数y =6x 与反比例函数y =6x 中比例系数k =6>0,∴两函数的图象都经过第一、三象限,∴两函数图象的交点有两个,分别位于第一、三象限,故选择D .2. 若ab <0,则正比例函数y =ax 和反比例函数y =bx在同一坐标系中的大致图象可能是( )图1-ZT -1[解析] C (1)当a>0,b<0时,可知正比例函数y =ax 的图象经过第一、三象限,反比例函数y =bx 的图象在第二、四象限;(2)当a<0,b>0时,可知正比例函数y =ax 的图象经过第二、四象限,反比例函数y =bx的图象在第一、三象限.通过比较可得正确选项是C .3.[鄂州中考] 已知正比例函数y =-4x 与反比例函数y =kx 的图象交于A ,B 两点,若点A 的坐标为(x ,4),则点B 的坐标为________.[答案] (1,-4)[解析] 把y =4代入y =-4x ,得x =-1,∴A(-1,4).∵正比例函数与反比例函数的图象在不同象限的交点关于原点成中心对称,∴点B 的坐标为(1,-4).类型之二 反比例函数与一次函数的综合应用4.[陕西中考] 如果一个正比例函数的图象与一个反比例函数y =6x 的图象交于A(x 1,y 1),B(x 2,y 2)两点,那么(x 2-x 1)(y 2-y 1)的值为________.[答案] 24[解析] ∵点A ,B 在反比例函数y =6x 的图象上,∴x 1y 1=6.∵正比例函数与反比例函数的图象在不同象限的交点关于原点成中心对称,∴x 2=-x 1,y 2=-y 1,∴(x 2-x 1)(y 2-y 1)=(-x 1-x 1)(-y 1-y 1)=4x 1y 1=4×6=24.5.[郴州中考] 已知直线l 平行于直线y =2x +1,并与反比例函数y =1x 的图象交于点A(a ,1).求直线l 的函数表达式.解:∵反比例函数y =1x 的图象过点A(a ,1),∴1=1a ,∴a =1,∴点A 的坐标为(1,1). ∵直线l 平行于直线y =2x +1,∴可设直线l 的函数表达式为y =2x +b ,把点A(1,1)的坐标代入,得 1=2×1+b ,∴b =-1,∴直线l 的函数表达式为y =2x -1.6.如图1-ZT -2,在平面直角坐标系xOy 中,一次函数y =ax +b 的图象与x 轴交于点A(-2,0),与y 轴交于点C ,与反比例函数y =kx 在第一象限的图象交于点B(m ,n),连接OB ,若S △AOB =6,S △BOC =2.(1)求一次函数的表达式; (2)求反比例函数的表达式.图1-ZT -2解:过点B 分别作x 轴、y 轴的垂线,垂足分别为E ,D. 因为S △AOB =6,S △BOC =2, 所以S △AOC =4.又点A(-2,0),所以OA =2, 所以OC =4.又S △BOC =2,所以BD =1, 因为AO =2,S △AOB =6,所以BE =6,所以点B 的坐标为(1,6).(1)因为一次函数y =ax +b 的图象过点A ,B ,所以⎩⎪⎨⎪⎧-2a +b =0,a +b =6,解得⎩⎪⎨⎪⎧a =2,b =4,即一次函数的表达式为y =2x +4.(2)因为反比例函数y =kx 的图象过点B ,所以6=k1,即k =6,所以反比例函数的表达式为y =6x.7.如图1-ZT -3所示,直线y =k 1x +b 与双曲线y =k 2x 相交于A(1,2),B(m ,-1)两点.(1)求直线和双曲线的函数表达式;(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系;(3)观察图象,请直接写出不等式k 1x +b >k 2x的解集.图1-ZT -3解:(1)∵双曲线y =k 2x 经过点A(1,2),∴k 2=2,∴双曲线的函数表达式为y =2x .∵点B(m ,-1)在双曲线y =2x 上,∴m =-2,则B(-2,-1).由A(1,2),B(-2,-1)两点在直线y =k 1x +b 上,得⎩⎪⎨⎪⎧k 1+b =2,-2k 1+b =-1,解得⎩⎪⎨⎪⎧k 1=1,b =1,∴直线的函数表达式为y =x +1. (2)y 2<y 1<y 3. (3)x>1或-2<x<0.类型之三 反比例函数与几何图形的综合应用8.如图1-ZT -4,在平面直角坐标系中,反比例函数y =kx (x>0)的图象和矩形ABCD 在第一象限,AD 平行于x 轴,且AB =2,AD =4,点A 的坐标为(2,6).(1)直接写出B ,C ,D 三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的表达式.图1-ZT -4解:(1)B(2,4),C(6,4),D(6,6).(2)点A ,C 同时落在反比例函数的图象上.如图1-ZT -5,矩形ABCD 平移后得到矩形A ′B ′C ′D ′.图1-ZT -5设平移距离为a ,则A′(2,6-a),C ′(6,4-a). ∵点A′,C ′在函数y =kx 的图象上,∴2(6-a)=6(4-a),解得a =3,∴点A′(2,3),∴矩形的平移距离为3,反比例函数的表达式为y =6x.9.如图1-ZT -6,已知反比例函数y =k 13x 的图象与一次函数y =k 2x +m 的图象交于A(-1,a),B(13,-3)两点,连接AO. (1)求反比例函数和一次函数的表达式;(2)设点C 在y 轴上,且与点A ,O 构成等腰三角形,请直接写出点C 的坐标.图1-ZT -6解:(1)∵反比例函数y =k 13x 的图象经过点B(13,-3),∴k 1=3×13×(-3)=-3.∵反比例函数y =k 13x 的图象经过点A(-1,a),∴a =1.由直线y 2=k 2x +m 过点A ,B ,得 ⎩⎪⎨⎪⎧-k 2+m =1,13k 2+m =-3,解得⎩⎪⎨⎪⎧k 2=-3,m =-2, ∴反比例函数的表达式为y =-1x,一次函数的表达式为y =-3x -2.(2)点C 在y 轴上,且与点A ,O 构成等腰三角形,则点C 的坐标为(0,-2)或(0,2)或(0,2)或(0,1).10.如图1-ZT -7,一次函数y =kx +b 的图象与反比例函数y =mx (x >0)的图象交于点P(n ,2),与x 轴交于点A(-4,0),与y 轴交于点C ,PB ⊥x 轴于点B ,且AC =BC.(1)求一次函数、反比例函数的表达式.(2)反比例函数图象上是否存在一点D ,使四边形BCPD 为菱形,如果存在,求出点D 的坐标;如果不存在,请说明理由.图1-ZT -7解:(1)∵AC=BC ,CO ⊥AB ,∴AO =BO. ∵A(-4,0),∴B(4,0),∴P(4,2). 把P(4,2)的坐标代入y =mx ,得m =8,∴反比例函数的表达式为y =8x.把A(-4,0),P(4,2)的坐标代入y =kx +b ,得⎩⎪⎨⎪⎧0=-4k +b ,2=4k +b ,解得⎩⎪⎨⎪⎧k =14,b =1.∴一次函数的表达式为y =14x +1.(2)存在点D ,使四边形BCPD 为菱形. ∵AC =BC ,∴∠CAB =∠ABC. ∵PB ⊥x 轴,∴∠APB +∠CAB=90°,∠PBC +∠ABC=90°, ∴∠APB =∠PBC,∴CP =CB.由y =14x +1,知当x =0时,y =1,如图1-ZT -8过点C 作CD 平行于x 轴,交PB 于点E ,交反比例函数y =8x的图象于点D ,连接PD ,BD.图1-ZT -8∴点D 的坐标为(8,1),BP ⊥CD , ∴PE =BE =1,∴CE =DE =4, ∴PB 与CD 互相垂直平分, ∴四边形BCPD 为菱形, ∴点D(8,1)即为所求.。

2023年九年级中考数学一轮复习:反比例函数(含答案)

2023年九年级中考数学一轮复习:反比例函数(含答案)

第三部分 一次函数与反比例函数模块二 反比例函数基础知识梳理考点1 反比例函数的图象 考点4 设参数来帮忙 考点2 比大小(增减性) 考点5 反比例与几何综合考点3面积不变性原理1.如果点A (-2,y 1),B (-1,y 2),C (2,y 3)都在反比例函数y =xk(k >0)的图象上,那么y 1,y 2,y 3的大小关系是( )A. y 1<y 3<y 2B. y 2< y 1 <y 3C. y 1<y 2<y 3D. y 3 <y 2 <y 12如图,已知一次函数y =kx - 4的图象与x 轴,y 轴分别交于A ,B 两点,与反比例函数y =x8在第一象限内的图象交于点C ,且A 为BC 的中点,则k =____________。

3.已知双曲线y =x 3和y =xk的部分图象如图所示,点C 是y 轴正半轴上一点,过点C 作AB ∥x 轴分别交两个图象于点A ,B ,若CB =2CA ,则k =____________。

4.如图,一次函数y = k x - 1的图象与x 轴交于点A ,与反比例函数y =x3(x >0)的图象交于B ,BC 垂直x 轴于点C ,若△ABC 的面积为1,则k 的值是___________。

5.如图,点B (3,3)在双曲线y =x k (x >0)上点D 在双曲线y =x4(x <0)上,点A 和点C 分别在x 轴,y 轴的正半轴上,且点A ,B ,C ,D 构成的四边形为正方形。

(1)求k 的值; (2)求点A 的坐标。

6.在同一平面直角坐标系中,函数y =x - 1与函数y =x1的图象可能是( )7.函数y 1=x 和y 2=x1的图象如图所示,则y 1>y 2的x 的取值范围是( ) A. x < - 1或 x >1 B. x < - 1或0 < x < 1 C. - 1 < x < 0 或 x > 1 D. - 1 < x < 0 或 0 < x < 18.如图,四边形ABCD 为菱形,已知A (0,4),B ( - 3,0) (1)求点D 的坐标;(2)求经过点C 的反比例函数解析式。

专题 反比例函数-2023年中考数学第一轮总复习课件(全国通用)全

专题 反比例函数-2023年中考数学第一轮总复习课件(全国通用)全
解,然后在作答中说明.
典例精讲
反比例函数与几何图形的综合
知识点四
【例4】(2020·T18)如图,Rt△ABC中,∠ACB=90º,顶点A,B都在反比例函
k
数 y = ( x > 0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB
x
OA = 2 2.
于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45º,
(0,1),顶点C在第一象限,若函数y=k/x(x>0)的图象经过点C,则k=___.
6
13.如图,已知矩形OABC的面积为100/3,它的对角线OB与双曲线y=k/x相交
12
于点D,且OB∶OD=5∶3,则k=____.
14.如图,已知A,B两点分别在反比例函数y=9/x和y=k/x第一象限的图象上.
O
心:__)
典例精讲
反比例函数的图象与性质
知识点一
2
【例1-1】已知点P(a,m),Q(b,n)都在反比例函数 y 的图象上,且a<0<
x
b,则下列结论一定正确的是( D )
A.m+n<0
B.m+n>0
C.m<n
D.m>n
【变式】若点A(a,m)和B(b,n)在反比例函数y=7/x的图象上,且a<b,则( D )
-3
查漏补缺
当堂训练
反比例函数
查漏补缺
7.如图,点M为x轴上一点,过点M的直线l∥y轴分别与双曲
-20
线y=8/x和y=k/x的图象交于P,Q两点,若S△POQ=14,则k=____.
8.在平面直角坐标系中,若一条平行于x轴的直线l分别交
双曲线y=-8/x和y=2/x于A,B两点,P是x轴上的任意一点,则

2022年春北师大版九年级数学中考一轮复习《反比例函数》知识点分类训练(附答案)

2022年春北师大版九年级数学中考一轮复习《反比例函数》知识点分类训练(附答案)

2022年春北师大版九年级数学中考一轮复习《反比例函数》知识点分类训练(附答案)一.反比例函数的定义1.下列函数中,y可以看作是x的反比例函数的是()A.y=B.y=C.y=﹣+1D.y=﹣2x﹣12.已知函数y=(m﹣1)是反比例函数,则m的值为.二.反比例函数的图象3.在下图中,反比例函数y=﹣(x>0)的图象大致是()A.B.C.D.4.若ab<0,则反比例函数y=与一次函数y=ax+b在同一坐标系中的大致图象可能是()A.B.C.D.三.反比例函数图象的对称性5.如图,已知直线y=mx与双曲线y=的一个交点坐标为(3,4),则它们的另一个交点坐标是.6.对于反比例函数y=的图象的对称性叙述错误的是()A.关于原点中心对称B.关于直线y=x对称C.关于直线y=﹣x对称D.关于x轴对称7.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(4a,a)是反比例函数y=(k>0)的图象上与正方形的一个交点,若图中阴影部分的面积等于16,则k的值为()A.16B.1C.4D.﹣16四.反比例函数的性质8.若反比例函数y=在每个象限内的函数值y随x的增大而减小,则()A.k<0B.k>0C.k<2D.k>29.若反比例函数y=的图象在其所在的每一象限内,y随x的增大而增大,则k的取值范围是()A.k<﹣2B.k>﹣2C.k<2D.k>210.对于反比例函数y=,下列说法正确的是()A.它的图象分布在二、四象限B.它的图象关于直线y=x对称C.点(﹣5,1)在它的图象上D.当x1>x2时,y1<y211.对于反比例函数y=﹣,下列说法错误的是()A.它的图象在第二、四象限B.在每个象限内y随x的增大而增大C.若x>1,则﹣3<y<0D.若点A(﹣1,y1)和点B(3,y2)在这个函数图象上,则y1<y2五.反比例函数系数k的几何意义12.如图,点P在双曲线y=第一象限的图象上,P A⊥x轴于点A,△OP A的面积3,则k 为()A.2B.3C.4D.613.如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和3,则△OAB的面积是()A.4.5B.3.5C.2.5D.1.514.如图所示,在平面直角坐标系Oxy中,四边形OABC为矩形,点A、C分别在x轴、y 轴上,点B在函数的图象上,边AB与函数的图象交于点D,则阴影部分ODBC的面积为()A.2B.3C.4D.515.如图,是反比例函数y=和y=﹣在x轴上方的图象,x轴的平行线AB分别与这两个函数图象相交于点A,B,点P是x轴上任意一点,则△APB的面积为.六.反比例函数图象上点的坐标特征16.若反比例函数y=(k≠0)的图象经过点P(2,5),则下列各点在这个函数图象上的是()A.(﹣5,﹣2)B.(5,﹣2)C.(2,﹣5)D.(﹣2,5)17.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在反比例函数y=的图象上,那么y1、y2、y3的大小关系是()A.y2<y1<y3B.y3<y2<y1C.y1<y2<y3D.y1<y3<y2 18.如图,在平面直角坐标系中,Rt△ABC的顶点A、C的坐标分别为(0,2)、(2,0),∠ACB=90°,tan∠ABC=2,函数y=(k>0,x>0)的图象经过点B,则k的值为()A.2B.2C.3D.4七.待定系数法求反比例函数解析式19.已知点P(2,1)是反比例函数上的一点,则这个反比例函数的解析式为.20.如图,反比例函数y=的图象经过Rt△OAB的顶点A,D为斜边OA的中点,则过点D的反比例函数图象的函数表达式为.21.已知同一象限内的两点A(3,n),B(n﹣4,n+3)均在反比例函数y=的图象上,则该反比例函数关系式为.八.反比例函数与一次函数的交点问题22.已知函数y1=x与y2=在同一平面直角坐标系内的图象如图所示,由图象可知,x取什么值时,y1>y2()A.x<﹣1或x>1B.x<﹣1或0<x<1C.﹣1<x<0或x>1D.﹣1<x<0或0<x<1九.根据实际问题列反比例函数关系式23.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y=B.y=C.y=D.y=24.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v(千米/时)与时间t(小时)的函数关系为()A.v=B.v+t=480C.v=D.v=十.反比例函数的应用25.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).血液中药物浓度不低于6微克/毫升的持续时间为()A.B.3C.4D.26.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(单位:kPa)是气体体积V(单位:m3)的反比例函数,其图象如图所示.当气球内的气压大于144kPa 时,气球将爆炸,为了安全起见,气球的体积应()A.不大于m3B.不小于m3C.不大于m3D.不小于m3 27.为了响应“绿水青山就是金山银山”的号召,建设生态文明,德州市某工厂自2020年1月开始限产并进行治污改造,其月利润y(万元)与月份x之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的部分,下列选项错误的是()A.4月份的利润为50万元B.治污改造完成后每月利润比前一个月增加30万元C.9月份该厂利润达到200万元D.治污改造完成前后共有4个月的利润低于100万元十一.反比例函数综合题28.如图所示,在平面直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C分别在x轴、y轴上,双曲线y=kx﹣1(k≠0,x>0)与边AB、BC分别交于点N、F,连接ON、OF、NF.若∠NOF=45°,NF=2,则点C的坐标为.29.如图,四边形OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A 和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①=;②阴影部分面积是(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称;⑤若AC∥MN,则四边形OABC的面积为2k1.其中正确的结论是(把所有正确的结论的序号都填上).30.如图,在平面直角坐标系中,O为坐标原点,点B在x轴正半轴上,四边形OACB为平行四边形,cos∠AOB=,反比例函数y=(k>0)的图象在第一象限内过点A,且经过BC边的中点F,连接AF,OF.(1)当OA=时,求反比例函数的表达式;(2)在(1)的条件下,求点F的坐标;(3)证明:△OAF∽△AFC.31.如图,一次函数图象与x轴、y轴分别交于点A和点B,与反比例函数图象交于点C和点D,其中点D的横坐标为1,OA=OB=1.(1)如图1,求一次函数和反比例函数的表达式;(2)如图2,点E是x轴正半轴上一点,OE=2OB,求△BDE的面积;(3)在(2)的条件下,直线BE向上平移,平移后的直线过点D且交y轴于点F,点M 为平面直角坐标系内一点,是否存在以B、D、F、M为顶点的四边形是平行四边形,若存在,直接写出点M的坐标;若不存在,请说明理由.32.如图,直线y=经过点所A(﹣3,0)与y轴正半轴交于B,在x轴正半轴上有一点D,且tan∠BDO=.过D点作DC⊥x轴交直线y=+b于C点,反比例函数y =x>0)经过点C.(1)求b和反比例函数的解析式;(2)将点B向右平移m个单位长度得到点P,当四边形BCPD为菱形时,求出m的值,并判断点P是否落在反比例函数图象上;(3)点E是x轴上一点,且△COE是等腰三角形,求所有点E的坐标.参考答案一.反比例函数的定义1.解:A.y不可以看作是x的反比例函数,故本选项不符合题意;B.y不可以看作是x的反比例函数,故本选项不符合题意;C.y不可以看作是x的反比例函数,故本选项不符合题意;D.y可以看作是x的反比例函数,故本选项符合题意;故选:D.2.解:根据题意m2﹣2=﹣1,∴m=±1,又m﹣1≠0,m≠1,所以m=﹣1.故答案为:﹣1.二.反比例函数的图象3.解:∵k=﹣5<0,∴反比例函数y=﹣(x>0)的图象位于第四象限.故选:C.4.解:∵ab<0,∴反比例函数y=的图象在二、四象限,故A、C选项不合题意,∵ab<0,∴一次函数y=ax+b的图象经过第一、三、四象限或经过一、二、四象限,故B选项不合题意,D选项符合题意,故选:D.三.反比例函数图象的对称性5.解:因为直线y=mx过原点,双曲线y=的两个分支关于原点对称,所以其交点坐标关于原点对称,一个交点坐标为(3,4),另一个交点的坐标为(﹣3,﹣4).故答案是:(﹣3,﹣4).6.解:反比例函数y=的图象关于原点中心对称、关于直线y=x对称、关于直线y=﹣x 对称,∵它的图象在第一、三象限,∴不关于x轴对称,A、B、C说法正确,不符合题意,D说法错误,符合题意,故选:D.7.解:∵图中阴影部分的面积等于16,∴正方形OABC的面积=16,∵P点坐标为(4a,a),∴4a×4a=16,∴a=1(a=﹣1舍去),∴P点坐标为(4,1),把P(4,1)代入y=,得k=4×1=4.故选:C.四.反比例函数的性质8.解:∵反比例函数y=在每个象限内的函数值y随x的增大而减小,∴k﹣2>0,∴k>2,故选:D.9.解:∵函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而增大,∴k+2<0,解得:k<﹣2,故选:A.10.解:∵反比例函数y=,k=5>0,∴该函数图象为第一、三象限,故选项A不符合题意;它的图象关于直线y=x对称,故选项B正确,符合题意;当x=﹣5时,y=﹣1,即该函数不过点(﹣5,1),故选项C不符合题意;当x>0时,y随x的增大而增大,当x<0时,y随x的增大而增大,故选项D不符合题意;故选:B.11.解:A.y=﹣,由﹣3<0,则双曲线的两支分别位于第二、第四象限,故此选项不合题意;B.y=﹣,由﹣3<0,则在每一象限内y随x的增大而增大,故此选项不合题意;C.y=﹣,若x>1,则﹣3<y<0,故此选项不合题意;D.y=﹣,若点A(﹣1,y1)和点B(3,y2)在这个函数图象上,则y1>y2,故此选项符合题意;故选:D.五.反比例函数系数k的几何意义12.解:∵P A⊥x轴于点A,∴S△AOP=|k|=3,∴k=±6,∵双曲线y=的图象在第一象限,∴k=6,故选:D.13.解:∵A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和3,∴当x=2时,y=3,即A(2,3),当x=3时,y=2,即B(3,2).如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S△AOC=S△BOD=×6=3.∵S△AOB=S△AOC+S梯形ABDC﹣S△BOD=S梯形ABDC,∵S梯形ABDC=(BD+AC)•CD=(2+3)×1=,∴S△AOB=2.5.故选:C.14.解:∵D是反比例函数的图象上一点,∴△AOD的面积为=1.∵点B在函数的图象上,四边形OABC为矩形,∴矩形ABCO的面积为4.∴阴影部分ODBC的面积=矩形ABCO的面积﹣△AOD的面积=4﹣1=3.故选:B.15.解:连接OA、OB,∵x轴的平行线AB分别与这两个函数图象相交于点A,B.设AB交y轴于C.∴AB⊥y轴,∵点A、B在反比例函数y=和y=﹣在x轴上方的图象上,∴S△P AB=S△AOB=S△COB+S△AOC=(3+7)=5,故答案为:5.六.反比例函数图象上点的坐标特征16.解:∵反比例函数y=(k≠0)的图象经过点P(2,5),∴k=2×5=10.A、﹣5×(﹣2)=10;B、5×(﹣2)=﹣10;C、2×(﹣5)=﹣10;D、﹣2×5=﹣10.故选:A.17.解:∵m2≥0,∴m2+1≥1,是正数,∴反比例函数y=的图象位于第一三象限,且在每一个象限内y随x的增大而减小,∵(﹣2,y1),(﹣1,y2),(1,y3)都在反比例函数图象上,∴0<y2<y1,y3>0,∴y2<y1<y3.故选:A.18.解:过点B作BD⊥x轴,垂足为D,∵点A、C的坐标分别为(0,2)、(2,0),∴OA=OC=2,在Rt△AOC中,AC===2,又∵tan∠ABC=2,∴tan∠ABC==2,∴BC=AC=,又∵∠ACB=90°,∴∠OAC=∠OCA=45°=∠BCD=∠CBD,∴CD=BD=BC=×=1,∴OD=2+1=3,∴B(3,1),将点B的坐标代入y=得:k=3,故选:C.七.待定系数法求反比例函数解析式19.解:设反比例函数解析式为y=(k≠0),∵点P(2,1)是反比例函数上的一点,∴k=xy=2×1=2,∴该反比例函数的解析式为:y=,故答案是:y=.20.解:设A(t,),∵D为斜边OA的中点,∴D点坐标为(t,),设过点D的反比例函数图象的函数表达式为y=,把D(t,)代入得k=t•=2,∴过点D的反比例函数图象的函数表达式为y=.故答案为y=.21.解:∵同一象限内的两点A(3,n),B(n﹣4,n+3)均在反比例函数y=的图象上,∴k=3n=(n﹣4)(n+3),解得n=6或n=﹣2,∵n=﹣2时,A(3,﹣2),B(﹣6,1),∴A、B不在同一象限,故n=﹣2舍去,∵k=3n=18,∴y=,故答案为y=.八.反比例函数与一次函数的交点问题22.解:根据图象得,当﹣1<x<0或x>1时,函数y1=x的图象在反比例函数y2=的图象的上边,∴当﹣1<x<0或x>1时,y1>y2,故选:C.九.根据实际问题列反比例函数关系式23.解:∵等腰三角形的面积为10,底边长为x,底边上的高为y,∴xy=10,∴y与x的函数关系式为:y=.故选:C.24.解:由于以80千米/时的平均速度用了6小时到达目的地,那么路程为80×6=480千米,∴汽车的速度v(千米/时)与时间t(小时)的函数关系为v=.故选:A.十.反比例函数的应用25.解:当0≤x≤4时,设直线解析式为:y=kx,将(4,8)代入得:8=4k,解得:k=2,故直线解析式为:y=2x,当4≤x≤10时,设反比例函数解析式为:y=,将(4,8)代入得:8=,解得:a=32,反比例函数解析式为:y=;当0≤x≤4时,令y=6,则x=3;当4≤x≤10时,令y=6,则x=;∴﹣3=.故选:A.26.解:设球内气体的气压P(kPa)和气体体积V(m3)的关系式为P=∵图象过点(1.5,64)∴k=96,即P=在第一象限内,P随V的增大而减小,∴当P≤144时,V≥=.故选:B.27.解:A、设反比例函数的解析式为y=,把(1,200)代入得,k=200,∴反比例函数的解析式为:y=,当x=4时,y=50,∴4月份的利润为50万元,正确,不合题意;B、治污改造完成后,从4月到6月,利润从50万到110万,故每月利润比前一个月增加30万元,正确,不合题意;C、设一次函数解析式为:y=kx+b,则,解得:,故一次函数解析式为:y=30x﹣70,故y=200时,200=30x﹣70,解得:x=9,则治污改造完成后的第5个月,即9月份该厂利润达到200万元,正确,不合题意.D、当y=100时,100=,解得:x=2,则只有3月,4月,5月共3个月的利润低于100万元,不正确,符合题意.故选:D.十一.反比例函数综合题28.解:将△OAN绕点O逆时针旋转90°,点N对应N′,点A对应A′,如图所示.∵OA=OC,∴OA′与OC重合,点A′与点C重合.∵∠OCN′+∠OCF=180°,∴F、C、N′共线.∵∠COA=90°,∠FON=45°,∴∠COF+∠NOA=45°.∵△OAN旋转得到△OCN′,∴∠NOA=∠N′OC,∴∠COF+∠CON'=45°,∴∠N'OF=∠NOF=45°.在△N'OF与△NOF中,.∴△N′OF≌△NOF(SAS).∴NF=N'F=2.∵△OCF≌△OAN,∴CF=AN.又∵BC=BA,∴BF=BN.又∠B=90°,∴BF2+BN2=NF2.∴BF=BN=.设OC=a,则CF=AN=a﹣.∵△OAN旋转得到△OCN′,∴AN=CN'=a﹣.∴N'F=2(a﹣).又∵N'F=2,∴2(a﹣)=2.解得:a=+1.∴C(0,+1).故答案是:(0,+1).29.解:作AE⊥y轴于E,CF⊥y轴于F,如图,∵四边形OABC是平行四边形,∴S△AOB=S△COB,∴AE=CF,∴OM=ON,∵S△AOM=|k1|=OM•AM,S△CON=|k2|=ON•CN,∴=,故①正确,符合题意;∵S△AOM=|k1|,S△CON=|k2|,∴S阴影部分=S△AOM+S△CON=(|k1|+|k2|),而k1>0,k2<0,∴S阴影部分=(k1﹣k2),故②错误,不符合题意;当∠AOC=90°,∴四边形OABC是矩形,∴不能确定OA与OC相等,而OM=ON,∴不能判断△AOM≌△CNO,∴不能判断AM=CN,∴不能确定|k1|=|k2|,故③错误,不符合题意;若OABC是菱形,则OA=OC,而OM=ON,∴Rt△AOM≌Rt△CNO(HL),∴AM=CN,∴|k1|=|k2|,∴k1=﹣k2,∴两双曲线既关于x轴对称,也关于y轴对称,故④正确,符合题意.⑤当AC∥MN时,则AC⊥OB,故四边形OABC是菱形,由④知,k1=﹣k2,而△OAB的面积为k1,△OBC的面积为k2,故四边形OABC的面积为2k1,故⑤正确,符合题意;故答案为①④⑤.30.(1)解:过点A作AM⊥x轴于点M,则OM=OA•cos∠AOB=1,∴AM===,∴点A(1,),∴k=,∴反比例函数的解析式为y=.(2)解:过点F作y轴的平行线交x轴于点H,交AC于点G,∵四边形OACB为平行四边形,则∠AOB=∠CBH=∠α,则△AMO∽△FHB,点F是BC的中点,则相似比为:2:1,则FH=AM=,即点F的坐标为:(2,),(3)证明:设OA=m,则A(m,m),F(2m,m),过点F作y轴的平行线交x轴于点H,交AC于点G,∵四边形OACB为平行四边形,则∠AOB=∠CBH=∠α,则△AMO∽△FHB,点F是BC的中点,则相似比为:2:1,则FH=AM=m,即点F的坐标为:(2m,m),BH=OM=m,∵BF=CF,AC∥x轴,∴∠C=∠CBH,而∠HFC=∠BFH,∴△GFC≌△HFB(AAS)则GC=BH=m,则点C(m,m);∴∠AFC=∠F AO,设α=∠AOB,cosα=,∵点A(m,m)、点F(2m,m)、点C(m,m);则OA•FC=m×=m2,而AF2=m2,∴AF2=OA•FC,∴=,∵OA∥CF,∴∠OAF=∠AFC,∴△OAF∽△AFC.31.解:(1)∵OA=OB=1,故点A、B的坐标分别为(﹣1,0)、(0,1),设直线AB的表达式为y=kx+b,则,解得,故一次函数的表达式为y=x+1,当x=1时,y=x+1=2,故点D(1,2),设反比例函数表达式为y=,将点D的坐标代入上式得:2=,解得m=2,故反比例函数表达式为y=;(2)∵OE=2OB,故点E的坐标为(2,0),由点B、E的坐标,同理可得,直线BE的表达式为y=﹣x+1,过点D作DH∥y轴交BE于点H,当x=1时,y=﹣x+1=,即点H(1,),则DH=2﹣=,则△BDE的面积=S△DHB+S△DHE=×DH×EO=××2=;(3)存在,理由:设平移后的BE对应的函数表达式为y=﹣x+t,将点D的坐标代入上式得:2=﹣+t,解得t=,故点F的坐标为(0,),设点M的坐标为(x,y),当BD为边时,点B向右平移1个单位向上平移1个单位得到点D,同样F(M)向右平移1个单位向上平移1个单位得到点M(F),则0±1=x且±1=y,解得或,故点M的坐标为(1,3.5)或(﹣1,1.5);当BD为对角线时,由中点坐标公式得:(0+1)=(x+0)且(1+2)=(+y),解得,故点M的坐标为(1,);综上,点M的坐标为(1,3.5)或(﹣1,1.5)或(1,).32.解:(1)∵直线y=经过A(﹣3,0),∴﹣4+b=0,∴b=4,∴直线的解析式为y=x+4.∴B(0,4).∴OB=4.∵tan∠BDO==.∵OD=3,∴D(3,0),把x=3代入y=x+4=8,∴C(3,8),∵反比例函数y=经过点C,∴k=3×8=24,∴反比例函数解析式为y=;(2)如图,∵将点B向右平移m个单位长度得到点P,∴P(m,4).∵当四边形BCPD是菱形时,C(3,8),D(3,0),∴CD⊥x轴,∴点P和点B关于CD对称,∴点P的坐标为(6,4),∴m=6,4×6=24=k,∴点P在反比例函数图象上,∴反比例函数图象上存在点P,使四边形BCPD为菱形,此时点P(6,4).(3)设E(n,0).∵C(3,8),O(0,0),∴OC==,OE==|n|,CE=.△COE是等腰三角形,分三种情况:①OC=OE,则=|n|,∴n=或n=﹣.∴符合条件的点E坐标为(,0)或(﹣,0);②OC=CE,则=.此时n=6或n=0(舍去).符合条件的点E坐标为(6,0);③OE=CE,则|n|=.此时n=.符合条件的点E坐标是(,0).综上所述,符合条件的点E坐标为(,0)或(﹣,0)或(6,0)或(,0)。

2023年中考数学一轮专题练习 ——反比例函数(含解析)

2023年中考数学一轮专题练习 ——反比例函数(含解析)

2023年中考数学一轮专题练习 ——反比例函数2一、单选题(本大题共10小题)1. (湖北省武汉市2022年)已知点()11,A x y ,()22,B x y 在反比例函数6y x=的图象上,且120x x <<,则下列结论一定正确的是( ) A .120y y +<B .120y y +>C .12y y <D .12y y >2. (湖北省宜昌市2022年)已知经过闭合电路的电流I (单位:A )与电路的电阻R (单位:Ω)是反比例函数关系.根据下表判断a 和b 的大小关系为( )A .a b >B .a b ≥C .a b <D .a b ≤3. (湖北省十堰市2022年)如图,正方形ABCD 的顶点分别在反比例函数()110k y k x=>和()220k y k x=>的图象上.若BD y ∥轴,点D 的横坐标为3,则12k k +=( )A .36B .18C .12D .94. (江苏省泰州市2022年)已知点在下列某一函数图像上,且那么这个函数是( )A .B .C .D .5. (湖北省荆州市2022年)如图是同一直角坐标系中函数和的图象.观察图象可得不等式的解集为( ) ()()()1233,,1,,1,y y y --312y y y <<3y x =23y x =3y x=3y x=-12y x =22y x=22x x>A .B .或C .或D .或6. (四川省内江市2022年)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =和ky x=的图象交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣227. (黑龙江省绥化市2022年)已知二次函数2y ax bx c =++的部分函数图象如图所示,则一次函数24y ax b ac =+-与反比例函数42a b cy x++=在同一平面直角坐标系中的图象大致是( )11x -<<1x <-1x >1x <-01x <<10x -<<1x>A .B .C .D .8. (湖北省省直辖县级行政单位潜江市2022年)如图,点A 在双曲线4y x=上,点B 在双曲线12y x=上,且AB//x 轴,点C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为( )A .4B .6C .8D .129. (江苏省宿迁市2022年)如图,点A 在反比例函数()20=>y x x的图像上,以OA 为一边作等腰直角三角形OAB ,其中∠OAB =90°,AO AB =,则线段OB 长的最小值是( )A .1B .C .D .410. (山东省滨州市2022年)在同一平面直角坐标系中,函数1y kx =+与ky x=- (k 为常数且0k ≠)的图象大致是( )A .B .C .D .二、填空题(本大题共6小题)11. (四川省成都市2022年)关于x 的反比例函数2m y x-=的图像位于第二、四象限,则m 的取值范围是 .12. (四川省广元市2022年)如图,已知在平面直角坐标系中,点A 在x 轴负半轴上,点B 在第二象限内,反比例函数ky x=的图象经过△OAB 的顶点B 和边AB 的中点C ,如果△OAB 的面积为6,那么k 的值是 .13. (湖北省鄂州市2022年)如图,已知直线y =2x 与双曲线ky x=(k 为大于零的常数,且x >0)交于点A ,若OA k 的值为 .14. (四川省凉山州2022年)如图,点A 在反比例函数y =xk(x >0)的图象上,过点A 作AB ⊥x 轴于点B ,若△OAB 的面积为3,则k = .15. (四川省内江市2022年)如图,在平面直角坐标系中,一次函数y kx b =+的图象经过点()2,3,P 且与函数()20=>y x x的图象交于点(,)Q m n .若一次函数y 随x 的增大而增大,则m 的取值范围是 .16. (2022年四川省乐山市)如图,平行四边形ABCD的顶点A在x轴上,点D在y=k x(k>0)上,且AD⊥x轴,CA的延长线交y轴于点E.若S△ABE=32,则k= .三、解答题(本大题共10小题)17. (吉林省2022年)密闭容器内有一定质量的气体,当容器的体积V(单位:3m)变化时,气体的密度ρ(单位:3kg/m)随之变化.已知密度ρ与体积V是反比例函数关系,它的图像如图所示.(1)求密度ρ关于体积V的函数解析式;(2)当3m10V=时,求该气体的密度ρ.18. (湖南省岳阳市2022年)如图,反比例函数()0ky k x=≠与正比例函数()0y mx m =≠的图象交于点()1,2A -和点B ,点C 是点A 关于y 轴的对称点,连接AC ,BC .(1)求该反比例函数的解析式; (2)求ABC 的面积;(3)请结合函数图象,直接写出不等式kmx x<的解集. 19. (湖北省恩施州2022年)如图,在平面直角坐标系中,O 为坐标原点,已知∠ACB =90°,A (0,2),C (6,2).D 为等腰直角三角形ABC 的边BC 上一点,且S △ABC =3S △ADC .反比例函数y 1=kx(k ≠0)的图象经过点D .(1)求反比例函数的解析式;(2)若AB 所在直线解析式为()20y ax b a =+≠,当12y y >时,求x 的取值范围. 20. (湖南省衡阳市2022年)如图,反比例函数my x=的图象与一次函数y kx b =+的图象相交于()3,1A ,()1,B n -两点.(1)求反比例函数和一次函数的关系式;(2)设直线AB 交y 轴于点C ,点M ,N 分别在反比例函数和一次函数图象上,若四边形OCNM 是平行四边形,求点M 的坐标.21. (四川省遂宁市2022年)在平面直角坐标系中,如果一个点的横坐标与纵坐标互为相反数,则称该点为“黎点”.例如()1,1-,()2022,2022-都是“黎点”. (1)求双曲线9y x-=上的“黎点”; (2)若抛物线27y ax x c =-+(a 、c 为常数)上有且只有一个“黎点”,当1a >时,求c 的取值范围.22. (四川省遂宁市2022年)已知一次函数11y ax =-(a 为常数)与x 轴交于点A ,与反比例函数26y x=交于B 、C 两点,B 点的横坐标为2-.(1)求出一次函数的解析式并在图中画出它的图象;(2)求出点C 的坐标,并根据图象写出当12y y <时对应自变量x 的取值范围; (3)若点B 与点D 关于原点成中心对称,求出△ACD 的面积.23. (四川省自贡市2022年)如图,在平面直角坐标系中,一次函数y kx b =+的图象与反比例函数ny x=的图象交于()()1,2,,1A B m -- 两点.(1)求反比例函数和一次函数的解析式;(2)过点B作直线l∥y轴,过点A作直线AD l⊥于D,点C是直线l上一动点,若2DC DA=,求点C的坐标.24. (湖北省咸宁市2022年)如图,已知一次函数y1=kx+b的图像与函数y2=mx(x>0)的图像交于A(6,-12),B(12,n)两点,与y轴交于点C,将直线AB沿y轴向上平移t个单位长度得到直线DE,DE与y轴交于点F.(1)求y1与y2的解析式;(2)观察图像,直接写出y1<y2时x的取值范围;(3)连接AD,CD,若△ACD的面积为6,则t的值为.25. (四川省南充市2022年)如图,直线AB与双曲线交于(1,6),(,2)A B m-两点,直线BO 与双曲线在第一象限交于点C,连接AC.(1)求直线AB与双曲线的解析式.(2)求ABC的面积.26. (四川省眉山市2022年)已知直线y x =与反比例函数ky x=的图象在第一象限交于点(2,)M a .(1)求反比例函数的解析式;(2)如图,将直线y x =向上平移b 个单位后与ky x=的图象交于点(1,)A m 和点(,1)B n -,求b 的值;(3)在(2)的条件下,设直线AB 与x 轴、y 轴分别交于点C ,D ,求证:AOD BOC ≌△△.参考答案1. 【答案】C 【分析】把点A 和点B 的坐标代入解析式,根据条件可判断出1y 、2y 的大小关系. 【详解】解:∵点()11,A x y ,()22,B x y )是反比例函数6y x=的图象时的两点, ∴11226x y x y ==. ∵120x x <<, ∴120y y <<. 故选:C . 2. 【答案】A 【分析】根据电流I 与电路的电阻R 是反比例函数关系,由反比例函数图像是双曲线,在同一象限内x 和y 的变化规律是单调的,即可判断 【详解】∵电流I 与电路的电阻R 是反比例函数关系 由表格:5,20I R ==;1,100I R == ∴在第一象限内,I 随R 的增大而减小 ∵204080100<<< ∴51a b >>> 故选:A 3. 【答案】B 【分析】设PA =PB =PC =PD =t (t ≠0),先确定出D (3,23k ),C (3-t ,23k+t ),由点C 在反比例函数y =2k x 的图象上,推出t =3-23k ,进而求出点B 的坐标(3,6-23k),再点C 在反比例函数y =1k x的图象上,整理后,即可得出结论. 【详解】解:连接AC ,与BD 相交于点P ,设PA =PB =PC =PD =t (t ≠0). ∴点D 的坐标为(3,23k ), ∴点C 的坐标为(3-t ,23k +t ). ∵点C 在反比例函数y =2k x的图象上, ∴(3-t )(23k +t )=k2,化简得:t =3-23k , ∴点B 的纵坐标为23k +2t =23k +2(3-23k )=6-23k, ∴点B 的坐标为(3,6-23k ), ∴3×(6-23k )=1k ,整理,得:1k +2k =18. 故选:B . 4. 【答案】D 【分析】先假设选取各函数,代入自变量求出y 1、y 2、y 3的值,比较大小即可得出答案. 【详解】解:A .把点代入y =3x ,解得y 1=-9,y 2=-3,y 3=3,所以y 1<y 2<y 3,这与已知条件不符,故选项错误,不符合题意;B .把点代入y =3x 2,解得y 1=27,y 2=3,y 3=3,所以y 1>y 2=y 3,这与已知条件不符,故选项错误,不符合题意;C . 把点代入y =,解得y 1=-1,y 2=-3,y 3=3,所以y 2<y 1<y 3,这与已知条件不符,故选项错误,不符合题意; D . 把点代入y =-,解得y 1=1,y 2=3,y 3=-3,所以,这与已知条件相符,故选项正确,符合题意;()()()1233,,1,,1,y y y --312y y y <<()()()1233,,1,,1,y y y --312y y y <<()()()1233,,1,,1,y y y --3x312y y y <<()()()1233,,1,,1,y y y --3x312y y y <<312y y y <<5. 【答案】D 【分析】根据图象进行分析即可得结果; 【详解】 解:∵ ∴由图象可知,函数和分别在一、三象限有一个交点,交点的横坐标分别为, 由图象可以看出当或时,函数在22y x=上方,即12y y >, 故选:D . 6. 【答案】D 【分析】设点P (a ,b ),Q (a ,),则OM =a ,PM =b ,MQ =,则PQ =PM +MQ =,再根据ab =8,S △POQ =15,列出式子求解即可. 【详解】解:设点P (a ,b ),Q (a ,),则OM =a ,PM =b ,MQ =, ∴PQ =PM +MQ =. ∵点P 在反比例函数y =的图象上, ∴ab =8. ∵S △POQ =15, ∴PQ •OM =15, ∴a (b ﹣)=15. ∴ab ﹣k =30. ∴8﹣k =30, 解得:k =﹣22. 故选:D . 7. 【答案】B 【分析】根据2y ax bx c =++的函数图象可知,0a >,240b ac ->,即可确定一次函数图象,根据2x =时,420y a b c =++>,即可判断反比例函数图象,即可求解.22x x>12y y >12y x =22y x=11x x ==-,10x -<<1x >12y x =k a ka-kb a-k a k a-kb a-8x1212ka解:∵二次函数2y ax bx c =++的图象开口向上,则,与轴存在2个交点,则240b ac ->,∴一次函数24y ax b ac =+-图象经过一、二、三象限,二次函数2y ax bx c =++的图象,当2x =时,420y a b c =++>,∴反比例函数42a b cy x++=图象经过一、三象限 结合选项,一次函数24y ax b ac =+-与反比例函数42a b cy x++=在同一平面直角坐标系中的图象大致是B 选项 故选B 8. 【答案】C 【分析】过点A 作AE ⊥y 轴于点E ,利用反比例函数系数k 的几何意义,分别得到四边形AEOD 的面积为4,四边形BEOC 的面积为12,即可得到矩形ABCD 的面积. 【详解】过点A 作AE ⊥y 轴于点E , ∵点A 在双曲线4y x=上, ∴四边形AEOD 的面积为4, ∵点B 在双曲线12y x=上,且AB//x 轴, ∴四边形BEOC 的面积为12, ∴矩形ABCD 的面积为12-4=8, 故选:C .9. 【答案】C 【分析】如图,过A 作AM x ∥轴,交y 轴于M ,过B 作BD x ⊥轴,垂足为D ,交MA 于H ,则90,OMA AHB 证明,AOM BAH ≌ 可得,,OM AH AM BH 设2,,A mm则0a >x222,,,,AM m OMMH mBD m mm m可得 22,,B mm m m 再利用勾股定理建立函数关系式,结合完全平方公式的变形可得答案. 【详解】解:如图,过A 作AM x ∥轴,交y 轴于M ,过B 作BD x ⊥轴,垂足为D ,交MA 于H ,则90,OMAAHB 90,MOA MAO,,AO AB AO AB 90,MAO BAH设2,,A m m则222,,,,AM m OMMH mBD m mmm∴ 22,,B mm m m22222282,OBmm m mmm 0,m > 而当0,0a b >>时,则a b +≥ 2222882228,m m m m∴2282m m 的最小值是8, ∴OB故选:C .10. 【答案】A 【分析】根据题意中的函数解析式和函数图象的特点,可以判断哪个选项中的图象是正确的. 【详解】解:根据函数可得,该函数图象与y 轴的交点在x 轴上方,排除B 、D 选项,,MOA BAH ,AOM BAH ≌,,OMAH AMBH =1y kx =+当k >0时,函数的图象在第一、二、三象限,函数在第二、四象限,故选项A 正确, 故选:A . 11. 【答案】2m < 【分析】根据反比例函数的性质即可确定m-2的符号,从而求解. 【详解】根据题意得:m-2<0, 解得:m <2. 故答案为:m <2. 12. 【答案】4 【分析】过B 作BD OA ⊥于D ,设B m n (,),根据三角形的面积公式求得12OA n=,进而得到点A 的坐标,再求得点C 的坐标,结合一次函数的解析式得到列出方程求解. 【详解】解:过B 作BD OA ⊥于D ,如下图.∵点B 在反比例函数ky x=的图象上, ∴设. ∵的面积为6, ∴, ∴.∵点C 是AB 的中点, ∴. ∵点C 在反比例函数的图象上, 1y kx =+ky x =-B m n (,)OAB 12OA n=12,0A n ⎛⎫ ⎪⎝⎭12,22mn n C n+⎛⎫⎪⎝⎭ky x=∴, ∴, ∴. 故答案为:4. 13. 【答案】2 【分析】设点A 的坐标为(m ,2m ),根据OA 的长度,利用勾股定理求出m 的值即可得到点A 的坐标,由此即可求出k . 【详解】解:设点A 的坐标为(m ,2m ), ∴, ∴或(舍去), ∴点A 的坐标为(1,2), ∴, 故答案为:2. 14. 【答案】6 【分析】设点A 的坐标为(,)(0,0)A a b a b >>,则,OB a AB b ==,先利用三角形的面积公式可得6ab =,再将点(,)A a b 代入反比例函数的解析式即可得.【详解】解:由题意,设点A 的坐标为(,)(0,0)A a b a b >>,AB x ⊥轴于点B ,,OB a AB b ∴==,OAB 的面积为3,, 解得, 将点(,)A a b 代入ky x=得:, 故答案为:6. 15. 【答案】 【分析】分别求出过点P ,且平行于x 轴和y 轴时对应的m 值,即可得到m 的取值范围. 【详解】当PQ 平行于x 轴时,点Q 的坐标为,代入中,可得; 当PQ 平行于y 轴时,点Q 的坐标为,可得;1222mn nmn n +⋅=4mn =4k=OA =1m =1m =-122k =⨯=11322OB AB ab ∴⋅==6ab =6k ab ==223m <<(),3m 2y x =23m =()2,n 2m =∵一次函数随的增大而增大, ∴的取值范围是, 故答案为:. 16. 【答案】3 【分析】连接OD 、DE ,利用同底等高的两个三角形面积相等得到S △ADE = S △ABE =32,以及S △ADE =S △ADO =32,再利用反比例函数的比例系数k 的几何意义求解即可.【详解】解:连接OD 、DE ,∵四边形ABCD 是平行四边形, ∴点B 、点D 到对角线AC 的距离相等, ∴S △ADE = S △ABE =32,∵AD ⊥x 轴, ∴AD ∥OE ,∴S △ADE =S △ADO =32,设点D (x ,y ) ,∴S △ADO =12OA ×AD =12xy =32,∴k =xy =3. 故答案为:3. 17. 【答案】(1)()100V Vρ=> (2)13kg/m 【分析】(1)用待定系数法即可完成;(2)把V =10值代入(1)所求得的解析式中,即可求得该气体的密度.y x m 223m <<223m <<(1)设密度ρ关于体积V 的函数解析式为()0,0kV k Vρ=>≠, 把点A 的坐标代入上式中得: 2.54k=, 解得:k =10, ∴. (2)当时,(). 即此时该气体的密度为1. 18. 【答案】(1)2y x=-(2)4(3)1x <-或01x << 【分析】(1)把点()1,2A -代入()0ky k x=≠可得k 的值,求得反比例函数的解析式; (2)根据对称性求得B 、C 的坐标然后利用三角形面积公式可求解. (3)根据图象得出不等式kmx x<的解集即可. (1)解:把点()1,2A -代入()0k y k x =≠得:21k =-, ∴2k =-,∴反比例函数的解析式为2y x=-;(2)∵反比例函数()0ky k x=≠与正比例函数()0y mx m =≠的图象交于点()1,2A -和点B , ∴()1,2B -,∵点C 是点A 关于y 轴的对称点, ∴()1,2C , ∴2CD =,∴()122242ABC S =⨯⨯+=△.(3)根据图象得:不等式kmx x<的解集为1x <-或01x <<. ()100V Vρ=>3m 10V =10110ρ==3kg/m 3kg/m19. 【答案】(1)反比例函数的解析式为y 1=24x; (2)当12y y >时,0<x <4或x <-6. 【分析】(1)利用等腰直角三角形的性质以及S △ABC =3S △ADC ,求得DC =2,得到D (6,4),利用待定系数法即可求解;(2)利用待定系数法求得直线AB 的解析式,解方程x +2=24x,求得直线y 2= x +2与反比例函数y 1=24x的图象的两个交点,再利用数形结合思想即可求解. (1)解:∵A (0,2),C (6,2), ∴AC =6,∵△ABC 是等腰直角三角形, ∴AC =BC =6, ∵S △ABC =3S △ADC , ∴BC =3DC , ∴DC =2, ∴D (6,4),∵反比例函数y 1=kx(k ≠0)的图象经过点D ,∴k =6×4=24,∴反比例函数的解析式为y 1=24x; (2)∵C (6,2),BC =6, ∴B (6,8),把点B 、A 的坐标分别代入2y ax b =+中,得682a b b +=⎧⎨=⎩,解得:12a b =⎧⎨=⎩,∴直线AB 的解析式为22y x =+, 解方程x +2=24x, 整理得:x 2+2x -24=0, 解得:x =4或x =-6,∴直线y 2= x +2与反比例函数y 1=24x的图象的交点为(4,6)和(-6,-4), ∴当12y y >时,0<x <4或x <-6.20. 【答案】(1)反比例函数解析式为3y x =,一次函数解析式为2y x =-(2)M或( 【分析】(1)分别将(3,1)A ,(1,)B n -代入反比例函数解析式,即可求得m ,n 的值,再将A ,B 两点坐标代入一次函数解析式,求得k ,b 的值;(2)若四边形OCNM 是平行四边形,则//MN OC ,且MN OC =,即M N y y OC -=,由此进行求解.(1)解:将点(3,1)A ,代入, 得,解得, 点,反比例函数的解析式为;将点,代入, 得,解得, 一次函数的解析式为.(2)解:将代入,得,,.若四边形是平行四边形,则,且,设,, 则, 解得或.21. 【答案】(1)9y x-=上的“黎点”为()3,3-,()3,3- (2)09c <<【分析】(1)设双曲线9y x -=上的“黎点”为(),m m -,构建方程求解即可; (1,)B n -m y x=131m m n ⎧=⎪⎪⎨⎪=⎪-⎩33m n =⎧⎨=-⎩∴(1,3)B --3y x=(3,1)A (1,3)B --y kx b =+133k b k b =+⎧⎨-=-+⎩12k b =⎧⎨=-⎩∴2y x =-0x =2y x =-2y =-∴(0,2)C -∴2OC =OCNM //MN OC 2MN OC ==3(,)M t t(,2)N t t -3(2)2M N MN y y t t=-=--=t =∴M ((2)抛物线27y ax x c =-+(a 、c 为常数)上有且只有一个“黎点”,推出方程()270ax x c x a -+=-≠有且只有一个解,3640ac ∆=-=,可得结论.(1) 设双曲线9y x -=上的“黎点”为(),m m -, 则有9m m --=,解得3m =±, ∴9y x-=上的“黎点”为()3,3-,()3,3-. (2)∵抛物线27y ax x c =-+上有且只有一个“黎点”,∴方程()270ax x c x a -+=-≠有且只有一个解, 即260ax x c +=-,3640ac ∆=-=,9ac =, ∴9a c=. ∵1a >,∴.22. 【答案】(1)11y x =-,画图象见解析(2)点C 的坐标为(3,2);当12y y <时,2x <-或03x <<(3)2ACD S =△【分析】(1)根据B 点的横坐标为-2且在反比例函数y 2=6x的图象上,可以求得点B 的坐标,然后代入一次函数解析式,即可得到一次函数的解析式,再画出相应的图象即可; (2)将两个函数解析式联立方程组,即可求得点C 的坐标,然后再观察图象,即可写出当y 1<y 2时对应自变量x 的取值范围;(3)根据点B 与点D 关于原点成中心对称,可以写出点D 的坐标,然后点A 、D 、C 的坐标,即可计算出△ACD 的面积.(1)解:∵B 点的横坐标为-2且在反比例函数y 2=6x的图象上, ∴y 2=62-=-3, ∴点B 的坐标为(-2,-3),∵点B (-2,-3)在一次函数y 1=ax -1的图象上,∴-3=a ×(-2)-1,解得a =1,∴一次函数的解析式为y =x -1,∵y =x -1,09c <<∴x=0时,y=-1;x=1时,y=0;∴图象过点(0,-1),(1,0),函数图象如图所示;;(2)解:解方程组16y xyx=-⎧⎪⎨=⎪⎩,解得32xy=⎧⎨=⎩或23xy=-⎧⎨=-⎩,∵一次函数y1=ax-1(a为常数)与反比例函数y2=6x交于B、C两点,B点的横坐标为-2,∴点C的坐标为(3,2),由图象可得,当y1<y2时对应自变量x的取值范围是x<-2或0<x<3;(3)解:∵点B(-2,-3)与点D关于原点成中心对称,∴点D(2,3),作DE⊥x轴交AC于点E,将x=2代入y=x-1,得y=1,∴S△ACD=S△ADE+S△DEC= (31)(21)(31)(32)22-⨯--⨯-+=2,即△ACD的面积是2.23. 【答案】(1)y=2x-,y=﹣x+1;(2)(2,8)或(2,﹣4)【分析】(1)把点A (﹣1,2)代入n y x=求出n 的值,即可得到反比例函数的解析式,把B (m ,﹣1)代入求得的反比例函数的解析式得到m 的值,把A 、B 两点的坐标代入一次函数y kx b =+,求出k ,b 的值,即可得出一次函数的解析式;(2)根据已知条件确定AD 的长及点D 的坐标,由DC =2AD 得到DC =6,从而求得点C 的坐标.(1)解:把点A (﹣1,2)代入ny x =得,2=1n-,解得n =﹣2,∴反比例函数的解析式是y =2x -,把B (m ,﹣1)代入y =2x -得,﹣1=2m ,解得m =2,∴ 点B 的坐标是(2,﹣1),把A (﹣1,2),B (2,﹣1)代入y kx b =+得,221k b k b -+=⎧⎨+=-⎩,解得11k b =-⎧⎨=⎩,∴一次函数的解析式为y =﹣x +1;(2)解:∵直线l y 轴,AD ⊥l ,点A 的坐标是(﹣1,2),点B 的坐标是(2,﹣1),∴ 点D 的坐标是(2,2),∴ AD =2-(﹣1)=3,∵ DC =2DA ,∴ DC =6,设点C 的坐标为(2,m ),则|m -2|=6,∴ m -2=6或m -2=﹣6,解得m =8或﹣4,∴ 点C 的坐标是(2,8)或(2,﹣4)24. 【答案】(1)1132y x -=,23(0)y x x =->;(2)162x <<; (3)2.【分析】(1)将两函数A 、B 的坐标值分别代入两个函数解析式求出未知系数即可; (2)由图像可知当x 在A 、B 两点之间时y 1<y 2,,所以x 取值在A 、B 两点横坐标之间;(3)根据平移性质可知DE AB ∥,CF =t ,求出两直线之间的距离即为△ACD 的高CG ,通过A 、C 坐标求出线段AC 长,列出△ACD 面积=1·2AC CG 的代数式求解即可.(1)∵一次函数y 1=kx +b 的图像与函数y 2=m x(x >0)的图像交于A (6,-12),B (12,n )两点, ∴16212k b k b n ⎧+=-⎪⎪⎨⎪+=⎪⎩, 1262m n m ⎧-=⎪⎨⎪=⎩, 解得:1132k b =⎧⎪⎨=-⎪⎩, 36m n =-⎧⎨=-⎩, ∴y 1、y 2的解析式为:1132y x -=,23(0)y x x=->; (2) 从图像上可以看出,当x 在AB 两点之间时,y 1<y 2,∴x 的取值范围为:162x <<; (3)作CG ⊥DE 于G ,如图,∵直线DE 是直线AB 沿y 轴向上平移t 个单位长度得到,∴DE AB ∥,CF =t ,∵直线AB 的解析式为1132y x -=, ∴直线AB 与y 轴的交点为C 130,2⎛⎫- ⎪⎝⎭,与x 轴的交点为13,02⎛⎫ ⎪⎝⎭, 即直线AB 与x 、y 坐标轴的交点到原点O 的距离相等,∴∠FCA =45°,∵CG ⊥DE , DE AB ∥,∴CG ⊥AC ,CG 等于平行线AB 、DE 之间的距离,∴∠GCF =∠GFC =45°,∴CG==, ∵A 、C 两点坐标为:A (6,-12),C 130,2⎛⎫-⎪⎝⎭, ∴线段AC∴11322ACD S AC CG t =⋅=⨯=, ∵△ACD 的面积为6,∴3t =6,解得:t =2.25. 【答案】(1)直线AB 的解析式为y =2x +4;双曲线解析式为6y x=;(2)16【分析】(1)根据点A 的坐标求出双曲线的解析式,求出点B 的坐标,再利用待定系数法求出直线AB 的解析式;(2)求出直线OB 的解析式为y =x ,得到点C 的坐标,过点B 作BE ∥x 轴,交AC 的延长线于E ,求出直线AC 的解析式,进而得到点E 的坐标,根据的面积=S △ABE -S △BCE 求出答案.(1)解:设双曲线的解析式为,将点A (1,6)代入, 得,∴双曲线解析式为, ∵双曲线过点B (m ,-2),∴-2m =6,解得m =-3,∴B (-3,-2),设直线AB 的解析式为y =nx +b ,23ABC k y x=166k =⨯=6y x =得,解得, ∴直线AB 的解析式为y =2x +4;(2)设直线OB 的解析式为y =ax ,得-3a =-2,解得a =, ∴直线OB 的解析式为y =x , 当时,解得x =3或x =-3(舍去), ∴y =2,∴C (3,2),过点B 作BE ∥x 轴,交AC 的延长线于E ,∵直线AC 的解析式为y =-2x +8,∴当y =-2时,得-2x +8=-2,解得x =5,∴E (5,-2),BE =8,∴的面积=S △ABE -S △BCE==16.26. 【答案】(1)4y x=(2)3b =(3)见解析【分析】 (1)先根据一次函数求出M 点坐标,再代入反比例函数计算即可; (2)先求出A 的点坐标,再代入平移后的一次函数解析式计算即可; (3)过点A 作AE y ⊥轴于点E ,过B 点作BF x ⊥轴于点F ,即可根据A 、B 坐标证明()AOE BOF SAS △≌△,得到AOE BOF ∠=∠,OA OB =,再求出C 、D 坐标即可得到OC =OD ,即可证明AOD BOC ≌△△.632n b n b +=⎧⎨-+=-⎩24n b =⎧⎨=⎩2323263x x=ABC 11888422⨯⨯-⨯⨯(1)∵直线y x =过点(2,)M a ,∴2a =∴将(2,2)M 代入k y x=中,得4k =, ∴反比例函数的表达式为4y x =(2)∵点(1,)A m 在4y x=的图象上, ∴4m =,∴(1,4)A 设平移后直线AB 的解析式为y x b =+,将(1,4)A 代入y x b =+中,得4=1+b ,解得3b =.(3)如图,过点A 作AE y ⊥轴于点E ,过B 点作BF x ⊥轴于点F .∵(,1)B n -在反比例函数4y x=的图象上, ∴n =-4,∴B (-4,-1)又∵(1,4)A ,∴AE BF =,OE OF =,∴AEO BFO ∠=∠∴()AOE BOF SAS △≌△, ∴AOE BOF ∠=∠,OA OB =又∵直线3y x 与x 轴、y 轴分别交于点C ,D , ∴(3,0)C -,(0,3)D ,∴OC OD =在AOD △和BOC 中,OA OB AOE BOF OD OC =⎧⎪∠=∠⎨⎪=⎩ ∴()AOD BOC SAS △≌△.。

中考考点突破反比例函数

中考考点突破反比例函数
2
把A,B两点坐标代入一次函数
解析式中,得到a =4,b =-2.
所以一次函数的解析式为 y = 4x-2.
A
O
B
x
随堂专题测试
y
Add You Text Here Add You Text Here
k
(2) 求不等式ax + b> 的解集.
x
k
解:根据图象可知,若 ax + b> ,
x
1
则 x>1或 <x<0.
A.10
B.5
C.2
D.
1
10
随堂专题测试
Add You Text Here Add You Text Here

8.已知反比例函数 = (a≠0) 的图象,在每一象限内,y的值随x值的增大而减小,
则一次函数y=-ax+a的图象不经过(
A.第一象限
B.第二象限
C
)
C.第三象限
D.第四象限
1
随堂专题测试
Add You Text Here Add You Text Here
3. 已知函数 y = 5m − 3 2− + ( + )
(1)当m,n 为何值时为一次函数?
(2)当m,n 为何值时为正比例函数?
(3)当m,n 为何值时为反比例函数?
解:(1)当函数 = 5 − 3 2− + ( + )是一次函数时,2 − = 1 且 5 − 3 ≠ 0
3
解得 n = 1 且 ≠ 5
(2)当函数 = 5 − 3 2− + ( + )是正比例函数时,
2− =1
+ =0
5 − 3 ≠ 0

2022年中考数学反比例函数(解析版)

2022年中考数学反比例函数(解析版)

热点04 反比例函数反比例函数这个考点在中考数学中,多注重考察反比例函数的图象与性质,常和一次函数的图象结合考察,题型以选择题为主;另外,在填空题中,对反比例函数点的坐标特征考察的比较多,而且难度逐渐增大,考题常结合其他规则几何图形的性质一起出题,多数题目的技巧性较强,复习中需要多加注意。

另外解答题中还会考察反比例函数的解析式的确定,也是常和一次函数结合,顺带也会考察其与不等式的关系。

而压轴题中也渐渐显露反比例函数的问题环境,考生在复习过程中需要更加重视该考点。

1. 反比例函数)0(≠=k xk y 的解析式:待定系数法; 反比例函数表达式方面的考察,一是待定系数法直接求反比例函数表达式,二是反比例函数图象上的两个点)()、(2211,,y x B y x A ,坐标都符合函数的表达式,进而得2211y x y x •=•2.反比例函数)0(≠=k xk y 的图象:没有特殊要求,双曲线必分两支;双曲线的两支有轴对称性,也有中心对称性;反比例函数的增减性不能直接说明;反比例函数图象所过象限与k 的正负有关,他们的关系是可逆的,应用时,注意由图象→k 值时k 的正负。

另外,在说反比例函数的增减性之前,必须带上自变量的取值范围,不然就是错的。

其对称性的考察,主要用在与之结合的几何图形的坐标表示上。

3.反比例函数与一次函数:求交点则联立解析式得方程;根据图象直接写不等式的解集则找交点横坐标、分上下、选左右;一次函数与反比例函数经常放一起考察其图象与解析式的求解;反比例与不等式的结合,第一步找出交代的横坐标,第二步根据图象的上下关系选择交点的哪边符合,第三边让自变量x 大于或小于交点的横坐标。

4.反比例函数与几何图形的结合:当反比例函数与其他图形结合考察时,通常反比例函数只提供其解析式,即反比例函数图象上的点符合反比例函数的解析式,故需要多注意与反比例函数结合的图形的性质应用;反比例函数在中考中也基本都是直接考察,常考热点包括:反比例函数图象与一次函数图象结合问题、反比例函数的性质及解析式的确定、反比例函数k的几何意义、反比例函数与三角形、四边形等几何图形的相关计算等A卷(建议用时:80分钟)1.(2021•黔西南州·中考真题)对于反比例函数y=,下列说法错误的是()A.图象经过点(1,﹣5)B.图象位于第二、第四象限C.当x<0时,y随x的增大而减小D.当x>0时,y随x的增大而增大【分析】根据题目中的函数解析式和反比例函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【解答】解:∵反比例函数y=,∴当x=1时,y=﹣=﹣5,故选项A不符合题意;k=﹣5,故该函数图象位于第二、四象限,故选项B不符合题意;当x<0,y随x的增大而增大,故选项C符合题意;当x>0时,y随x的增大而增大,故选项D不符合题意;故选:C.2.(2021•罗湖区·中考真题)一次函数y=ax+a(a为常数,a≠0)与反比例函数y=(a 为常数,a≠0)在同一平面直角坐标系内的图象大致为()A.B.C.D.【分析】分为a>0和a<0两种情况,然后依据一次函数和反比例函数的图象的性质进行判断即可.【解答】解:当a>0时,一次函数y=ax+a,经过一二三象限,反比例函数图象位于一、三象限,当a<0时,一次函数y=ax+a,经过二、三、四象限,反比例函数图象位于二、四象限.故选:C.3.(2021•德阳·中考真题)下列函数中,y随x增大而增大的是()A.y=﹣2x B.y=﹣2x+3C.y=(x<0)D.y=﹣x2+4x+3(x<2)【分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k>0时,在每一个象限内,y随自变量x增大而增大,二次函数根据对称轴及开口方向判断增减性.【解答】解:A.一次函数y=﹣2x中的a=﹣2<0,y随x的增大而减小,故不符合题意.B.一次函数y=﹣2x+3中的a=﹣2<0,y随自变量x增大而减小,故不符合题意.C.反比例函数y=(x<0)中的k=2>0,在第三象限,y随x的增大而减小,故不符合题意.D.二次函数y=﹣x2+4x+3(x<2),对称轴x==2,开口向下,当x<2时,y随x 的增大而增大,故符合题意.故选:D.4.(2021•广安·中考真题)若点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y2<y1<y3C.y1<y2<y3D.y3<y2<y1【分析】先根据反比例函数中k<0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【解答】解:∵反比例函数中k<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内y随x的增大而增大.∵﹣3<0,﹣1<0,∴点A(﹣3,y1),B(﹣1,y2)位于第二象限,∴y1>0,y2>0,∵﹣3<﹣1<0,∴0<y1<y2.∵2>0,∴点C(2,y3)位于第四象限,∴y3<0,∴y3<y1<y2.故选:A.5.(2021•桂林·中考真题)若点A(1,3)在反比例函数y=的图象上,则k的值是()A.1 B.2 C.3 D.4【分析】将点A(1,3)代入反比例函数y=即可求出k的值.【解答】解:∵点A(1,3)在反比例函数y=的图象上,∴k=1×3=3,故选:C.6.(2021•兰州·中考真题)如图,点A在反比例函数y=(x>0)的图象上,AB⊥x轴于点B,C是OB的中点,连接AO,AC,若△AOC的面积为4,则k=()A.16 B.12 C.8 D.4【分析】由C是OB的中点求△AOB的面积,设A(a,b)根据面积公式求ab,最后求k.【解答】解:∵C是OB的中点,△AOC的面积为4,∴△AOB的面积为8,设A(a,b)∵AB⊥x轴于点B,∴ab=16,∵点A在反比例函数y=(x>0)的图象上,∴k=16.故选:A.7.(2021•西藏·中考真题)如图.在平面直角坐标系中,△AOB的面积为,BA垂直x 轴于点A,OB与双曲线y=相交于点C,且BC:OC=1:2.则k的值为()A.﹣3 B.﹣C.3 D.【分析】过C作CD⊥x轴于D,可得△DOC∽△AOB,根据相似三角形的性质求出S△DOC,由反比例函数系数k的几何意义即可求得k.【解答】解:过C作CD⊥x轴于D,∵=,∴=,∵BA⊥x轴,∴CD∥AB,∴△DOC∽△AOB,∴=()2=()2=,∵S△AOB=,∴S△DOC=S△AOB=×=,∵双曲线y=在第二象限,∴k=﹣2×=﹣3,故选:A.8.(2021•黑龙江·中考真题)如图,在平面直角坐标系中,矩形ABCD的顶点A在双曲线y=﹣(x<0)上,点C,D在y轴的正半轴上,点E在BC上,CE=2BE,连接DE 并延长,交x轴于点F,连接CF,则△FCD的面积为()A.2 B.C.1 D.【分析】根据题意设出A点和D点的坐标,设OC长度为m,根据CE=2BE,得出E点的坐标,再通过证△DEC∽△DFO,得出比例关系,进而求出FO的长度,利用面积公式求面积刚好能消掉未知数得出面积的具体数值.【解答】解:根据题意,设A(n,﹣),D(0,﹣),设OC=m,则C(0,m),CD=﹣﹣m,∴B(n,m),BC=﹣n,∵CE=2BE,∴CE=BC=﹣n,∴E(n,m),由题知BC∥FO,∴∠DEC=∠DFO,∠DCE=∠DOF,∴△DEC∽△DFO,∴=,即=,∴FO=,∴S△FCD=FO•CD=×(﹣﹣m)=1,故选:C.9.(2021•宜昌·中考真题)某气球内充满了一定质量m的气体,当温度不变时,气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数:p=,能够反映两个变量p和V函数关系的图象是()A.B.C.D.【分析】直接利用反比例函数的性质,结合p,V的取值范围得出其函数图象分布在第一象限,即可得出答案.【解答】解:∵气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数:p=(V,p都大于零),∴能够反映两个变量p和V函数关系的图象是:.故选:B.10.(2021•荆门·中考真题)在同一平面直角坐标系中,函数y=kx﹣k与y=(k≠0)的大致图象是()A.①②B.②③C.②④D.③④【分析】根据k的取值范围,分别讨论k>0和k<0时的情况,然后根据一次函数和反比例函数图象的特点进行选择正确答案.【解答】解:当k>0时,一次函数y=kx﹣k经过一、三、四象限,函数y=(k≠0)的图象在一、二象限,故选项②的图象符合要求.当k<0时,一次函数y=kx﹣k经过一、二、四象限,函数y=(k≠0)的图象经过三、四象限,故选项③的图象符合要求.故选:B.11.(2021•潍坊·中考真题)如图,在直角坐标系中,O为坐标原点,函数y=与y=(a >b>0)在第一象限的图象分别为曲线C1,C2,点P为曲线C1上的任意一点,过点P 作y轴的垂线交C2于点A,作x轴的垂线交C2于点B,则阴影部分的面积S△AOB =.(结果用a,b表示)【分析】设B(m,),A(,n),则P(m,n),阴影部分的面积S△AOB=矩形的面积﹣三个直角三角形的面积可得结论.【解答】解:设B(m,),A(,n),则P(m,n),∵点P为曲线C1上的任意一点,∴mn=a,∴阴影部分的面积S△AOB=mn﹣b﹣b﹣(m﹣)(n﹣)=mn﹣b﹣(mn﹣b﹣b+)=mn﹣b﹣mn+b﹣=a﹣.故答案为:a﹣.12.(2021•齐齐哈尔·中考真题)如图,点A是反比例函数y=(x<0)图象上一点,AC⊥x轴于点C且与反比例函数y=(x<0)的图象交于点B,AB=3BC,连接OA,OB.若△OAB的面积为6,则k1+k2=.【分析】由△OAB的面积为6,可求出△OBC的面积为2,进而求出△OAC的面积为8,再根据反比例函数系数k的几何意义可求出k1,k2,进而得出答案.【解答】解:∵S△AOB=AB•OC=6,S△BOC=BC•OC,AB=3BC,∴S△BOC=2,∴S△AOC=2+6=8,又∵|k1|=8,|k2|=2,k1<0,k2<0,∴k1=﹣16,k2=﹣4,∴k1+k2=﹣16﹣4=﹣20,故答案为:﹣20.13.(2021•荆州·中考真题)如图,过反比例函数y=(k>0,x>0)图象上的四点P1,P2,P3,P4分别作x轴的垂线,垂足分别为A1,A2,A3,A4,再过P1,P2,P3,P4分别作y轴,P1A1,P2A2,P3A3的垂线,构造了四个相邻的矩形.若这四个矩形的面积从左到右依次为S1,S2,S3,S4,OA1=A1A2=A2A3=A3A4,则S1与S4的数量关系为.【分析】过双曲线上任意一点、向坐标轴作垂线所围成的矩形面积S是个定值,S=k,由OA1=A1A2=A2A3=A3A4,得出S1=k,S2=k,S3=k,S4=k,即可得出S1=4S4.【解答】解:∵过双曲线上任意一点、向坐标轴作垂线所围成的矩形面积S是个定值,OA1=A1A2=A2A3=A3A4,∴S1=k,S2=k,S3=k,S4=k,∴S1=4S4.故答案为:S1=4S4.14.(2021•益阳·中考真题)如图,已知点A是一次函数y=2x﹣4的图象与x轴的交点,将点A向上平移2个单位后所得点B在某反比例函数图象上.(1)求点A的坐标;(2)确定该反比例函数的表达式.【分析】(1)把y=0代入一次函数y=2x﹣4,求出x,即可得到点A的坐标;(2)根据平移的性质求出点B的坐标,设所求反比例函数解析式为y=,将B点坐标代入,即可求出该反比例函数的表达式.【解答】解:(1)∵点A是一次函数y=2x﹣4的图象与x轴的交点,∴当y=0时,2x﹣4=0,解得x=2,∴点A的坐标为(2,0);(2)将点A(2,0)向上平移2个单位后得点B(2,2).设过点B的反比例函数解析式为y=,则2=,解得k=4,∴该反比例函数的表达式为y=.15.(2021•河南·中考真题)如图,大、小两个正方形的中心均与平面直角坐标系的原点O 重合,边分别与坐标轴平行,反比例函数y=的图象与大正方形的一边交于点A(1,2),且经过小正方形的顶点B.(1)求反比例函数的解析式;(2)求图中阴影部分的面积.【分析】(1)根据待定系数法求出k即可得到反比例函数的解析式;(2)先根据反比例函数系数k的几何意义求出小正方形的面积为4m2=8,再求出大正方形在第一象限的顶点坐标,得到大正方形的面积为4×22=16,根据图中阴影部分的面积=大正方形的面积﹣小正方形的面积即可求出结果.【解答】解:(1)∵反比例函数y=的图象经过点A(1,2),∴2=,∴k=2,∴反比例函数的解析式为y=;(2)∵小正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,∴设B点的坐标为(m,m),∵反比例函数y=的图象经过B点,∴m=,∴m2=2,∴小正方形的面积为4m2=8,∵大正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,且A(1,2),∴大正方形在第一象限的顶点坐标为(2,2),∴大正方形的面积为4×22=16,∴图中阴影部分的面积=大正方形的面积﹣小正方形的面积=16﹣8=8.16.(2021•宜宾·中考真题)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于点A、B,与x轴交于点C(5,0),若OC=AC,且S△OAC=10.(1)求反比例函数与一次函数的表达式;(2)请直接写出不等式ax+b>的解集.【分析】(1)因为C(5,0),所以OC=5,又S△AOC=10,过A作AE⊥x轴于E,可以得到AE=4,在直角三角形中,利用勾股定理,求出CE长度,写出E点坐标,即可求出k和C的坐标,利用待定系数法,求解一次函数的表达式即可;(2)联立一次函数和反比例函数的解析式,求解一个方程组,得到交点A和B的坐标,根据图象,可以得到原不等式的解集.【解答】(1)如图1,过A作AE⊥x轴于E,∵C(5,0),OC=AC,∴OC=AC=5,∵S△AOC=10,∴,∴AE=4,在Rt△ACE中,CE=,∴OE=8,∴A(8,4),∴k=4×8=32,将A和C的坐标代入到一次函数解析式中得,,∴,∴反比例函数的表达式为y=,一次函数的表达式为;(2)联立两个函数解析式得,解得,,∴,由图象可得,当,x>8或﹣3<x<0.17.(2021•台州·中考真题)电子体重秤读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R1,R1与踏板上人的质量m之间的函数关系式为R1=km+b(其中k,b为常数,0≤m≤120),其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻R0的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为U0,该读数可以换算为人的质量m,温馨提示:①导体两端的电压U,导体的电阻R,通过导体的电流I,满足关系式I=;②串联电路中电流处处相等,各电阻两端的电压之和等于总电压(1)求k,b的值;(2)求R1关于U0的函数解析式;(3)用含U0的代数式表示m;(4)若电压表量程为0~6伏,为保护电压表,请确定该电子体重秤可称的最大质量.【分析】(1)待定系数法求出k,b;(2)通过串联电路中电流处处相等和可以列出等量关系,然后再化简为R1关于U0的函数解析式;(3)把第(1)问求出的R1与m的函数解析式代入第(2)中的R1与U0的关系式中消去R1,然后变形;(4)利用第(3)问中U0与m的关系式,结合0≤U0≤6和m关于U0的增减性,得出电子体重秤可称的最大质量m.【解答】解:(1)将(0,240),(120,0)代入R1=km+b,得:,解得:.∴R1=﹣2m+240(0≤m≤120).(2)由题意得:可变电阻两端的电压=电源电压﹣电表电压,即:可变电阻电压=8﹣U0,∵I=,可变电阻和定值电阻的电流大小相等,∴.化简得:R1=,∵R0=30,∴.(3)将R1=﹣2m+240(0≤m≤120)代入,得:﹣2m+240=,化简得:m=(0≤m≤120).(4)∵m=中k=﹣120<0,且0≤U0≤6,∴m随U0的增大而增大,∴U0取最大值6的时候,m max==115(千克).B卷(建议用时:80分钟)1.(2021•阜新·中考真题)已知点A(x1,y1),B(x2,y2)都在反比例函数y=﹣的图象上,且x1<0<x2,则y1,y2的关系一定成立的是()A.y1>y2B.y1<y2C.y1+y2=0 D.y1﹣y2=0【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2确定A和B所在的象限,即可得出结论.【解答】解:∵反比例函数y=﹣中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2,∴A在第二象限,B在第四象限,∴y1>0,y2<0,∴y1>y2.故选:A.2.(2021•本溪·中考真题)反比例函数y=的图象分别位于第二、四象限,则直线y=kx+k 不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据反比例函数y=的图象经过第二、四象限可判断出k的符号,进而可得出结论.【解答】解:∵反比例函数y=的图象分别位于第二、四象限,∴k<0,∴一次函数y=kx+k的图象经过第二、三、四象限,即不经过第一象限.故选:A.3.(2021•山西·中考真题)已知反比例函数y=,则下列描述不正确的是()A.图象位于第一,第三象限B.图象必经过点(4,)C.图象不可能与坐标轴相交D.y随x的增大而减小【分析】根据反比例函数的性质对各项进行逐一分析即可.【解答】解:A.∵k=6>0,∴图象位于第一,第三象限,故A正确,不符合题意;B.∵4×=6=k,∴图象必经过点(4,),故B正确,不符合题意;C.∵x≠0,∴y≠0,∴图象不可能与坐标轴相交,故C正确,不符合题意;D.∵k=6>0,∴在每一个象限内,y随x的增大而减小,故D错误,符合题意.故选:D.4.(2021•德州·中考真题)小红同学在研究函数y=|x|+的图象时,发现有如下结论:①该函数有最小值;②该函数图象与坐标轴无交点;③当x>0时,y随x的增大而增大;④该函数图象关于y轴对称;⑤直线y=8与该函数图象有两个交点,则上述结论中正确的个数为()A.2个B.3个C.4个D.5个【分析】利用函数的图象和函数的增减性的特征对每一个选项进行分析判断得出结论.【解答】解:列表:x…﹣4﹣3﹣2﹣11234…y…545545…画出函数图象如图,观察图象:①该函数有最小值,符合题意;②该函数图象与坐标轴无交点,符合题意;③当x>0时,y随x的增大而增大,不合题意;④该函数图象关于y轴对称,符合题意;⑤令|x|+=8,整理得x2﹣8x+4=0或x2+8x+4=0,∵Δ=82﹣4×1×4>0,∴两个方程均有两个不相等的实数根,即共有四个根,且这四个根互不相等.∴直线y=8与该函数图象有四个交点,不符合题意,综上,以上结论正确的有:①②④,故选:B.5.(2021•湘西州·中考真题)如图所示,小英同学根据学习函数的经验,自主尝试在平面直角坐标系中画出了一个解析式为y=的函数图象.根据这个函数的图象,下列说法正确的是()A.图象与x轴没有交点B.当x>0时,y>0C.图象与y轴的交点是(0,﹣)D.y随x的增大而减小【分析】根据函数的图象以及函数的解析式逐一判断即可.【解答】解:A.由图象可知,图象与x轴没有交点,故说法正确;B.由图象可知,当0<x<1时,y<0,当x>1时,y>0,故说法错误;C.当x=0时,函数值为﹣2,故图象与y轴的交点是(0,﹣2),故说法错误;D.当x>1时,y随x的增大而减小,当x<1时,y随x的增大而减小,故说法错误.故选:A.6.(2021•贵阳·中考真题)已知反比例函数y=(k≠0)的图象与正比例函数y=ax(a ≠0)的图象相交于A,B两点,若点A的坐标是(1,2),则点B的坐标是()A.(﹣1,2)B.(1,﹣2)C.(﹣1,﹣2)D.(2,1)【分析】反比例函数的图象是中心对称图形,则经过原点的直线与反比例函数图象的两个交点一定关于原点对称.【解答】解:根据题意,知点A与B关于原点对称,∵点A的坐标是(1,2),∴B点的坐标为(﹣1,﹣2).故选:C.7.(2021•枣庄·中考真题)在平面直角坐标系xOy中,直线AB垂直于x轴于点C(点C 在原点的右侧),并分别与直线y=x和双曲线y=相交于点A,B,且AC+BC=4,则△OAB的面积为()A.2+或2﹣B.2+2或2﹣2 C.2﹣D.2+2【分析】先求出点A,点B坐标,可得AC=x=OC,BC=,由AC+BC=4,可求x 的值,由三角形的面积公式可求解.【解答】解:设点C(x,0),∵直线AB与直线y=x和双曲线y=相交于点A,B,∴点A(x,x),点B(x,),∴AC=x=OC,BC=,∵AC+BC=4,∴x+=4,∴x=2±,当x=2+时,AC=2+=OC,BC=2﹣,∴AB=2,∴△OAB的面积=×BA×OC=2+2;当x=2﹣时,AC=2﹣=OC,BC=2+,∴AB=2,∴△OAB的面积=×BA×OC=2﹣2;综上所述:△OAB的面积为2+2或2﹣2,故选:B.8.(2021•温州·中考真题)如图,点A,B在反比例函数y=(k>0,x>0)的图象上,AC⊥x轴于点C,BD⊥x轴于点D,BE⊥y轴于点E,连结AE.若OE=1,OC=OD,AC=AE,则k的值为()A.2 B.C.D.2【分析】根据题意求得B(k,1),进而求得A(k,),然后根据勾股定理得到∴()2=(k)2+()2,解方程即可求得k的值.【解答】解:∵BD⊥x轴于点D,BE⊥y轴于点E,∴四边形BDOE是矩形,∴BD=OE=1,把y=1代入y=,求得x=k,∴B(k,1),∴OD=k,∵OC=OD,∴OC=k,∵AC⊥x轴于点C,把x=k代入y=得,y=,∴AE=AC=,∵OC=EF=k,AF=﹣1=,在Rt△AEF中,AE2=EF2+AF2,∴()2=(k)2+()2,解得k=±,∵在第一象限,∴k=,故选:B.9.(2021•丽水·中考真题)一杠杆装置如图,杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四位同学分别在杆的另一端竖直向下施加压力F甲、F乙、F丙、F丁,将相同重量的水桶吊起同样的高度,若F乙<F丙<F甲<F丁,则这四位同学对杆的压力的作用点到支点的距离最远的是()A.甲同学B.乙同学C.丙同学D.丁同学【分析】根据杠杆平衡原理:阻力×阻力臂=动力×动力臂,以及水桶的拉力和水桶对杆的拉力的作用点到支点的杆长乘积是定值即可判断.【解答】解:根据杠杆平衡原理:阻力×阻力臂=动力×动力臂可得,∵阻力×阻力臂是个定值,即水桶的重力和水桶对杆的拉力的作用点到支点的杆长固定不变,∴动力越小,动力臂越大,即拉力越小,压力的作用点到支点的距离最远,∵F乙最小,∴乙同学到支点的距离最远.故选:B.10.(2021•玉林·中考真题)如图,△ABC是等腰三角形,AB过原点O,底边BC∥x轴,双曲线y=过A,B两点,过点C作CD∥y轴交双曲线于点D,若S△BCD=8,则k的值是.【分析】过点A作AE∥y轴,交BC与点E,设点A(a,)则B(﹣a,﹣),可表示出BC和DC的长度,又S△BCD==8,即可求出k的值.【解答】解:过点A作AE∥y轴,交BC与点E,设点A(a,)则B(﹣a,﹣),∴BE=2a,∵△ABC是等腰三角形,底边BC∥x轴,CD∥y轴,∴BC=4a,∴点D的横坐标为3a,∴点D的纵坐标为,∴CD=,∵S△BCD==8,∴,∴k=3,故答案为3.11.(2021•宿迁·中考真题)如图,点A、B在反比例函数y=(x>0)的图象上,延长AB交x轴于C点,若△AOC的面积是12,且点B是AC的中点,则k=.【分析】设OM的长度为a,利用反比例函数解析式表示出AM的长度,再表示出OC的长度,然后利用三角形的面积公式列式计算表示面积即可得解.【解答】解:作AM⊥OC,BN⊥OC,设OM=a,∵点A在反比例函数y=,∴AM=,∵B是AC的中点,∴AB=BC,∵AM⊥OC,BN⊥OC,∴BN∥AM,∴,,∴NM=NC,BN==,∵点B在反比例函数y=,∴ON=2a,又∵OM=a,∴OM=MN=NC=a,∴OC=3a,∴S△AOC=•OC•AM=×3a×=k=12,解得k=8;故答案为:812.(2021•宁波·中考真题)在平面直角坐标系中,对于不在坐标轴上的任意一点A(x,y),我们把点B(,)称为点A的“倒数点”.如图,矩形OCDE的顶点C为(3,0),顶点E在y轴上,函数y=(x>0)的图象与DE交于点A.若点B是点A的“倒数点”,且点B在矩形OCDE的一边上,则△OBC的面积为.【分析】设点A的坐标为(m,),由“倒数点”的定义,得点B坐标为(,),分析出点B在某个反比例函数上,分两种情况:①点B在ED上,由ED∥x轴,得=,解出m=±2,(﹣2舍去),得点B纵坐标为1,此时,S△OBC=×3×1=;②点B在DC上,得点B横坐标为3,即=3,求出点B纵坐标为:=,此时,S△OBC=×3×=.【解答】解:设点A的坐标为(m,),∵点B是点A的“倒数点”,∴点B坐标为(,),∵点B的横纵坐标满足=,∴点B在某个反比例函数上,∴点B不可能在OE,OC上,分两种情况:①点B在ED上,由ED∥x轴,∴点B、点A的纵坐标相等,即=,∴m=±2(﹣2舍去),∴点B纵坐标为1,此时,S△OBC=×3×1=;②点B在DC上,∴点B横坐标为3,即=3,∴点B纵坐标为:=,此时,S△OBC=×3×=;故答案为:或.13.(2021•德阳·中考真题)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象经过点A(2,6),将点A向右平移2个单位,再向下平移a个单位得到点B,点B恰好落在反比例函数y=(x>0)的图象上,过A,B两点的直线与y轴交于点C.(1)求k的值及点C的坐标;(2)在y轴上有一点D(0,5),连接AD,BD,求△ABD的面积.【分析】(1)由点A(2,6)求出反比例函数的解析式为y=,可得k值,进而求得B (4,3),由待定系数法求出直线AB的解析式为y=﹣x+9,即可求出C点的坐标;(2)由(1)求出CD,根据S△ABD=S△BCD﹣S△ACD可求得结论.【解答】解:(1)把点A(2,6)代入y=,k=2×6=12,∴反比例函数的解析式为y=,∵将点A向右平移2个单位,∴x=4,当x=4时,y==3,∴B(4,3),设直线AB的解析式为y=mx+n,由题意可得,解得,∴y=﹣x+9,当x=0时,y=9,∴C(0,9);(2)由(1)知CD=9﹣5=4,∴S△ABD=S△BCD﹣S△ACD=CD•|x B|﹣CD•|x A|=×4×4﹣×4×2=4.14.(2021•乐山·中考真题)通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标y随时间x(分钟)变化的函数图象如图所示,当0≤x<10和10≤x<20时,图象是线段;当20≤x≤45时,图象是反比例函数的一部分.(1)求点A对应的指标值;(2)张老师在一节课上讲解一道数学综合题需要17分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36?请说明理由.【分析】(1)设反比例函数的解析式为y=,由C(20,45)求出k,可得D坐标,从而求出A的指标值;(2)求出AB解析式,得到y≥36时,x≥,由反比例函数y=可得y≥36时,x ≤25,根据25﹣=>17,即可得到答案.【解答】解:(1)设当20≤x≤45时,反比例函数的解析式为y=,将C(20,45)代入得:45=,解得k=900,∴反比例函数的解析式为y=,当x=45时,y==20,∴D(45,20),∴A(0,20),即A对应的指标值为20;(2)设当0≤x<10时,AB的解析式为y=mx+n,将A(0,20)、B(10,45)代入得:,解得,∴AB的解析式为y=x+20,当y≥36时,x+20≥36,解得x≥,由(1)得反比例函数的解析式为y=,当y≥36时,≥36,解得x≤25,∴≤x≤25时,注意力指标都不低于36,而25﹣=>17,∴张老师能经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36.15.(2021•枣庄·中考真题)小明根据学习函数的经验,参照研究函数的过程与方法,对函数y=(x≠0)的图象与性质进行探究.因为y==1﹣,即y=﹣+1,所以可以对比函数y=﹣来探究.列表:(1)下表列出y与x的几组对应值,请写出m,n的值:m=,n=;x…﹣4﹣3﹣2﹣1﹣1234…y=﹣…124﹣4﹣2﹣1﹣﹣…y=…23m﹣3﹣10n…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=相应的函数值为纵坐标,描出相应的点,如图所示:(2)请把y轴左边各点和右边各点,分别用条光滑曲线顺次连接起来;(3)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填“增大”或“减小”)②函数y=的图象是由y=﹣的图象向平移个单位而得到.③函数图象关于点中心对称.(填点的坐标)【分析】(1)x=﹣,x=3,分别代入y=﹣+1即可得m、n的值;(2)按要求分别用条光滑曲线顺次连接所描的点即可;(3)数形结合,观察函数图象即可得到答案.【解答】解:(1)x=﹣时,y=﹣+1=5,∴m=5,x=3时,y=﹣+1=,∴n=;故答案为:5,;(2)把y轴左边各点和右边各点,分别用条光滑曲线顺次连接起来,如图:(3)根据图象可得:①在y轴左边,y随x增大而增大,故答案为:增大;②函数y=的图象是由y=﹣的图象向上平移1个单位得到的,故答案为:上,1;③函数图象关于点(0,1)中心对称,故答案为:(0,1).16.(2021•鞍山·中考真题)如图,在平面直角坐标系中,一次函数y=k1x+b的图象分别与x轴、y轴交于A,B两点,与反比例函数y=的图象在第二象限交于C,D(﹣6,2)两点,DE∥OC交x轴于点E,若=.(1)求一次函数和反比例函数的表达式.(2)求四边形OCDE的面积.【分析】(1)先利用待定系数法求反比例函数解析式,然后结合相似三角形的判定和性质求得C点坐标,再利用待定系数法求函数关系式;(2)解法一:根据一次函数图象上点的坐标特征并结合待定系数法求得A点和E点坐标,然后用△AOC的面积减去△AED的面积求解;解法二:由(1)问中的直线AB解析式,可以求出点A(﹣6.0),所以AO=6,由△ADE ∽△ACO可以求出AE,尽而求出面积.【解答】解:(1)将D(﹣6,2)代入y=中,k2=﹣6×2=﹣12,∴反比例函数的解析式为y=﹣;过点D作DM⊥x轴,过点C作CN⊥x轴,∵DE∥OC,∴△ADE∽△ACO,∴,∴CN=3DM=6,将y=6代入y=﹣中,﹣,解得:x=﹣2,∴C点坐标为(﹣2,6),将C(﹣2,6),D(﹣6,2)代入y=k1x+b中,可得,解得:,∴一次函数的解析式为y=x+8;(2)解法一:设直线OC的解析式为y=mx,将C(﹣2,6)代入,得:﹣2m=6,解得:m=﹣3,∴直线OC的解析式为y=﹣3x,由DE∥OC,设直线DE的解析式为y=﹣3x+n,将D(﹣6,2)代入可得:﹣3×(﹣6)+n=2,解得:n=﹣16,。

精讲04反比例函数(K值解法)(课件)-【中考满分冲刺系列之数学思想方法及探究】2022年中考数学一

精讲04反比例函数(K值解法)(课件)-【中考满分冲刺系列之数学思想方法及探究】2022年中考数学一

方法点睛一: 借助图形的性质,再结合已知条件,求出已知反比例函
数图像的点坐标,利用待定系数法即可求出K的值.
【例1】(2019山西)如图,在平面直角坐标中,点O为坐标原点,菱形ABCD的顶
点B在x轴的正半轴上,点A坐标为(﹣4,0),点D的坐标为(﹣1,4),反比例函
数y= (x>0)的图象恰好经过点C,则k的值为
A.16 B.20 C.32 D.40
【分析】根据平行于x轴的直线上任意两点纵坐标相同,可
设B(x,4)利用矩形的性质得出E为BD中点,∠DAB=90°,
根据线AD2+AB2=BD2,列出方程22+42+(x-2)2+42=x2,求出x,得
到E点坐标,代入
BO
k2
A. 4 B. -4
C. 2 D. -2
【分析】分别作AE⊥x轴,BF⊥x轴,垂足分别为E,F,证明
△AOE∽△OBF得到
,结合反比例函数的系数的
几何意义即可得到答案.
【例5】(2020湖北十堰)如图,菱形ABCD的顶点分别在反比例函数y= , 和y=
的图象上,若∠BAD=120°,则 =( )
A.y=﹣ B.y=﹣ C.y=﹣ D.y=
【分析】直接利用相似三角形的判定与性质得出
=
,进而得出S△AOD=2,即可得出答案.【答案】C
【例4】(2020湖南郴州)在平面直角坐标系中,点A是双曲线
上任意一点,
连接AO,过点O作AO的垂线与双曲线 则 k1 ( )
y2
k2 x
(x
0)
,交于点B,连接AB.已知 AO 2
A.
B.3
C.
D.
【分析】据对称性可知,反比例函数 ,

2022年中考数学专题复习:反比例函数与几何综合

2022年中考数学专题复习:反比例函数与几何综合

2022年中考数学专题复习:反比例函数与几何综合1.如图,正六边形ABCDEF 的对称中心P 在反比例函数(0,0)k y k x x=>>的图象上,边CD 在x 轴上,点B 在y 轴上,已知CD =4.(1)点A 是否在该反比例函数的图象上?请说明理由; (2)若反比例函数的图象与DE 交于点Q ,求点Q 的横坐标.2.如图1,点A 、B 是双曲线y =kx (k >0)上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段AC 、AD 、BE 、BF ,AC 和BF 交于点G ,得到正方形OCGF (阴影部分),且S 阴影=1,△AGB 的面积为2.(1)求双曲线的解析式;(2)在双曲线上移动点A 和点B ,上述作图不变,得到矩形OCGF (阴影部分),点A 、B在运动过程中始终保持S 阴影=1不变(如图2),则△AGB 的面积是否会改变?说明理由.3.已知点A 为函数4(0)y x x=>图象上任意一点,连接OA 并延长至点B ,使AB OA =,过点B 作//BC x 轴交函数图象于点C ,连接OC .(1)如图1,若点A 的坐标为(4,)n ,求点C 的坐标;(2)如图2,过点A 作AD BC ⊥,垂足为D ,求四边形OCDA 的面积.4.如图,直线1:l y k x b =+与双曲线()20k y x x=>相交于A ,B 两点,与x 轴交于点C ,若点A ,B 的横坐标分别是1和2,(1)请直接写出21k k x b x+>的解集; (2)当AOB 的面积为3时,求2k 的值.5.如图,在平面直角坐标系中,A(8,0)、B(0,6)是矩形OACB的两个顶点,双曲线y=kx(k≠0,x>0)经过AC的中点D,点E是矩形OACB与双曲线y=kx的另一个交点.(1)点D的坐标为______,点E的坐标为______;(2)动点P在第一象限内,且满足S△PBO=56S△ODE.①若点P在这个反比例函数的图象上,求点P的坐标;①若点Q是平面内一点,使得以A、C、P、Q为顶点的四边形是菱形,请你直接写出满足条件的所有点Q的坐标.6.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数ykx=(x>0)的图象经过AO的中点C,交AB于点D,且AD=3.(1)若点D的坐标为(4,n).①求反比例函数ykx=的表达式;①求经过C,D两点的直线所对应的函数解析式;(2)在(1)的条件下,设点E是x轴上的点,使△CDE为以CD为直角边的直角三角形,求E点的坐标.7.如图1,点(08)(2)A B a ,、,在直线2y x b =-+上,反比例函数(ky x x=>0)的图象经过点B .(1)求反比例函数解析式;(2)将线段AB 向右平移m 个单位长度(m >0),得到对应线段CD ,连接AC 、BD . ①如图2,当m =3时,过D 作DF ①x 轴于点F ,交反比例函数图象于点E ,求E 点坐标;①在线段AB 运动过程中,连接BC ,若①BCD 是以BC 为腰的等腰三角形,求所有满足条件的m 的值.8.如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为(8,4),OA 、OC 分别落在x 轴和y 轴上,OB 是矩形的对角线.将①OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到①ODE ,OD 与CB 相交于点F ,反比例函数()0ky x x=>的图象经过点F ,交AB 于点G .(1)求k 的值.(2)连接FG ,求四边形OAGF 的面积.(3)图中是否存在与①BFG相似的三角形?若存在,请找一个,并进行证明;若不存在,请说明理由.9.如图,在平面直角坐标系中,四边形ABCD为矩形,若点AD①AB=3①4,A(-6,0)、D(-9,4),点B、C在第二象限内.(1)请直接写出:点B的坐标________;(2)将矩形ABCD以每秒2个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、C两点的对应点B′、C′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式:(3)在(2)的情况下,是否存在y轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、C′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q 的坐标;若不存在,请说明理由.10.如图,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sin①AOB=45,反比例函数y=kx(x>0)在第一象限内的图象经过点A,与BC交于点F.(1)若OA=10,求反比例函数的解析式;(2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标.11.如图,在正方形OABC 中,点O 为坐标原点,点()3,0C -,点A 在y 轴正半轴上,点E ,F 分别在BC ,CO 上,2CE CF ==,一次函数()0y kx b k =+≠的图象过点E 和F ,交y 轴于点G ,过点E 的反比例函数()0my m x=≠的图象交AB 于点D .(1)求反比例函数和一次函数的解析式;(2)在线段EF 上是否存在点P ,使ADP APG S S =△△,若存在,求出点P 的坐标;若不存在,请说明理由.12.如图是反比例函数y 2x=与反比例函数y 4x =在第一象限中的图象,点P 是y 4x =图象上一动点,P A ①x 轴于点A ,交函数y 2x =图象于点C ,PB ①y 轴于点B ,交函数y 2x=图象于点D ,点D 的横坐标为a .(1)求四边形ODPC 的面积;(2)连接DC 并延长交x 轴于点E ,连接DA 、PE ,求证:四边形DAEP 是平行四边形.13.如图,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,边OC在x轴的正半轴上,边OA在y轴的正半轴上,OA=3,AB=4,反比例函数kyx(k>0)的图象与矩形两边AB,BC分别交于点D,点E,且BD=2AD.(1)求点D的坐标和k的值;(2)连接OD,OE,DE,求①DOE的面积;(3)若点P是线段OC上的一个动点,是否存在点P,使①APE=90°?若存在,求出此时点P的坐标;若不存在,请说明理由.14.如图1,点P是反比例函数y=kx(k>0)在第一象限的点,P A①y轴于点A,PB①x轴于点B,反比例函数y=6x的图象分别交线段AP、BP于C、D,连接CD,点G是线段CD上一点.(1)若点P(6,3),求①PCD的面积;(2)在(1)的条件下,当PG平分①CPD时,求点G的坐标;(3)如图2,若点G是OP与CD的交点,点M是线段OP上的点,连接MC、MD.当①CMD=90°时,求证:MG=12CD.15.在矩形AOBC 中,分别以,OB OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.A 点坐标为(0,3),B 点坐标为(4,0),F 是BC 上的一个动点(不与B 、C 重合),过F 点的反比例函数(0)ky x x=>的图象与AC 边交于点E ,连接,OE OF ,作直线EF .(1)若2CF =,求反比例函数解新式; (2)在(1)的条件下求出EOF △的面积; (3)在点F 的运动过程中,试说明ECFC是定值.16.如图1,一次函数y =kx ﹣3(k ≠0)的图象与y 轴交于点B ,与反比例函数y =mx(x>0)的图象交于点A (8,1).(1)求出一次函数与反比例函数的解析式;(2)点C 是线段AB 上一点(不与A ,B 重合),过点C 作y 轴的平行线与该反比例函数的图象交于点D ,连接OC ,OD ,AD ,当CD 等于6时,求点C 的坐标和△ACD 的面积; (3)在(2)的前提下,将△OCD 沿射线BA 方向平移一定的距离后,得到△O 'CD ',若点O 的对应点O '恰好落在该反比例函数图象上(如图2),求出点O ',D '的坐标.17.如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为()4,2,OA ,OC 分别落在x 轴和y 轴上,OB 是矩形的对角线,将OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到ODE ,OD 与CB 相交于点F ,反比例函数()0k y x x=>的图象经过点F ,交AB 于点G .(1)求出k 的值.(2)在x 轴上是否存在一点M ,使MF MG -的值最大?若存在,求出点M ;若不存在,说明理由.(3)在线段OA 上存在这样的点P ,使得PFG △是等腰三角形,请直接写出OP 的长.18.如图,菱形OABC 的点B 在y 轴上,点C 坐标为(4,3),双曲线ky x=的图象经过点A .(1)菱形OABC 的边长为 ; (2)求双曲线的函数关系式;(3)①点B 关于点O 的对称点为D 点,过D 作直线l 垂直于x 轴,点P 是直线l 上一个动点,点E 在双曲线上,当P 、E 、A 、B 四点构成平行四边形时,求点E 的坐标; ①将点P 绕点A 逆时针旋转90°得点Q ,当点Q 落在双曲线上时,求点Q 的坐标.19.已知正方形OABC 的面积为9,点O 是坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数(),ky x 0k 0x=>>的图象上,点(),P m n 是函数(),k y x 0k 0x=>>的图象上任意一点.过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F .若矩形OEPF 和正方形OABC 不重合部分(阴影)面积为S .(提示:考虑点P 在点B 的左侧或右侧两种情况)(1)求B 点的坐标和k 的值; (2)写出S 关于m 的函数关系式; (3)当3S =时,求点P 的坐标.20.如图,在平面直角坐标系xOy 中,正方形ABCD 的边AB 在x 轴的正半轴上,顶点C ,D 在第一象限内,正比例函数y 1=3x 的图象经过点D ,反比例函数2(0)ky x x=>的图象经过点D ,且与边BC 交于点E ,连接OE ,已知AB =3. (1)点D 的坐标是 ; (2)求tan ①EOB 的值;(3)观察图象,请直接写出满足y 2>3的x 的取值范围; (4)连接DE ,在x 轴上取一点P ,使98DPES =,过点P 作PQ 垂直x 轴,交双曲线于点Q ,请直接写出线段PQ 的长.。

反比例函数九年级知识点

反比例函数九年级知识点

反比例函数九年级知识点反比例函数是初中数学中的一个重要知识点。

在九年级学完正比例函数后,学生通常会在课堂上接触到反比例函数的概念和性质。

接下来,我们将深入探讨反比例函数及其应用。

一、反比例函数的定义反比例函数是指函数中的两个变量之间存在着一种特殊的关系:当一个变量的值增大时,另一个变量的值就会减小,反之亦然。

其数学表达形式为 y = k / x,其中 k 是比例常数,而 x 和 y 分别表示自变量和因变量。

二、反比例函数的性质1. 定义域和值域对于反比例函数 y = k / x,自变量x 可以取任意不为0的实数,因变量 y 的值域为全体实数。

2. 对称中心反比例函数的图像关于第一象限、第二象限、第三象限和第四象限的坐标轴有对称性,且交点为(1, k)。

3. 单调性当自变量 x 变大时,因变量 y 逐渐减小;当自变量 x 变小时,因变量 y 逐渐增大。

因此,反比例函数是单调函数。

4. 渐近线对于反比例函数 y = k / x,当自变量 x 趋于正无穷大或负无穷大时,因变量 y 趋于0。

因此,反比例函数的图像与 x 轴和 y 轴分别有两条渐近线。

三、反比例函数的图像反比例函数的图像呈现出一条平面上的双曲线。

根据反比例函数的性质,我们可以知道,当自变量取较小的正数时,函数的值较大;当自变量取较大的正数时,函数的值较小。

图像的左侧和右侧都逐渐靠近 x 轴,说明函数值趋于无穷大。

而当自变量 x 离 0 越远时,函数值越接近于 0。

四、反比例函数的应用反比例函数广泛应用于各个领域,如物理学、经济学和生物学等。

以下是几个常见的应用示例:1. 电阻和电流欧姆定律规定电阻大小与通过电流的大小成反比例关系。

当电流增大时,电阻减小,反之亦然。

这种关系可以用反比例函数来描述。

2. 速度和时间在实际的物理运动中,速度与所用时间成反比例关系。

当速度增大时,所用时间减小,反之亦然。

反比例函数可以用来描述运动物体在不同速度下所用的时间。

2022年最新中考数学知识点梳理 考点10 反比例函数(学生版)

2022年最新中考数学知识点梳理 考点10 反比例函数(学生版)

2022年最新中考数学知识点梳理考点总结+真题演练涵盖近年来的中考真题和中考模拟考点10 反比例函数考点总结一、反比例函数的概念1.反比例函数的概念:一般地,函数ky x=(k 是常数,k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数. 2.反比例函数ky x=(k 是常数,k ≠0)中x ,y 的取值范围 自变量x 和函数值y 的取值范围都是不等于0的任意实数. 二、反比例函数的图象和性质 1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.(2)性质:当k >0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y 随x 的增大而减小.当k <0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y 随x 的增大而增大.2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y =x 和y =-x ,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x的增大而减小.同样,当k<0时,也不能笼统地说y随x的增大而增大.三、反比例函数解析式的确定1.待定系数法:确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解. (1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+; (3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-. 五、反比例函数与一次函数的综合 1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对12y y >时自变量x 的取值范围,只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如,如下图,当12y y >时,x 的取值范围为A x x >或0B x x <<;同理,当12y y <时,x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从图象上看,一次函数与反比例函数的交点由k 值的符号来决定.①k值同号,两个函数必有两个交点;②k值异号,两个函数可无交点,可有一个交点,可有两个交点;(2)从计算上看,一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.六、反比例函数的实际应用解决反比例函数的实际问题时,先确定函数解析式,再利用图象找出解决问题的方案,特别注意自变量的取值范围.真题演练一.选择题(共10小题)1.(2021•河北模拟)直线y=ax+b与双曲线y=cx的图象如图所示,则a﹣b+c的结果()A.大于0 B.小于0 C.等于0 D.无法确定2.(2021•滦南县二模)如图,菱形OABC在第二象限内,∠AOC=60°,反比例函数y=kx(x<0)的图象经过点A,交BC边于点D,若△AOD的面积为2√3,则k的值为()A.2√3B.−2√3C.4√3D.−4√33.(2021•海港区模拟)如图,图①是函数y=1x(x>0)的图象,图②与图①关于直线y=−12对称,则②表示的函数是()A.y=1x−1(x>0)B.y=1x+1(x>0)C.y=−1x−1(x>0)D.y=−1x+1(x>0)4.(2021•河北模拟)如图,点A(1,n)在双曲线y=3x(x>0)上,点A'从点A开始,沿双曲线y=3x(x>0)向右滑动,则在滑动过程中,OA'的长()A.增大B.减小C.先增大,再减小D.先减小,再增大5.(2021•路南区二模)如图,已知动点A,B分别在x轴,y轴正半轴上,动点P在反比例函数y=1x(x>0)图象上,PA⊥x轴,当点A的横坐标逐渐增大时,△PAB的面积将会()A.越来越小B.越来越大C.不变D.先变大后变小6.(2021•河北模拟)在平面直角坐标系中,点P(m,n)在反比例函数y=4x(x>0)的图象上,若m从1逐渐增大到5,则OP的长()A.逐渐减小B.逐渐增大C.先增大后减小D.先减小后增大7.(2021•路南区三模)二次函数y=ax2+bx+c的图象如图,则一次函数y=ax+b2﹣4ac与反比例函数y=b+cx.在同一坐标系内的图象大致为()A.B.C.D.8.(2021•路北区三模)小芳说:“我的矩形面积为6.”小丽说:“我的矩形周长为6.”则下面说法不正确的是()A.小芳:我的矩形一组邻边满足反比例函数关系,你的矩形一组邻边满足一次函数关系B.小丽:你的矩形周长不可能是6,我的矩形面积也不可能是6C.同学小文:你们的矩形都可能是正方形D.同学小华:小丽的矩形面积没有最大值9.(2021•遵化市模拟)如图,是一个闭合电路,其电电压为定值,电流I(A)是电阻R(Ω)的反比例函数.当R=4Ω时,I=3A.若电阻R增大2Ω,则电流I为()A.1A B.2A C.3A D.5A10.(2021•衡水模拟)已知反比例函数y1=kx的图象与一次函数y2=−34x+n的图象如图所示,点A(a,b),B(c,d)是两个图象的交点,下列命题:①过点A作AM⊥x轴,M为垂足,连接OA,若△AMO的面积为3,则k=6;②若x>c,则y1>y2;③若a=d,则b=c;④直线AB分别与x轴、y轴交于点C,D,则BC=AD.其中真命题的个数是()A.1 B.2 C.3 D.4二.填空题(共5小题)11.(2021•开平区一模)如图,四边形ABCD是菱形,已知A(1,2),B(2,1),D(2,3),反比例函数y=mx(x>0).(1)C点的坐标为.(2)若双曲线y=mx(x>0)的函数图象经过点A时,则双曲线一定经过图中的点.(3)双曲线与菱形ABCD有公共点时,请写出m的取值范围.12.(2021•安次区一模)如下图,△OA1B1,△A1A2B2,△A2A3B3…是分别以A1,A2,A3…为直角顶点,一条直角边在x轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y=4x(x>0)的图象上,则点C1的坐标为;y1=;y1+y2+y3+…+y10的值为.13.(2021•安次区二模)如图,在平面直角坐标系xOy中,等边三角形AOB的顶点A在第一象限,点B(3,0),双曲线y=kx(k>0,x>0)把△AOB分成两部分.(1)双曲线与边OA,AB分别交于C,D两点,若OC=2,则k=.(2)横纵坐标都为整数的点称为整点,若双曲线y=kx(k>0,x>0)把△AOB分成的两部分内的整点个数相等(不含边界),则k的取值范围为.(3)点D的横坐标为.14.(2021•桥东区二模)如图,在平面直角坐标系中,▱ABCD的顶点分别为A(1,2),B(4,2),C(7,5),曲线G:y=kx(x>0).(1)点D的坐标为.(2)当曲线G经过▱ABCD的对角线的交点时,k的值为.(3)若G刚好将▱ABCD边上及其内部的“整点”(横、纵坐标都为整数的点)分成数量相等的两部分,则k的取值范围是.15.(2021•河北模拟)在平面直角坐标系xOy中,对于任意的实数a(a≠0),直线y=ax+a ﹣2都经过平面内一个定点A.(1)点A的坐标为.(2)反比例函数y=bx的图象与直线y=ax+a﹣2交于点A和另外一点P(m,n).①b的值为.②当n>﹣2时,m的取值范围为.三.解答题(共3小题)16.(2021•路南区一模)如图,在平面直角坐标系中,反比例函数y=kx(x>0,k>0)的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C.(1)求该反比例函数解析式;(2)当△ABC面积为4时,求点B的坐标;(3)在(2)的情况下,直线y=ax﹣1过线段AB上一点P,求a的取值范围.17.(2021•平泉市一模)如图,直线OC:y=k1x与双曲线y=k2x(x>0)交于点C(6,12),且横坐标为1的点P也在双曲线y=k2x(x>0)上,直线l经过点P,C.(1)k1=,k2=;(2)求直线l的解析式;(3)设直线l与y轴交于点A,将直线OC沿射线CP方向平移至点A为止,直接写出直线OC在平移过程中与x轴交点横坐标的取值范围;(4)直接写出直线l与双曲线y=k2x(x>0)围成的区域内(图中阴影部分,不含边界)整点(横坐标和纵坐标都是整数)的坐标.18.(2021•路南区三模)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使代数式x2﹣3xy与y2+xy和的值为1的(x,y)出现的概率;(3)求在y=−1x图象上的点(x,y)出现的概率.。

中考总复习反比例函数图文_2022年学习资料

中考总复习反比例函数图文_2022年学习资料

4.如果反比例函数y=1-3m的图象位于-第二、四象限,那么m的范固为四>手-X-由1-3m<0-得-3m -1-.m>
5、表示下面四个关系式的图像有--N-Rs肉-y-X-B
6、如图,函数y=k-和y=一kx+1k≠0在同一坐-标系内的图象大致是D°-以前做过这-样的题目吗?-方 :先假设某个-函数图象已经画好-再确定另外的是否-符合条件.
4.如图,P,P'是函数y=二的图像上关于原点0对称-X-的任意两点,PA平行于y轴,P'A平行于x轴,△ AP'的-面积S,则C.-A.S=1-B.1<S<2-C.S=2-D.S>2-解:设Pm,n,则P'-m, n.-∴.AP2ml,AP'2nl;-SPAP=号lAP,AP叫--12ml-2xl-=2Ik|
.指以士-k2+1-1、在反比例函数-y=-的图象上有两点-米1,y1、x2,y2,若x1>x2>0,则y 与y2的-大小关系是-变:1将x1>x2>0变为x1>0>x2,则y1与y2的-2将x1>X2>0变为x1 ×2,则y1与y2的大小关-3若图象上有三点X1,y1、X2,y2、-X3,y3),且y1>0>y2>y3 则x1、X2、X3的大
练习4-1.如图,点P是反比例函数y=-2-图象上-X-的一点,PD⊥x轴于D.则△P0D的面积-为1-. k=2-7-∴.S4PoD=-l=-×2=1
2、如图:A、CБайду номын сангаас函数y=-一-的图象上任意两点,-过A作x轴的垂线垂足为B.过C作y轴的垂线-垂足为D. RIMORE的面积为S1,-RtxoCD的面积为S2,则_C-A.Sj>S2-B.Sj<-C.S1=-X.S1和S2的大小关系不能确定,

2022初中数学复习资料:反比例函数

2022初中数学复习资料:反比例函数

2022初中数学复习资料:反比例函数学习积极性不高,学习效率就慢,初中整理了2022初中数学复习资料:内容,以供大家参考复习。

2022初中数学复习资料:反比例函数反比例定义:形如函数y=/为常数且≠0叫做反比例函数,其中叫做比例系数,是自变量,y是自变量的函数,的取值范围是不等于0的一切实数。

反比例函数y=/称为反比例函数,其中≠0,其中X是自变量,1.当0时,图象分别位于第一、三象限,同一个象限内,y随的增大而减小;当0时,图象分别位于二、四象限,同一个象限内,y随的增大而增大。

2.0时,函数在0上同为减函数、在0上同为减函数;0时,函数在0上为增函数、在0上同为增函数。

3.的取值范围是:≠0;y的取值范围是:y≠0。

4.因为在y=/≠0中,不能为0,y也不能为0,所以反比例函数的图象不可能与轴相交,也不可能与y轴相交。

但随着无限增大或是无限减少,函数值无限趋近于0,故图像无限接近于轴5.反比例函数的图象既是图形,又是中心对称图形,它有两条对称轴y=y=-即第一三,二四象限角平分线,对称中心是坐标原点。

反比例函数的一般形式一般地,如果两个变量、y之间的关系可以表示成为常数,≠0的形式,那么称y是的反比例函数。

其中,是自变量,y是函数。

由于在分母上,故取≠0的一切实数,看函数y的取值范围,因为≠0,且≠0,所以函数值y也不可能为0。

补充说明:1反比例函数的解析式又可以写成:是常数,≠06.要求出反比例函数的解析式,利用待定系数法求出即可的特征⑴等号左边是函数,等号右边是一个分式。

分子是不为零的常数也叫做比例系数,分母中含有自变量,且指数为1。

⑵比例系数⑶自变量的取值为一切非零实数。

⑷函数的取值是一切非零实数。

以上是2022初中数学复习资料:反比例函数内容,希望帮助同学们复习。

更多精彩内容,。

2022年中考数学一轮复习反比例函数【考点精讲】(解析版)

2022年中考数学一轮复习反比例函数【考点精讲】(解析版)

考点1:反比例函数图象与性质 1.图象的特征:反比例函数xky =的图象是一条双曲线,它关于坐标原点成中心对称。

2.反比例函数xky =(k ≠0,k 为常数)的图象和性质: 函数图象所在象限 性质xk y =(k ≠0,k 为常数)k >0一、三象限(x ,y 同号) 在每个象限内,y 随x增大而减小 k <0二、四象限(x ,y 异号)在每个象限内,y 随x增大而增大【例1】(2021·山西)已知反比例函数6y x=,则下列描述不正确的是( ) A .图象位于第一,第三象限 B .图象必经过点34,2⎛⎫ ⎪⎝⎭C .图象不可能与坐标轴相交D .y 随x 的增大而减小【分析】根据反比例函数图像的性质判断即可. 【详解】解:A 、反比例函数6y x=,0k >,经过一、三象限,此选项正确,不符合题意; 专题09 反比例函数知识导航知识精讲B 、将点34,2⎛⎫ ⎪⎝⎭代入6y x=中,等式成立,故此选项正确,不符合题意; C 、反比例函数不可能坐标轴相交,此选项正确,不符合题意;D 、反比例函数图像分为两部分,不能一起研究增减性,故此选项错误,符合题意; 故选:D .【例2】如图,函数xky =与y =﹣kx +2(k ≠0)在同一平面直角坐标系中的大致图象是( ) A . B .C .D .【分析】根据题目中函数的解析式,利用一次函数和反比例函数图象的特点解答本题. 【详解】解:在函数xky =和y =﹣kx +2(k ≠0)中, 当k >0时,函数xky =的图象在第一、三象限,函数y =﹣kx +2的图象在第一、二、四象限,故选项A 、D 错误,选项B 正确, 当k <0时,函数xky =的图象在第二、四象限,函数y =﹣kx +2的图象在第一、二、三象限,故选项C 错误, 故选:B .(1)当k >0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y 随x 的增大而减小; (2)当k <0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y 随x 的增大而增大.1.(2021·江苏宿迁市)已知双曲线ky (0)k x=<过点(3,1y )、(1,2y )、(-2,3y ),则下列结论正确的方法技巧针对训练是( ) A .312y y y >>B .321y y y >>C .213y y y >>D .231y y y >>【分析】利用分比例函数的增减性解答即可. 【详解】 解:∵ky (0)k x=< ∵当x >0时,y 随x 的增大,且y <0;当x <0时,y 随x 的增大,且y >0; ∵0<1<3,-2<0 ∵y 2<y 1<0,y 3>0 ∵312y y y >>. 故选A .2.(2021·湖南娄底市)根据反比例函数的性质、联系化学学科中的溶质质量分数的求法以及生活体验等,判定下列有关函数xy a x=+(a 为常数且0,0a x >>)的性质表述中,正确的是( ) ∵y 随x 的增大而增大;∵y 随x 的增大而减小;∵01y <<;∵01y ≤≤ A .∵∵B .∵∵C .∵∵D .∵∵【分析】该函数可改写为=1=+1x x a a a a y a x a x a x a x+--==-++++(a 为常数且0,0a x >>),此时可以类比反比例函数的性质进行判断,或者利用赋值法也可快速进行选择,选择正确的选项即可. 【详解】 解:=1=+1x x a a a ay a x a x a x a x+--==-++++, 又∵0,0a x >>,∵随着x 的增大,a+x 也会随之增大,∵aa+x随着x 的增大而减小, 此时aa+x越来越小,则1a a x -+越来越大,故随着x 的增大y 也越来越大. 因此∵正确,∵错误; ∵0,0a x >>,∵1aa+x0<<, ∵11aa x-+0<<,故01y <<, 因此∵正确,∵错误; 综上所述,A 选项符合. 故选:A .3.(2021·福建)若反比例函数ky x=的图象过点()1,1,则k 的值等于_________. 【分析】结合题意,将点()1,1代入到ky x=,通过计算即可得到答案.【详解】 ∵反比例函数ky x=的图象过点()1,1 ∵11k=,即1k = 故答案为:1.考点2:确定反比例关系式 1.反比例函数的解析式的确定求反比例函数的解析式跟求一次函数一样,也是待定系数法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学目标知识梳理第四讲 一轮复习—函数专题之反比例函数1、掌握反比例函数的定义,会用待定系数法求解析式,理解其图像的性质;2、理解反比例函数与方程及不等式的关系,学会利用图像解决相关问题。

知识点一、反比例函数的定义 反比例函数:形如y =xk (k 为常数,k ≠0)的函数称为反比例函数。

其他形式xy =k 、 1-=kx y 。

知识点二、反比例函数的图像1、图像形状:反比例函数的图像属于双曲线。

【注意】双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论 知识点三、|k |的几何意义1、过反比例函数()0ky k x=≠,图像上一点()P x y ,,做两坐标轴的垂线,两垂足、原点、P 点组成一个矩形,矩形的面积S x y xy k =⋅==。

2、与反比例函数上的点有关的三角形的面积【误区警示】应用比例系数k 的几何意义时的易错点 (1)忽略图像所在的象限而导致k 的符号出错 (2)混淆矩形或三角形与|k |的倍数关系 3、与反比例函数上的点有关的梯形的面积S △OCD =S 梯形ABCD知识点四、反比例函数解析式的确定 由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。

知识点五、反比例函数的应用1、 反比例函数在实际问题中的应用反比例函数在实际问题中,通常自变量的取值范围因实际背景而受到限制,这时对应的函数图像会是双曲线的一支或一段.在实际问题中,要注意标明自变量的取值范围. 2、 反比例函数图像与一次函数图像的交点问题典型例题一次函数y=k 1x+b (k 1≠0)的图像与反比例函数y =k 2x(k 2≠0)的图像的交点个数有三种情况:0个、1个、2个.因为两个函数表达式联立组成的二元方程组可化为一个一元二次方程,所以两个函数图像的交点个数由这个一元二次方程的实数解的个数来决定.【提分笔记】在同一平面直角坐标系中,正比例函数与反比例函数若有交点,则这两个交点关于原点对称例1.已知双曲线1k y x-=经过点(-2,3),那么k 的值等于_______.例2.点A (x 1,y 1),B (x 2,y 2)是反比例函数y =-3x图像上的两点.若x 1>x 2>0,则y 1________y 2(选填“>”、“=”或“<”).例3.若点()12020,A y -、()22021,B y 都在双曲线32ay x +=上,且12y y >,则a 的取值范围是( )A .0a < B .0a > C .32a >- D .32a <-例4.已知反比例函数3k y x+=的图像位于第二、四象限,则k 的取值范围为( ) A .3k >- B .3k ≥-C .3k <-D .3k ≤-例5.已知反比例函数y =﹣8x,下列结论:①图像必经过(﹣2,4);②图像在二,四象限内;③y 随x 的增大而增大;④当x >﹣1时,则y >8.其中错误的结论有( )个A .3B .2C .1D .0例6.若正比例函数y =-4x 与反比例函数y =kx的图像相交于A ,B 两点,其中点A 的横坐标为2,则k 的值为( )A .-16B .-8C .16D .8例7.如图,已知A为反比例函数kyx=(x<0)的图像上一点,过点A作AB⊥y轴,垂足为B.若△OAB的面积为2,则k的值为()A.2B.-2C.4D.-4例8.如图,在平面直角坐标系中,点A在第一象限,BA⊥y轴于点B,反比例函数y=kx(x>0)的图像与线段AB相交于点C,且C是线段AB的中点,若△OAB的面积为3,则k的值为( )A.13B.1C.2D.3例9.如图,矩形OCBA的两条边OC、OA分别在x、y的正半轴上,另两条边AB、BC分别与函数k yx =(0x>)的图像交于E,F两点,且E是AB的中点,连接OE,OF,若OEF的面积为3,则k的值为()A.2B.3C.4D.5例10.如图,点A 在双曲线 3y x = 上,点 B 在双曲线 5y x=上,C 、D 在 x 轴上,若四边形 ABCD 为矩形,则它的面积为( )A .1B .2C .3D .4例11.如图,在△AOB 中,OC 平分∠AOB ,43OA OB =,反比例函数(0)ky k x =<图像经过点A 、C 两点,点B 在x 轴上,若△AOB 的面积为7,则k 的值为( )A .4-B .3-C .215-D .73-例12.点A (a ,b )是一次函数y=x ﹣2与反比例函数y =4x的交点,则a 2b ﹣ab 2=________. 例13.如图,点A 是双曲线6y x=-在第二象限分支上的一个动点,连接AO 并延长交另一分支于点B ,以AB 为底作等腰ABC ,且120ACB ∠=︒,点C 在第一象限,随着点A 的运动点C 的位置也不断变化,但点C 始终在双曲线ky x=上运动,则k 的值为________.例14.如图,点A 在反比例函数11(0)y x x =>的图像上,点B 在反比例函数2(x 0)ky x=<的图像上,AB ⊥y 轴,若△AOB 的面积为2,则k 的值为____.例15.如图,已知A (12,y 1),B (2,y 2)为反比例函数y =1x 图像上的两点,动点P (x ,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是_____.例16.(2020·江苏南通市·九年级零模)已知点A 在x 轴负半轴上,点B 在y 轴正半轴上,线段OB 的长是方程x 2﹣2x ﹣8=0的解,tan ∠BAO =12. (1)求点A 的坐标;(2)点E 在y 轴负半轴上,直线EC ⊥AB ,交线段AB 于点C ,交x 轴于点D ,S △DOE =16.若反比例函数y =kx的图像经过点C ,求k 的值; (3)在(2)条件下,点M 是DO 中点,点N ,P ,Q 在直线BD 或y 轴上,是否存在点P ,使四边形MNPQ 是矩形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.真题链接例17.(2020·江苏苏州市·九年级零模)如图,矩形ABCD 的两边AD 、AB 的长分别为3、8,E 是DC 的中点,反比例函数y =mx的图像经过点E ,与AB 交于点F . (1)若点B 坐标为(﹣6,0),求图像经过A 、E 两点的一次函数的表达式是_____; (2)若AF ﹣AE =2,则反比例函数的表达式是_____.1.若A (x 1,y 1),B (x 2,y 2)都在函数y =2019x的图像上,且x 1<0<x 2,则 ( )A . y 1<y 2B . y 1=y 2C . y 1>y 2D . y 1=-y 2 2.若反比例函数xy 2-=的图像上有两个不同的点关于y 轴对称点都在一次函数y =-x +m 的图像上,则m 的取值范围是( )A .22>mB .22-<m ①C .22-22<或>m mD .2222-<<m 3.如图,菱形ABCD 的两个顶点B 、D 在反比例函数y =kx 的图像上,对角线AC 与BD 的交点恰好是坐标原点O ,已知点A (1,1),∠ABC =60°,则k 的值是 ( )A .-5B .-4C .-3D .-24.如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数y =kx在第一象限内的图像经过点D ,交BC 于点E ,若AB =4,CE =2BE ,tan ∠AOD =34,则k 的值为 ( )A .3B . 2 C . 6D . 125.如图,已知点A 是反比例函数y =−2x (x <0)的图像上的一个动点,连接OA ,若将线段OA绕点O 顺时针旋转90°得到线段OB ,则点B 所在图像的函数表达式为 . 6.函数1y x =与24y x=的图像如图所示,下列关于函数12y y y =+的结论:①函数的图像关于原点中心对称;①当2x <时,y 随x 的增大而减小;①当0x >时,函数的图像最低点的坐标是(2,4),其中所有正确结论的序号是 .【2021江苏中考真题】7.(2021•江苏淮安中考)如图(1),①ABC 和①A ′B ′C ′是两个边长不相等的等边三角形,点B ′、C ′、B 、C 都在直线l 上,①ABC 固定不动,将①A ′B ′C ′在直线l 上自左向右平移.开始时,点C ′与点B 重合,当点B ′移动到与点C 重合时停止.设①A ′B ′C ′移动的距离为x ,两个三角形重叠部分的面积为y ,y 与x 之间的函数关系如图(2)所示,则①ABC 的边长是 .8.(2021•江苏南通中考)平面直角坐标系xOy 中,直线y =2x 与双曲线y =xk(k >2)相交于A ,B 两点,其中点A 在第一象限,设M (m ,2)为双曲线y =xk(k >2)上一点,直线AM ,BM 分别交y 轴于点C ,D 两点,则OC -OD 的值为( ).A .2B .4C .6D .89.(2021•江苏扬州中考)如图,点P 是函数y =xk 1(k 1>0,x >0)的图像上一点,过点P 分别作x 轴和y 轴的垂线,垂足分别为点A 、B ,交函数y =xk 2(k 2>0,x >0)的图像于点C 、D ,连接OC 、OD 、CD 、AB ,其中k 1>k 2.下列结论:①CD ①AB ;①S ①OCD =221k k -;①S ①DCP =12212)(k k k -,其中正确的是( )A .①①B .①①C .①①D .①10.(2021•江苏宿迁中考)如图,点A 、B 在反比例函数()ky 0x x=>的图像上,延长AB 交x 轴于C 点,若①AOC 的面积是12,且点B 是AC 的中点,则k =__________.11.(2021•江苏宿迁中考)已知双曲线ky (0)k x=<过点(3,1y )、(1,2y )、(-2,3y ),则下列结论正确的是( )A . 312y y y >>B . 321y y y >>C . 213y y y >>D . 231y y y >>12.(2021•江苏无锡中考)一次函数y =x +n 的图像与x 轴交于点B ,与反比例函数y =xm(m >0)的图像交于点A (1,m ),且①AOB 的面积为1,则m 的值是( )A .1B .2C .3D .413.(2021•江苏泰州中考)如图,点A (﹣2,y 1)、B (﹣6,y 2)在反比例函数y =kx(k <0)的图像上,AC ①x 轴,BD ①y 轴,垂足分别为C 、D ,AC 与BD 相交于点E .(1)根据图像直接写出y 1、y 2的大小关系,并通过计算加以验证;(2)结合以上信息,从①四边形OCED 的面积为2,①BE =2AE 这两个条件中任选一个作为补充条件,求k 的值.你选择的条件是 (只填序号).1114.(2021•江苏徐州中考)如图,点 A 、D 分别在函数xy x y 63=-=、的图像上,点 B 、C 在 x 轴上.若四边形 ABCD 为正方形,点 D 在第一象限,则 D 的坐标是 .15.(2021•江苏常州中考)【阅读】通过构造恰当的图形,可以对线段长度....、图形面积大小......等进行比较,直观地得到一些不等关系或最值,这是“数形结合”思想的典型应用. 【理解】(1)如图1,AC ⊥BC ,CD ⊥AB ,垂足分别为C 、D ,E 是AB 的中点,连接CE.已知AD =a ,BD =b(0<a <b). ①分别求线段CE 、CD 的长(用含a 、b 的代数式表示);②比较大小:CE ______ CD(填“<”、“=”或“>”),并用含a 、b 的代数式表示该大小关系. 【应用】(2)如图2,在平面直角坐标系xOy 中,点M 、N 在反比例函数y =1x (x >0)的图像上,横坐标分别为m 、n.设p =m +n ,q =1m +1n ,记l =14pq .①当m =1,n =2时,l = ______ ;当m =3,n =3时,l = ______ ;②通过归纳猜想,可得l 的最小值是______ .请利用图...2.构造恰当的图形,并说明你的猜想成立.12巩固练习1.下列函数中,y 是x 的反比例函数的是( ) A .x (y –1)=1B .15y x =- 1C 3y x=. 21D y x=. 2.已知反比例函数y =8k x-的图像位于第一、三象限,则k 的取值范围是( ) A .k >8 B .k ≥8 C .k ≤8 D .k <83.若点A (–5,y 1),B (–3,y 2),C (2,y 3)在反比例函数3y x=的图像上,则y 1,y 2,y 3的大小关系是( ) A .y 1<y 3<y 2 B .y 2<y 1<y 3 C .y 3<y 2<y 1 D .y 1<y 2<y 34.如图,在同一平面直角坐标系中,一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图像相交于A (-3,-2),B (2,3)两点,则不等式y 1>y 2的解集是( )13A .-3<x <2B .x <-3或x >2C .-3<x <0或x >2D .0<x <25.一次函数y =ax +b 与反比例函数a by x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图像可以是( )A .B .C .D .6.如图,已知反比例函数ky x=与一次函数y =x +b 的图像在第一象限相交于点A (1,-k +4). (1)试确定这两个函数的表达式;(2)求出这两个函数图像的另一个交点B 的坐标,并根据图像写出使反比例函数的值大于一次函数的值的x 的取值范围.8.如图,已知A (-4,n ),B (2,-4)是一次函数y =kx +b 的图像与反比例函数my x=的图像的两个交点. (1)求反比例函数和一次函数的解析式; (2)求方程0x xk b m+-<的解集(请直接写出答案).9.一般情况下,中学生完成数学家庭作业时,注意力指数随时间x(分钟)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)分别求出线段AB和双曲线CD的函数关系式;(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?14思维导图1516。

相关文档
最新文档