《数学史》朱家生版+课后题目参考答案+第二章

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、试从数学科学发展的角度,探讨古希腊把逻辑学中的演绎证明引入数学的理由,并进一步论述数学与逻辑的关系。

答:一般认为,数学是研究空间形式和数量关系的一门科学,逻辑是研究思维形式及其规律和方法的一门科学,但它们都完全撇开其内容,仅仅从形式方面加以研究,因而均具有高度的抽象性,所以在分类上它们同属于形式科学。同时,数学和逻辑的应用都十分广泛,往往成为研究其它科学的工具,因此常常同被人们称为工具性科学。围绕逻辑与数学的关系讨论下去,曾经形成三种意见──逻辑主义、形式主义和直觉主义。其中逻辑主义、直觉主义,过多强调了数学和逻辑的同一性,而忽视了数学与逻辑的差异性。因此,认识数学和逻辑的关系,在于把握二者关系的辩证性──同一、差异又互补。研究中国传统数学中逻辑思想与方法的必要性一直以来,不论是在逻辑史学界,还是在数学史学界,对于中国传统数学中逻辑思想与方法的研究没有得到应有的重视。但从下面我们简单论述来看,加强这方面的研究却具有显明的必要性。一、从逻辑与数学的关系看数学与逻辑的研究对象虽各不相同,但它们的性质、特点却有很多共同和类似的地方,正因为如此,才使得它们关系十分密切,在内容和方法上可以互相运用和相互渗透。一般认为,数学是研究空间形式和数量关系的一门科学,逻辑是研究思维形式及其规律和方法的一门科学,但它们都完全撇开其内容,仅仅从形式方面加以研究,因而均具有高度的抽象性,所以在分类上它们同属于形式科学。同时,数学和逻辑的应用都十分广泛,往往成为研究其它科学的工具,因此常常同被人们称为工具性科学。

围绕逻辑与数学的关系讨论下去,曾经形成三种意见──逻辑主义、形式主义和直觉主义。其中逻辑主义、直觉主义,过多强调了数学和逻辑的同一性,而忽视了数学与逻辑的差异性。因此,认识数学和逻辑的关系,在于把握二者关系的辩证性──同一、差异又互补。首先,肯定数学和逻辑的同一性。这是因为:(1)数学和逻辑都是高度抽象的学科,数学是研究数量的形式结构的,逻辑是研究思维的形式结构的,形式结构都是高度抽象的,是抽象结构,它们的定义、定理、原理、法则等的正确性均不涉及各种事物具体内容;(2) 数学和逻辑都讲严格性,数学只有具有推理论证的严密性和结论的确定性或可靠性才成其为科学,逻辑也只有当它的推理论证严格而公理系统化时才形成科学;(3) 数学和逻辑都具有广泛的应用性,数学的应用自不待言,对逻辑而言可以肯定地说哪里有思维哪里就要逻辑,一切科学都在应用逻辑。其次,数学与逻辑的差异性也是明显的。一方面,数学和逻辑的研究对象不同,数学的研究对象是一切事物的数与量的属性,而逻辑学的研究对象是思维的形式及规律;另一方面,数学和逻辑的任务和目标不相同,数学的主要目标和任务是揭示客观事物的量和数的规律性,而逻辑的主要目标和任务却是为了解决思维推理形式的有效性或真值性问题。最后,数学和逻辑二者有很强的互补性。一方面数学可能得益于逻辑。从数学或其某一分支的产生和发展来看,它都是人对客观世界中抽象出某一空间形式或数量关系进行研究的

成果。在其开始阶段,需要有一个有关经验材料的积累过程;进人提炼整理阶段,需要有一个组织和演绎的过程,最后才形成一个系统。

无疑,在整个过程中都需要运用逻辑(开始阶段运用归纳逻辑多一些,在整理阶段则应用演绎逻辑多一些),特别是由于数学是一门形式(或演绎)科学,它的结论的正确性不能建立在实验之上,能依赖于逻辑的推理证明,这是因为逻辑也是一间形式科学,其规则是普遍有效的,所以在应用中就能保证数学结论的正确性。数学一旦形成一个系统时(运用公理方法),它就由两部分构成,一是原始概念与公理,另一是定义和推理的规则,然后由原始概念依据定义规则逐次建立起其它的概念(所谓派生概念),及由公理出发,借助于逻辑推理逐次得到进一步的结论(定理),最后组成一个有机的整体。这里运用逻辑的规则和方法是它显着的特点,体现着它的结论的确定性和逻辑的严谨性。由此可以看出,逻辑对于数学来说确是十分重要的,如果离开了逻辑,就将成为一些经验材料的堆砌,也不可能成为一门科学。数学是高度抽象的学科,它的公式,定理、法则、原则等的正确性不可能由具体实验和经验实践来证明,只能从逻辑上加以严格演绎论证才被确认。如果没有逻辑,数学的大厦就无法建造,至少以说不能建构系统的公理化的演绎的数学科学,即现今意义上的数学是根本不可能存在的。另一方面,逻辑的发展也要依靠数学的推动。很明显数理逻辑的诞生和发展是离不开数学方法应用的,当今逻辑学的发展更是需要站在相当的数学基础之上,离开了数学方法,当今逻辑学的最先发展就不可能实现,如果说传统形式逻辑向数理逻辑发展依靠的是数学方法的应用,那么当今或今后逻辑学的发展与进步也必须以广泛的数学方法应用为基础。总之,数学与逻辑的发展是密切相关的,它们相互影响互

相推进,数学发展影响和推进了逻辑的前进,反过来逻辑发展又影响和推动了数学的进步当然,上面的论述,并不是说我们对于历史文化的演进过程中逻辑与数学或者数学与逻辑的关系就是十分明晰的了,相反,我们对于历史的逻辑与历史的数学之间的关系一直没有清晰的认识,甚至于是十分模糊的,特别在我国的情况。因此,挖掘和梳理中国传统数学中逻辑内容,达到厘清中国传统数学与中国古代逻辑的关系具有十分重要的理论意义和指导现实的意义。

2、古典时期的希腊学派对数学科学的发展最重要的贡献有哪些?并通过对资料的分析,论述团队协作对数学发展的重要性。

答:有爱奥尼亚学派的演绎证明,毕达哥拉斯学派的“万物皆数”芝诺悖论与巧辩学派,芝诺关于运动的三个悖论,巧辩学派在芝诺的那些悖论让古希腊人伤透脑筋的时候,提出了三大著名作图问题。柏拉图学派,柏拉图学派把德谟克利特的原子论和毕达哥拉斯的数学成就等结合起来,提出了几何学的原子说。

3、毕达哥拉斯学派是怎样引起第一次数学危机的?他们为什么要对这次数学危机采取回避的态度?这种态度对数学发展有什么重要的影响?

答:毕达哥拉斯的数是指整数,他们在数学上的一项重大发现是证明了勾股定理。他们知道满足直角三角形三边长的一般公式,但由此也发现了一些直角三角形的三边比不能用整数来表达。这样一来,就否

相关文档
最新文档