第9章 图像分割1——基于阈值和区域的分割
基于阈值法的图像分割技术

基于阈值法的图像分割技术阴国富(1.西安电子科技大学陕西西安710071;2.渭南师范学院陕西渭南714000)在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。
为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。
图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。
这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。
现有的图像分割算法有:阈值分割、边缘检测和区域提取法。
本文着重研究基于阈值法的图像分割技术。
1 阈值法图像分割1.1 阈值法的基本原理阈值分割法是一种基于区域的图像分割技术,其基本原理是:通过设定不同的特征阈值,把图像象素点分为若干类。
常用的特征包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征。
设原始图像为f(x,y),按照一定的准则f(x,y)中找到特征值T,将图像分割为两个部分,分割后的图像为:若取:b0=0(黑),b1=1(白),即为我们通常所说的图像二值化。
1.2 阈值法图像分割方法分类全局阈值法指利用全局信息对整幅图像求出最优分割阈值,可以是单阈值,也可以是多阈值;局部阈值法是把原始的整幅图像分为几个小的子图像,再对每个子图像应用全局阈值法分别求出最优分割阈值。
其中全局阈值法又可分为基于点的阈值法和基于区域的阈值法。
阈值分割法的结果很大程度上依赖于阈值的选择,因此该方法的关键是如何选择合适的阈值。
由于局部阈值法中仍要用到全局阈值法,因此本文主要对全局阈值法中基于点的阈值法和基于区域的阈值法分别进行了研究。
根据阈值法的原理可以将阈值选取技术分为3大类:(1)基于点的全局阈值方法基于点的全局阈值算法与其他几大类方法相比,算法时间复杂度较低,易于实现,适合应用于在线实时图像处理系统。
图像分割 实验报告

图像分割实验报告图像分割实验报告一、引言图像分割是计算机视觉领域中的一个重要研究方向,它旨在将一幅图像分割成具有语义意义的不同区域。
图像分割在许多应用中发挥着关键作用,如目标检测、场景理解和医学图像处理等。
本实验旨在探索不同的图像分割方法,并对其进行比较和评估。
二、实验方法本实验选择了两种常用的图像分割方法:基于阈值的分割和基于边缘的分割。
首先,我们使用Python编程语言和OpenCV库加载图像,并对图像进行预处理,如灰度化和平滑处理。
接下来,我们将详细介绍这两种分割方法的实现步骤。
1. 基于阈值的分割基于阈值的分割是一种简单而常用的分割方法。
它通过将图像像素的灰度值与预先设定的阈值进行比较,将像素分为前景和背景两类。
具体步骤如下:(1)将彩色图像转换为灰度图像。
(2)选择一个适当的阈值,将图像中的像素分为两类。
(3)根据阈值将图像分割,并得到分割结果。
2. 基于边缘的分割基于边缘的分割方法是通过检测图像中的边缘来实现分割的。
边缘是图像中灰度变化剧烈的区域,通常表示物体的边界。
具体步骤如下:(1)将彩色图像转换为灰度图像。
(2)使用边缘检测算法(如Canny算法)检测图像中的边缘。
(3)根据边缘信息将图像分割,并得到分割结果。
三、实验结果与讨论我们选择了一张包含多个物体的彩色图像进行实验。
首先,我们使用基于阈值的分割方法对图像进行分割,选择了适当的阈值进行实验。
实验结果显示,基于阈值的分割方法能够将图像中的物体与背景分离,并得到较好的分割效果。
接下来,我们使用基于边缘的分割方法对同一张图像进行分割。
实验结果显示,基于边缘的分割方法能够准确地检测出图像中的边缘,并将图像分割成多个具有边界的区域。
与基于阈值的分割方法相比,基于边缘的分割方法能够更好地捕捉到物体的形状和边界信息。
通过对比两种分割方法的实验结果,我们发现基于边缘的分割方法相对于基于阈值的分割方法具有更好的效果。
基于边缘的分割方法能够提供更准确的物体边界信息,但也更加复杂和耗时。
图像处理中的图像分割算法使用方法

图像处理中的图像分割算法使用方法图像分割是图像处理中的重要任务之一,它的目的是将图像划分为多个具有独立语义信息的区域。
图像分割在许多应用领域中都有广泛的应用,例如医学图像分析、计算机视觉、图像识别等。
本文将介绍几种常见的图像分割算法及其使用方法。
一、阈值分割算法阈值分割算法是图像分割中最简单且常用的方法之一。
它基于图像中像素的灰度值,将图像分成多个区域。
该算法的基本思想是,选择一个合适的阈值将图像中低于该阈值的像素设为一个区域,高于该阈值的像素设为另一个区域。
常用的阈值选择方法包括固定阈值选择、动态阈值选择等。
使用方法:1. 预处理:对图像进行灰度化处理,将彩色图像转化为灰度图像。
2. 阈值选择:选择一个合适的阈值将图像分割为两个区域。
可根据图像的直方图进行阈值选择,或者使用试探法确定一个适合的阈值。
3. 区域标记:将低于阈值的像素标记为一个区域,高于阈值的像素标记为另一个区域。
4. 后处理:对分割结果进行后处理,如去除噪声、填补空洞等。
二、基于边缘的分割算法基于边缘的分割算法利用图像中边缘的信息来进行图像分割。
该算法的基本思想是,根据图像中的边缘信息将图像分成多个区域。
常用的基于边缘的分割方法有Canny边缘检测、Sobel边缘检测等。
使用方法:1. 预处理:对图像进行灰度化处理。
2. 边缘检测:利用Canny或Sobel等边缘检测算法提取图像中的边缘信息。
3. 边缘连接:根据提取到的边缘信息进行边缘连接,形成连续的边缘线。
4. 区域生成:根据边缘线来生成图像分割的区域。
5. 后处理:对分割结果进行后处理,如去除噪声、填补空洞等。
三、基于区域的分割算法基于区域的分割算法是将图像划分为多个具有独立语义信息的区域,其基本思想是通过分析像素之间的相似性将相邻像素组合成一个区域。
常用的基于区域的分割方法有均值迭代、区域增长等。
使用方法:1. 预处理:对图像进行灰度化处理。
2. 区域初始化:将图像划分为不同的区域,可按照固定大小进行划分,或根据图像的特征进行划分。
基于阈值的分割算法

基于阈值的分割算法
阈值分割算法是一种将图像分割成两个或多个区域的方法,其中区域的选择基于像素的灰度值与预先定义的阈值之间的关系。
基本的阈值分割算法包括简单阈值分割、自适应阈值分割和多阈值分割等。
- 简单阈值分割是指通过比较每个像素的灰度值与一个预先定
义的固定阈值来进行划分。
如果像素的灰度值大于阈值,则被分配到一个区域;如果小于阈值,则分配到另一个区域。
- 自适应阈值分割是指根据图像的局部特征来确定每个像素的
阈值。
这种方法通常用于处理具有不均匀光照条件下的图像。
常见的自适应阈值分割方法包括基于局部平均值、基于局部中值和基于统计分布的方法。
- 多阈值分割是指将图像划分为多个区域,每个区域都有一个
不同的阈值。
这种方法常用于处理具有多个目标或具有复杂纹理的图像。
阈值分割算法在图像处理中广泛应用,可以用于边缘检测、目标提取、图像分割等任务。
但是,阈值的选择对算法的性能至关重要,不同的图像和任务可能需要不同的阈值选择方法。
因此,在应用阈值分割算法时需要进行参数调整和优化才能得到最佳的分割结果。
生物医学工程中的医学图像分割方法教程

生物医学工程中的医学图像分割方法教程医学图像分割是生物医学工程领域中重要的技术之一,广泛应用于医学影像学、疾病诊断、手术规划和治疗等方面。
医学图像分割的目标是将医学图像中感兴趣的结构或区域从背景中分离出来,以便进行进一步的分析和处理。
本文将介绍几种常用的医学图像分割方法,并对其原理和应用进行详细阐述。
1. 阈值分割方法阈值分割是最简单、最常用的医学图像分割方法之一。
它基于对图像像素灰度值的阈值设定,将低于或高于阈值的像素分别归为背景或目标区域。
阈值分割适用于图像中目标区域的灰度范围明显与背景区域分开的情况,例如肿瘤在医学影像中的分割。
然而,阈值分割方法容易受到图像噪声、灰度不均匀和目标重叠等问题的影响。
2. 区域生长方法区域生长方法通过从种子点开始逐步生长,将与种子点灰度值相似的像素逐渐加入到目标区域中。
该方法需要人工选择种子点,并基于相邻像素的特征比较进行生长判断。
区域生长方法对于图像中目标区域边缘清晰、灰度值一致的情况效果较好,但对于边缘模糊、灰度不均匀的图像容易出现过度生长或未能覆盖全部目标的问题。
3. 边缘检测方法边缘检测方法通过检测图像中目标与背景之间的边缘信息进行分割。
常用的边缘检测算法包括Canny边缘检测、Sobel算子和拉普拉斯算子等。
边缘检测方法适用于图像中目标区域与背景区域之间边界明显且灰度变化剧烈的情况,但对于边界模糊、灰度变化缓慢的图像效果不佳。
4. 图像分割方法图像分割方法是一种基于图论和优化算法的医学图像分割技术。
其中,基于图割的图像分割方法相对较为常用,能够将图像分割问题转化为图中节点分割的问题,并通过最小割算法来求解。
图像分割方法对于解决灰度不均匀、目标重叠等问题有较好的效果,但对于大规模图像分割耗时较长。
5. 深度学习方法深度学习方法是近年来在医学图像分割领域取得显著成果的一种方法。
它基于深度神经网络,通过大量的医学图像数据进行训练,实现对医学图像的自动分割。
图像分割算法的原理与效果评估方法

图像分割算法的原理与效果评估方法图像分割是图像处理中非常重要的一个领域,它指的是将一幅图像分割成多个不同的区域或对象。
图像分割在计算机视觉、目标识别、医学图像处理等领域都有广泛的应用。
本文将介绍图像分割算法的原理以及评估方法。
一、图像分割算法原理图像分割算法可以分为基于阈值、基于边缘、基于区域和基于图论等方法。
以下为其中几种常用的图像分割算法原理:1. 基于阈值的图像分割算法基于阈值的图像分割算法是一种简单而高效的分割方法。
它将图像的像素值进行阈值化处理,将像素值低于阈值的部分归为一个区域,高于阈值的部分归为另一个区域。
该算法的优势在于计算速度快,但对于复杂的图像分割任务效果可能不理想。
2. 基于边缘的图像分割算法基于边缘的图像分割算法通过检测图像中的边缘来实现分割。
常用的边缘检测算法包括Sobel算子、Canny算子等。
该算法对边缘进行检测并连接,然后根据连接后的边缘进行分割。
优点是对于边缘信息敏感,适用于复杂场景的分割任务。
3. 基于区域的图像分割算法基于区域的图像分割算法将图像分割成多个区域,使得每个区域内的像素具有相似的属性。
常用的方法包括区域生长、分裂合并等。
该算法将相邻的像素进行聚类,根据像素之间的相似度和差异度进行分割。
优点是在复杂背景下有较好的分割效果。
4. 基于图论的图像分割算法基于图论的图像分割算法将图像看作是一个图结构,通过图的最小割分割图像。
常用的方法包括图割算法和分割树算法等。
该算法通过将图像的像素连接成边,将图像分割成多个不相交的区域。
该算法在保持区域内部一致性和区域间差异度的同时能够有效地分割图像。
二、图像分割算法的效果评估方法在进行图像分割算法比较和评估时,需要采用合适的评估指标。
以下为常用的图像分割算法的效果评估方法:1. 兰德指数(Rand Index)兰德指数是一种常用的用于评估图像分割算法效果的指标。
它通过比较分割结果和真实分割结果之间的一致性来评估算法的性能。
图像分割方法概述

图像分割方法概述图像分割是一种基本的计算机视觉任务,旨在将图像划分成不同的区域或对象。
图像分割在许多应用领域中都有重要的应用,如医学影像分析、目标检测与识别等。
本文将概述几种常用的图像分割方法。
一、阈值分割法阈值分割法是最简单且常用的图像分割方法之一。
它基于像素的灰度值,将图像按照灰度值的高低进行分类。
通过设定一个或多个阈值,将图像的像素划分为前景和背景。
根据不同的阈值选择方法,阈值分割法可以分为全局阈值分割和局部阈值分割两种。
二、基于边缘的分割法基于边缘的分割法是另一种常见的图像分割方法。
它利用图像中明显的边缘信息将图像分割成不同的区域。
常用的边缘检测方法有Sobel算子、Canny算子等。
通过检测边缘,可以将图像中的物体从背景中分离出来。
三、区域生长法区域生长法是一种基于相似性的图像分割方法。
它从某个种子像素开始,逐渐将与其相似的像素聚合到同一区域中。
相似性度量可以基于像素的灰度值、颜色、纹理等特征来定义。
区域生长法适用于分割相对均匀的区域,但对于高噪声或复杂纹理的图像效果可能不理想。
四、基于聚类的分割法基于聚类的分割法通过将图像像素聚类成不同的类别来实现图像分割。
常用的聚类算法有K均值聚类、高斯混合模型等。
聚类分割法适用于分割具有明显不同特征的目标,如自然景观图像中的不同物体。
综上所述,图像分割方法有多种多样,每种方法都有其适用的场景和局限性。
在实际应用中,我们需要根据图像的特点和任务需求选择合适的方法。
此外,还可以通过组合多个方法或使用深度学习等方法来提高图像分割的精度和鲁棒性。
随着计算机视觉技术的不断进步,图像分割将在更多领域发挥重要作用。
图像处理中的图像分割算法选择方法

图像处理中的图像分割算法选择方法图像的分割是图像处理中一个重要的任务,它通过将图像分割成具有不同特征的区域,来帮助我们理解图像中的对象和背景。
图像分割算法的选择方法对于实现高质量图像分割结果非常重要。
本文将介绍图像分割算法的选择方法,并讨论几种常用的图像分割算法。
在选择图像分割算法之前,我们首先需要考虑几个因素:问题需求、图像类型和计算资源。
任务需求是选择图像分割算法的首要考虑因素,不同的任务可能需要不同的分割算法。
例如,用于医学图像分割的算法可能与用于自然场景图像分割的算法有所不同。
图像类型也是决定选择算法的重要因素,例如,自然场景图像和医学图像具有不同的特点,因此可能需要根据图像类型选择相应的算法。
最后,计算资源是选择算法的限制因素,一些复杂的图像分割算法需要大量的计算资源,如果计算资源有限,我们可能需要选择一些简单且执行效率高的算法。
以下是几种常用的图像分割算法及其特点:1. 基于阈值的分割算法:阈值分割算法是最简单和最常用的图像分割算法之一。
它基于设定的阈值来将图像分割成不同的区域。
这个阈值可以通过手动选择或根据图像的直方图自动选择来确定。
阈值分割算法适用于图像中具有明显灰度差异的区域,但对于灰度差异较小的图像效果可能较差。
2. 区域生长算法:区域生长算法是一种基于像素相似性的图像分割方法。
它从一个或多个“种子”像素开始,通过合并满足相似性条件的相邻像素,逐步扩展区域直到无法继续合并。
区域生长算法适用于具有明显边界的图像,但对于边界不清晰的图像可能会导致过分分割或欠分割的结果。
3. 基于边缘检测的分割算法:边缘检测是图像分割中常用的一种方法。
它通过检测图像中的边缘来实现分割。
常见的边缘检测算法包括Sobel算子、Canny算子等。
边缘检测算法适用于具有明显边缘的图像,但对于边缘不清晰或多变的图像,可能会导致边缘检测结果不准确。
4. 基于聚类的分割算法:聚类分割算法将像素分为不同的簇,使得同一簇内的像素具有相似的特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理
• 数学描述
T i 1
i i background object
(9-3)
2
– ibackground和iobject分别是循环第i次得到的背景灰度值 和对象灰度值。
• (9-3)式也可写为
Ti 1
Ti hk k 1 k 0 Ti 2 hk k 0
• 该方法计算简单,在一定条件下不受图像对比 度与亮度变化的影响,因而在一些实时图像处 理系统中得到了广泛的应用。
数字图像处理
具体算法
• M×N大小的图像f (x,y) ,灰度级取值为[0 ~L -1] (通常为[0,255])。记p(k)为k灰度值为的频率, 则有:
p(k ) 1 MN
f (i , j )k
阈值T
数字图像处理
• 确定最佳全局阈值的常用方法:
– – – – – – P-tile-thresholding(P片) 直方图分析法(极小值点阈值选取) 最小误差自动门限法 类别方差门限法 最佳熵自动门限法 迭代法
数字图像处理
(1) P-tile-thresholding(P片)法
• 如果已知分割正确的图像的一些特征,阈值确 定比较简单,只要试验不同的值,看是否满足 特征即可。 • 例如打印的纸张,如果已知打印的字符占一张 纸上的面积的百分比,可以找合适的阈值,使 该条件得到满足。这就是最早使用的P片法。 • 此方法不适合于事先不知道目标面积比的情况。
(9-2)
• 这种方法不适用于直方图中双峰值差别很大, 或双峰间的谷宽广而平坦的情况,以及单峰 直方图的情况。
数字图像处理
(4) 最大类间方差法——大津方法
• Otsu在1979年提出,一直被认为是阈值自动选 取方法的最优方法。 • 属于基于最小误差的最佳阈值选取方法。 • 基本思想:
– 设定一个阈值k,将图像分成两组。 – 变动k的取值使得两组的类间方差最大,此时该值K 为所求分割阈值。
原图
大津法结果
自适应大津法结果
图9.8 自适应阈值分割图例
数字图像处理
4. 动态阈值(分水岭阈值算法)
• 一些物体粘连的图像,如何区分?
– 用全局阈值不易分割
• 典型:分水岭阈值算法
– 算法的主要目标是找出分水线。 – 和直接在最佳阈值处分割不同,分水岭阈值 算法是一种特殊的自适应迭代阈值分割算法。 – 可以看成是一种自适应的多阈值分割算法。 – 时间和空间复杂性较高,但抗噪声能力强。
k 0, 1, 2, , K
多阈值分割图例
数字图像处理
• 最古老的分割技术,计算简单。 • 特别适用于目标与背景有较强对比的景物
– 图像中组成感兴趣对象的灰度值是均匀的,并且和背 景的灰度值不一样
• 不适合于由许多不同纹理组成一块块区域的图像 • 关键:怎样选择阈值。
单一阈值的灰度直方图
T1
1 g ( x, y) 0
h ( z)
如 f ( x,y ) > T 如 f ( x,y )
≤
T
单阈值分割图例
z 0 T
数字图像处理
多阈值分割图像
确定一系列分割阈值
g ( x, y) k 如 Tk f ( x, y) ≤ Tk 1
f (x) Tk +1 Tk Tk -1 T0 (a) (b) g (x) k +1 k k -1 x (c)
h k k k Ti 1 L 1 h k k Ti 1
L 1
(9-4)
– L为灰度级的个数,hi是灰度值为k的像素点的个数。
• 迭代一直进行到Ti+1=Ti时结束。 • 结束时的Ti为阈值。
数字图像处理
迭代法的初始阈值选取策略
• 策略1: 假设图像中处于四个角的像素是属于背 景部分,其它像素属于感兴趣对象,然后定 义一个背景灰度和对象灰度的初始值。 策略2: 选取图像灰度范围的中值作为初始值T, 把原始图像中全部像素分成前景、背景两大 类。
课程特点 理论推导 教材内容 大同小异
数字图像处理
• 图像分割:把图像空间分成一些有意义的区域, 与图像中各种物体目标相对应。 • 目的:通过对分割结果的描述,可以理解图像 中包含的信息。 • 图像分割是将像素分类的过程(聚类),分类 的依据可建立在:
– 像素间的相似性:如相同的灰度值、相同的颜色等 – 非连续性:边界、边缘
• 传统的图像分割技术:
– 基于像素灰度值的分割技术 – 基于区域的分割技术 – 基于边界的分割技术
数字图像处理
• 图像的描述,包括边界和区域的描述 • 图像分割和集合定义的描述
– 令集合R代表整个图像区域,对R的图像分 割可以看作是将R分成N个满足以下条件的 非空子集R1,R2,….,RN: – (1) n R R
数字图像处理
自适应阈值方法的基本步骤
① 将整幅图像分成一系列互相之间有50%重 叠的子图像; ② 做出每个子图像的直方图; ③ 检测各个子图像的直方图是否为双峰,如 果是,则采用最佳阈值法确定一个阈值, 否则就不进行处理; ④ 根据对直方图为双峰的子图像得到的阈值 通过插值得到所有子图像的阈值。
数字图像处理
•
数字图像处理
原始图像
分割结果(T=170)
图9.6 迭代法确定阈值进行分割(1)
数字图像处理
图9.7 血液及其阈值迭代分割结果 (a) 血液标准检测图像 (b) 采用策略2,经5次阈值迭代后,用收敛后的稳定输出 值97作为最终的分割阈值的分割结果
数字图像处理
3. 自适应阈值
• 问题:图像中,不同区域的物体/背景对比度不 一致,难以采用统一的阈值分割。 • 解决:根据图像的局部特征分别采用不同的阈 值进行分割。
• 检查/观察图像的直方图,然后选择一个合适的阈值。 • 双峰情况:目标物体内部具有均匀一致的灰度值,并 分布在另一个灰度值的均匀背景上,其灰度直方图将 有明显双峰。 • 峰谷法:双峰情况下选择两峰之间的谷点作为门限值。 该方法简单,但不适用于两峰值相差极大,有宽且平 谷底的图像。 • 问题:噪声干扰使谷的位置难以判定或者结果不稳定 可靠 • 解决:对直方图进行平滑或曲线拟合
• “汇水盆地”或“分水岭”: 对一个特定区域最小值,满足条件(b)的点的集 合称为这个最小值的“汇水盆地”或“分水岭”。 • “分水线”或“分割线”: 满足条件(c)的点的集合组成地形表面的峰线。
(9-2)
• 右边括号内实际上就是类间方差值。 • 方差是灰度分布离散性的一种度量,方差值越大,说 明构成图像的和两部分差别越大。 • 当部分目标错分为背景或部分背景错分为目标都会导 致两部分差别变小。 • 使类间方差最大的分割意味着错分概率最小,—— 大 津方法的真正含义。
数字图像处理
原始图像
Otsu法二值化图像
图9.5 Ostu法确定阈值进行分割
数字图像处理
(5) 迭代法
① 选取初始图像灰度值T,把原始图像中全 部像素分成前景、背景两大类。 ② 分别对其进行积分并将结果取平均以获取 一新的阈值,并按此阈值将图像分成前景、 背景。 ③ 如此反复迭代下去,当阈值不再发生变化, 即迭代已经收敛于某个稳定的阈值时,此 刻的阈值即作为最终的结果并用于图像的 分割。
i 1
i
– – – –
i j ,有 Ri R j (2) 对所有的 i 和 j, (3) 对i = 1, 2,…, n,有P(Ri ) = TRUE (4) 对i j ,有 P(Ri R j ) FALSE (5) 对i = 1, 2, …, n,Ri是连通的区域
数字图像处理
• 除取决于图像灰度值和该点邻域的某种局部特性之外, 还取决于空间坐标,即得到的阈值与坐标相关的阈值 选取——动态阈值或者自适应阈值
数字图像处理
2. 全局阈值
• 原理:
– 假定物体和背景分别处于不同灰度级,图像的灰度 分布曲线近似用两个正态分布概率密度函数分别代 表目标和背景的直方图,出现两个分离的峰值。 – 依据最小误差理论等准则求出两个峰间的波谷,其 灰度值即分割的阈值。
数字图像处理
图像分割技术分类
• 运算方法:
– – – – 并行边界技术 串行边界技术 并行区域技术 串行区域技术
• 结构分割方法
– 边缘分割法 – 阈值分割法 – 基于区域的分割
数字图像处理
二、阈值分割法
• 基本原理: 原始图像——f(x,y) 灰度阈值——T 阈值运算得二值图像——g(x,y)
数字图像处理
分水岭
谷底孔
图9.9 分水岭算法示意图
数字图像处理
(1) 基本概念
• 分水岭概念是以对图像进行三维可视化处理为基础的。
– 其中两个是坐标,另一个是灰度级。
• 对于分水岭这种“地形学”的解释,需考虑三点:
– (a)属于局部性最小值的点; – (b)当一滴水放在某点的位置上的时候,一定会下落到一个 单一的最小值点; – (c)当水处在某个点的位置时,水会等概率地流向不止一个 这样的最小值点。
图9.4 最佳阈值示意图
数字图像处理
• zt 为分割阈值,则总的错误概率E(zt)为 • 最佳阈值就是使E(zt)为最小值时的zt。故有: • (9-1) • 设p1(z) 和p2(z) 为正态分布函数,其灰度均值分别为 μ1和μ2 , 对灰度均值的标准偏差分别为σ1和σ2 ,则有
数字图像处理
• 将上两式代入(9-1),两边求对数则有
1
• 设用灰度值 t 为阈值分割出的目标与背景,则:
– 目标部分比例: w0 (t )
0i t
p(i)
0i t
– 目标部分点数: N 0 MN p(i)
数字图像处理
– 背景部分比例: w1 (t )