【数学知识点】全等三角形的判定与性质

合集下载

全等三角形的概念、性质与判定

全等三角形的概念、性质与判定

1. 能够完全重合的两个三角形叫做全等三角形。

重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

2. 全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等。

3. 全等三角形的判定(1)三边对应相等的两个三角形全等(简记为:“边边边”或“SSS”);(2)两边和它们的夹角对应相等的两个三角形全等(简记为“边角边”或“SAS”);(3)两角和它们的夹边对应相等的两个三角形全等(简记为“角边角”或“ASA”);(4)两个角和其中一个角的对边对应相等的两个三角形全等(简记为:“角角边”或“AAS”);(5)斜边和一条直角边对应相等的两个直角三角形全等(简记为:“斜边、直角边”或“HL”)。

4. 常见的一个三角形经过变换得到另一个全等三角形。

(1)平移(2)翻折(3)旋转5. 判定两个三角形全等所需条件:(1)需要三个条件;(2)至少有一个条件为边。

注意:“边边角”不一定成立。

反例:如图,△ABC与△ABC'中,AB=AB,AC=AC',∠ABC=∠ABC',但△ABC与△ABC'不全等。

【解题方法指导】例1. (2005年安徽)如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形?并任选其中一对给予证明。

分析:由AB∥DE,可以得到∠A=∠D;由AF=DC,可以得到AC=DF;由AB=DE,由“SAS”可以得到△BAF≌△EDC,及△BAC≌△EDF由此又可以得到BF=EC,BC=EF,FC又是公共边,可证△BFC≌△EFC证明:在△BAF与△EDC中,∵AB∥DE∴∠A=∠D又AB=DE,AF=DC∴△BAF≌△EDC(SAS)评析:判断两个三角形全等,设法找齐三个条件,至少有一个条件是边,因此先找出给出的条件(如AB=DE,AF=DC);然后发展条件,继续得到有关信息(如由AB∥DE⇒∠A=∠D;由AF=DC⇒AC=DF)例2. 如图,B是AC上一点,DA⊥AC,EC⊥AC,DB=BE。

全等三角形(知识点讲解)

全等三角形(知识点讲解)

全等三角形(知识点讲解)全等三角形(知识点讲解)全等三角形是初中数学中的重要概念,也是几何学中的核心内容之一。

在这篇文章中,我们将从定义、判定全等三角形的条件以及全等三角形的性质等方面进行讲解。

一、全等三角形的定义全等三角形指的是具有完全相同的三边和三角的三角形。

简而言之,在几何学中,当两个三角形的对应边长相等、对应角度相等时,我们称这两个三角形是全等的。

二、全等三角形的判定条件为了判断两个三角形是否全等,我们有以下几个常用的判定条件:1. SSS判定法:即边-边-边判定法。

当两个三角形的三条边分别相等时,它们就是全等的。

2. SAS判定法:即边-角-边判定法。

当两个三角形的一对夹角和夹角两边分别相等时,它们就是全等的。

3. ASA判定法:即角-边-角判定法。

当两个三角形的一对夹角和夹角对边分别相等时,它们就是全等的。

4. AAS判定法:即角-角-边判定法。

当两个三角形的两对夹角和一个非夹角边分别相等时,它们就是全等的。

需要注意的是,这些判定条件是相互独立的,即只要满足其中一种条件,就可以判定两个三角形是全等的。

三、全等三角形的性质全等三角形具有以下重要性质:1. 对应边对应角相等性质:全等三角形的对应边对应角相等。

即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF,并且∠A = ∠D,∠B = ∠E, ∠C = ∠F。

2. 全等三角形的任意一角都与对应角相等:即若∆ABC≌∆DEF,那么∠A = ∠D, ∠B = ∠E, ∠C = ∠F。

3. 全等三角形的任意一边都与对应边相等:即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF。

4. 全等三角形的外角相等:即若∆ABC≌∆DEF,那么∠BAC =∠EDF, ∠ABC = ∠DEF, ∠ACB = ∠DFE。

通过以上性质,我们可以进行全等三角形的各种推理和计算。

四、全等三角形的应用全等三角形在几何学的应用非常广泛。

全等三角形与三角形全等的判定(SSS)知识点

全等三角形与三角形全等的判定(SSS)知识点

====Word 行业资料分享--可编辑版本--双击可删====源-于-网-络-收-集 12.1 全等三角形一、全等形:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.说明:如果两个或两个以上的图形全等,那么这些图形放在一起就能完全重合。

这里的重合包括两层含义:一是形状相同,二是大小相等,二者缺一不可。

二、全等三角形:能够完全重合的两个三角形叫做全等三角形。

把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,•重合的边叫做对应边,重合的角叫做对应角.全等用符号用“≌”表 示.如△ABC 与△DEF 全等,则可表示为△ABC ≌△DEFA B C D E F B(E)注意:1、对应边与对边,对应角与对角的区别。

对应边、对应角是对两个三角形而言的,对边、对角是对同一个三角形的边和角的关系而言的。

2、在写两个三角形全等时,通常把对应顶点的字母写在对应位置时,这样容易写出对应边、对应角。

3、由于两个三角形的位置关系不同,在找对应边、对应角时,可以针对两个三角形不同的位置关系,寻找对应边、角的规律:(1)有公共边的,•公共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角一定是对应角;两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角)三、全等三角形的性质:全等三角形的对应边相等,对应角相等。

说明:1、因为全等三角形能够完全重合,所以对应边上的中线、高线和对应角的角平分线也相等,全等三角形的周长相等,面积相等。

很多情况下,全等三角形的性质可以用来证明线段或角相等。

2、全等三角形有传递性,若△ABC 与△DEF 全等,△DEF 与△MNP 全等,则△ABC 与△MNP 也全等。

三角形全等的判定(SSS )一、判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS ”).二、判断两个三角形全等的推理过程,叫做证明三角形全等.三、例题:如图所示,△ABC 是一个钢架,AB=AC ,AD 是连接点A 与BC 中点D 的支架,求证△ABD ≌△ACD .证明:∵D 是BC 的中点,∴BD=CD在△ABD 和△ACD 中,,.AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).。

全等三角形的性质与判定(经典讲义)

全等三角形的性质与判定(经典讲义)

全等三角形的性质及判定知识要点1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等, 对应角的平分线相等.(3)全等三角形的周长、面积相等.3、全等三角形判定方法:(1)全等判定一:三条边对应相等的两个三角形全等(SSS )(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA ) (3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS) (4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS )专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等例题1:下列说法,正确的是( )A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形 例题2:如图1,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD=7cm ,DM=5cm ,∠DAM=39°,则AN =____cm ,NM =____cm ,NAB ∠= .【仿练1】如图2,已知ABC ADE ∆≅∆,AB AD =,BC DE =,那么与BAE ∠相等的角是 . 【仿练2】如图3,ABC ADE ∆≅∆,则AB= ,∠E= _.若∠BAE=120°,∠BAD=40°,则∠BAC= .、图4EDCB A图2 图3M DA NBC 图1三角形全等的判定一(SSS )相关几何语言考点∵AE=CF ∵CM 是△的中线∴_____________( )∴____________________∴__________( ) 或 ∵AC=EF∴____________________∴__________( )AB=AB ( )在△ABC 和△DEF 中∵⎪⎩⎪⎨⎧___________________________ ∴△ABC ≌△DEF ( )例1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?例2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .BFECAFE DCB ACMBA B A例3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.练习1..如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD2、如图所示,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACD B.△BDE≌△CDEC.△ABE≌△ACE D.以上都不对3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSS B.SAS C.AASD.HL4.如图,AB=AC,D为BC的中点,则△ABD≌_________.5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。

三角形的全等知识点总结

三角形的全等知识点总结

三角形的全等知识点总结在几何学中,全等是一个重要的概念,它意味着两个或多个图形在形状和大小上完全相同。

在三角形中,全等三角形是非常常见的,它们具有相等的边和角。

本文将对三角形的全等知识点进行总结,以帮助读者更好地理解和掌握这一概念。

一、全等三角形的定义全等三角形的定义是:如果两个三角形的对应边相等,对应角相等,那么这两个三角形是全等的。

二、全等三角形的判定条件1. SSS判定法(边边边):如果两个三角形的三条边分别相等,则这两个三角形是全等的。

2. SAS判定法(边角边):如果两个三角形的一条边和这个边上的两个角分别与另一个三角形的一条边和这个边上的两个角相等,则这两个三角形是全等的。

3. ASA判定法(角边角):如果两个三角形的一条角和这个角对应的两边分别与另一个三角形的一条角和这个角对应的两边相等,则这两个三角形是全等的。

4. RHS判定法(直角边斜边):如果两个直角三角形的一条直角边和斜边分别与另一个直角三角形的一条直角边和斜边相等,则这两个直角三角形是全等的。

三、全等三角形的性质1. 全等三角形的对应角相等,即对应顶点的角是相等的。

2. 全等三角形的对应边相等,即对应边的长度是相等的。

3. 全等三角形的对应高线相等。

4. 全等三角形的周长和面积完全相同。

四、全等三角形的性质运用利用全等三角形的性质可以进行各种几何推理和证明。

1. 利用全等三角形可以证明两条线段相等。

2. 利用全等三角形可以证明两个角相等。

3. 利用全等三角形可以证明两个三角形全等。

4. 利用全等三角形可以证明两个四边形全等。

五、全等三角形的应用全等三角形的知识在实际生活和工程中具有广泛的应用。

1. 在建筑工程中,利用全等三角形可以计算高楼房屋的高度,简化测量过程。

2. 在地图测量中,利用全等三角形可以计算两地的距离和高度。

3. 在设计中,利用全等三角形可以保证建筑物的比例和对称性。

4. 在计算机图形学中,利用全等三角形可以进行图形变换和模型重建。

全等三角形(知识点讲解)

全等三角形(知识点讲解)

学习必备 欢迎下载全等三角形 全等三角形 知识梳理性质对应角相等 对应边相等二、基础知识梳理 一)、基本概念1、“全等 ”的理解 全等的图形必须满足: (1)形状相同的图形; (2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质( 1)全等三角形对应边相等; (2)全等三角形对应角相等; 3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 (二)灵活运用定理、知识网络全等形 全等三角形边边边SSS边角边SAS判定 角边角ASA角角边 AAS斜边、 直角边HL角平分线作图性质与判定定理应用1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1) 已知条件中有两角对应相等, 可找:①夹边相等( ASA )②任一组等角的对边相等 (AAS ) (2) 已知条件中有两边对应相等, 可找①夹角相等 (SAS ) ②第三组边也相等 (SSS ) (3) 已知条件中有一边一角对应相等, 可找①任一组角相等 (AAS 或 ASA ) ②夹等角的另一组边相等 (SAS ) 5. 经典例题透析 证明图形全等 基础版—— “ SSS ” (1)已知: AB=DC ,AD=BC ,求证:∠ A= ∠C2)如图, E 是 AD 上的一点, AB=AC ,AE=BD ,CE=BD+DE ,求证:∠ CED=∠ B+ C基础版—— “ SAS ”(3)如图, AD ∥ BC ,AD=CB , AE=CF ,求证: BE=DF4) 已知:如图,点 A 、B 、C 、D 在同一条直线上, EA AD ,FD AD , AE DF , AB DC .求证: ACE DBF .基础版——“ ASA ”与“ AAS ”(5)如图,已知: AB = AC ,点 D 在 AB 上,点 E 在 AC 上,BE 和CD 相交 于点 O ,∠B =∠ C ,求证: BD =CEDB举一反三:变式 1】如图,△ABC ≌△ DBE . 问线段 AE 和 CD 相等吗?为什么?( 6)如图,△ABC 中,∠BAC=90 ,AB =AC ,直线 MN 过点 A , 于 E ,求证: DE =BD+CE基础版 HL ”( Rt △) N(7)如图, AB AC ,AB//CD ,AC=CD ,BC=DE ,BC 与 DE 相交于点 O ,求 证: DE BC 类型一:全等三角形性质的应用 1、如图,△ ABD ≌△ ACE , AB =AC ,写出图中的对应边和对应角、如图,已知ΔABC≌ΔDEF,∠A=30°,∠ B=50°,BF=2,求∠ DFE的度数与EC举一反三:如图所示,ΔACD≌ΔECD,ΔCEF≌ΔBEF,∠ACB=90°求证:( 1)CD⊥AB;( 2) EF∥ AC.变式 1】类型二:全等三角形的证明3、如图, AC=BD,DF=CE,∠ ECB=∠ FDA,求证:△ ADF≌△BCE.举一反三:【变式 1】如图,已知 AB∥DC,AB= DC,求证:AD∥BC【变式 2】如图,已知 EB⊥ AD于 B,FC⊥ AD 于 C,且 EB= FC,AB=CD.求证 AF =DE.、类型三:综合应用4、如图,AD为ΔABC的中线。

全等三角形知识点

全等三角形知识点

全等三角形知识点摘要:全等三角形是初中数学中的一个重要概念,它指的是两个三角形在形状和大小完全相同的情况下,它们的对应边和对应角完全相等。

本文将详细介绍全等三角形的定义、性质、判定条件以及在几何题中的应用。

关键词:全等三角形、对应边、对应角、判定条件、几何应用1. 全等三角形的定义全等三角形(Congruent Triangles)指的是两个三角形在几何形状和大小上完全相同,即它们的所有对应边和对应角都相等。

在数学符号中,我们通常用“≌”来表示全等。

2. 全等三角形的性质全等三角形具有以下性质:- 对应边相等:两个全等三角形的对应边长度完全相同。

- 对应角相等:两个全等三角形的对应角度数完全相同。

- 对应边上的高相等:两个全等三角形对应边上的高(垂直于边的线段)长度也相等。

- 对应角的平分线相等:两个全等三角形对应角的角平分线长度相等。

- 对应边上的中线相等:两个全等三角形对应边上的中线(连接顶点和对边中点的线段)长度相等。

3. 全等三角形的判定条件要判定两个三角形是否全等,可以通过以下几种条件:- SSS(边边边):如果两个三角形的三边分别相等,那么这两个三角形全等。

- SAS(边角边):如果两个三角形有两边及它们的夹角分别相等,那么这两个三角形全等。

- ASA(角边角):如果两个三角形有两角及它们之间的边分别相等,那么这两个三角形全等。

- AAS(角角边):如果两个三角形有两角及其中一角的对边分别相等,那么这两个三角形全等。

- HL(直角边-直角边):对于直角三角形,如果斜边和一条直角边分别相等,那么这两个三角形全等。

4. 全等三角形在几何题中的应用全等三角形的概念在解决几何问题时非常有用,尤其是在涉及角度和长度计算的问题中。

通过识别和证明三角形全等,我们可以得出隐藏的边长和角度关系,从而解决复杂的几何构造问题。

5. 结论全等三角形是几何学中的一个基础概念,它在解决几何问题中扮演着关键角色。

三角形知识点总结完

三角形知识点总结完

三角形知识点全面总结1、三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、HL (RtA^RtA)2、等腰三角形的判定及性质性质:①两腰相等②等边对等角(即“等腰三角形的两个底角相等”)③三线合一(即“等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合”)判定:①有两边相等的三角形是等腰三角形②有两个角相等的三角形是等腰三角形(等角对等边)结论总结:等腰三角形底边上的任意一点到两腰的距离之和等于一腰【即:DE+DF=CP,(D为BC上的任意一点)】3、等边三角形的性质及判定定理性质:①三条边都相等②三个角都相等,并且每个角都等于60度③三线合一(即“等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合”)④等边三角形是轴对称图形,有3条对称轴。

判定:①三条边都相等的三角形是等边三角形②三个角都相等的三角形是等边三角 形。

③有一个角是60度的等腰三角形是等边三角形。

结论总结:①高二亘边【即: AD =巨AB 】 2 2②面积二三3边2【即:S=三3AB 2】4 A ABC 4 4、直角三角形的性质及判定 性质:①两锐角互余②勾股定理③30°角所对的直角边等于斜边的一半。

④斜边中 线等于斜边一半判定:①有一个内角是直角的三角形是直角三角形②勾股定理的逆定理(即“如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

”)5、线段的垂直平分线性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

判定:①定义法②到一条线段两个端点距离相等的点在这条线段的垂直平分线上。

(2)三角形三边的垂直平分线的性质③一边中线等于这边一半的三角形是直角三角形结论总结:直角三角形斜边上的高二 直角边的乘积 斜边(1)线段垂直平分线的性质及判定【即:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

(3)如何用尺规作图法作线段的垂直平分线:分别以线段的两个端点人、B 为圆心, 以大于AB 的一半长为半径作弧,两弧交于点乂、N ;作直线MN ,则直线MN 就是线段 AB 的垂直平分线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【数学知识点】全等三角形的判定与性质
经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的
三条边及三个角都对应相等。

SSS(边边边):三边对应相等的三角形是全等三角形。

SAS(边角边):两边及其夹角对应相等的三角形是全等三角形。

ASA(角边角):两角及其夹边对应相等的三角形全等。

AAS(角角边):两角及其一角的对边对应相等的三角形全等。

RHS(直角、斜边、边)(又称HL定理(斜边、直角边)):在一对直角三角形中,斜
边及另一条直角边相等。

(它的证明是用SSS原理)
下列两种方法不能验证为全等三角形:
AAA(角角角):三角相等,不能证全等,但能证相似三角形。

SSA(边边角):其中一角相等,且非夹角的两边相等。

1.全等三角形的对应角相等。

2.全等三角形的对应边相等。

3.能够完全重合的顶点叫对应顶点。

4.全等三角形的对应边上的高对应相等。

5.全等三角形的对应角的角平分线相等。

6.全等三角形的对应边上的中线相等。

7.全等三角形面积和周长相等。

8.全等三角形的对应角的三角函数值相等。

三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。

常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等
腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。

1、自行车架
自行车架根据用途分类可以分为停放自行车架与汽车自行车架。

2、篮球架
篮球架是篮球场地的必需设备。

篮球运动器材。

包括篮板和篮板支柱,架设在篮球场
两端的中央。

目前使用的有液压式、移动式、固定式、吊式、海燕式、炮式等等。

3、相机三脚架
三脚架是用来稳定照相机,以达到某些摄影效果,三脚架的定位非常重要。

三脚架按
照材质分类可以分为木质、高强塑料材质,合金材料、钢铁材料、火山石、碳纤维等多种。

感谢您的阅读,祝您生活愉快。

相关文档
最新文档