湿法脱硫技术及设备系统介绍
石灰石(石灰)湿法脱硫技术
石灰石(石灰)湿法脱硫技术湿法脱硫中所应用的脱硫系统位于烟道的末端,脱硫过程中的反应温度低于露点,因此,脱硫后的烟气需要进行加热处理才能排出。
由于脱硫过程中的反应类型为气液反应,其脱硫效率和所用脱硫添加剂的使用效率均较高,因此,在许多大型燃煤电站中都已建成使用。
一、石灰石(石灰)湿法脱硫技术概述根据最新的技术统计资料显示,到目前为止投入使用的脱硫技术种类已经超过200种,在形式多样的脱硫技术中,湿法脱硫技术是应用范围最广、脱硫效率最高的一种应用技术,占脱硫设备总装机量的80%以上,始终占据着脱硫技术领域的主导地位。
石灰石(石灰)湿法脱硫技术作为最成熟的一种脱硫技术,其脱硫效率可到90%以上,成为效果最显著的脱硫方法。
石灰石(石灰)湿法脱硫技术经过几十年的发展,已被应用于600MW烟气单塔的烟气处理系统中,脱硫剂的利用效率基本稳定在95%以上,反应过程所消耗的电能不足电厂出力的1.5%,与十多年前的脱硫系统相比,在脱硫成本轻微上升的条件下脱硫效果却得到了质的飞跃。
二、石灰石(石灰)湿法脱硫技术的应用原理(一)工艺流程石灰石(石灰)湿法脱硫技术的基本过程是:烟气经锅炉排出后进入除尘器,之后进入脱硫塔,脱硫塔内的石灰石浆液与烟气中的SO2进行气液反应,生成CaCO3和CaCO4。
在反应之后的浆液中充入氧气,可将CaCO3氧化成CaCO4和石膏,石膏经脱水处理后可作为脱硫反应的副产品被回收利用。
工业实践中采用最多的脱硫塔方式是单塔,在单塔中可完成脱硫反应的全过程,脱硫成本和运行费用也更低。
(二)反应过程烟气中的SO2在脱硫塔内的反应过程可用下面两个方程表示,其中,第二个反应过程中生产的CaSO3会被烟气中的氧气氧化生成CaSO4,形成副产品被回收利用。
SO2+CaCO3→CaSO3+CO2 石灰石浆液(1)SO2+Ca(OH)2→CaSO3+H2O 石灰浆液(2)(三)脱硫效率脱硫效率受到诸多因素的影响,其中,脱硫塔中的pH值对脱硫效率会产生较大的影响。
石灰石-石膏湿法脱硫技术介绍
石灰石-石膏湿法脱硫技术石灰石−石膏湿法(简称湿法)烟气脱硫工艺是目前世界上燃煤电厂烟气脱硫工艺中应用最广泛的一种脱硫技术,其工艺技术最为成熟、运行可靠、脱硫效率高而且稳定、煤种及含硫量变化适应性广,单塔出力大,脱硫副产品石膏可以利用。
该工艺系统相对复杂、初投资较大、装置占地面积也相对较大。
一、工艺系统组成◇吸收剂制备供应系统◇二氧化硫吸收和氧化系统◇烟气输送及调温系统◇副产品石膏处理系统◇废水处理系统具体工程的脱硫系统因条件不同其组成也有差异。
二、整体工艺介绍该工艺的主要原理是:锅炉引风机出来的烟气经增压风机升压后进入烟气换热器(GGH)热烟侧,与GGH冷烟侧的净烟气进行换热降温,降温后的烟气进入吸收塔下部。
吸收塔中的吸收剂−−石灰石浆液由塔的上部向下喷淋与向上流动的烟气逆流混合,烟气中的二氧化硫(SO2)与吸收剂浆液反应生成亚硫酸钙同时进一步被鼓入的空气中的氧气(O2)氧化成硫酸钙(CaSO4)即石膏;脱硫后的洁净饱和烟气依次经过除雾器除去雾滴、气气换热器加热升温后,由脱硫风机经烟囱排入大气。
反应产生的石膏浆液送至水力旋流器站,进行石膏初级脱水后,送至真空皮带过滤机进一步脱水,产生脱硫副产品——石膏。
三、主要系统介绍1、吸收剂制备供应系统石灰石是一种石头,主要成分是CaCO3,把石灰石高温以后,就成了生石灰CaO,一般成较脆的块状,生石灰能够吸收潮气,可用来做干燥剂。
把生石灰放入大量的水中,经过一段时间,就成了熟石灰Ca(OH)2(消化过程),在这个过程中,将放出大量的热,熟石灰成松软状态,它的粘性较大。
通常吸收剂制备可采用干法制浆或湿法制浆工艺:干法制浆一般采用圈流管磨系统,制成符合细度要求的干粉后再调水制浆;湿法制浆采用湿式球磨机装置,直接将石灰石块制成石灰石浆液,石灰石浆液通过泵送入吸收塔内。
2、二氧化硫吸收和氧化系统目前吸收塔型式主要有喷淋塔、填料塔或液柱塔。
在添加了新鲜石灰石的情况下,石灰石、副产品和水的混合物从吸收塔浆池通过浆液循环泵送至塔的上部循环使用。
湿法脱硫技术
湿法脱硫技术湿法脱硫技术是一种环保的烟气脱硫方法,它广泛应用于工业和电力行业,用于减少大气中的二氧化硫排放,降低空气污染。
本文将从湿法脱硫技术的原理、工艺和应用等方面进行详细介绍。
一、湿法脱硫技术的原理湿法脱硫技术是利用溶液中的碱性物质与二氧化硫发生化学反应,将二氧化硫转化为可溶于水中的硫酸盐。
主要的反应方程式为:SO2 + Ca(OH)2 → CaSO3 + H2O湿法脱硫技术有两种主要方式,分别是石灰石石膏法和海水脱硫法。
石灰石石膏法是将石灰石干燥研磨成粉末后与烟气中的二氧化硫反应,产生石膏,而海水脱硫法则是通过将海水喷洒到烟气中,利用海水中的碱性物质进行反应。
二、湿法脱硫技术的工艺湿法脱硫技术主要包括烟气净化系统和废水处理系统两部分。
烟气净化系统主要由除尘器、喷射塔和循环泵等设备组成。
烟气通过除尘器进行初步的净化,去除其中的颗粒物和粉尘。
之后,烟气进入喷射塔,喷洒石灰石水浆或海水,与二氧化硫发生反应,形成硫酸盐溶液。
最后,循环泵将硫酸盐溶液回收,净化后再次喷洒到烟气中,循环利用。
废水处理系统用于处理湿法脱硫过程中产生的废水。
废水中含有大量的硫酸盐和其他污染物,需要进行化学处理和沉淀处理,以降低污染物的浓度,使其达到排放标准。
三、湿法脱硫技术的应用湿法脱硫技术被广泛应用于工业和电力行业的烟气净化中,主要用于减少二氧化硫的排放量,保护环境。
以下是湿法脱硫技术在不同领域的应用举例:1. 电力行业:湿法脱硫技术被广泛应用于火电厂和燃煤发电厂中,用于减少烟气中的二氧化硫排放,降低大气污染。
2. 钢铁行业:湿法脱硫技术可以应用于钢铁生产中的高炉和转炉烟气脱硫,减少二氧化硫的排放,减轻对大气环境的污染。
3. 化工行业:湿法脱硫技术可以用于化工厂废气的治理,降低二氧化硫的排放,保护周边的环境质量。
4. 石油行业:湿法脱硫技术可以应用于炼油厂中,减少烟气中的硫化氢等有害气体的排放,改善工作环境。
总之,湿法脱硫技术是一种重要的烟气脱硫方法,具有广泛的应用前景。
湿法脱硫方案
1. 简介湿法脱硫是一种常用的烟气脱硫技术,适用于燃煤工业锅炉、电厂、钢铁冶炼等领域。
本文将介绍湿法脱硫的工作原理、设备组成以及操作步骤,以帮助读者了解该技术并合理应用。
2. 工作原理湿法脱硫通过在烟气中喷入脱硫剂,使脱硫剂与烟气中的二氧化硫发生反应生成硫酸盐,达到脱硫的目的。
其主要步骤包括: - 喷射装置:将脱硫剂雾化成细小颗粒,并将其喷入烟气中。
- 吸收过程:脱硫剂颗粒与烟气中的二氧化硫发生吸收反应,生成硫酸盐。
- 除尘装置:除去吸收过程中产生的颗粒物,以保证烟气排放的环保要求。
3. 设备组成典型的湿法脱硫设备包括以下几个主要组成部分: - 烟气进口:将含有二氧化硫的烟气引入脱硫装置。
- 喷射装置:将脱硫剂通过喷雾器雾化成细小颗粒,并通过喷嘴喷入烟气中。
- 吸收塔:用于脱硫剂与烟气中的二氧化硫发生吸收反应,生成硫酸盐。
- 循环泵:将脱硫剂循环供应给喷射装置使用,保证脱硫剂的充足和稳定性。
- 除尘器:用于除去吸收过程中产生的颗粒物,以达到烟气排放的环保要求。
- 排气系统:将经过湿法脱硫处理后的烟气排放到大气中。
4. 操作步骤湿法脱硫的操作包括以下几个主要步骤: 1. 脱硫剂配制:根据烟气中的硫含量确定脱硫剂的用量,并将其配制成适当的浓度。
2. 设备检查:检查喷射装置、吸收塔、循环泵、除尘器等设备,确保其正常运行。
3. 启动设备:按照设备的启动顺序逐个启动相关设备,并观察其运行情况。
4. 脱硫剂喷射:逐步调整喷射装置的参数,使得脱硫剂的喷射量和颗粒大小适合脱硫反应的需求。
5. 监测与调整:通过监测烟气中的二氧化硫浓度、脱硫剂的浓度以及排放烟气中的颗粒物等指标,并根据监测结果调整湿法脱硫的操作参数。
6. 停止设备:按照设备的停止顺序逐个停止设备,并进行必要的冲洗和维护。
5. 注意事项在使用湿法脱硫技术时,需要注意以下几个方面的问题: - 脱硫剂选择:根据燃煤的硫含量和其他操作要求选择合适的脱硫剂,并保证其供应的稳定性。
湿法烟气脱硫设计及设备选型手册
湿法烟气脱硫设计及设备选型手册1. 概述在工业生产中,很多过程都会产生废气,其中包括含有二氧化硫等有害气体的烟气。
为了减少大气污染和保护环境,烟气脱硫技术就显得尤为重要。
湿法烟气脱硫技术是一种常用的脱硫方法,本手册将重点介绍湿法烟气脱硫的设计原理和设备选型,并提供给相关从业人员参考使用。
2. 湿法烟气脱硫的原理湿法烟气脱硫技术是利用水溶液与烟气进行接触,通过化学反应将二氧化硫等有害气体吸收到溶液中,从而达到脱硫的目的。
主要脱硫反应可以表示为: SO2 + 2H2O + 1/2O2 = H2SO4。
湿法脱硫过程中,进口烟气和吸收液充分接触,通过吸收和氧化的作用,将SO2等有害气体转化为硫酸,最终实现烟气净化。
3. 设备选型在湿法烟气脱硫系统中,主要设备包括吸收塔、循环泵、喷淋系统等。
根据工艺要求和工况条件,选择合适的设备对于湿法脱硫系统的运行效果至关重要。
首先需要考虑的是吸收塔的选型,包括塔径、塔高、填料类型等参数的确定。
其次是循环泵和喷淋系统的选型,需要考虑工作效率、能耗等指标。
另外,还要考虑设备的耐腐蚀性能和可靠性,确保设备在长期运行中能够稳定工作。
4. 设计原则在进行湿法烟气脱硫系统的设计时,需要考虑以下几个方面的原则:首先是脱硫效率,要求设备在不同运行条件下都能够稳定实现脱硫目标;其次是设备的能耗和运行成本,需要在满足脱硫要求的前提下,尽量降低设备的能耗;还要考虑设备的可维护性和安全性,保障设备长期稳定运行。
5. 总结与展望湿法烟气脱硫技术作为一种成熟的脱硫方法,在工业生产中应用广泛。
在未来,随着环保要求的不断提高,湿法脱硫技术还将得到进一步完善,设备性能将会更加优化。
加强对湿法烟气脱硫技术的研究和应用,对于促进工业生产的可持续发展和生态环境的保护具有重要意义。
6. 个人观点作为一种有效的烟气脱硫技术,湿法脱硫不仅可以有效净化烟气,减少大气污染,也能为工业生产提供良好的环境支持。
我个人认为,在今后的工业发展中,湿法烟气脱硫技术将会得到更广泛的应用,也会在性能和成本上得到更多的改进和提升。
湿法脱硫演示PPT课件
目录 1. 工艺流程、系统构成 2. 工艺方案比较 3. 布置方案介绍
燃煤SO2的产生
煤是一种低品位的化石能源,我国的原煤中硫分含量较 高,硫分含量变化范围较大, 从0.1%到10%不等。
煤在空气中燃烧时,可燃烧硫及其化合物在高温下与氧 发生反应,生成SO2,
脱硫技术
1、燃煤前脱硫: 选煤技术。2. 吸收塔系统
• 吸收塔系统的主要功能:
1. CaCO3溶解 2. SO2 3. 氧化亚硫酸 4. 石膏结晶 5. 除雾
•
吸收塔系统流程图
(2)吸收塔吸收系统 • 吸收塔及内部件 • 浆液循环泵 • 搅拌器 • 氧化风机 • 石膏排浆泵
吸收塔系统结构图
吸收塔系统-脉冲悬浮管道、喷嘴
一般设计的搅拌器
存在问题
• 搅拌叶片腐蚀磨损严重; • 轴封易泄漏; • 检修时必须将FGD停运; • FGD停运时搅拌器不能停; • 搅拌不均匀,容易形成死区。
吸收塔入口段烟道
• 处于冷热、干湿交界面,容易产生腐蚀和 沉积,必须采取特殊措施
– 防腐:耐腐蚀合金或合金复合板 – 防沉积:冲洗底板
吸收塔系统
一般设计的除雾器
除雾器结构和作用
工艺流程、系统配置 吸收塔反应池
脉冲悬浮系统
(搅拌器系统 )
pH = 4.5~5.5
高速流体
池分离器
结晶区
pH = 6~ 7
氧化区
氧化空气 石膏浆液排出
石灰石浆液 循环浆液
脉冲搅拌系统
功能 使浆液悬浮
• 石灰石颗粒分布均匀
优点 • 塔内无转动机械, 塔内无机械故障。 • 塔外脉冲悬浮泵为一运一备配置, 维修时 无需停运FGD系统 •搅拌无死区 • 在停机时,可停脉冲悬浮泵,不耗电。 •停运FGD系统三天之内,无需将吸收塔的浆 液送至事故浆池。
湿法脱硫工艺
湿法脱硫工艺一、工艺概述湿法脱硫是目前应用最广泛的烟气脱硫技术之一,它采用水溶液与烟气接触,利用化学反应将SO2转化为易于处理的固体或液体物质,达到减少大气污染物排放的目的。
本文将详细介绍湿法脱硫工艺。
二、工艺流程1. 烟气进入除尘器进行预处理,去除粉尘和颗粒物。
2. 预处理后的烟气进入吸收塔,在塔中喷洒脱硫剂(通常为石灰浆或碱性酸液),与SO2发生化学反应。
3. 反应后的产物与水形成悬浮液,通过底部排出口流出吸收塔。
4. 悬浮液经过沉淀池或旋流器进行分离,得到固体或液体产物。
5. 分离后的产物进行后续处理(如过滤、干燥等),得到最终产品。
三、设备介绍1. 吸收塔:通常采用圆形或方形结构,内部设置喷淋系统和填料层,用于将脱硫剂喷洒到烟气中进行反应。
2. 沉淀池:通常采用圆形或方形结构,内部设置搅拌器和底部排出口,用于分离产物。
3. 旋流器:通常为圆柱形结构,内部设置旋流装置,用于分离产物。
4. 过滤设备:通常采用板框式或旋转式过滤机,用于对产物进行过滤。
5. 干燥设备:通常采用烘箱或干燥机,用于将湿润的产物进行干燥处理。
四、脱硫剂选择1. 石灰浆:具有良好的脱硫效果和低成本,但需要大量的水来稀释。
2. 碱性酸液:如NaOH、Ca(OH)2等,具有较高的脱硫效果和较低的成本,在一定范围内可自动调节pH值。
3. 活性炭:主要用于去除有机污染物和重金属等。
五、工艺参数控制1. 脱硫剂浓度:影响反应速率和脱硫效果。
通常控制在10%~20%之间。
2. 烟气流量:影响反应时间和产物质量。
通常控制在15000~30000m3/h之间。
3. 烟气温度:影响反应速率和产物质量。
通常控制在50℃~70℃之间。
4. 废水排放:湿法脱硫产生的废水含有一定浓度的SO2和脱硫剂,需要进行处理或回收利用。
六、工艺优缺点1. 优点:脱硫效果好,可达到90%以上;适用范围广,可处理多种燃料的烟气;操作简单,设备维护成本低。
2. 缺点:需要大量的水来稀释脱硫剂,造成水资源浪费;废水排放需要进行处理或回收利用;在高含盐、高灰分等条件下容易出现堵塞和结垢等问题。
湿法烟气脱硫设计及设备选型手册
湿法烟气脱硫设计及设备选型手册【最新版】目录1.湿法烟气脱硫设计及设备选型手册概述2.湿法烟气脱硫技术的基本原理3.湿法烟气脱硫设备的选型4.湿法烟气脱硫系统的运行与维护5.湿法烟气脱硫技术的发展趋势正文一、湿法烟气脱硫设计及设备选型手册概述湿法烟气脱硫设计及设备选型手册是一本针对火电厂烟气脱硫技术的专业工具书。
该手册综合收集了国内外最新的技术资料和文献,结合作者多年对火电厂烟气脱硫技术的研究和实践经验,从理论和工程应用的角度,对湿法烟气脱硫的设计及设备材料的选型进行了系统、全面的分析。
二、湿法烟气脱硫技术的基本原理湿法烟气脱硫技术是一种通过将碱性溶液喷入烟气中,与烟气中的二氧化硫(SO2)发生化学反应,从而实现脱硫的方法。
这种技术具有脱硫效率高、稳定性好、设备简单、操作要求低、处置方法简单、成本低等优点。
三、湿法烟气脱硫设备的选型在湿法烟气脱硫系统中,设备的选型至关重要。
首先要选择合适的脱硫剂,如石灰石、石膏等。
其次,需要选择合适的脱硫吸收塔类型及其塔内主要部件。
此外,还需选型石灰石浆液制备系统及其主要浆液设备,以及脱硫副产品石膏的生产流程及其主要设备等。
四、湿法烟气脱硫系统的运行与维护湿法烟气脱硫系统的运行和维护也是影响脱硫效果的关键因素。
首先要确保脱硫系统的正常运行,如烟气再热系统、压缩空气系统等。
其次,要定期对设备进行检修和维护,确保设备的运行稳定性。
同时,还需定期对脱硫剂进行更换和补充,以保证脱硫效果。
五、湿法烟气脱硫技术的发展趋势随着环保要求的不断提高,湿法烟气脱硫技术也在不断发展和完善。
未来,湿法烟气脱硫技术将朝着高效、低耗、环保的方向发展,如采用新型脱硫剂、优化脱硫设备结构、提高系统运行效率等。
湿法脱硫技术
1. 概述石灰石-石膏法烟气脱硫技术已经有几十年的发展历史,技术成熟可靠,适用范围广泛,据有关资料介绍,该工艺市场占有率已经达到85以上。
由于反应原理大同小异,本培训教材总结了一些通用的规律和设计准则,基本适用于目前市场上常用的各种石灰石-石膏法烟气脱硫技术,包括喷淋塔、鼓泡塔、液柱塔等。
2.典型的系统构成典型的石灰石/石灰-石膏湿法烟气脱硫工艺流程如图2-1所示,实际运用的脱硫装置的范围根据工程具体情况有所差异。
3反应原理3.1吸收原理吸收液通过喷嘴雾化喷入吸收塔,分散成细小的液滴并覆盖吸收塔的整个断面。
这些液滴与塔内烟气逆流接触,发生传质与吸收反应,烟气中的SO2、SO3及HCl、HF被吸收。
SO2吸收产物的氧化和中和反应在吸收塔底部的氧化区完成并最终形成石膏。
为了维持吸收液恒定的pH值并减少石灰石耗量,石灰石被连续加入吸收塔,同时吸收塔内的吸收剂浆液被搅拌机、氧化空气和吸收塔循环泵不停地搅动,以加快石灰石在浆液中的均布和溶解。
3.2化学过程强制氧化系统的化学过程描述如下:(1)吸收反应烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反应如下:SO2+H2O→H2SO3(溶解)H2SO3⇋H++HSO3-(电离)吸收反应的机理:吸收反应是传质和吸收的的过程,水吸收SO2属于中等溶解度的气体组份的吸收,根据双膜理论,传质速率受气相传质阻力和液相传质阻力的控制,吸收速率=吸收推动力/吸收系数(传质阻力为吸收系数的倒数)强化吸收反应的措施:a)提高SO2在气相中的分压力(浓度),提高气相传质动力。
b)采用逆流传质,增加吸收区平均传质动力。
c)增加气相与液相的流速,高的Re数改变了气膜和液膜的界面,从而引起强烈的传质。
d)强化氧化,加快已溶解SO2的电离和氧化,当亚硫酸被氧化以后,它的浓度就会降低,会促进了SO2的吸收。
e)提高PH值,减少电离的逆向过程,增加液相吸收推动力。
f)在总的吸收系数一定的情况下,增加气液接触面积,延长接触时间,如:增大液气比,减小液滴粒径,调整喷淋层间距等。
石灰石石膏湿法脱硫技术
编辑ppt
22
图1-6 晶种生成速率和晶体增长速率与相对过饱和度σ的关系
编辑ppt
23
根据以上分析,保持亚稳平衡区域中相对过饱和度为适
当值时,可使浆液中生成较大的晶体。为保持脱硫装置的正
常运行,维持这些条件非常重要。
工艺上一般控制相对过饱和度σ=0.1~0.3(或相对饱和度
RS为1.1~1.3),以保证生成的石膏易于脱水,同时防止系
双膜理论的基本要点如下: ① 相互接触的气、液两流体间存在着稳定的相界面,界 面两侧各有一个很薄的有效滞流膜层,吸收质以分子扩散方 式通过此二膜层。 ② 在相界面处,气、液两相达到平衡。 ③ 在膜层以外的中心区,由于流体充分湍动,吸收质浓 度是均匀的,即两相中心区内浓度梯度皆为零,全部浓度变 化集中在两个有效膜层内。
石灰石-石膏湿法脱硫
工艺流程
编辑ppt
提纲
一、石灰石-石膏湿法脱硫工艺的基本原理 二、石灰石浆液制备系统 三、烟气系统及设备 四、吸收系统 五、石膏脱水系统 六、脱硫废水系统
编辑ppt
一、石灰石-石膏湿法脱硫工艺的基本原理
编辑ppt
石灰石-石膏湿法烟气脱硫工艺的原理是采用石灰石(块)粉 制成浆液作为脱硫吸收剂,与经降温后进入吸收塔的烟气接 触混合,烟气中的二氧化硫与浆液中的碳酸钙,以及加入的 氧化空气进行化学反应,最后生成二水石膏。脱硫后的净烟 气依次经过除雾器除去水滴、再经过烟气换热器加热升温后, 经烟囱排入大气。由于在吸收塔内吸收剂经浆液再循环泵反 复循环与烟气接触,吸收剂利用率很高,钙硫比较低(一般 不超过1.03),脱硫效率不低于95%,适用于任何煤种的烟 气脱硫。
0
0.2 0.4 0.6 0.8
1 2
1 mol/L
湿法脱硫技术简介
烟气脱硫技术概述为了治理日益恶化的大气环境,控制SO2的排放势在必行,我国已进行了多种脱硫技术的研究及应用。
燃煤脱硫根据具体情况可分为三大类:燃烧前脱硫、燃烧中脱硫和燃烧后脱硫。
燃烧前脱硫燃烧前脱硫方法有机械脱硫、化学脱硫、电磁脱硫、细菌脱硫、超声脱硫等。
机械脱硫法在实际中得到了应用,如跳汰机脱硫、浮选机脱硫、摇床脱硫、旋流器脱硫、螺旋选矿机脱硫等。
机械脱硫是根据煤中硫化铁硫(FeS2)等含硫化合物与煤比重不同而将其除去,这种方法的脱硫效率取决于FeS2等物质的颗粒大小及煤中无机硫的含量。
洗选法不能脱除有机硫及在煤中嵌布很细的硫化铁硫。
化学方法,煤的热解和加氢热解脱硫是根据原煤中使硫存在的化学键Fe-S和C-S与C-C相比不稳定,在热解条件下很容易脱离而生成气相硫化物H2S或CaS,煤的热解和加氢热解就是利用这一特征脱除煤中的硫分。
电化学法是借助煤在电解槽发生电化学氧化和还原反应,将煤中黄铁矿和有机硫氧化成可溶性硫化物或将煤还原加氢,从而达到脱硫效果。
生物脱硫技术是利用微生物参一与铁和硫化合物的氧化作用,使硫铁矿降解,细菌作用将Fe2+氧化为Fe3+ ,单质硫由于细菌作用而氧化为硫酸。
该工艺目前尚未获得大规模应用,不过,随着生物技术的突破发展,该工艺具有良好的发展前景。
微波法是因微波能激发煤中硫化物同浸提剂反应而脱硫。
燃烧中脱硫燃烧中脱硫和燃烧后脱硫即烟气脱硫一般是在燃烧室中和尾部烟道中加入脱硫剂来实现的。
燃烧中脱硫是在燃烧产生的高温气氛下,脱硫剂与SO2气体分子发生化学反应,因此燃烧中脱硫是伴随着燃料燃烧一起完成的。
燃烧中脱硫一般以石灰石(主要成分为CaCO3)作为脱硫剂,将其破碎到合适颗粒度后喷入锅炉内,CaCO3在高温下分解成CaO和CO2,烟气中的SO2与CaO反应,完成SO2的炉内吸收过程:若在还原性气氛下,石灰或石灰石就会和煤燃烧产生的H2S反应,生成CaS,遇氧即被氧化成CaSO4。
烟气脱硫工艺介绍
下面是静调和动调风机曲线:
由上图我们可以看出,静调风机有一个非运行区,静调风机在启动时必须窜过该区域,才能到达需要的运行工况。另外,静调风机的理论失速线非常陡,这是静调风机的最大弱点。
吸收塔搅拌器
吸收塔搅拌器主要作用有两个,一个是使吸收塔浆液池的固体物质离底悬浮,第二个作用使氧化空气均匀分布在吸收塔浆液池内,提高氧化效果。搅拌器是一个技术性很强的设备,一般由专业的搅拌器厂家制造。它的关键部件有:搅拌器叶片、机械密封和轴承;主要技术参数有叶片和轴的直径、搅拌器转速。
EKATO公司在FGD侧进式搅拌器使用的材料
(2)石灰石浆液系统:石灰石浆液系统主要设备包括石灰石浆液箱搅拌器、石灰石浆液泵等。
(3)吸收系统:吸收系统主要设备包括吸收塔(包括吸收塔搅拌器、托盘、喷淋层、喷嘴、除雾器及除雾器清洗系统)、浆液循环泵、氧化风机等。
(4)石膏处理系统:石膏处理系统主要设备有石膏排出泵、石膏旋流器、真空皮带过滤机及辅助设备、真空泵、石膏布料皮带、废水旋流器及废水泵等
对于动调增压风机主要由以下部分组成:进气箱、机壳、转轴、轴承、轮毂、叶片、导流筒、冷却风机系统、润滑油系统、液压调节系统、风机振动监测系统等。对于静调增压风机还有进口导叶及导叶调节系统等。
风机的进气箱主要起到整流作用,使烟气流畅地进入风机而不产生涡流。
机壳配合转子工作的外壳,对转子起支撑作用。
转子包括风机转轴、轮毂、叶片等,是风机工作的主要动部件,它将机械能转化为烟气的动能和势能(静压能),转化效率一般在85%以上。
42CrMo
湿法烟气脱硫设计及设备选型手册
湿法烟气脱硫设计及设备选型手册《湿法烟气脱硫设计及设备选型手册》专题文章一、湿法烟气脱硫的概念和原理湿法烟气脱硫是一种常用的烟气净化技术,它采用了化学吸收原理,通过与脱硫剂接触,将烟气中的二氧化硫等有害气体转化为固体或液体形式,达到净化烟气的目的。
相比其他脱硫技术,湿法脱硫具有高效、稳定、操作简单等优点,因此在工业和环保领域得到了广泛应用。
二、湿法烟气脱硫的设备选型1. 脱硫塔脱硫塔是湿法烟气脱硫系统的核心设备,其设计和选型直接影响到脱硫效率和运行成本。
在选择脱硫塔时,应考虑烟气流量、二氧化硫浓度、操作条件等因素,合理确定塔型、塔高、填料类型等参数。
2. 脱硫剂喷射系统脱硫剂喷射系统主要包括脱硫剂搅拌箱、喷射管路、喷嘴等组件,用于将脱硫剂均匀地喷射到脱硫塔内,与烟气进行充分接触。
在设计和选型时,需考虑脱硫剂的类型、浓度、喷射技术等因素。
3. 石膏脱水系统湿法烟气脱硫后产生的脱硫废水中含有高浓度的石膏,因此需要配置石膏脱水设备进行处理。
设备选型时,应考虑脱水效率、设备投资和运行成本等因素,以实现资源化利用和节能减排。
三、湿法烟气脱硫设计的关键技术1. 塔内流场分析对于湿法脱硫塔,塔内流场的设计和优化是关键技术之一。
通过CFD仿真等手段,可以有效评估脱硫剂与烟气的接触效果,优化填料布局和喷射系统,提高脱硫效率。
2. 脱硫剂循环系统脱硫剂循环系统的设计对于维持脱硫塔内适宜的脱硫剂浓度至关重要。
合理设计循环泵、搅拌器等设备,保证脱硫剂的循环均匀和稳定,是设计中的一大挑战。
3. 氧化吸收工艺在湿法烟气脱硫中,氧化吸收工艺是常用的脱硫反应路径之一。
针对不同燃料特性和脱硫效果要求,设计合适的氧化吸收工艺,对于提高脱硫效率和减少能耗至关重要。
四、个人观点和总结湿法烟气脱硫作为一种成熟的烟气净化技术,其设计和设备选型涉及到多个学科领域,需要综合考虑工程、化工、环保等方面的知识。
在实际应用中,应根据具体工艺条件和环境要求,进行系统评估和定制化设计,以实现绿色、高效的烟气净化目标。
石膏湿法脱硫工艺及系统设备介绍
石膏湿法脱硫工艺及系统设备介绍石膏湿法脱硫工艺概述石膏湿法脱硫是一种常用的烟气脱硫技术,用于减少燃煤发电厂烟气回收设备中的二氧化硫(SO2)含量。
该工艺通过将煤燃烧过程中产生的含硫气体与氢氧化钙(石灰)反应,生成石膏,从而将二氧化硫从烟气中去除。
石膏湿法脱硫工艺步骤石膏湿法脱硫工艺一般包括以下几个步骤:1.石膏制备:石膏湿法脱硫的核心是石膏的产生。
在煤燃烧过程中,添加适量的氢氧化钙(石灰),与燃烧后产生的含硫气体发生反应生成石膏。
石膏的生成需要确保燃烧炉内煤的燃烧充分以及石灰与含硫气体之间的充分接触。
2.悬浮液准备:石膏湿法脱硫还需要准备悬浮液,用于吸收煤燃烧后产生的含硫气体。
悬浮液一般由水和石膏混合而成,具有较高的饱和度和稳定性。
3.烟气洗涤:将产生的烟气通过湿式脱硫器洗涤,烟气中的二氧化硫会与悬浮液中的氢氧化钙反应生成石膏。
石膏会沉淀下来,而洗净后的烟气则排出湿式脱硫器。
4.石膏处理:洗涤后的石膏含有较高的悬浮物,需要经过沉淀、浓缩、脱水等处理步骤,去除多余的水分和杂质,最终形成可用于其他工业用途的石膏产品。
石膏湿法脱硫系统设备石膏湿法脱硫系统设备包括以下几个主要组成部分:1.烟气入口:将含二氧化硫的烟气引入湿式脱硫器。
2.湿式脱硫器:湿式脱硫器是石膏湿法脱硫的关键设备,用于将二氧化硫从烟气中去除。
湿式脱硫器内部通常由喷射塔和吸收塔组成,喷射塔用于将悬浮液喷入烟气中,吸收塔则用于实现二氧化硫和氢氧化钙的反应。
3.石膏处理系统:石膏处理系统用于处理洗涤后的石膏。
该系统通常包括沉淀池、浓缩器和脱水设备等组件。
4.烟气出口:处理后的烟气从石膏湿法脱硫系统中排出,经过进一步处理后可达到环境排放标准。
5.控制系统:用于监控和控制石膏湿法脱硫工艺的运行,调节喷射液流量、温度等参数,确保系统的稳定性和高效运行。
石膏湿法脱硫工艺的优势和应用石膏湿法脱硫工艺具有以下几个优势:1.高效脱硫效果:石膏湿法脱硫工艺能够将烟气中的二氧化硫含量降低到较低的水平,满足环境排放标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 石灰石-石膏湿法脱硫工艺的 理论基础
12
工艺过程
化学反应
向吸收塔添加石灰石浆液 石灰石溶解
浆液喷淋或鼓泡 向吸收塔鼓入氧化空气
SO2的吸收 亚硫酸盐的氧化
浆液循环、搅拌
硫酸盐的形成及 石膏结晶
13
主要化学反应:
吸收: SO2+H2O H++HSO3-H++SO32 溶解: CaCO3 + H+ Ca2+ +HCO3 中和: HCO3- + H+ CO2+ H2O 氧化: SO32- +O2 SO42 结晶: Ca2+ +SO32- + H2O CaSO3·1/2H2O Ca2+ +SO42- + H2O CaSO4·2H2O
维护的能力和效果;供应商的技术实力、管理水平、合 同执行情况、售后服务、信誉等。
5
1 脱硫技术概述
6
《火电厂烟气脱硫关键技术与设备国产化规划要点》 中推荐的烟气脱硫技术
干法及 半干法
湿法
方法名称
旋转喷雾干燥法 LIFAC法 循环流化床 电子束照射法 氨水洗涤法 海水脱硫 石灰石-石膏湿法
工程实例
石灰石-石膏湿法脱硫 工艺及系统设备介绍
1
目录
1. 脱硫技术概述 2. 石灰石-石膏湿法脱硫的理论基础 3. 石灰石-石膏湿法脱硫系统组成及
主要设备介绍 4. 湿法脱硫的主要工艺参数辨识 5. 湿法脱硫装置运行中常见的问题
2
依据
HJ/T 179-2005《火电厂烟气脱硫工程技术规范 石灰石/石 灰-石膏法》
2. 设备评估。重点评估脱硫主设备及主要辅助设备的国产 化情况、设备参数选择合理性;事故、故障、维修状况; 磨损、积垢、腐蚀情况等。
3. 系统性能评估。重点评估系统匹配程度、装置布置和设 备参数选择合理性、系统可靠性、物耗水平、副产品品 质及利用、废水排放量及水质、二次污染等。
4. 经济性评估。重点评估工程及设备造价、运行费用等。 5. 管理水平评估。重点评估使用方对脱硫装置管理、运行、
8
石灰石-石膏湿法脱硫的主要特点
1) 脱硫效率高。脱硫后烟气中二氧化硫、烟尘大大 减少。
2) 技术成熟,运行可靠性好。国外投运率一般可达 98%以上,
3) 对煤种适应性强。 4) 占地面积大,一次性建设投资相对较大。 5) 吸收剂资源丰富,价格便宜。 6) 脱硫副产物便于综合利用。 7) 技术进步快。
DL/T5196-2004 《火力发电厂烟气脱硫设计技术规程》 DL/T 943-2005 《烟气湿法脱硫用石灰石粉反应速率的测定》 DL/T 986-2005 《湿法烟气脱硫工艺性能检测技术规范》 DL/T997-2006《火电厂石灰石-石膏湿法脱硫废水水质控制
指标》06-10-1实行 DL/T998-2006《石灰石-石膏湿法脱硫装置性能验收试验规
范》06-10-1实行
3
国家经贸委2000年2月《火电厂烟气脱硫关 键技术与设备国产化规划要点》
——脱硫工艺的选择 ——设计、设备国产化的目标
国家发改委2005年5月《关于加快火电厂烟 气脱硫产业化发展的若干意见》
——规范脱硫市场 ——开展后评估
4
后评估的主要内容
1. 工艺技术评估。重点评估工艺技术的先进性、可靠性和 适用性。
16
去除率【%】
SO2去除率与燃料S量的关系
92.0
设计点
91.0
90.0
89.0
校核点
88.0
87.0 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40
燃料含S量【%】
17
18
(2)石灰石粉品质
CaCO3纯度、MgO、Al2O3、 SiO2 颗粒度
9
塔型
单回路 喷淋塔 双回路 喷淋塔
比晓夫塔
液柱塔
鼓泡塔
特点
实例
塔的上部是喷淋层; 塔的中部为吸收区; 浆液池下部为氧化区
IHI、B&W、 SteinmÜller、AE、 ABB、MASULEX
双循环回路运行。下循环pH值低, 美国Research有利于氧化反应及石膏生成,上循 Cottrell公司和德国 环pH值高,有利于吸收反应进行 诺尔-克尔兹公司
浆液池分上下两个区,上部氧化区 低pH值运行;下部新加入吸收剂, 山东三融 pH值较高,有利于吸收反应
浆液从下往上喷射,形成树状的液 日本三菱重工,
注,液注在上升与下落过程中重复 接触烟气
华能珞璜二期
将烟气直接通到浆液中,通过烟气 日本川崎
在浆液中鼓起的气泡与浆液进行接 触反应
广东台山电厂
10
11
3) 在200MW及以上机组采用干法、半干法或其它一次性投资 较低的成熟技术,应进行充分论证,并提供国内外已有相 同或更大容量的烟气脱硫设施成功投运的实例。
4) 燃用含硫量小于1%煤的海滨电厂,在海水碱度满足工艺要 求、海域环境影响评价通过国家有关部门审查,并经全面 技术经济比较后,可以考虑采用海水法脱硫工艺。
14
影响脱硫效率的因素
一、参与脱硫反应的物质(烟气、石灰石粉、 工艺水)二、Leabharlann 行控制(pH,停留时间)15
(1)烟气与脱硫效率
▪ FGD入口SO2浓度 ▪ HCl、HF浓度 CaCO3 +2 HCl<==>CaCl2+ CO2 +H2O CaCO3 +2 HF <==>CaF2 + CO2 +H2O ▪ 烟尘 ▪ 烟温
山东黄岛 钱清、南京下关 云南大唐开远300MW 杭州协联热电 天津碱厂(60MW) 深圳妈湾、漳州后石 华能珞璜、杭州半山
7
《关于加快火电厂烟气脱硫产业化发展的若干意见》
1) 燃用含硫量大于1%煤且容量大于200MW(含200MW)的 机组,应重点考虑采用石灰石-石膏湿法脱硫工艺技术。
2) 燃用含硫量小于1%煤并且容量小于200MW的机组,可考 虑采用干法、半干法或其它一次性投资较低的成熟技术。
低硫煤250目(55 μm ),90%过筛率 高硫煤325目(44μm),90%过筛率 活性(反应速率) 1)pH =5.5,转化分数=80%; 2)pH = 5.5,6小时; 3) 恒定加酸,比较pH变化曲线
19
石灰石成分要求
CaO MgO
江苏太仓 国华宁海
B&W、 SteinmÜller
广东沙角A
52.5% 51.5%
51.554.88%
50-52%
0.2% 0.4-0.9% 0.19-0.43% 2%