分式的乘除(基础)知识讲解
分式的乘除法
分式的乘除法分式的乘法和除法是数学中非常重要的概念,在许多数学题目和实际应用中都会用到这两种运算。
下面我们将详细介绍分式的乘法和除法,帮助大家更好地掌握这个概念。
一、分式的乘法1. 定义两个分数的乘积是将它们的分子相乘,分母相乘得到的新的分数。
简单来说,两个分数的乘积算法是:分式 A ×分式 B = (A的分子× B的分子) / (A的分母× B的分母)例如:(3/4) × (5/6) = (3×5) / (4×6) = 15 / 24(1/3) × (4/5) = (1×4) / (3×5) = 4 / 152. 乘法的性质①乘法是可交换的:两个分式相乘的结果与两个分式交换位置后相乘的结果相同。
A ×B = B × A②乘法是可结合的:三个或更多个分式相乘的结果不受计算的顺序影响。
(A × B) × C = A × (B × C)③乘法满足分配律:一个分式与多个分式相加的结果等于每个分式与它相乘后再相加的结果。
A × (B + C) = A × B + A × C例如:2/3 × (4/5 + 1/5) = 2/3 × 5/5 = 10/152/3 × 4/5 + 2/3 ×1/5 = 8/15 + 2/15 = 10/15二、分式的除法1. 定义两个分式的除法是将它们的分子相乘,分母相乘后,将前者的结果除以后者的结果所得到的新的分数。
简单来说,分式 A ÷分式 B 算法是:分式 A ÷分式 B = (A的分子× B的分母) / (A的分母× B的分子)例如:(3/4) ÷ (5/6) = (3×6) / (4×5) = 18 / 20(1/3) ÷ (4/5) = (1×5) / (3×4) = 5 / 122. 除法的性质①除法是不可交换的:两个分式相除的结果与两个分式交换位置后相除的结果不相同。
(完整版)分式加减乘除运算
(三)分式 的运算知识点一:分式 的乘法 ---分式乘分式,用分子 的积作为积 的分子,分母 的积作为积 的分母23bc 2a b 4、 ;3a 16b4b 9a 24x y2b 2a 1、; 2、; 3、; 3y 2x 3 5a 2 2b5a 2 3c 22x 2 2x 2 4;x y x y ;x y x y3a 3b 25a b 396、; 7、5、a 2b 2x 2x x 3x210ab知识点二:分式 的乘方 ---要把分式 的分子、分母分别乘方 23222222 y 2x y 24a b a1 b 2a 2; 2、; 3、; 4、; 5、; 6、1、3y3x3zx y知识点四:分式 的除法 --分式除以分式,把除式 的分子、分母颠倒位置后,与被除式相乘2y 2 3x ab 22c 23a b 223x5y 220a y 4;3x512xy 5a28x y ;2、 3xy6xy16a y 321、;3、 ;4、 ;5、 4cd2x 2 y 2xyx 1 1 x x 2 4x 4 x 2;9、 x 4y 22x 2y2y x ;7、;8、6、x 2x xx 2xy y 2 2x 2xy2 2 x 1x 1知识点五:分式 的乘除混合运算322x 222322x 2 x x 2x x 21aab 2x y y 1、; 4、; 5、;2 x2b b4x2axay23232ab 3 6a 4 b 33c a b aba a ab 2;7、6、2b 22c db a1.下列各式计算结果是分式 的是( ). x 37x 2 n a m bn 3m m 2n(C) 3 5x x(A)(B)(D) 3y 24y32.下列计算中正确 的是().- 1(A)(-1)=- 1 (B)(- 1)=11 1 (C) 2a 33(D) ( a) ( a)72a 3a 43.下列各式计算正确 的是().1 (A) m ÷n · m =m (B) m nmn(C) 1 m m 1m (D) n ÷m · m =n).4.计算 ( a b )4 (a ) 5 的结果是 (ab a 1 a (A)-1(B)1(C) (D)aa b5.下列分式中,最简分式是( ).x 2xy y 2 2x y 2 2x 2y 221xy (A)(B)(C) (D) x yx y15 y 2x y2y 2 x x 9. ( ) ( )2 __________.3 10. [(x ) ]3 2__________.y 2 y知识点六:分式 的加减运算法则:①同分母分式相加减,分母不变,把分子相加减②异分母分式相加减,先通分,变为同分母 的分式,再加减x 1 1; 2、a 2a 3c117102;1、; 3、; 4、22c d 3cd 222xxabc abc abcx yz x y xyza 2a 3a3 8 11 x y y2x y ;y x; 6、 ; 7、 y x x y 5、 x 1 x 1 x 2 2 21b 1 b 1 b 1 1 y 1 2xy 3 2m n 8、; 9、; 10、;2x y x 2 y 222x y2m ny 2x2m n4 x 2 y 2 x 2 y 211、 a 2;12、 xy2 axy知识点 7:分式 的混合运算 2x y x 2y 2 x 11x a 1 2 a ; ;2、x1 ;3、 1、2x y 2 x a 2a 3 a 9 a2 2y1 1x y 1 x 2 y 21 3 x 5 4、5、x 22x 4x 2知识点 8:化简求值 ---化简求值问题 的解题步骤一般都是先对式子进行化简,再将已知值代入求值 2x 2 x 2 2x 11x 2x 2 2x 2 1、先化简,再求值: (2x 3xx 9,其中 x 2.2、先化简,再求值: 1)÷x ,其中 x=.x321 x 1 x 3 5 ),其中 x =- 4x 2x 3.4、先化简,再求值:2、先化简,再求值: 1,其中(x 2x 22x 4x 2a 1a 1a 1,其中aa 1 25、先化简,再求值:a 2 2a 1分式阶段水平测评(二)1.下列分式中是最简分式 的是( ).2x 4 x 1 1 x (D )x 1(A )(B )(C )22x 12xx 12.用科学记数法表示 0.000078,正确 的是().(A )7.8×10-5 (B )7.8×10-4 (C )0.78×10-3(D )0.78×10-41 3.下列计算:① ( 1)01;② ( 1) 1 1;③ 3a 35( x) ( x) 3 x 2.其;④3a 3中正确 的个数是().(A )4 (B )3(C )1( D )0 1 1 1(R 1 R ),则表示 R 的公式是( 4.已知公式1).2R R 1 R 2R 2 RRR 2RR 2 R( R R )2(A ) R 1(C ) R 1) .(D ) R 1() R 1B RR 2RR 2R 2RR 25.下列分式 的运算中,其中结果正确 的是(( a ) 231a 1 b2 a 3(A )( B )abaa 2b 2a 3a 2 6a 91 (C )a b( D )a b a 3a a ).a 24 a 2a6.化简 ( (A )-4的结果是().a 2(B ) 4 (C )2a(D)2a+4二、填空题(每小题 4分,计 16分)27.若 (a 1)0有意义,则 a ≠. 8.纳米是非常小 的长度单位, 1纳米 =0.000000001米,那么用科学记数法表示 1纳米 =米.x y y 1 2 x y9.如果= .,则 a b 2m dc10.若 a 、b 互为相反数, c 、d 互为倒数, m 的绝对值为 2,则 .a b c三、解答题11.计算化简(每小题 5分,计 20分)x 2 4x 2(x 9);( 1) 2 x x 2;(2)2x 3x2 3a 4 1 a 1;( 4) a(3) a 2 a 1.2a 4a 4 a 1 a 2 a 112.请将下面 的代数式尽可能化简,再选择一个你喜欢 的数(要合适哦! )代入求值:a 2 a 1 1.2a (a 1)2x 111 213.(10分)先化简,再求值,其中 x. 2x 2x 1 2x 2a x2bx 3 3 aba14.(10分)若关于 x 的方程的解是 x=2,其中 a b ≠ 0,求 的值. b快速练习21.①若 9x kxy 16y 2k =是一个完全平方式,则;2②若三项式 x 8xy m 是一个完全平方式,则 m = . 2.已知 a 2 ab 5,ab b 222,那么 a b 2.2x(x y 2 xy) y(x 2 x y) 2 34、 (3x 2y) (3x y)(3x y)5、211 2 23b c 27、 2m 26、 2a b 2ab c;2mnmn4 2228.已知 x y 3, xy 2,求 x 2 y ,x y的值。
分式的乘除法讲解x
分式的乘除法讲解1、通过实践总结分式的乘除法,并能较熟练地进行式的乘除法运算。
2、理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算3、通过分析、归纳,培养用类比的方法探索新知识的能力重点 分式的乘除法、乘方运算难点 分式的乘除法、混合运算,分式乘法,除法、乘方运算中符号的确定。
(一)复习与情境导入1、(1)什么叫做分式的约分?约分的根据是什么?(2):下列各式是否正确?为什么?2、(1)回忆: 计算:31241563⨯÷ (2)尝试探究:计算: (2)222222x b yz a z b xy a ÷. (1)xb ay by x a 2222⋅; 实践与探索例2计算493222--⋅+-x x x x②计算: 22()x y xy x xy --÷ (三)实践与探索 探索分式的乘方的法则1、 思 考我们都学过了有理数的乘方,那么分式的乘方该是怎样运算的呢?先做下面的乘法:(1)m n m n m n ⋅⋅=)()( =(m n )3; (2)个k m n m n m n ⋅⋅⋅=)()( =(m n )k . 2、仔细观察这两题的结果,你能发现什么规律?与同伴交流一下,然后完成下面的填空: (mn )(k ) =___________(k 是正整数) 22212(1)441x x x x x x x-+÷+⨯++-17.2 (2)分式的加减法1、掌握同分母、异分母分式的加减,能熟练地进行同分母,异分母分式的加减运算。
2、通过同分母、异分母分式的加减运算,复习整式的加减运算、多项式去括号法则以及分式通分,培养分式运算的能力。
重点 熟练地掌握同分母、异分母分式的加减法。
难点 分式的分子是多项式的分式减法的符号法则,去括号法则应用。
3.例1:计算:(1)xy y x xy y x 2)(2-++)(;(2)xy y x xy y x 22)()(--+.(3)22y x x --22xy y - 提示:可转化为同分母的分式的减法,但应注意符号问题。
八年级分式的乘除说课稿9篇
八年级分式的乘除说课稿9篇八年级分式的乘除说课稿(精选篇1)教学目标(一)教学知识点1.分式乘除法的运算法则,2.会进行分式的乘除法的运算。
(二)能力训练要求1.类比分数乘除法的运算法则。
探索分式乘除法的运算法则。
2.在分式乘除法运算过程中,体会因式分解在分式乘除法中的作用,发展有条理的思考和语言表达能力。
3.用分式的乘除法解决生活中的实际问题,提高“用数学”的意识。
(三)情感与价值观要求1.通过师生共同交流探讨,使学生在掌握知识的基础上,认识事物之间的内在联系,获得成就感。
2.培养学生的创新意识和应用数学的意识。
教学重点让学生掌握分式乘除法的法则及其应用。
教学难点分子分母是多项式的分式的乘除法的运算。
教学方法引导启发探求教具准备投影片四张第一张:探索交流,(记作§3.2 A);第二张:例1,(记作§3.2 B);第三张:例2,(记作§3.2 C);第四张:做一做,(记作§3.2 D)。
教学过程Ⅰ。
创设情境,引入新课[师]上节课,我们学习了分式的基本性质,我们可以发现它与分数的基本性质类似,那么分式的运算是否也和分数的运算类似呢?下面我们看投影片(§3.2 A)探索交流--观察下列算式:× = , × = ,÷ = × = , ÷ = × = .猜一猜× =? ÷ =?与同伴交流。
[生]观察上面运算,可知:两个分数相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分数相除,把除数的分子和分母颠倒位置后,再与被除数相乘。
即× = ;÷ = × = .这里字母a,b,c,d都是整数,但a,c,d不为零。
[师]如果让字母代表整式,那么就得到类似于分数的分式的乘除法。
Ⅱ。
讲授新课1.分式的乘除法法则[师生共析]分式的乘除法法则与分数的乘除法法则类似:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
小学数学点知识归纳分式的乘除运算法则
小学数学点知识归纳分式的乘除运算法则小学数学点知识归纳:分式的乘除运算法则在数学中,分式的乘除运算是很常见的,它们常常出现在各种数学问题中。
理解分式的乘除运算法则对于小学生来说是非常重要的。
本文将介绍小学数学中分式的乘除运算法则,帮助学生更好地掌握这一知识点。
一、分式的乘法分式的乘法遵循以下法则:分子相乘得到新分子,分母相乘得到新分母。
即若有两个分式A和B,它们的乘积为:A ×B = (A的分子 × B的分子)/ (A的分母 × B的分母)示例1:计算分式 2/5 × 3/4 的结果。
根据分式乘法法则,我们可以进行如下计算:2/5 × 3/4 = (2 × 3)/(5 × 4)= 6/20所以,2/5 × 3/4 的结果是 6/20。
示例2:计算分式 1/3 × 4 的结果。
将整数转化成分式,分母为1即可。
计算如下:1/3 × 4 = (1 × 4)/(3 × 1)= 4/3所以,1/3 × 4 的结果是 4/3。
二、分式的除法分式的除法遵循以下法则:将除法转化为乘法,即将除号变为乘号,同时对于除数取其倒数。
即若有两个分式A和B,它们的除法可以表示为:A ÷B = A ×(1/B)示例3:计算分式 2/5 ÷ 3/4 的结果。
根据分式除法法则,我们可以进行如下计算:2/5 ÷ 3/4 = 2/5 ×(4/3)=(2 × 4)/(5 × 3)= 8/15所以,2/5 ÷ 3/4 的结果是 8/15。
示例4:计算分式 1/3 ÷ 4 的结果。
将整数转化成分式,分母为1即可。
计算如下:1/3 ÷ 4 = 1/3 ×(1/4)=(1 × 1)/(3 × 4)= 1/12所以,1/3 ÷ 4 的结果是 1/12。
16.2.1分式的乘除(第1课时)
16.2.1分式的乘除(第1课时)【三维目标】1、知识目标:1)理解并掌握分式的乘除法法则2)运用法则进行运算,能解决一些与分式有关的实际问题。
2、能力目标:经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。
3、情感目标:教学中让学生在自主探究,合作交流中渗透类比转化的思想,使学生感受探索的乐趣和成功的体验。
【教学重点难点】重点:运用分式的乘除法法则进行运算。
难点:分子、分母为多项式的分式乘除运算【教学课时】 2课时【教学过程】一、创设问题情境,引入新课问 题:大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地b 公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?答:大拖拉机的工作效率是小拖拉机的⎪⎭⎫ ⎝⎛÷n b m a 倍引 入:从上面的问题可知,解决生活中的问题有时需要进行分式的乘除运算,那么分式的乘除是怎样运算的呢?这是我们这节课要学习的内容二、类比联想,探究新知问题1:分数的乘除(1)24248353515⨯⨯==⨯ (2)2725251035373721⨯÷=⨯==⨯(3) 24248353515x y x y xy⨯⨯==⨯ (4)2725251035373721y y y x y x x x ⨯÷=⨯==⨯ 问题2:类比分数的乘除法则猜想分式的乘除法则 乘法法则 除法法则分 数 两个分数相乘,把分子相乘的积作为分子,把分母相乘的积作为分母 两个分数相除,把除式的分子分母颠倒位置后,再与被除式相乘分 式两个分式相乘,把分子相乘的积作为分子,把分母相乘的积作为分母 两个分式相除,把除式的分子分母颠倒位置后,再与被除式相乘 符号表示 a b ·c d =ac bd ; a b ÷c d =a b ·d c =ad bc三、例题分析,应用新知例1 计算(1)3234xy y x ∙ (2)mm m 7149122-÷- 解: 2333264234)1(xy x xy x y y x ==∙ m m m m m m m m m mm m +-=+---=-∙-=-÷-7)7)(7()7()7(49171491)2(2222 例2 回顾开课时的问题并解决四、随堂测试,培养能力yx y x y x y x xy xy y x a xy ab b a +-∙-+÷-÷∙)4(32)3)(3(8512)2(916431222)( 五、课堂小结,知识归纳(1)分式的乘法法则和除法法则;(2)分式或分母是多项式的分式乘除法的解题步骤: ①把各分式中分子或分母里的多项式分解因式; ②应用分式乘除法法则进行运算;(注意:结果为最简分式或整式)六、作业课后习题1、2。
《分式的乘除法》课件(共14张PPT)
b a2
ab ba2
1 a
x2 1 x 1 (3) y y2
解 x2 1 y2 y x 1
(x 1)(x 1) y y y(x 1)
xy y
(2)(a2 a) a a 1
解 (a2 a) a 1 a
(a2 a)(a 1) a
第五章 分式与分式方程
2 分式的乘除法
•温故知新:
2 4 , 35
24 35
b d ?....... b d ?
ac
ac
猜想 a d a d
b c bc
a d a c ac b c b d bd
分式的乘除法的法则:
两个分式相乘,把分子相乘的积作为 积的分子,把分母相乘的积作为积的分 母;
⑵原式
(x 1)(x 1)
x 22
1 x 1
(x
1)(x x 1
2)
x 1 x2
2)
a2
1
2a
注意:按照法则 进行分式乘除运算,如果运算
结果不是最简分式,一定要进行约分,使运算结果 化成最简分式。
•例2计算
(1)3xy2 6 y2 x
解 原式 3xy2 x 6y2
3xy2 6y2
x
1 x2 2
(2)
a2
a 1 4a
4
a2 a2
1 4
③原式
3
xy
2
x y
2
3xy 2y2
x
3x2 2y
•做一做
分式的乘除(基础)知识讲解
分式的乘除(基础)【学习目标】1.学会用类比的方法总结出分式的乘法、除法法则.2.会分式的乘法、除法运算.3.掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算. 【要点梳理】要点一、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:a c acb d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:a c a d adb d bc bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠. 要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘.(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式.要点二、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:nn n a a b b ⎛⎫= ⎪⎝⎭(n 为正整数).要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把nn n a a b b ⎛⎫= ⎪⎝⎭写成nn a a b b ⎛⎫= ⎪⎝⎭(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分.(4)分式乘方时,应把分子、分母分别看作一个整体.如()222222a b a b a b b b b ---⎛⎫=≠ ⎪⎝⎭. 【典型例题】 类型一、分式的乘法1、计算:(1)422449158a b x x a b;(2)222441214a a a a a a -+--+-. 【思路点拨】(1)中分子、分母都是单项式,直接用分式乘法法则计算,结果要通过约分化简;(2)中分子、分母都是多项式,要先把可分解因式的分子、分母分解因式,然后用乘法法则化简计算. 【答案与解析】解:(1)422449158a b x x a b 422449315810a b x bx a b x==. (2)222441214a a a a a a -+--+-22(2)1(1)(2)(2)a a a a a --=-+-22(2)(1)(1)(2)(2)a a a a a --=-+-222(1)(2)2a a a a a a --==-++-. 【总结升华】分式的乘法运算的实质就是运用分式的基本性质把分式约分化简的过程,熟练之后也可先约分后运用乘法法则计算. 举一反三: 【变式】计算.(1)26283mx xm;(2)22122x x x x+-+ 【答案】解:(1)原式22621283242m x mx xx m mx ===;(2)原式22112(2)2x x x x x x+==-+-;类型二、分式的除法2、 计算:(1)222324a b a b c cd -÷;(2)2222242222x y x yx xy y x xy-+÷+++. 【思路点拨】(1)先运用法则将分式的除法转化为乘法,然后约分化简;(2)先运用分式的除法法则将分式的除法转化为乘法,同时将分子、分母分解因式,然后约分化简. 【答案与解析】解:(1)222324a b a b c cd -÷22222244236a b cd a b cdc a b c a b==--23d c =-.(2) 2222242222x y x yx xy y x xy-+÷+++2(2)(2)2()()2x y x y x x y x y x y +-+=++22(2)24x x y x xyx y x y--==++. 【总结升华】分式的除法和实数的除法一样,均是转化为乘法来完成的. 举一反三:【变式】(2015•宝鸡校级模拟)化简:.【答案】 解:原式=•=.类型三、分式的乘方3、(2014秋•华龙区校级月考)下列计算正确的是( ) A.B.C. D.【思路点拨】把四个选项先利用分式的乘方法则,将分子分母分别乘方,然后利用积与幂的乘法法则,积的乘方的运算法则,积的乘方等于积中每一个因式分别乘方并把结果相乘,幂的乘方法则是底数不变,指数相乘,即可计算出结果,得到计算正确的选项.【答案】C . 【解析】解:A 、,本选项错误;B 、,本选项错误;C 、,本选项正确;D 、,本选项错误.所以计算结果正确的是C .【总结升华】此题考查了分式的乘方法则,考查了积的乘方及幂的乘方法则,完全平方公式的运用,是一道基础题.类型四、分式的乘除法、乘方的混合运算4、 计算:(1)23422x y y y x x ⎛⎫⎛⎫⎛⎫--÷- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)222223()a b ab a ab b b a ⎛⎫-⎛⎫÷+ ⎪ ⎪-⎝⎭⎝⎭.【答案与解析】解:(1)23422x y y y x x ⎛⎫⎛⎫⎛⎫--÷- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭4645234x y x x y x y⎛⎫=-=- ⎪⎝⎭; (2)222223()a b ab a ab b b a ⎛⎫-⎛⎫÷+ ⎪ ⎪-⎝⎭⎝⎭2222232()1()[()]()a b ab b a a b b a -=+- 22222332()()1()()a b a b a b b a a b a b +-=+-211()a a b a ab==++.【总结升华】(1)题中有除法和乘方运算,应先算乘方,要特别注意符号的处理.(2)本题是乘除混合运算,首先把除法运算转化为乘法运算,再用乘法运算法则计算. 举一反三:【变式】计算:(1)332212b b a a ab ⎛⎫⎛⎫⎛⎫-÷-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)2222()m n n m m nm n mn m --+⎛⎫÷ ⎪-⎝⎭. 【答案】解: (1)332212b b a a ab ⎛⎫⎛⎫⎛⎫-÷-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23263382633312212b b b a a b a b a a a ba b ⎛⎫⎛⎫=-÷-÷==⎪ ⎪⎝⎭⎝⎭. (2)2222()m n n m m n m n mn m --+⎛⎫÷ ⎪-⎝⎭22222()()()()m n m n m n m m nm n m n m n mn+---==-+.。
分式的乘除运算讲解
分式的乘除运算讲解1.引言1.1 概述分式是数学中重要且常见的概念,在解决实际问题中具有广泛的应用。
分式的乘除运算是我们在求解分式相关问题时必须掌握和应用的基础运算。
分式的乘法运算是指将两个分式相乘,得到一个新的分式。
而分式的除法运算则是将一个分式除以另一个分式,同样得到一个新的分式。
在实际生活中,我们经常遇到需要对分式进行乘除运算的情况,比如在购物中打折优惠、计算比例和比率等等。
为了正确进行分式的乘除运算,我们需要先了解分式的定义与性质。
分式可以看作是分子和分母之间带有分数线的数学表达式。
在分式中,分子表示分数的分子部分,而分母表示分数的分母部分。
分式的分子和分母都可以是整数、变量、或两者的组合。
在乘法运算中,我们将两个分式相乘,只需将它们的分子相乘,分母相乘,得到的积即为乘法结果的分子与分母。
而在除法运算中,我们将一个分式除以另一个分式,需要将被除数的分子与除数的分母相乘,被除数的分母与除数的分子相乘,从而得到商的分子与分母。
通过了解分式乘除运算的步骤和性质,我们可以更加灵活地对分式进行运算,解决实际问题中的各种分式运算题目。
分式的乘除运算不仅是数学中重要的基础知识,也是我们日常生活中的实际运用。
掌握了分式的乘除运算,我们能够更好地理解和应用数学知识,提高数学解题的能力和运算的准确性。
综上所述,本文将详细介绍分式的乘除运算的定义、性质以及运算步骤,并总结其应用与拓展。
通过学习与掌握分式的乘除运算,我们可以在数学解题中更加得心应手,为日常生活中的计算和问题解决提供帮助。
1.2 文章结构本文将按照以下结构进行分析和讲解分式的乘除运算。
2. 正文2.1 分式的乘法运算2.1.1 定义与性质2.1.2 乘法运算的步骤2.2 分式的除法运算2.2.1 定义与性质2.2.2 除法运算的步骤3. 结论3.1 总结分式的乘除运算在本章节中,我们通过详细解释分式的乘法与除法运算,掌握了其定义、性质以及实际操作步骤。
分式的乘除运算与简化规则
分式的乘除运算与简化规则在分式的乘除运算与简化规则方面,有一些基本的知识和方法可以帮助我们解决问题。
本文将在此基础上详细介绍分式的乘除运算以及简化规则,并通过示例来加深理解。
让我们一起来探索吧!一、分式的乘法运算分式的乘法运算是指两个分式相乘的操作。
具体计算方法如下:1. 乘法法则:两个分式相乘,先将分子相乘,再将分母相乘。
例如:(a/b) * (c/d) = (a * c) / (b * d)2. 乘法简化:如果分子和分母有公因数,可以约去这些公因数,使分式更简洁。
例如:(4/6) * (9/12) = (4*9) / (6*12) = 36 / 72= 1 / 2 (将分子和分母都除以公因数12得到简化形式)二、分式的除法运算分式的除法运算是指将一个分式除以另一个分式的操作。
具体计算方法如下:1. 除法法则:两个分式相除,先将除数的分子乘以被除数的分母,再将除数的分母乘以被除数的分子。
例如:(a/b) ÷ (c/d) = (a * d) / (b * c)2. 除法简化:如果分子和分母有公因数,可以约去这些公因数,使分式更简洁。
例如:(12/15) ÷ (8/10) = (12*10) / (15*8) = 120 / 120= 1 (将分子和分母都除以公因数120得到简化形式)三、分式的简化规则分式的简化规则是指将分子和分母中的公因数约去,使分式达到最简形式。
简化规则如下:1. 寻找公因数:分子与分母中有相同的因数,即为公因数。
例如:分式3/6中,公因数为3。
2. 约去公因数:将分子和分母都除以最大公因数,得到简化形式。
例如:分式3/6可以约去公因数3,得到最简形式1/2。
四、示例分析接下来,我们通过一些示例来加深理解分式的乘除运算和简化规则。
1. 示例一:计算分式的乘法运算和简化已知 (2/3) * (9/10),我们按照乘法法则进行计算:(2/3) * (9/10) = (2 * 9) / (3 * 10) = 18 / 30将分子和分母都约去公因数6,得到最简形式 3 / 5。
分式(基础)知识讲解
分式(基础)知识讲解分式的概念和性质(基础)研究目标】1.理解分式的概念,能够求出使分式有意义、分式无意义、分式值为零的条件。
2.掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算。
要点梳理】要点一、分式的概念分式是由两个整式相除得到的商式,其中分母中含有字母。
分数是整式,不是分式。
分数的分子、分母中都不含字母。
分式与分数是相互联系的,分数是分式中字母取特定值后的特殊情况。
分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如a/πx^2y是整式而不能当作分式。
要点二、分式有意义、无意义或等于零的条件1.分式有意义的条件:分母不等于零。
2.分式无意义的条件:分母等于零。
3.分式的值为零的条件:分子等于零且分母不等于零。
要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于零的整式,分式的值不变,这个性质叫做分式的基本性质。
用式子表示是:A/M ÷ B/M = A/B,其中M是不等于零的整式。
在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化。
要点四、分式的变号法则在变形后,字母x的取值范围可能变大了。
对于分式中的分子、分母和分式本身的符号,只要改变其中任何两个,分式的值不变;但改变其中任何一个或三个,分式的值会变成原分式的相反数。
要点解释:根据分式的基本性质,我们可以得出上述结论。
同时,根据有理数除法的符号法则,我们可以知道,分式与分子、分母同号,结果为正;异号,结果为负。
分式的符号法则在分式的运算中非常重要。
要点五、分式的约分和最简分式与分数的约分类似,我们可以利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式。
要点解释:约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分母再没有公因式。
教学难点分式乘除法运算的应用
教学难点分式乘除法运算的应用分式乘除法运算是数学中的一个重要内容,也是学生们在学习过程中常常遇到的难点之一。
本文将从概念讲解、具体运算方法以及应用举例等方面来介绍分式乘除法运算的应用。
一、概念讲解分式是由两个整数或者多项式以及整数与多项式构成的比。
在分式中,由于存在分子和分母的概念,因此需要注意分子与分母的运算规则。
分式的乘法与除法运算是分数运算中较为复杂且易出错的部分,也是教学中的难点之一。
二、具体运算方法1. 分式乘法运算分式的乘法运算遵循以下规则:若分数a/b与c/d相乘,那么它们的乘积等于ac/bd。
例如,计算1/2乘以2/3,可以将它们的分子相乘得到1乘以2=2,分母相乘得到2乘以3=6,所以1/2乘以2/3等于2/6,进一步可以约分得到1/3。
2. 分式除法运算分式的除法运算遵循以下规则:若分数a/b除以c/d,那么它们的商等于ad/bc。
例如,计算3/4除以1/2,可以将它们的分子相乘得到3乘以2=6,分母相乘得到4乘以1=4,所以3/4除以1/2等于6/4,进一步可以约分得到3/2。
三、应用举例分式乘除法运算在实际生活中有着广泛的应用,下面通过一些例子具体说明其应用场景。
1. 菜谱中的调配在烹饪过程中,经常需要按照比例来调配原料。
例如,一份蛋糕配方需要1杯面粉和1/2杯牛奶,如果需要将配方扩大2倍,那么需要计算出新的面粉和牛奶的配比。
根据分式乘法运算,可以计算出新的配比为2杯面粉和1杯牛奶。
2. 药物剂量计算在医学中,常常需要根据患者的体重来计算药物的剂量。
例如,某种药物的推荐剂量为每千克体重下0.1毫克,如果患者体重为60千克,可以通过分式乘法运算计算出该患者所需药物的剂量为60乘以0.1=6毫克。
3. 比例问题在生活中,经常会遇到一些比例问题,例如商品的折扣比例、化学反应的化学方程式等。
在计算这些比例时,常常需要运用到分式乘法运算。
通过合理运用分式乘法运算,可以快速计算出比例中的未知数值。
八年级上册数学分式的乘除
在八年级上册的数学课程中,我们学习了一个重要的主题——分式的乘除。
分式是一种特殊的数学表达式,它包含了一个或多个字母,这些字母表示未知数。
分式的乘除运算与整数和小数的乘除运算有所不同,需要遵循一定的规则。
首先,我们来学习分式的乘法。
分式的乘法是将两个分式相乘,得到一个新的分式。
在进行乘法运算时,我们需要先将分子与分子相乘,然后将分母与分母相乘。
例如,计算2/3乘以4/5,我们可以得到(2*4)/(3*5)=8/15。
接下来,我们来学习分式的除法。
分式的除法是将一个分式除以另一个分式,得到一个新的分式。
在进行除法运算时,我们需要先将被除数的倒数乘以除数,然后进行乘法运算。
例如,计算2/3除以4/5,我们可以得到(2*5)/(3*4)=10/12=5/6。
在学习分式的乘除时,我们需要掌握一些基本的技巧和规律。
例如,我们可以将复杂的分式化简为最简形式,这样可以简化计算过程。
此外,我们还需要注意约分和通分的概念,这对于解决实际问题非常重要。
2.2 分式的乘除法
152.2 分式的乘除法互动思维导图[基础知识与基本技能]1.分式的乘除法法则 ⑴分式乘法的法则为:分式乘以分式,把分子乘以分子,分母乘以分母,分别作为积的分子、分母,然后约去分子与分母中的公因式.用符号语言表达:f g ·u v =fugv.⑵分式除法的法则为:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用符号语言表达:f g ÷u v =f g ·vu=fv gu (u ≠0).(1)22368y x x y ;(2)222224a a a a a +---. 分析:⑴式是两个分式相乘,分式的分子、分母都是单项式,可直接利用分式乘法法则进行计算;⑵中的两个分式相乘,分子或分母是多项式,要先对分子或分母进行因式分解,然后再运用法则计算.16解:(1)223633298424y x y x x x x y x y y y== . (2)22222(2)242(2)(2)2a a a a a a a a a a a a a +-+-==---+-- . 方法技巧:⑴两个分式相乘,如果分子、分母是多项式,那么要先对分子或分母因式分解.然后运用分式的乘法法则进行计算;⑵最后计算的结果要通过约去分子、分母的公因式(数)化到最简;⑶在分式的乘法运算中,既可以用法则来计算,也可以根据情况先约去公因式再相乘,后者方法有时会更简便.(1)234xy ÷92y x ; ⑵2a-1a 44a -+÷2214a a --;⑶22442x xy yx y+++÷(4x 2-y 2).思维幻灯片:分析:⑴中的分式的分子、分母都是单项式,可以直接利用分子计算;⑵中的分子或分母有多项式,先把多项式因式分解,然后再运用法则计算;⑶中的除式是整式,把整式看作是分母为1的式子,再运用除法法则计算.解:⑴原式=234xy ·29x y =23249xy x y ∙⨯=26x y ;⑵原式=2a-1a 44a -+·2241a a --=2a-1(a 2)-·(a+2)(a-2)(a+1)(a-1) =2(2)(1)a a a +-+.⑶原式=22442x xy y x y +++·2241x y -=2(2)2x y x y ++·1(2x+y)(2x-y)=12x y-.方法技巧:⑴两个分式相乘,如果分子、分母都是单项式,可以直接利用分式除法法则进行计算,如果分子、分母有多项式,那么要先对分子或分母进行因式分解,然后运用分式的除法法则进行计算;⑵计算结果通过约去公因式化到最简或整式;⑶如果遇到分式与整式相乘除时,可以把整式看作分母为1的式子进行计算;⑷通常情况下,计算最后的结果要使分子和分母的符号都为正号.2.分式的约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.约分的关键是正确找出分子与分母的公因式.其一般方法是:①当分子和分母都是单项式时,先找分子、分母系数的最大公因数,再找相同字母的最低次幂;②当分子和分母都是多项式时,首先要对分子、分母进行因式分解,把分子、分母变为几个因式的积后,再找分子、分母的公因式.[温馨提示]⑴约分的依据是分式的基本性质,分子、分母都除以的整式是它们的公因式.由于原分式有意义,可知分子与分母的公因式一定不为零,故利用分式的基本性质约去公因式时,不必强调公因式不为零,直接约分即可.⑵要牢记分子、分母都是乘积形式时,才能进行约分;分子、分母是多项式时,通常先将分子、分母分解因式,然后再约分.43243521a b ca b d.分析:分子的数字因数是35,分母的数字因数是21,其最大公因数是7,分子、分母中的相同因式是a、b,其最低次幂分别为2、3,故最大公因式是723a b.解:43232224233575532173a b c a b a c a cbda b d a b bd⋅==⋅.方法技巧:当约分的分式的分子、分母都是单项式时,只要约去分子、分母的最大公因数和相同字母的最低次幂即可.2222a aba ab b+++.分析:此分式的分子和分母都是多项式,要先各自因式分解,然后约去公因式.解:原式=2()()a ab aa ba b+=++.方法技巧:约分的根据是分式的基本性质,将分子、分母的公因式约去,若分子、分母是多项式,须先因式分解,再约去公因式.特别注意分子、分母必须是乘积形式时1718才能进行约分. 4.最简分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-A .1个B .2个C .3个D .4个分析:分子分母是多项式的,先把分子、分母都分解因式,看分子、分母中是否有公因式,第1个不能再分解了,是最简分式;第2个可化为2221(1)(1)x x x -+-有公因式x 2-1;第3个不能分解,也没有公因式;第4个可化为(2)(2)a ab a a b +-没有公因式,是最简分式.故有3个最简分式. 解:C .方法技巧:判断一个分式是否是最简分式,关键看分子、分母中有没有公因式,有些分式的分子、分母虽然都能因式分解,都是分解后仍然没有公因式,这样的分式仍然是最简分式. 5.分式的乘方分式的乘方是把分子、分母各自乘方.用符号语言表达:()nn n f f g g=.1922y x-)2;⑵(2222a ab ab b+-)3. 分析:⑴中的分式的分子、分母是单项式,可以直接运用法则计算;⑵中的分式的分子、分母是多项式,应该先各自因式分解,发现有公因式,先约分,然后再运用法则计算.解:⑴原式=2222()y x -()=244y x .⑵原式=((2)(2)a a b a a b +-)3=(22a b a b+-)3=3(2)a b +3(a-2b)方法技巧:在计算乘方运算时,如果分子、分母是单项式,可以直接运用法则计算;如果是多项式,要先因式分解,通常约去公因式后再计算,也可以先进行乘方运算后再约去公因式.32222183442x x x x x ⎛⎫--⎛⎫- ⎪⎪-+-⎝⎭⎝⎭÷ .思维幻灯片:分析:题目是求两个乘方的商,根据运算顺序,应先算乘方,后算除法.由于第一个分式的分子、分母是多项式,所以要先分解因式后再算乘方,最后将第二个分式的乘方分子、分母颠倒后再与第一个分式乘方的结果相乘.解:原式3232(3)(3)3(2)2x x x x x ⎡⎤+--⎛⎫= ⎪⎢⎥--⎝⎭⎣⎦÷=322(3)(3)(2)x x x ⎡⎤+-=⎢⎥-⎣⎦·223x x -⎛⎫ ⎪-⎝⎭322(3)(3)(2)x x x ⎡⎤+-=⎢⎥-⎣⎦·22(2-x )(3-x)203342348(3)(3)1(2)(3)8(3)(3)(2)x x x x x x x +-=--+-=-.方法技巧:分式的运算顺序与分数的运算顺序一样,要先算乘方,后算乘除,有括号的先算括号内的.[基本方法与拓展延伸]6.分式乘除法的步骤和运算顺序⑴分式乘除法的步骤:对一个分式进行乘除法运算时,先观察分式,看一个分式的分子、分母能否进行分解因式,若能分解因式的应先分解.当分解完成以后,要进行约分,直到分子、分母没有公因式时再进行乘除.⑵分式乘除法的运算顺序:分式乘除法与整式乘除法运算顺序相同一般是从左向右,有除法的先把除法转化为乘法.⑶进行分式乘除法运算时应注意的问题:在进行分式乘除法运算时,特别要注意,当分解因式后进行约分时,一定要先把除法转化为乘法后才可以进行.xy =3,求222223x xy y x xy y +--+的值.分析:有两种思路:其一可用含y 的代数式替代x,即x=3y,代入分式求值;其二可把求值分式变形,使之出现已知中的xy的式子. 解法一:由xy=3,可得x=3y. 则222223x xy y x xy y +--+=222222(3)2(3)31212.7(3)(3)7y y y y y y y y y y +-=-+ 解法二:将分式分子、分母都除以2y ,得222223x xy y x xy y +--+=222396312.93171x xy y x xy y ⎛⎫+⋅- ⎪+-⎝⎭==-+⎛⎫-+ ⎪⎝⎭方法技巧:解此类题目,用解法一求,变化已知条件,使求值分式能用同一个字母代替;用解法二求,所变化的分式,使之出现已知的式子,以便能用已知的数据来代替.这两种方法既是求分式值常用的方法,也是求代数式的值常用的方法.222222x y x yx xy y x xy--÷+++.分析:分式的分子、分母都是多项式,可先分解因式,再约分.解:222222x y x yx xy y x xy--÷+++=2()()()()x y x y x x yx yx y+-+⨯-+=x.方法技巧:当分式的分子、分母有公因式时,要先因式分解,变除法为乘法后约分,再按照运算法则计算.7.分式的乘除法混合运算分式的乘除法混合运算与分数的乘除法混合运算一样,应先把除法运算转化为乘法运算,使整个算式变为乘法运算,其运算顺序是由左到右依次运算,并且乘法的交换律和结合律在分式的乘法中依然可以运用,根据具体问题利用运算律可以简化运算.(1)221111121x x xx xx x-+-÷⋅-+-+.(2)0.60.424155aa--÷210.2 1.31230.15a aa-+-÷1210a-.分析:⑴中的分式的分子、分母都是多项式,所以应先各自因式分解,然后将除法转化为乘法计算即可;⑵中的分式的分子、分母的系数是分数,要先把分子、分母中的系数变为整数,再进行计算.解:⑴221111121x x xx xx x-+-÷⋅=-+-+221111121x x xx xx x---⋅⋅++-+2122=2(1)(1)(1)111(1)x x x x x x x +----⋅⋅++-=11x x --+; (2)原式=916212a a --÷2213156a a a -+-÷1210a -=-)6(2)32(3--a a ·)5)(32(6---a a a ·2(a -5)=-3.方法技巧:分式的乘除运算与分数的乘除法法则和运算顺序都相同,归根到底是分式的乘法运算,运算的实质是分式的约分.[基本能力与创新应用]8.分式的化简、求值的开放题分式化简、求值题是分式部分重要的题型,灵活运用前面学习的数学知识和思想方法,是解决分式求值问题的关键. 分式求值是代数式求值常见的题型之一,其基本解法是先化简,再把字母的值代入计算.但在条件开放下的分式求值问题,与传统题目不同的是,代入值由同学们自己选取,一方面题目开放,有无数种结果,另一方面也考查了分式有意义的条件,在实际解题时却有很多同学由于代入了使分式无意义的数值,从而导致错误.44,2,4222+---x x x x x 中,任选两个你喜欢的式子组成一个分式是 ,把这个分式化简所得的结果是 .分析:本例是一道组合开放型试题,所给的三个式子都是整式,并且都含有字母.因此可任意选择其中两个,一个为分子,另一个为分母,先组成分式,再进行化简,故答案不唯一.解:如:222(2)(2)42244(2)x x x x x x x x +--+==--+-.方法技巧:本题是条件开放,结论也开放,因此,这种题的答案不唯一,只要合理计算正确即可.24462x x x +--÷(x +3)·x x x --+362,并选择一个你喜欢的x 的值求出分式的值. 思维幻灯片:23分析:⑴本题是乘除法运算,乘法、除法属于同一级运算,计算时要从左到右,千万不能把运算顺序理解为先乘法后除法;⑵化简完毕后,把一个x 的值代入求出即可.解:24462xx x +--÷(x +3)·x x x --+362=2)2()3(2--x x ·31+x ·xx x -++3)2)(3(=22--x . 当x =-2时,原式=222---=21.误区警示:这类问题的答案不唯一,解答时,一是按常规先化简,二是代入求值时需防“陷阱”,在取值时既要注意使运算简捷,同时又要考虑到“隐含条件”的约束,所取字母的值必须使原分式有意义,如本题中x 的值不能取2和3以及-3,这样会使原分式无意义,而实际上部分同学往往只注意最后一步中x 不能取2,而忽视了原分式中隐含条件是x 不能为2,3,-3,从而导致错误.[迁移应用与分级检测]1.下列分式中不是最简分式的是( )A .2222a b a b +- B .24a a a + C .12a a ++ D .a a b +答案:B点拨:选项A 、C 、D 中的分式的分子、分母没有公因式,是最简分式,而选项B 中的分式的分子、分母含有公因式a ,不是最简分式. 2.计算33bab a÷的结果是( ) A .2bB .18aC .9aD .29a答案: D点拨:按照除法法则变为乘法,积为9a 2,故选择D . 3.计算1m n n÷ 的结果是( )24A .mB .2m nC .2mn D .2n m答案:B点拨:本题往往不注意运算顺序,先把n 和1n约分(相乘),得出错误答案m ,从而错误地选择A .4.计算22ab cd÷34ax cd -等于( )A .223b xB .32b 2xC .-223b xD .-222238a b xc d答案:C点拨:本题有两种方法,一是直接利用法则计算正确地得出选项C ;二是用排除法,由符号易排除选项A 、B ,由被除式和除式的分母都有cd 可知变为乘法后被约去,不可能是选项D ,故选择C .5.下面约分的四式中,正确的是( )A.22y y x x =B.22a c abb c +=+ C.12a b ma mb m +=+ D.1a b b a -=-- 答案:D点拨:对分式约分是约去分子与分母的公因式.实际上A ,B 两个分式的分子与分母没有公因式.C 式虽有公因式,但应把分母先分解因式然后再约去因式,即1()a b a b ma mb m a b m++==++,正确的是:1()a b a b b a a b --==----,故选D.6.约分3232105a bca b c -.解:3322322322221010522555a bc a bc a bc a a a b c a b c a bc b c b c=-=-=-- . 点拨:当分式的分子或分母的系数是负数时,应先把负号提到分式的前边再约分(即先确定整个分式的符号再约分).7.化简:222692693x x x x x x-+--+÷.解:原式=2(3)(3) (3)(3)2(3)x x xx x x-+ +--⨯=(3)(3)22x x xx--=--⨯.点拨:当分式的分子、分母是多项式时,应先各自因式分解后再按照法则计算.8.计算:①2222253518x ya bxy ab⨯;②2234()()()y xx yx y-÷-;解:①22222535566518x ya b a x axy b byxy ab⨯=⨯=.②226234234211 ()()()()y yx xx yx y x y x y y-÷-=⨯⨯-=- .点拨::注意运算顺序,先算乘方,后算乘除,在运算的过程中要正确确定结果的符号.9.(2009年淄博市)化简222a ba ab-+的结果为()A.ba-B.a ba-C.a ba+D.b-答案:B点拨:先将分子、分母因式分解,然后约去公因式a+b即可得出选项B.10.计算:(1)322822444x x xxx x-+⨯-++;(2)22212211x x xxx-+-÷+-解:(1)322822444x x xxx x-+⨯-++=22(2)(2)22(2)(2)x x x xxx-++⨯-+=2x.(2)22212211x x xxx-+-÷+-2(1)(1)1(1)(1)2(1)2x xx x x-+=⋅=-+---.点拨:分式的乘除运算中常将除法转化为乘法,再依据乘法法则先把分子、分母分别相乘,化成一个分式后再约分,但实际计算时,也可根据情况先约分,再相乘,这样有时既可简化运算过程,又不易出错.11.计算:239()33x x xx x x--⋅-+.2526解: 239()33x x x x x x--⋅-+ =(3)(3)(3)(3)333x x x x x x x x x x+-+-⋅-⋅-+ =3(x +3)-(x -3)=3x +9-x +3 =2x +12.点拨:本题可以按照乘法的分配律进行计算,约去公因式后变成两个整式,再合并同类型即可.12.计算:⑴ (xy z )3·(-xz y)3÷(yzx-)4;⑵3()a b ab-÷(b-a )2·(ab b a -)2.解:⑴原式=333x y z ·(-333x z y )·444()x y x -=-333x y z·333x z y ·444x y x =-1044x y x .⑵原式=3()a b ab -·21(a-b )·22()()ab b a -=2222()()a b ab a b a b -- 3(a-b )=aba b -. 点拨:在运算过程中,一定要严格按照运算顺序,先算乘方,后算乘除,特别注意变化过程中分式的符号.13.(2222a x a x-+)3÷(22442a ax x a x ++-)2·[21()a x -]2解:原式=322322)()(x a x a +-÷224222)()2(x a x ax a -++·4)(1x a -=32233)()()(x a x a x a +-+·422222)()()()(x a x a x a x a +-++·4)(1x a -=22()()a x a x a x +-+=2222xa x a +- 点拨:本题分式的分子、分母都含有公因式[中考零距离]1.(2009湖北省荆门市)计算22()ab a b -的结果是( )A .aB .bC .1D .-b27答案:B点拨:本题考查积的乘方运算与分式的化简,()22222ab a b b a ba b-==,故选B . 2.(2009年黄冈市)化简2422a a a a a a -⎛⎫-⋅ ⎪-+⎝⎭的结果是()A .-4B .4C .2aD .-2a答案:A点拨:2422aa a a a a -⎛⎫-⋅ ⎪-+⎝⎭=22a a a a a ⎛⎫-⋅ ⎪-+⎝⎭(2+a )(2-a) -(2+a)-(2-a)=-4.3.(2008山西省太原市)化简222m n m mn-+的结果是( )A .2m nm- B .m nm- C .m n m + D .m nm n-+ 答案:B点拨:把分式的分子、分母因式分解后约去公因式m+n 即可得出答案为选项B .4.(2008内蒙古呼和浩特市)计算:222233y x y x-÷= .答案:392x -点拨:按照除法法则变为乘法后约分即可.5.(2010广东中山)化简:22211x xy y x y -+---=_________.答案:x-y+1点拨:222211(1)(1)111x xy y x y x y x y x y x y x y -+----+--==------()= x-y+1.6.(2010江苏连云港)化简:(a -2)·a 2-4a 2-4a +4=___________.答案:a+2点拨:(a-2)·a2-4a2-4a+4=(a-2)·2(2)(2)(2)a aa+--=a+2.<教材问题与习题参考答案>教材问题详解本节无教材习题详解28。
分式运算初中数学知识点之分式的四则运算法则
分式运算初中数学知识点之分式的四则运算法则初中数学中,分式是一个重要的知识点,它在数学运算中起到了重要的作用。
分式的四则运算法则是我们学习分式运算的基础,掌握了这些法则,我们就能够正确地进行分式的加减乘除运算。
下面我们将详细介绍分式的四则运算法则。
一、分式的加法和减法假设我们有两个分式,分别为a/b和c/d,它们的分子分别为a和c,分母分别为b和d。
那么它们的加法运算可以通过以下步骤进行:1. 找到两个分式的公共分母,记为m;2. 将两个分式的分子分别乘以m/b和m/d,得到分子为am/b,cm/d的两个分式;3. 将两个新分式的分子相加,即(am/b) + (cm/d);4. 分子的和除以公共分母m,即[(am/b) + (cm/d)] / m。
同样地,分式的减法运算也可以按照上述步骤进行,只需要将第3步的相加改为相减即可。
二、分式的乘法分式的乘法运算较为简单,只需要将两个分式的分子相乘,分母相乘即可。
假设我们有两个分式,分别为a/b和c/d,那么它们的乘法运算可以用以下公式表示:(a/b) * (c/d) = (a * c) / (b * d)。
三、分式的除法分式的除法与乘法类似,只需要将两个分式的分子相乘,分母相乘即可。
假设我们有两个分式,分别为a/b和c/d,那么它们的除法运算可以用以下公式表示:(a/b) / (c/d) = (a * d) / (b * c)。
需要注意的是,除法的时候我们需要将第二个分式取倒数后再进行乘法运算。
以上就是分式的四则运算法则,通过掌握这些法则,我们可以正确地进行分式的加减乘除运算。
在实际运算中,我们还需要注意约分的情况和分母为0的特殊情况。
当分式中的分子和分母有公因子时,我们需要将其约分为最简形式,即分子和分母没有共同的约数。
而当分式的分母为0时,这个分式是无定义的,因为在数学中,除数不能为0。
通过不断的练习和运用,我们可以更好地掌握分式的四则运算法则,为更复杂的数学运算打下坚实的基础。
分式的乘除运算
分式的乘除运算分式是数学中的一种表达式,它由分子和分母组成,分子和分母都是代数式或者数。
分式之间的乘除运算,可以通过以下方法进行简化:一、分式的乘法1.将两个分式的分子、分母分别相乘,再将结果写成一个新的分式即可。
例如,计算 (2/5)×(6/7) =?解:两个分式相乘,得到的结果为:(2/5)×(6/7) = (2×6)/(5×7) = 12/35所以,答案为12/35。
2.如果两个分式的分子和分母中有相同的因子,可以进行约分后再相乘。
例如,计算 (4/9)×(6/8) = ?解:将分式约分后再相乘,得到的结果为:(4/9)×(6/8) = (2/3)×(3/4) = 6/12可以进一步约分,得到1/2所以,答案为1/2。
二、分式的除法1.分式的除法可以转化为乘法,将除法转化为乘法时,需要将第二个分式取倒数,即将分子和分母交换位置。
例如,计算 (2/5)÷(6/7) =?解:将除法转化为乘法,即计算:(2/5)×(7/6) = (2×7)/(5×6) = 14/30可以进一步约分,得到7/15所以,答案为7/15。
2.若被除数和除数都是分式,可以将除法转化为乘法,并将除数取倒数。
例如,计算 (2/3)÷(4/5) =?解:将除法转化为乘法,即计算(2/3)×(5/4) = (2×5)/(3×4) = 10/12可进一步约分得到5/6所以,答案为5/6。
以上是关于分式乘除运算的方法与例题。
在实际中,有时候我们需要将其应用到解题过程中。
例如在解方程的过程中,通常需要对方程式进行变形,把分式变为整式,这就需要运用到分式的乘除运算。
同时,对于分式的加减运算也是需要进行简化的。
分式基础知识讲解
分式基础知识讲解分式,也称为有理数,是指一个整数除以另一个非零整数所得的数。
在数学中,分式是一个重要的概念,它在各种数学问题中都有广泛的应用。
本文将对分式的基础知识进行讲解。
一、分式的定义和表示方式分式可以看作是两个整数的比值,其中一个整数作为分子,另一个整数作为分母。
分式的一般表示方式为“a/b”,其中a为分子,b为分母。
例如,2/3、5/8都是分式。
分式可以用于表示一个数量相对于另一个数量的比值,比如“5个苹果中有3个是红色的”,可以表示为分式5/3。
二、分式的性质和运算法则1. 分式的相等性质对于任意两个分式a/b和c/d,如果ad=bc,则a/b=c/d,即分式相等性质。
2. 分式的相反数和倒数对于任意一个分式a/b,它的相反数是- a/b,它的倒数是b/a。
3. 分式的加减法当两个分式的分母相同时,可以直接对分子进行加减运算,并保持分母不变。
例如,对于分式a/b和c/b,它们的和为(a+c)/b,差为(a-c)/b。
当两个分式的分母不同时,可以通过求公共分母的方法将它们进行相加或相减。
具体方法可以参考通分的原理。
4. 分式的乘除法两个分式相乘时,只需将它们分子相乘得到新的分子,分母相乘得到新的分母。
例如,分式a/b和c/d的乘积为ac/bd。
两个分式相除时,可以将第二个分式的倒数乘以第一个分式。
即,分式a/b和c/d的商为(a/b) * (d/c) = (ad)/(bc)。
三、分式的简化和约分当一个分式的分子和分母有公约数时,可以进行约分,即将分子和分母同时除以它们的最大公约数。
约分后的分式与原分式表示相同的数。
四、分式的应用1. 倒数的表示当需要表示一个数的倒数时,可以使用分式。
例如,数x的倒数可以表示为1/x。
倒数在分数的求解和比较中起到重要作用。
2. 比例问题在比例问题中,分式被广泛使用。
比如“苹果的单价是2元/个,芒果的单价是3元/个,求苹果和芒果价格的比值”,可以表示为2/3这个分式。
分式 基础知识详解+基础典型例题解析
类型一、分式的概念
1、下列式子中,哪些是整式?哪些是分式?
2 , x , m 1 ,3 x2 , 5 , a2 , 2 .
a3 m
a 3
【思路点拨】 x , 5 , 2 虽具有分式的形式,但分母不含字母,其中 5 的分母中 表示
3 3
一个常数,因此这三个式子都不是分式.
当 x 2 时, x2 4 (2)2 4 0 ,
x2
∴ 在分式有意义的前提下,分式
的值永不为 0.
x2 4
类型三、分式的基本性质
3、不改变分式的值,将下列分式的分子、分母中的系数化为整数.
0.2x y
(1)
;
0.02x 0.5 y
1x1 y (2) 3 4 .
要点三、分式的基本性质
分式的分子与分母同乘(或除以)一个不等于 0 的整式,分式的值不变,这个性质叫做
A
分式的基本性质,用式子表示是:
AM
,A
AM
(其中
M 是不等于零的整式).
B BM B BM
要点诠释:(1)基本性质中的 A、B、M 表示的是整式.其中 B≠0 是已知条件中隐含着
的条件,一般在解题过程中不另强调;M≠0 是在解题过程中另外附加
要点六、分式的通分 与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改
变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分. 要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最 高次幂的积作为公分母. (2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相 同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解 因式,然后再找最简公分母. (3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则 是针对多个分式而言.
15.2.1分式的乘除(1)
500
aHale Waihona Puke 21千克 / 米 ; 丰收2号”小麦的试
2 2
2
(a 1) 米 ,
是
田面积是
(a 1)
2 500 单位面积产量 千米 / 米 . 2
∵a2-1 -(a2-2a+1)=2a-2=2(a-1)>0 (a>1) 500 500 2 2 < ∴0<(a-1) <a -1 2 2 a 1 a 1
V 长方体容器的高为 ab
V m ,水高为 . ab n
问题2
大拖拉机m天耕地a公顷,小拖拉机n天耕地 b公顷,大拖拉机的工作效率是小拖拉机的工 作效率的多少倍?
b 工作效率是 公顷/天,大拖拉机的工作效率 n
是小拖拉机的工作效率的(
a 大拖拉机的工作效率是 公顷/天,小拖拉机的 m
a b m n
a2 a 2a 1
a 1 a2 1 ( 2) 2 2 a 4a 4 a 4 2 a 1 a 4 a 2 4a 4 a 2 1
分子分母分解因式
你能说出 每一步的 依据吗?
除号变乘号 分子分母都颠倒
ad a c ? bc b d
分式乘除法法则:
分式乘分式,用分子的积做积的分子,分母的积 做积的分母。 分式除以分式,把除式的分子、分母颠倒位置 后与被除式相乘。
a c ac b d bd a c a d ad b d b c bc
例1 计算:
a2 1 (2) 2 a 2 a 2a
( m 2 4m)
课堂练习
计算
3ab 10xy (2) 2 21b 4x y
3a 16b (1) 2 4b 9a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式的乘除(基础)
责编:杜少波
【学习目标】
1.学会用类比的方法总结出分式的乘法、除法法则.
2.会分式的乘法、除法运算.
3.掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算.
【要点梳理】
【高清课堂402545 分式的乘除运算 知识要点】
要点一、分式的乘除法
1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:a c ac b d bd
⋅=,其中a b c d 、、、是整式,0bd ≠. 2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:
a c a d ad
b d b
c bc ÷=⋅=,其中a b c
d 、、、是整式,0bcd ≠. 要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整
式.
(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约
分,然后再乘.
(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)
和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要
先分解因式,便于约分.
(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式.
要点二、分式的乘方
分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:
n
n n a a b b
⎛⎫= ⎪⎝⎭(n 为正整数). 要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把n n n a a b b ⎛⎫= ⎪⎝⎭写成n n a a b b ⎛⎫= ⎪⎝⎭
(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的
奇次方为负.
(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算
乘除,有多项式时应先分解因式,再约分.
(4)分式乘方时,应把分子、分母分别看作一个整体.如()2
22222a b a b a b b b b ---⎛⎫=≠ ⎪⎝⎭. 【典型例题】
类型一、分式的乘法
1、计算:(1)422449158a b x x a b g ;(2)222441214a a a a a a -+--+-g . 【思路点拨】(1)中分子、分母都是单项式,直接用分式乘法法则计算,结果要通过约分化简;(2)中分子、分母都是多项式,要先把可分解因式的分子、分母分解因式,然后用乘法法则化简计算.
【答案与解析】
解:(1)422449158a b x x a b g 422449315810a b x b x a b x
==g g . (2)222441214a a a a a a -+--+-g 2
2(2)1(1)(2)(2)
a a a a a --=-+-g 22(2)(1)(1)(2)(2)a a a a a --=-+-g g 222(1)(2)2
a a a a a a --==-++-. 【总结升华】分式的乘法运算的实质就是运用分式的基本性质把分式约分化简的过程,熟练之后也可先约分后运用乘法法则计算.
举一反三:
【变式】计算.
(1)26283m x x m g ;(2)22122x x x x
+-+g 【答案】
解:(1)原式22621283242
m x mx x x m mx ===g g ; (2)原式22112(2)2x x x x x x
+==-+-g ; 类型二、分式的除法
【高清课堂402545 分式的乘除运算 例1(4)】
2、 计算:(1)222324a b a b c cd
-÷;(2)2222242222x y x y x xy y x xy -+÷+++. 【思路点拨】(1)先运用法则将分式的除法转化为乘法,然后约分化简;(2)先运用分式的除法法则将分式的除法转化为乘法,同时将分子、分母分解因式,然后约分化简.
【答案与解析】
解:(1)222324a b a b c cd -÷22222244236a b cd a b cd c a b c a b ==--g g 23d c
=-.
(2) 2222242222x y x y x xy y x xy
-+÷+++ 2(2)(2)2()()2x y x y x x y x y x y
+-+=++g 22(2)24x x y x xy x y x y --==++. 【总结升华】分式的除法和实数的除法一样,均是转化为乘法来完成的.
举一反三:
【变式】(2015•宝鸡校级模拟)化简:
.
【答案】
解:原式=• =.
类型三、分式的乘方
3、(2014秋•华龙区校级月考)下列计算正确的是( )
A. B.
C. D.
【思路点拨】把四个选项先利用分式的乘方法则,将分子分母分别乘方,然后利用积与幂的乘法法则,积的乘方的运算法则,积的乘方等于积中每一个因式分别乘方并把结果相乘,幂的乘方法则是底数不变,指数相乘,即可计算出结果,得到计算正确的选项.
【答案】C .
【解析】解:A 、,本选项错误; B 、,本选项错误;
C 、,本选项正确;
D 、,本选项错误.
所以计算结果正确的是C .
【总结升华】此题考查了分式的乘方法则,考查了积的乘方及幂的乘方法则,完全平方公式的运用,是一道基础题.
类型四、分式的乘除法、乘方的混合运算
4、 计算:
(1)(2016春•淅川县期中)(﹣2ab ﹣2c ﹣1)2÷×()3;
(2)22
2223()a b ab a ab b b a ⎛⎫-⎛⎫÷+ ⎪ ⎪-⎝⎭⎝⎭g . 【思路点拨】先算乘方,再算乘、除.
【答案与解析】
解:(1)(﹣2ab ﹣2c ﹣1)2÷×()3
=﹣
•• =﹣. (2)22
2223()a b ab a ab b b a ⎛⎫-⎛⎫÷+ ⎪ ⎪-⎝⎭⎝⎭g 2222
232
()1()[()]()a b ab b a a b b a -=+-g g 2222
2332()()1()()a b a b a b b a a b a b +-=+-g g
211()a a b a ab
==++. 【总结升华】(1)题中有除法和乘方运算,应先算乘方,要特别注意符号的处理.(2)本题是乘除混合运算,首先把除法运算转化为乘法运算,再用乘法运算法则计算.
举一反三:
【变式】计算:(1)33
2212b b a a ab ⎛⎫⎛⎫⎛⎫-÷-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)2
222()m n n m m n m n mn m --+⎛⎫÷ ⎪-⎝⎭g .
【答案】
解: (1)
33
2
2
1
2
b b
a a ab
⎛⎫⎛⎫⎛⎫
-÷-÷
⎪ ⎪ ⎪
⎝⎭⎝⎭
⎝⎭
23263382
6333
1
2212
b b b a a b a b
a a a
b a b
⎛⎫⎛⎫
=-÷-÷==
⎪ ⎪
⎝⎭⎝⎭
g g.
(2)
2
22
2
()
m n n m m n
m n mn m
--+
⎛⎫
÷
⎪
-⎝⎭
g
2
2222
()()()
()
m n m n m n m m n
m n m n m n mn
+---
==
-+
g g.。