说课教案几何概型

合集下载

教案:几何概型.docx

教案:几何概型.docx

教案课题:3.3.1几何概型一、教学目标1、了解几何概型的概念及基木特点;熟练掌握几何概型屮概率的计算公式:会进行简单的儿何概率计算。

2、通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问3、体会数学知识与现实世畀的联系,培养逻辑推理能力。

二、教学重点与难点1、重点掌握几何概型的判断及几何概率的计算公式。

2、难点正确进行几何概型的判断及利用几何概型解题。

三、教学过程51、复习回顾:复习古典概型的特点及古典概型概率的计算公式:P=事件A包含的基本事件数/试验的基本事件总数教师强调:古典概型屮基本事件只能有有限个。

52、讲授新课3.3.1 几何概型(一)、概念及公式1、情景引入及问题提出(1)、随意抛掷一枚均匀硬币两次,求两次出现和同面的概率?(答案:P=l/2 )(2)、试验h収一根长度为3m的绳子,拉直后在任意位置剪断,问剪得两段的长度都不小lcm 的概率有多大?试验2:射箭比赛的箭靶涂有五个彩色得分环,从外向内为口色,黑色,蓝色、红色,靶心是金色。

金色靶心叫“黄心”。

奥运会的比赛靶面直径为122cm,靶心直征为12.2cim运刼员在70m外射箭。

假设射箭都射中靶面内任何一点都是等可能的。

问射中黄心的概率为多少?试验3:在1L高小麦种了里混入了一粒带麦锈病的种了,从屮随机取岀20mL,含有麦锈病种子的概率是多少?(3)、问题(1)、(2)、中的基本事件有什么特点?两事件的本质区别是什么?(4)、什么是儿何概型?它有什么特点?(5)、如何计算儿何概型的概率?有什么样的公式?(6)、古典概型和几何概型有什么区别和联系?下面是师生互动环节:师生共同分析、讨论各个问题的结果,引出几何概型的定义和几何概型概率的计算公式。

2、儿何概型定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模空为儿何概率模型,简称儿何概型。

3、儿何概型的基本特点a.试验中所有可能岀现的结果(基木事件)有无限多个;b.每个基本出现的可能性相等。

几何概型教案

几何概型教案

几何概型教案教案内容:一、教学目标:1. 知识目标:掌握几何概念和定理,如平行线、垂直线、等腰三角形等。

2. 技能目标:能够应用几何概念解决实际问题,如计算线段长度、角度大小等。

3. 情感目标:培养学生对几何学科的兴趣,培养学生的逻辑思维和空间想象能力。

二、教学重难点:1. 重点:平行线与垂直线的概念和判定方法。

2. 难点:应用几何定理解决实际问题。

三、教学方法:1. 概念讲解法:通过教师讲解和示意图,引导学生理解几何概念和关系。

2. 问题解决法:给出实际问题,让学生通过分析和计算,应用几何知识解决问题。

3. 合作学习法:鼓励学生进行小组合作,通过互相讨论和合作完成练习和问题解答。

四、教学过程:1. 导入:通过展示一幅几何图形,引导学生观察并思考,提问如下:a. 你能发现图中有哪些几何形状?b. 是否能找到两条平行线?找出它们的特点。

c. 是否能找到两条垂直线?找出它们的特点。

2. 概念讲解:a. 平行线的定义和判定方法:通过教师讲解和示意图,引导学生理解平行线的概念和判定方法。

b. 垂直线的定义和判定方法:通过教师讲解和示意图,引导学生理解垂直线的概念和判定方法。

c. 其他几何概念和定理的讲解:根据教材内容,讲解其他几何概念和定理,如等腰三角形、直角三角形等。

3. 练习与实践:a. 给出一些练习题,让学生运用所学的几何知识计算线段长度、角度大小等。

b. 给出一些实际问题,让学生应用几何知识解决问题,培养学生的应用能力和解决问题的能力。

4. 总结与归纳:通过学生讨论和总结,归纳几何概念和定理的要点,并与学生一起整理笔记,形成学习资料。

五、教学评价:通过课堂练习和问题解答,评价学生对几何概念和定理的理解和应用能力。

六、拓展延伸:推荐学生参阅几何学方面的相关书籍或网站,拓宽他们的几何知识。

七、教学反思:对本节课的教学进行回顾和反思,总结教学中的不足之处,并提出改进措施。

《几何概型》说课稿(附教学设计)

《几何概型》说课稿(附教学设计)

几何概型》说课稿、本课数学内容的本质、地位、作用分析:前面已经学习过了第二章统计和第三章概率的前两节内容,概率是研究随机现象规律的学科,它为应用数学解决实际问题提供了新的思想和方法,同时为统计学的发展提供了理论基础。

由于概率统计的应用性强,有利于培养学生的应用意识和动手能力,在数学课程中,加强概率统计的份量成为必然。

几何概型”这一节就是新增加的内容,是安排在“古典概型”之后的第二类概率模型,是对古典概型内容的进一步拓展,是等可能事件的概念从有限向无限的延伸,同时也更广泛地满足了随机模拟的需要。

几何概型的关键是建立合理的几何模型解决相关概率问题,通过建立基本事件与相应元素的对应,达到求解相关概率问题的目的,体现了数形结合的数学思想,是概率问题与几何问题的一种完美结合。

本节内容极能体现新课程理念,可以成为“知识与技能、过程与方法及情感态度价值观”三个纬度目标有机融合的重要载体,从而实现三位一体的课程功能。

二、教学目标分析:根据上述教材分析,结合学生已有的认知结构,我确定本节课的三维教学目标如下:1)知识与技能:了解几何概型的两个特点;能识别实际问题中的概率模型是否为几何概型;会利用几何概型公式对简单的几何概型问题进行计算。

2)过程与方法:学生通过自主探究,经历概念产生与发展的过程,体验数学发现与创造的历程,进步培养学生观察、分析、联想、类比等逻辑推理能力,渗透化归、数形结合等思想方法,提高学生的数学素养。

(3)情感、态度与价值观:本节课选材取例均来源于生活,学生积极参与探究,进一步树立数学是来源于生活而又服务于生活的意识,把丰富的生活感知与数学理性有机融合起来,让学生感受生活中处处有数学,体会数学对自然与社会所产生的作用,使学生充分认识数学的价值,习惯用数学的眼光解决生活中的问题。

三、教学重难点分析:几何概型概念中的核心是它的两个特征:1)试验中所有可能出现的基本事件有无限多个。

2)每个基本事件出现的可能性相等(等可能性)。

全国高中数学优质课:几何概型 教学设计教案说课稿

全国高中数学优质课:几何概型 教学设计教案说课稿

几何概型(第1课时)一、教学目标:1.知识与技能:(1)通过本节课的学习使学生掌握几何概型的特点,明确几何概型与古典概型的区别。

(2)通过学生玩转盘游戏,分析得出几何概型概率计算公式。

(3)通过例题教学,使学生能掌握几何概型概率计算公式的应用。

2.过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

3.情感、态度与价值观:通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯,初步形成建立数学模型的能力。

二、教学重点与难点:重点:1、几何概型概率计算公式及应用。

2、如何利用几何图形,把问题转化为几何概型问题。

难点:正确判断几何概型并求出概率。

三、学法与教学用具:我认为作为新增内容,几何概型在高考中必然要有所体现,但是大纲要求仅为了解、以及会简单的应用,所以会在填空或选择题中出现。

而向这样的条件不清晰,甚至基本事件不是等可能的几何概型,需要讨论的情况一定要避免出现。

教案说明一、教学目标的定位:本课选自人教版A版(必修三)第三章《概率》中“几何概型”第一课时。

本章的核心是运用数学方法去研究不确定现象的规律,让学生初步形成建模的数学思想,学会用随机的观念去观察、分析研究客观世界的变化规律,并获取认识世界的初步知识和科学方法。

依据高中数学新课程标准的要求、本课教材的特点、学生的实际情况等方针,我认为这一节课要达到的学习目标可确定为:1.知识与技能:(1)通过本节课的学习使学生掌握几何概型的特点,明确几何概型与古典概型的区别。

(2)通过学生玩转盘游戏,分析得出几何概型概率计算公式。

(3)通过例题教学,使学生能掌握几何概型概率计算公式的应用。

2.过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

高中数学《几何概型》教案

高中数学《几何概型》教案

高中数学《几何概型》教案一、教学目标1、建立几何概型的概念,了解点、线、面、几何体的基本概念。

2、学习古希腊的几何概型理论,理解“公理化”证明的基本方法。

3、掌握平面几何的基本定理,如欧氏几何五大公设、垂线、角平分线定理等。

4、培养学生思维的逻辑性,进一步提高分析解决问题的能力,以及形象思维的能力和几何思维的能力。

二、教学重点和难点1、平面几何的基本定理。

2、学习古希腊几何学的公理化方法,认识并应用公理、定义、定理、证明等,进一步提高学生的推理思维。

三、教学方法1、理论结合实践,通过练习掌握平面几何的基本定理,培养学生的推导思维。

2、利用黑板画图辅助教学,加强学生的形象思维。

3、倡导学生积极参与课堂讨论,相互分享探讨问题,提高学习效果。

四、教学内容与步骤第一节、几何概念的复习1、点、线、面、几何体的基本概念。

2、点、线、面的分类。

3、几何图形的构造方法。

4、几何问题的解决方法。

第二节、平面几何基本定理1、欧氏几何五大公设的理解和应用。

2、角平分线的定理及其应用。

3、垂线定理及其应用。

4、圆的性质与应用。

5、全等三角形的性质。

第三节、公理化证明的基本方法1、公理与定义的概念及其作用。

2、定理的定义和证明方法。

3、数学证明思路的讲解。

4、实例分析与案例练习。

五、教学手段黑板,笔,直尺,量角器,地球仪等。

六、教学评价1、通过课堂练习加深对平面几何的了解和掌握。

2、通过提高几何思维的能力和推理逻辑的能力,进一步提高学生的数学水平和思维能力。

3、根据课堂互动、单词测试和综合评定等方式,对学生的学习情况进行评价。

说课教案 几何概型.

说课教案 几何概型.

说课教案几何概型一.教材分析1.教材地位与作用本节课是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸,使概率的公理化定义更加完备。

尽管本节内容在课程标准中的要求仅为了解和会简单的应用,但蕴含的数形结合和数学建模的思想凸显了其重要性。

2.教学目标知识与技能:了解几何概型的两个特征,会识别几何概型,并能正确求解概率。

过程与方法:通过问题探究,动手实验,辨析异同,发现概念,学生体验“做数学”的乐趣和概念生成的过程。

学生对照古典概型,类比推理,能提出解决几何概型问题的可行性想法。

情感、态度与价值观:通过设置的故事情境,调动学生的兴趣,积极的进行自主探究,并进行合作交流。

让学生认识到数学与我们的生活息息相关,数学是有用的、是自然的、是清楚的,也是丰富多彩的。

3.重点难点重点:几何概型的两个特征,几何概型的识别和计算公式;难点:建立合理的几何模型求解概率。

二.学情分析学生的认知水平有了一定的基础,前面学习了随机事件的概率和古典概型,并且掌握了二元一次不等式表示的平面区域问题。

但学生的抽象思维能力还有待于进一步提高,因此在从古典概型向几何概型的过渡时,如何将问题的实际背景转化为“几何度量”,学生会有一些困难和疑惑,这就需要恰当的引导、合理的解释和明确的辨析。

三.学法指导(附导学案)本节课采用发现法教学和学案导学相结合的方法。

通过精心设计的导学案,以故事的形式展现问题,激发学生的求知欲。

学生不仅在课前自主的探究和预习,而且在课堂中通过动手实验,合作交流,发现问题,提倡学生扮演“老师”进行讲评,把课堂变成教师导演学生主演的数学学习活动场所。

我将学生的导学案附在后面,恳请各位专家给予指导。

四.教学过程数学教学是数学活动的教学,我将整个导与学的过程分为以下四个环节:1.创设情境,温故知新,2.探究实验,构建概念,3.例题分析,推广应用,4.巩固升华,总结概括。

1.创设情境 温故知新(3分钟)青青草原上“喜洋洋”超市举行购物抽奖的大型促销活动,红太狼购物后在抽奖时,有点犯蒙了。

高中数学几何概型教案

高中数学几何概型教案

高中数学几何概型教案一、教学目标1. 让学生理解几何概型的概念,掌握几何概型的基本性质和特点。

2. 培养学生运用几何概型解决实际问题的能力。

3. 通过对几何概型的学习,提高学生的逻辑思维能力和空间想象能力。

二、教学内容1. 几何概型的定义与特点2. 几何概型的分类3. 几何概型的概率计算方法4. 几何概型在实际问题中的应用三、教学重点与难点1. 重点:几何概型的概念、特点和概率计算方法。

2. 难点:几何概型在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究几何概型的相关知识。

2. 利用多媒体课件,辅助教学,增强学生对几何概型的空间想象力。

3. 结合实际例子,让学生感受几何概型在生活中的应用。

五、教学过程1. 导入新课:通过一个简单的抽奖活动,引导学生思考抽奖活动的概率问题,从而引入几何概型的概念。

2. 自主学习:让学生阅读教材,理解几何概型的定义与特点。

3. 课堂讲解:讲解几何概型的分类和概率计算方法。

4. 课堂练习:让学生完成一些有关几何概型的练习题,巩固所学知识。

5. 应用拓展:结合实际例子,让学生运用几何概型解决实际问题。

六、教学评价1. 评价学生对几何概型的概念、特点和概率计算方法的掌握程度。

2. 评价学生运用几何概型解决实际问题的能力。

3. 评价学生在课堂练习中的表现,包括解题速度和正确率。

4. 评价学生在小组讨论中的参与程度和合作能力。

七、教学资源1. 教材:高中数学几何概型相关内容。

2. 多媒体课件:用于展示几何概型的图形和实例。

3. 练习题库:用于课堂练习和课后作业。

4. 实际案例:用于引导学生将几何概型应用于实际问题。

八、教学进度安排1. 第一课时:介绍几何概型的概念和特点。

2. 第二课时:讲解几何概型的分类和概率计算方法。

3. 第三课时:课堂练习和应用拓展。

九、教学反思1. 反思教学内容是否适合学生的认知水平。

2. 反思教学方法是否有效,是否能够激发学生的兴趣和参与度。

公开课几何概型教案

公开课几何概型教案

公开课几何概型教案一、教学目标1. 让学生理解几何概型的概念,掌握几何概型的特征。

2. 培养学生运用几何概型解决问题的能力。

3. 提高学生对数学的兴趣,培养学生的创新思维。

二、教学内容1. 几何概型的定义及特征2. 几何概型的分类3. 几何概型的应用三、教学重点与难点1. 重点:几何概型的概念、特征及分类。

2. 难点:几何概型的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究几何概型的特征。

2. 利用案例分析法,让学生通过实例理解几何概型的应用。

3. 采用小组讨论法,培养学生合作解决问题的能力。

五、教学过程1. 导入:通过生活中的实例,引导学生思考几何概型的概念。

2. 新课导入:讲解几何概型的定义、特征及分类。

3. 案例分析:分析具体实例,让学生理解几何概型的应用。

4. 课堂练习:设计相关练习题,让学生巩固所学知识。

5. 小组讨论:分组讨论几何概型在实际问题中的应用。

6. 总结与反思:回顾本节课所学内容,让学生分享自己的收获。

7. 作业布置:布置课后练习,巩固所学知识。

六、教学评估1. 课堂提问:通过提问了解学生对几何概型的理解和掌握程度。

2. 练习题:检查学生完成练习题的情况,评估学生对几何概型的应用能力。

3. 小组讨论:观察学生在小组讨论中的表现,评估学生的合作能力和解决问题的能力。

七、教学拓展1. 引导学生思考几何概型在实际生活中的应用,提高学生的实际问题解决能力。

2. 鼓励学生参加数学竞赛或研究项目,提升学生的创新能力。

八、教学资源1. 教学PPT:提供清晰的课件,帮助学生理解几何概型的概念和应用。

2. 练习题库:提供丰富的练习题,帮助学生巩固所学知识。

3. 案例资料:提供相关案例资料,方便学生分析和学习几何概型的应用。

九、教学反馈1. 课堂反馈:课后及时与学生沟通,了解学生在课堂上的学习情况,为后续教学提供参考。

2. 作业反馈:批改学生作业,及时给予反馈,指出学生的错误,帮助学生巩固知识。

几何概型 说课稿 教案 教学设计

几何概型  说课稿  教案 教学设计

几何概型【教学目标】1.了解几何概型与古典概型的区别.2.理解几何概型的定义及其特点.3.会用几何概型的概率计算公式求几何概型的概率.【教法指导】本节重点是几何概型的特点及概念;难点是应用几何概型的概率公式求概率;本节知识的主要学习方法是动手与观察,思考与交流,归纳与总结.加强新旧知识之间的联系,培养自己分析问题、解决问题的能力,从而获得学习数学的方法.【教学过程】一、知识回顾1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.概率公式在几何概型中,事件A的概率计算公式如下想一想几何概型的概率计算与构成事件的区域形状有关吗?概念理解(1)几何概型也可以如下理解对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型.( ) (2)在一个正方形区域内任取一点的概率是零.( )(3)[2012·昆明模拟] 在线段[0,3]上任投一点,则此点坐标小于1的概率为13.( )几何概型概率的适用情况和计算步骤 (1)适用情况几何概型用 计算事件发生的概率适用于有无限多个试验结果的情况,每种结果的出现也要求必须是等可能的.而且事件发生在一个有明确范围的区域中,其概率与构成该事件区域的长度(面积或体积)成比例. (2)计算步骤①判断是否是几何概型,尤其是判断等可能性,比古典概型更难于判断.②计算基本事件空间与事件A 所含的基本事件对应的区域的几何度量(长度、面积或体积).这是计算的难点. ③利用概率公式计算. 特别提示在使用几何概型中,事件A的概率计算公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积时,公式中分子和分母涉及的几何度量一定要对等.即若一个是长度,则另一个也是长度.一个若是面积,则另一个也必然是面积,同样,一个若是体积,另一个也必然是体积.题型一与长度有关的几何概型例、(1)如图A,B两盏路灯之间的距离是30米,由于光线较暗,想在其间再随意安装两盏路灯C、D,问A与C,B与D之间的距离都不小于10米的概率是多少?(2)已知函数f(x)=log2x,在区间[12,2]上随机取一x0,则使得f(x0)≥0的概率为________.解析f(x)=log2x≥0可以得出x≥1,所以在区间⎣⎢⎡⎦⎥⎤12,2上使f(x)≥0的范围为[1,2],所以使得f(x0)≥0的概率为P=2-12-12=23.答案23规律方法将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型(长度比长度) 求解. 变式训练一个路口的红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是多少? (1)红灯亮; (2)黄灯亮; (3)不是红灯亮.【解析】 在75秒内,每一时刻到达路口亮灯的时间是等可能的,属于几何概型.(1)P =红灯亮的时间全部时间=3030+40+5=25.(2)P =黄灯亮的时间全部时间=575=115.(3)P =不是红灯亮的时间全部时间=黄灯亮或绿灯亮的时间全部时间=4575=35,或P =1-P (红灯亮)=1-25=35.题型二 与面积有关的几何概型例、(1)一只海豚在水池中自由游弋,水池为长30 m ,宽20 m 的长方形,求此刻海豚嘴尖离岸边不超过2 m 的概率.总结规律、得出方法此类几何概型题,关键是要构造出随机事件对应的几何图形,利用图形的几何特征找出两个“面积”,套用几何概型公式,从而求得随机事件的概率. 变式训练(1)如图,一个等腰直角三角形的直角边长为2,分别以三个顶点为圆心,1为半径在三角形内作圆弧,三段圆弧与斜边围成区域M (图中白色部分).若在此三角形内随机取一点P ,则点P 落在区域M 内的概率为________.【答案】 1-π4【解析】 由题意知题图中的阴影部分的面积相当于半径为1的半圆面积,即阴影部分面积为π2,又易知直角三角形的面积为2,所以区域M 的面积为2-π2.故所求概率为2-π22=1-π4.(2)已知x ≤2, y ≤2,点P 的坐标为(x ,y),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.题型三 与体积、角度有关的几何概型例、(1)已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,在正方体内随机取一点M.(1)求点M 落在三棱锥B 1-A 1BC 1内的概率;[ 学_ _ ] (2)求点M 与平面ABCD 及平面A 1B 1C 1D 1的距离都大于a3的概率;(3)求使四棱锥M -ABCD 的体积小于16a 3的概率.总结规律、提高升华这类题目一般需要分清题中的条件,提炼出几何体的形状,并找出总体积是多少.以及所求的事件占有的几何体是什么几何体并计算出体积.课堂小结1.几何概型与古典概型的区别.2.几何概型的定义及其特点.3.应用几何概型的概率计算公式求几何概型的概率.。

《必修三《几何概型》教案

《必修三《几何概型》教案

《必修三《几何概型》教案教案:几何概型一、教学目标1.知识与技能:-了解几何概型的基本概念和相关属性;-掌握计算几何概型的可能性和概率;-能够运用几何概型解决实际问题。

2.态度与价值观:-培养学生对几何概型的兴趣和好奇心;-培养学生合作、探究和创新精神。

二、教学重点和难点1.重点:-几何概型的基本概念和相关属性;-计算几何概型的可能性和概率。

2.难点:-运用几何概型解决实际问题。

三、教学过程1.教学准备:-教师准备PPT、绘制几何概型相关图形。

2.导入与引入:-向学生提问:“大家了解什么是几何概型吗?”-学生回答后,教师进行引导,介绍几何概型的基本概念和相关属性。

3.概念讲解:-讲解几何概型的基本概念,例如:平面上点、线、面,三维空间中体等;-讲解几何概型的相关属性,例如:相似、相等等;-通过示例和图像说明几何概型的应用,如建筑设计、工程测量等。

4.练习与讨论:-让学生通过绘制几何概型图形,进行练习;-学生分组讨论几何概型的相关问题,例如:如何计算不同形状的房屋占地面积等。

5.案例分析:-教师给出一个实际生活中的案例,例如:如何计算一个无规则形状的花坛的面积;-学生利用几何概型的知识和技巧,分析并解决这个问题;-学生分组展示自己的解决过程和答案,并进行讨论。

6.解决问题与拓展:-继续给学生出一些难度适中的问题,让学生运用几何概型的知识和技巧解决;-引导学生思考如何拓展几何概型的应用领域,发现几何概型在日常生活中的其他应用。

四、课堂小结-教师对本课的教学内容和学生的表现进行总结;-检查学生对几何概型的掌握情况,回答学生提出的问题;-引导学生对几何概型的学习进行反思和思考。

五、作业布置-布置相关练习题,要求学生运用几何概型的知识和技巧解答;-要求学生写一篇小结,总结几何概型的基本概念和相关属性。

六、教学反思-分析课堂教学过程中的不足和问题;-总结有效的教学方法和策略,为下一节课的教学做好准备。

公开课几何概型教案

公开课几何概型教案

公开课几何概型教案一、教学目标1. 让学生理解几何概型的概念,掌握其基本性质和判定方法。

2. 培养学生运用几何概型解决实际问题的能力。

3. 提高学生对概率论的兴趣,培养学生的逻辑思维和抽象思维能力。

二、教学内容1. 几何概型的定义和基本性质2. 几何概型的判定方法3. 几何概型在实际问题中的应用三、教学重点与难点1. 教学重点:几何概型的定义、基本性质和判定方法。

2. 教学难点:几何概型的判定方法及其在实际问题中的应用。

四、教学方法与手段1. 教学方法:讲解法、案例分析法、讨论法。

2. 教学手段:黑板、PPT、教学案例。

五、教学过程1. 导入新课:通过一个简单的实例,引导学生思考几何概型的概念。

2. 讲解几何概型的定义和基本性质:结合实例,讲解几何概型的概念,引导学生理解其基本性质。

3. 讲解几何概型的判定方法:引导学生掌握几何概型的判定方法,并通过实例进行分析。

4. 应用案例分析:让学生运用几何概型解决实际问题,巩固所学知识。

5. 课堂小结:总结本节课的主要内容,强调几何概型在实际问题中的应用。

6. 课后作业:布置相关练习题,巩固所学知识。

六、教学拓展1. 对比几何概型和古典概型的区别和联系,让学生更好地理解两种概率模型。

2. 引入更复杂的多维几何概型,让学生了解几何概型的推广形式。

七、课堂互动1. 提问环节:在学习过程中,鼓励学生提问,及时解答学生心中的疑问。

2. 小组讨论:在学习几何概型的判定方法时,让学生分小组进行讨论,分享各自的解题思路。

八、教学评价1. 课后作业:通过布置相关练习题,检验学生对几何概型的理解和掌握程度。

2. 课堂表现:观察学生在课堂上的参与程度、提问和回答问题的表现,评价学生的学习效果。

九、教学反思1. 反思教学内容:根据学生的反馈,调整和优化教学内容,使其更符合学生的学习需求。

2. 反思教学方法:根据学生的参与情况和学习效果,调整教学方法,提高教学效果。

十、教学资源1. 教学PPT:制作精美的PPT,辅助讲解和展示几何概型的相关知识和案例。

几何概型 说课稿 教案 教学设计

几何概型  说课稿  教案 教学设计

一、概率与线性规划的交汇问题1假设你家订了一份报纸,送报人可能在早~7:30之间把报纸送到你家,你父亲离开家去上班的时间在早上8:00之间,如果把“你父亲在离开家之前能得到报纸”称为事件A P(A). 2. 甲乙两人相约上午8点到9点在某地会面,先到者等候另一人分钟,过时离去,求甲乙两人能会面的概率. 3. 将一长为18cm 的线段
Z R (2)(2)4P P x y 时,求点在区域时,求点在区域内的概率;
几何概型适用于试验结果是无穷多且事件是等可能发生的概率类几何概型主要用于解决长度、面积、体积有关的题目注意理解几何概型与古典概型的区别2x y 2[8,20]8a y x x a 若是区间内的任意一个整数,求对任意一个函数[1,10]在区间内随机取一个数,求这个数是函数
2[0,5]log (1)1x 在区间内随机选一个数,求它是不等式
的解的概率.。

几何概型 说课稿 教案 教学设计

几何概型  说课稿  教案  教学设计

几何概型教学目标1.知识目标①通过探究,让学生理解几何概型试验的基本特征,并与古典概型相区别;②理解并掌握几何概型的定义;③会求简单的几何概型试验的概率.2.情感目标①让学生了解几何概型的意义,加强与现实生活的联系,以学的态度评价身边的一些随机现象;②通过学习,让学生体会生活和学习中与几何概型有关的实例,增强学生解决实际问题的能力;同时,适当地增加学生合作学习交流的机会,培养学生的合作能力.重点难点重点:几何概型概念的理解和公式的运用;难点:几何概型的应用.只有掌握了几何概型的概念及特点,才能够判断一个问题是否是几何概型,才能够用几何概型的概率公式去解决这个问题.而在应用公式的过程中,几何度量的正确选取是难点之一,要好好把握.教学过程1.问题引入引例1北京奥运会圆满闭幕,某玩具厂商为推销其生产的福娃玩具,扩大知名度,特举办了一次有奖活动:顾客随意掷两颗骰子,如果点数之和大于10,则可获得一套福娃玩具,问顾客能得到一套福娃玩具的概率是多少?设计意图:复习巩固古典概型的特点及其概率公式,为几何概型的引入做好铺垫.引例2厂商为了增强活动的趣味性,改变了活动方式,设立了一个可以自由转动的转盘(如图1)转盘被等分成8个扇形区域.顾客随意转动转盘,如果转盘停止转动时,指针正好指向阴影区域,顾客则可获得一套福娃玩具.问顾客能得到一套福娃玩具的概率是多少?设计意图:1.以实际问题引发学生的学习兴趣和求知欲望;2.以此为铺垫,通过具体问题情境引入课题;3.简单直观,符合学生的思维习惯和认知规律.问题提出后,学生根据日常生活经验很容易回答:“由面积比计算出概率为1/4.”提问:为什么会想到用面积之比来解决问题的呢?这样做有什么理论依据吗?学生思考,回答:“上一节刚学习的古典概型的概率就是由事件所包含的基本事件数占试验的基本事件总数的比例来解决的,所以联想到用面积的比例来解决.”教师继续提问:这个问题是古典概型吗?通过提问,引导学生回顾古典概型的特点:有限性和等可能性.发现这个问题虽然貌似古典概型,但是由于这个问题中的基本事件应该是“指针指向的位置”,而不是“指针指向的区域”,所以有无限多种可能,不满足有限性这个特点,因此不是古典概型.也就是说,我们不能用古典概型的概率公式去解决这个问题,刚才我们的解答只是猜测.到这里,我们自然而然地需要一个理论依据去支持这个猜测,从而引入几何概型的概念.2.概念形成记引例2中的事件为“指针指向阴影区域”,通过刚才的分析,我们发现事件包含的基本事件有无数个,而试验的基本事件总数也是无数个.如果我们仿照古典概型的概率公式,用事件包含的基本事件个数与试验的基本事件总数的比例来解决这个问题,那样就会出现“无数比无数”的情况,没有办法求解.因此,我们需要一个量,来度量事件和,使这个比例式可以操作,这个量就称为“几何度量”.这就得到了几何概型的概率公式,其中表示区域的几何度量,表示子区域的几何度量.引例2就可以选取面积做几何度量来解决.通过上面的分析,引导学生发现:几何概型与古典概型的区别在于它的试验结果不是有限个,但是它的试验结果在一个区域内均匀地分布,因此它满足无限性和等可能性的特征.其求解思路与古典概型相似,都属于“比例解法”.3. 探索归纳问题1 在500ml水中有一个草履虫,现从中随机抽取2ml水样放到显微镜下观察,求发现草履虫的概率. 问题2 取一根长为4米的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不少于1米的概率是多少?设计意图:1.让学生分别体会用体积、长度之比来度量概率,加深学生对几何概型概念的理解;2.强化解决几何概型问题的关键是抓住问题的实质,找出临界状态。

教师资格考试高中数学说课教案几何概型.docx

教师资格考试高中数学说课教案几何概型.docx

高中数学说课教案:几何概型一、教材分析1.教材所处的地位和作用“几何概型”这一节内容是安排在“古典概型”之后的第二类概率模型,是对古典概型内容的进一步拓展,是等可能事件的概念从有限向无限的延伸。

此节内容是为更广泛地满足随机模拟的需要而在新课本中增加的,这是与以往教材安排上的最大的不同之处。

这充分体现了数学与实际生活的紧密关系,来源生活,而又高于生活。

同时也暗示了它在概率论中的重要作用,在高考中的题型的转变。

2、教学的重点和难点重点:几何概型概念的理解和公式的运用;难点:几何概型的应用.二、教学目标分析1.知识与技能目标①通过探究,让学生理解几何概型试验的基本特征,并与古典概型相区别;②理解并掌握几何概型的定义;③会求简单的几何概型试验的概率.2、过程与方法通过学习运用几何概型的过程,初步体会几何概型的含义,体验几何概型与古典概型的联系与区别。

3、情感、态度与价值观通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯。

三、教法与学法分析1、教法分析:结合本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、分析问题、解决问题等教学过程,观察对比、概括归纳几何概型的概念及其概率公式,再通过具体实际问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

利用多媒体辅助教学。

2、学法指导:以学生活动为主,引导学生在动手操作、实践探索、合作交流的基础上,充分调动学生学习的积极性和主动性。

结合本课的实际需要,作如下指导:对于概念,学会几何概型与古典概型的比较;立足基础知识和基本技能,掌握好典型例题;注意数形结合思想的运用,把抽象的问题转化为熟悉的几何概型。

四、教学过程分析㈠以境激情、导入新课课件展示问题1:一条长50米的xxxx线架于两电线杆之间,其中一个杆子上装有变压器.在暴风雨天气中,xxxx线遭到雷击的点是随机的.试求雷击点距离变压器不小于20米情况发生的概率.师生互动 1.教师引导学生从以下几个方面思考:1)本题中基本事件是指什么?2)基本事件的个数?3)满足条件的基本事件个数?2.学生交流回答;教师板书课题.「设计意图」①增强数学学习的趣味性,激发学生的学习兴趣;②在思考问题的过程中感受基本事件的无限性,发现其与古典概型的不同.③自然引入本节课课题-几何概型.课件展示问题2:如图所示的边长为2的正方形区域内有一个面积为1的心形区域现将一颗豆子随机地扔在正方形内计算它落在阴影部分的概率(不计豆子的面积且豆子都能落在正方形区域内)师生互动1. 教师引导学生从以下几个方面思考:1)本题中基本事件是指什么?2)基本事件的个数?3)满足条件的基本事件个数?4)上述两题中基本事件除了无限性外是否还等可能?2.学生交流讨论,师生共同得出几何概型的特点.3.教师提问:那么我们应该如何来计算上述两问题的概率呢?4.学生交流后回答5.利用动画演示问题2,若心形所在的位置发生改变或心型的形状发生改变(面积不变)是否会影响概率的大小6.学生相互交流得出结论7. 教师给出几何概型的定义及计算公式并利用两个引例解释几何概型中随机事件的概率大小与随机事件所在区域的形状,位置无关,只与该区域的大小有关.【定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型】【计算公式】「设计意图」①学会把实际问题抽象成数学模型,是形成和掌握概念的前提,也是培养学生观察分析的重要一步.②紧扣几何概型的特点是公式推导的关键,让学生经历事物从特殊到一般的认识过程,促使其认知结构不断完善.③在概念的形成环节中设计了两个不同的引例分别与长度及面积有关,让学生感受不同背景下的几何概型.④利用动画增强趣味性和直观性便于学生接受.㈡剖析例题、巩固深化课件展示例1.某人午觉醒来,发现表停了,他打开收音机,想听电台正点报时,求他等待的时间不多于10分钟的概率?师生互动1.教师提出问题:1)本题中基本事件是指什么?2)全部结果构成的区域是什么?3)构成事件的区域是什么?2.学生计算,教师板书解题过程.3.对学生中出现的不同解法给予表扬和点评.强调学生注意不管哪种解法都必须满足基本事件等可能性这个前提.「设计意图」求解几何概型的概率,最关键就是分析基本事件的构成以及“测。

高中数学《几何概型》教案、教学设计

高中数学《几何概型》教案、教学设计

高中数学《几何概型》教案、教学设计
一、教学目标
【知识与技能】
理解几何概型的特点,掌握几何概型的概率计算公式,并能应用公式解决实际问题。

【过程与方法】
经历归纳几何概型的特点以及推导几何概型的概率计算公式的过程,提升抽象概括能力与逻辑推理能力。

【情感、态度与价值观】
体会数学与生活的联系,养成良好的数学思维习惯。

二、教学重难点
【重点】几何概型的特点以及概率计算公式。

【难点】几何概型特点的归纳以及概率计算公式的推导。

三、教学过程
(一)导入新课
回顾古典概型。

出示问题情境:往一方格中投一个石子。

请学生思考石子可能落在哪里,如何求概率。

在学生明确事件所有的可能结果是无限个,无法用古典概型求解的情况下,说明今天这节课将解决这样的问题。

引出课题。

(二)讲解新知
出示问题情境:如图有两个转盘,甲乙两人玩转盘游戏,规定当指针指向
区域时,甲获胜,否则乙获胜。

请学生在两种情况下分别求出甲获胜的概率是多少。

(四)小结作业
小结:今天有什么收获?回顾几何概型的特点以及概率计算公式。

作业:从几何概型的角度思考,是否概率为0的事件都是不可能事件,概率为1的事件都是必然事件?
四、板书设计。

《几何概型》教学设计

《几何概型》教学设计

《几何概型》教学设计课题:几何概型教学目标:1.理解几何概型的定义和性质;2.掌握计算几何概型的方法;3.培养几何思维和解决几何问题的能力。

教学内容:1.几何概型的概念和性质;2.几何概型的计算方法;3.几何概型在实际中的应用。

教学重点:1.理解几何概型的定义和性质;2.掌握计算几何概型的方法。

教学难点:1.培养几何思维和解决几何问题的能力;2.几何概型在实际中的应用。

教学方法:1.归纳法;2.实例分析法;3.案例研究法。

教学准备:1.教学PPT;2.教学实例;3.相关教学素材。

教学过程:Step 1 引入问题通过观察教学实例,引入几何概型的问题。

例如:小明有一条3cm长的线段,他将这条线段随机地折叠,折叠了3次后,折痕上共有几个点?引导学生思考如何解决这个问题。

Step 2 引入几何概型的定义和性质通过引入问题,引出几何概型的定义和性质。

几何概型是指在平面上的一些点、线、面排列组合形成的图形。

几何概型具有以下性质:1.几何概型中的图形是由点、线、面等几何基本元素组成的;2.几何概型中的图形可以是二维或三维的;3.几何概型可以通过折叠、叠加等操作得到不同形状。

Step 3 计算几何概型的方法介绍几何概型的计算方法,包括:1.枚举法:通过列举可能的排列组合情况,计算几何概型的数量;2.排列组合法:应用排列组合原理,计算几何概型的数量;3.尺规作图法:利用尺规作图的方法,画出对应的几何概型。

通过具体例子展示以上方法的应用,让学生在实践中理解和掌握。

Step 4 几何概型在实际中的应用介绍几何概型在实际中的应用,如折纸艺术、拼贴艺术等。

通过图片或实际操作展示相关作品,激发学生对几何概型的兴趣,并引导学生思考如何利用几何概型创作出更多有创意的作品。

Step 5 实例分析选择一个实际问题,让学生应用所学的几何概型知识解决问题。

例如:一个布料厂家要生产由12个正方形拼接而成的壁挂,要求壁挂的形状是尽量规则的,设计师该如何安排正方形的排列组合?通过分析问题,引导学生利用几何概型的知识进行解答。

高中数学-《几何概型》教案、教学设计、简案

高中数学-《几何概型》教案、教学设计、简案

《几何概型》教案、教学设计、简案一、说教材《几何概型》是在学生已经学习了古典概型的基础上,学习的另一类等可能概型,是对古典概型内容的进一步拓展,为解决实际问题提供了一种新的模型,因此本课在在教材中起到了承上启下的作用。

二、教学目标理解几何概型的概念,会用几何概型概率公式求解随机事件的概率,了解古典概型与几何概型的不同体会数学结合的数学思想。

三、教学重难点【教学重点】理解几何概型的概念,会用几何概型概率公式求解随机事件的概率。

【教学难点】了解古典概型与几何概型的不同四、教学方法用启发式教学法,讨论引导法、练习法五、教学过程(一)、复习导入通过问题设疑引导学生回顾古典概型的内容,并通过例题的对比,提出问题,激发学生的学习兴趣和求知欲望,并引出几何概型。

引例:1.在区间[0,10]上任取一个整数,则不大于3的概率为?。

2.在区间[0,10]上任取一个实数,则不大于3的概率为?。

问题:1、本题中基本事件是指什么?其个数分别是多少?2、基本事件是否等可能?3、a例与b例分别可以建立什么模型?如何求解(二)、探究新知1、提出问题、合作探究通过多媒体播放一段转盘游戏视频,在多媒体上展示问题:当指针指向B区域甲获胜,否则乙获胜,在两种情况下,分别求甲获胜的概率是多少?开展小组小组讨论活动,引出几何概型的概念。

2、归纳总结,引出公式学生自主活动,初步总结几何概型概率求解公式。

老师验证完善,最终得出几何概型概率求解公式。

3、掌握公式,解决问题通过多媒体展示例1。

请两位学生上黑板板演,并与学生一起对题目进行分析并验证,得出结论。

(三)、巩固练习学生把导入部分的问题进行解决,请两位学生进行板演,对古典概型与几何概型通过例题进行对比。

(四)、课堂小结师生互动总结本课,我会请学生自由发言谈谈本节课的收获与体会,进行适当的总结与补充。

(五)、布置作业采用分层作业,满足不同基础水平学生的需要,能够使不同的学生在数学上得到不同的发展,导学案基础题,学有余力的学生可以选做导学案上的提高题。

《几何概型》说课稿

《几何概型》说课稿

《几何概型》说课稿《几何概型》说课稿1一、说教材本课选自苏教版高中数学必修三第三章第三节“几何概型”第一课时。

本节课的主要内容是几何概型的概念、基本特点、概率计算公式,它是在学生已经掌握一般性的随机事件即概率的统计定义的基础上,继古典概型后对另一常见概型的学习,对系统地掌握概率知识,对于学生辩证思想的进一步形成具有良好的作用。

二、说学情前面学生在已经掌握一般性的随机事件即概率的统计定义的基础上,又学习了古典概型。

在古典概型向几何概型的过渡时,以及实际背景如何转化为“测度”时,会有一些困难。

但只要引导得当,理解几何概型,完成教学目标,是切实可行的。

三、说教学目标依据高中数学新课程标准的要求、本课教材的特点、学生的实际情况等方针,我认为这一节课要达到的学习目标可确定为:【知识与技能】了解几何概型的意义,会辨别一个事件是几何概型,会求简单的几何概型的概率。

【过程与方法】通过探究几何概型计算方法的过程,体验几何概型与古典概型的联系与区别,增强实际操作能力。

【情感、态度与价值观】通过对几何概型的教学,体会实验结果的随机性与规律性,养成合作交流的习惯。

四、说教学重难点根据教材以及学生的实际,确定本课时重点如下:几何概型的基本特点及“测度”为长度的运算。

依据重点、学生的实际、教学中可能出现的问题,确定本课时难点如下:无限过渡到有限,实际背景如何转化为长度。

五、说教法和学法根据本节课的内容、教学目标、教学手段和学生的实际水平等因素,在教法上,我以导为主,重视多媒体的作用,充分调动学生,展示学生的思维过程,使学生能准确理解、运算和表示。

1)紧扣数学的实际背景,多采用学生日常生活中熟悉的例子。

2)紧扣几何与古典概型的比较,让学生在类比中认识几何概型的'特点,和加深对其的理解。

3)紧扣几何概型的图形意义,渗透数形结合的思想。

对于学生的学习,结合本课的实际需要,作如下指导:对于概念,学会几何概型与古典概型的比较,立足基础知识和基本技能,掌握好典型例题,注意数形结合思想的运用,把抽象的问题转化为熟悉的几何概型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

说课教案几何概型
一.教材分析
1.教材地位与作用
本节课是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸,使概率的公理化定义更加完备。

尽管本节内容在课程标准中的要求仅为了解和会简单的应用,但蕴含的数形结合和数学建模的思想凸显了其重要性。

2.教学目标
知识与技能:
了解几何概型的两个特征,会识别几何概型,并能正确求解概率。

过程与方法:
通过问题探究,动手实验,辨析异同,发现概念,学生体验“做数学”的乐趣和概念生成的过程。

学生对照古典概型,类比推理,能提出解决几何概型问题的可行性想法。

情感、态度与价值观:
通过设置的故事情境,调动学生的兴趣,积极的进行自主探究,并进行合作交流。

让学生认识到数学与我们的生活息息相关,数学是有用的、是自然的、是清楚的,也是丰富多彩的。

3.重点难点
重点:几何概型的两个特征,几何概型的识别和计算公式;
难点:建立合理的几何模型求解概率。

二.学情分析
学生的认知水平有了一定的基础,前面学习了随机事件的概率和古典概型,并且掌握了二元一次不等式表示的平面区域问题。

但学生的抽象思维能力还有待于进一步提高,因此在从古典概型向几何概型的过渡时,如何将问题的实际背景转化为“几何度量”,学生会有一些困难和疑惑,这就需要恰当的引导、合理的解释和明确的辨析。

三.学法指导(附导学案)
本节课采用发现法教学和学案导学相结合的方法。

通过精心设计的导学案,以故事的形式展现问题,激发学生的求知欲。

学生不仅在课前自主的探究和预习,而且在课堂中通过动手实验,合作交流,发现问题,提倡学生扮演“老师”进行讲评,把课堂变成教师导演学生主演的数学学习活动场所。

我将学生的导学案附在后面,恳请各位专家给予指导。

四.教学过程
数学教学是数学活动的教学,我将整个导与学的过程分为以下四个环节:1.创设情境,温故知新,2.探究实验,构建概念,3.例题分析,推广应用,4.巩固升华,总结概括。

1.创设情境温故知新(3分钟)
青青草原上“喜洋洋”超市举行购物抽奖的大型促销活动,红太狼购物后
在抽奖时,有点犯蒙了。

原来聪明的喜羊羊为促销活动设计了两种方案:
⑴在一只不透明的口袋中装有20只大小相同的小球,其中白球11只,黄球5只,蓝球3只,红球1只。

中奖规则为:购买100元的商品就可以从口袋中摸出一只小球,摸出红球为一等奖、蓝球为二等奖、黄球为三等奖。

⑵转盘游戏:如图设立了一个可以自由转动的转盘,并
规定:购买100元的商品,就能获得一次转动转盘的机会。


果转盘停止时,指针正好对准红、黄或绿的区域,就可以获
得一等奖、二等奖、三等奖。

(转盘等分成20份)
课前思考问题: 红太狼数学学的很差,不知该如何选择了,聪明的你能帮她分析一下选择哪种抽奖方式中奖的概率大吗?
你是怎样计算的呢?
请同学们课前发挥自己的聪明才智,动手做个转盘游戏的实物模型,以备课堂探究使用。

【设计意图】运用动画、音乐等多媒体手段把问题以故事的形式展现出来,吸引学生的兴趣,把学生卷入问题中来,引发学生的思考。

以学生的最近发展区为切入点,在回顾古典概型的同时产生新的疑问,激发学生的求知欲。

2.探究实验,构建概念(8分钟)
课堂探究问题:
①在方案二你是怎样得到概率大小的?“中奖”这一基本事件的含义是什么?基本事件是有限个还是无限个呢?符合古典概型吗?
②如果圆盘不是等分成20份的,那么该如何求解概率呢?
对于方案二,尽管转盘游戏比较简单,可以运用动画来展示,我个人觉得只有学生亲身经历数学实验的过程,印象才是深刻的,理解才是透彻的!因此倡导由学生动手操作,课前自己做个小转盘。

在课堂中让学生亲历实验的过程,加深对几何概型特征的理解。

学生经过数学实验、讨论交流后,可以发现这类概型的特征:一是基本事件的个数有无限个,二是基本事件的发生是等可能的,并且概率是可以用面积、弧长,角度等几何量的比例来求解的,进而由学生总结概括发现几何概型的概念:
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
得出几何概型中事件A 的概率计算公式:
课堂教学在此告一段落,给学生留出一段时间反思古典概型和几何概型的异同,并完成导学案中“牛刀小试”题组和对比表格,让学生的认知结构经历同化和顺应的过程。

【设计意图】在转盘游戏中困惑的地方出现了,问题的基本事件是什么?是
Ω
==μμA
)(积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体
构成事件A A P
有限个还是无限个呢?很多学生误认为方案二符合古典概型,如何辨析会激起学生激烈的争论。

在通过亲历实验过程,学生会豁然开朗的,课堂中动画的展示是不能替代学生动手操作的,只有亲身经历的,印象才是深刻的!
3.例题分析,推广应用(20分钟)
例1.“大懒虫”懒羊羊早晨一觉醒来,发现表停了,于是他打开收音机,想听到电台整点报时后再起床,那么他等待的时间不多于10分钟的概率会是多大呢?
【设计意图】例1的设计在于把握重点,本题方法的多样性可以很好的展现学生思维的灵活性,由学生扮演老师的角色讲解本题,对讲解较好的学生给予毫不吝啬鼓励和赞扬,让学生体验成功的喜悦。

例 2.沸羊羊经过冬天酷寒的历练,练就了一身高超的本领,决心与灰太狼一决高下。

阳春三月,双方互下战书相约7点到8点在泰山之玉皇顶决战,但由于山顶寒冷,不宜久留,事先约定先到者等候另一方15分钟,过时离去。

求双方能够决战的概率有多大.
例2将概率论中经典的“会面问题”以故事形式展现,会使学生热情大增,求知欲高涨,使课堂气氛达到高潮,这也为合作学习打下了良好的基础。

在仔细审题后引导学生探究以下问题:
⑴沸羊羊与灰太狼到达的时间相互影响吗?
学生都可以肯定两者到达时间互不影响,但能够决战的时间是有关系的。

⑵既然互不影响,那么他们到达的时间可以是7点~8点间的任意时刻,基本事件的总体是什么?该怎么表示呢?
⑶进一步设问:符合古典概型还是几何概型?请你说出理由。

⑷如果能够决战,满足什么关系呢?
⑸然后分析选择哪种“几何度量”来求解概率?指导学生运用二元一次不等式表示平面区域,选择面积法来求解概率。

让学生进行小组合作学习,让学生经历实际问题数学化的过程,经历知识再创造的过程,通过自主探究、合作交流获取成功的体验。

为了规范学生的答题思路与步骤,培养学生严谨的数学学习习惯,例2由我进行板书讲解。

解析:设沸羊羊到达的时间为7时x 分,灰太狼到达的时间为7时y 分,则两人到达的时间分别满足 ,
在直角坐标系中可表示在如图所示的正方形
由题意得,两人能够会面的充要条件是:
即如图所示的阴影区域
∴P(两人能会面)= 【设计意图】数学教学的核心是学生的再创造。

学生们通过合作学习,小组讨论,亲身经历实际问题数学化的过程,经历知识再创造的过程,在获取成功的体验的同时突破本节课的难点.
4.巩固升华,总结概括 (12分钟)
落实提高题组:
1一根长度为3m 的绳子,如果将绳子拉直后在任意位置剪断,那么剪得两段绳子的长度都不小于2m 的概率有多大?
2. 在区间(0,1)中随机地取两个数,求事件“两数之和小于56
”的概率。

【设计意图】本题组的难度不大,目的在于促进对概念的理解和对公式的运用,起到内化的作用。

完成能力提高题组后老师适当的点评,由学生自主回顾本节内容小结一下,然后结合学生的小结老师做简单的说明:
我们通过对故事的观察分析,得到了它们共同的本质的东西,发现并定义了几何概型,通过几何模型的建立,我们可以解决生活中的这类具体问题。

最后是作业布置:
1.教材P142习题3.3 A 组;
2.请同学们课下撰写小论文《举例说明古典概型、几何概型的异同》。

五: 设计说明
根据课程标准的要求,我将本节内容设计为两课时,本节为第一课时,目的在于让学生体验知识的发现和形成过程。

第二课时为活动课,交流个人的小论文和学习心得,我得在课下提供课外书籍,供学生们参考查阅,指导部分学生如何选材,完成写作,真正体现过程教学的理念。

600≤≤x 600≤≤y 15≤-y x 16
7
6045
6022
2=-。

相关文档
最新文档