不等式与不等式组专项练习(提高)学习资料
不等式与不等式方程练习题(含答案)
不等式与不等式方程练习题(含答案)本文档包含了一系列关于不等式和不等式方程的练题和答案,旨在帮助读者巩固对这些概念的理解和应用。
不等式练题1. 求解不等式:$2x + 5 > 10$。
答案:$x > 2.5$2. 将不等式$3x - 4 < 7$化为标准不等式形式。
答案:$3x < 11$3. 求解不等式组:$\begin{cases} x - 2 > 5 \\ 2x + 3 < 10\end{cases}$。
答案:$x > 7$,$x < 3.5$4. 求解绝对值不等式:$|2x - 3| \leq 7$。
答案:$-2 \leq x \leq 5$5. 求解复合不等式:$-3 < 2x + 1 < 5$。
答案:$-2 < x < 2$不等式方程练题1. 求解不等式方程:$5x - 7 = 3x + 5$。
答案:$x = 6$2. 求解二次不等式方程:$x^2 + 5x - 6 < 0$。
答案:$-6 < x < 1$3. 求解分式不等式方程:$\frac{2x + 1}{x - 3} \geq 2$。
答案:$x \geq 4$4. 求解绝对值不等式方程:$|2x - 5| = 10$。
答案:$x = -2.5$,$x = 7.5$5. 求解复合不等式方程组:$\begin{cases} 3x - 2 \geq 4 \\ 2x + 5 \leq 9 \end{cases}$。
答案:$x \geq 2$,$x \leq 2$以上是一些关于不等式和不等式方程的练习题和答案。
阅读者可以利用这些题目来巩固学习并提高解题能力。
如有任何疑问,请随时提出。
不等式与不等式组提高专题
是()
A.m>0B.m>0.5C.m<0D.0<m<0.5
12、我国东南沿海某地的风力资源丰富,一年内日平均风速不小于3m/s的时间共约160天,
3、若不等式组
xa
≥
0,
12xx2
有解,则a的取值范围是()
其中日平均风速不小于6m/s的时间约占60天,为了充分利用风能这种“绿色能源”,该地
2xkxb0的解集为()
A.x2B.2x1C.2x0D.1x0
y
A型发电机0≥36≥150
日发电量/kW·h
B型发电机0≥24≥90
根据上面的数据回答:(1)若这个发电场购x台A型风力发电机,则预计这些A型风力
发电机一年的发电总量至少为kW·h;
x3(x2)≥4,
(2)已知A型风力发电机每台0.3万元,B型风力发电机每台0.2万元,该发电场拟购置风
的左边,可得x=-3,故原方程的解是x=2或x=-3处的蔬菜为x吨.
请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;
4
CD总计
1
A200吨
-2012
Bx300吨吨
参考阅读材料,解答下列问题:
总计240260500吨吨吨
(1)方程的解为|x3|4
设ABwwx、两个蔬菜基地的总运费为元,写出与之间的函数关系式,并求总运费最小的调运方案;
个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬
和-2的距离之和为5的点对应的x的值.在数轴上,1和-2的距离为3,满足方程的x对应点在1菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两
《常考题》初中七年级数学下册第九单元《不等式与不等式组》提高练习(含答案解析)
一、选择题1.如图,按下面的程序进行运算,规定:程序运行到“判断结果是否大于28”为一次运算,若运算进行了3次才停止,则x 的取值范围是( )A .24x <≤B .24x ≤<C .24x <<D .24x ≤≤ A解析:A【分析】根据程序运算进行了3次才停止,即可得出关于x 的一元一次不等式组:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩,解之即可得出x 的取值范围. 【详解】解:依题意,得:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩①②, 由①得:936x ≤4x ∴≤,由②得:()398x ->30,98x ∴->10,x >2,所以不等式组的解集为:24x <≤.故选:A .【点睛】本题考查了程序框图中的一元一次不等式组的应用,找准不等关系,正确列出一元一次不等式组是解题的关键.2.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ). A .10 cm 3以上,20 cm 3以下 B .20 cm 3以上,30 cm 3以下C .30 cm 3以上,40 cm 3以下D .40 cm 3以上,50 cm 3以下C解析:C【解析】 分析:本题可设玻璃球的体积为x ,再根据题意列出不等式组求得解集得出答案即可.详解:设玻璃球的体积为x ,则有33001804300180x x -⎧⎨-⎩<> 解得30<x <40.故一颗玻璃球的体积在30cm 3以上,40cm 3以下.故选C .点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x 的取值范围.3.已知关于x 的不等式组1021x x x a -⎧<⎪⎨⎪+>⎩有且只有一个整数解,则a 的取值范围是( )A .11a -<≤B .11a -≤<C .31a -<≤-D .31a -≤<- D解析:D【分析】首先解每个不等式,然后根据不等式组的整数解的个数,确定整数解,从而确定a 的范围.【详解】 解:1021x x x a -⎧<⎪⎨⎪+>⎩①② 解①得1x <且0x ≠,解②得12a x ->. 若不等式组只有1个整数解,则整数解是1-.1212a -∴-≤<- 所以31a -≤<-,故选:D .【点睛】此题考查的是一元一次不等式组的解法和一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 4.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( )A .1种B .2种C .3种D .4种C解析:C【分析】 设用A 型货厢x 节,B 型货厢()50x -节,根据题意列不等式组求解,求出x 的范围,看有几种方案.【详解】解:设用A 型货厢x 节,B 型货厢()50x -节,根据题意列式:()()35255015301535501150x x x x ⎧+-≥⎪⎨+-≥⎪⎩,解得2830x ≤≤, 因为x 只能取整数,所以x 可以取28,29,30,对应的()50x -是22,21,20,有三种方案.故选:C .【点睛】本题考查一元一次不等式组的应用,解题的关键是根据题意列出不等式组求解,需要注意结果要符合实际情况.5.不等式组3114x x +>⎧⎨-≤⎩的最小整数解是( ) A .5B .0C .-1D .-2C解析:C【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来,写出这个不等式组的最小整数解即可.【详解】 解:3114x x +>⎧⎨-≤⎩①② 解不等式①得 x >-2,解不等式②得 x≤5,所以不等式组的解集为-2<x≤4,所以,这个不等式组的最小整数解是-1,故选C .【点睛】本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.6.对于实数x ,规定[x ]表示不大于x 的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x ﹣2]=﹣1,则x 的取值范围为( )A .0<x ≤1B .0≤x <1C .1<x ≤2D .1≤x <2D解析:D由题意得2021x x -<⎧⎨-≥-⎩解之得12x ≤<故选D .7.不等式组43x x <⎧⎨≥⎩的解集在数轴上表示为( ) A . B .C .D . D解析:D【分析】 根据不等式组的解集在数轴上的表示方法进行分析解答即可.【详解】A 选项中,数轴上表达的解集是:4x >;B 选项中,数轴上表达的解集是:34x -≤<;C 选项中,数轴上表达的解集是:3x ≤;D 选项中,数轴上表达的解集是:34x ≤<;∵不等式组43x x ⎧⎨≥⎩<的解集是34x ≤<, ∴选D.【点睛】本题考查的是在数轴上表示不等式组的解集,熟知:“小于向左,大于向右”是解答此题的关键.8.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是A .m ≥2B .m >2C .m <2D .m ≤2C 解析:C【解析】试题分析:∵程x ﹣m+2=0的解是负数,∴x=m ﹣2<0,解得:m <2,故选C . 考点:解一元一次不等式;一元一次方程的解.9.如果a >b ,那么下列不等式不成立...的是( ) A .0a b ->B .33a b ->-C .1133a b >D .33a b ->- D解析:D根据不等式的基本性质逐项判断即可得.【详解】A 、0a b ->,成立;B 、不等式的两边同减去3,不改变不等号的方向,即33a b ->-,成立;C 、不等式的两边同乘以正数13,不改变不等号的方向,即1133a b >,成立;D 、不等式的两边同乘以负数3-,改变不等号的方向,即33a b -<-,不成立; 故选:D .【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.10.不等式1322x x -+>的解在数轴上表示正确的是( ) A .B .C .D . B解析:B【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】 解:∵1322x x -+>, ∴3122x x >+, ∴3322x <, ∴1x <, 将不等式解集表示在数轴上如下:故选:B .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.二、填空题11.先阅读短文,回答后面所给出的问题:对于三个数a 、b 、c 中,我们给出符号来表示其中最大(小)的数,规定{}min ,,a b c 表示这三个数中最小的数,{}max ,,a b c 表示这三个数中最大的数.例如:{}min 1,2,31-=-,{}max 1,2,33-=;{}(1)min 1,2,1(1)a a a a ≤-⎧-=⎨->-⎩,若{}{}min 4,4,4max 2,1,2x x x x +-=+,则x 的值为_______.或【分析】根据新定义法则分x 或x+4或x ﹣4最小2或x+1或2x 最大几种情况分别列出一元一次不等式组和一元一次方程进行解答即可【详解】(1)当最小时则即无解此情况不成立(2)当最小时则即解得此时:即 解析:43或2- 【分析】 根据新定义法则,分x 或x+4或x ﹣4最小、2或x+1或2x 最大几种情况,分别列出一元一次不等式组和一元一次方程进行解答即可.【详解】(1)当4最小时,则4444x x +>⎧⎨->⎩,即00x x >⎧⎨<⎩, x 无解,此情况不成立.(2)当4x +最小时,则4444x x x ≥+⎧⎨-≥+⎩,即00x x ≤⎧⎨≤⎩, ∴解得0x ≤,此时:12x +<,22x <,{}max 2,1,22x x ∴+=,42x ∴+=,即2x =-.(3)当4x -最小时,则4444x x x >-⎧⎨+>-⎩,即00x x >⎧⎨>⎩, ∴解得0x >,此时无法判断,{}max 2,1,2x x +的值,则分情况讨论如下:①当2最大时:2122x x ≥+⎧⎨≥⎩,即11x x ≤⎧⎨≤⎩, 01x ∴<≤,此时:42x -=,2x =(舍去).②当2x 最大时:2221x x x >⎧⎨>+⎩,即11x x >⎧⎨>⎩,1x ∴>,此时有:42x x -=,43x =. ③当1x +最大时,1212x x x +>⎧⎨+>⎩,即11x x >⎧⎨<⎩,无解,此情况不成立. 综上所述:43x =或2x =-. 【点睛】本题考查新定义下解一元一次不等式组和一元一次方程的能力,由已知等式找到x 的分界点以及准确分类讨论是解答的关键.12.若不等式组52355x x x a +≤-⎧⎨-+<⎩无解,则a 的取值范围是______.【分析】先解一元一次不等式组再根据不等式组无解即可得出a 的取值范围【详解】解:解一元一次不等式组得:∵不等式组无解∴解得:故答案为:【点睛】本题考查了一元一次不等式组的解法一元一次不等式的解法会根据 解析:172a ≤【分析】先解一元一次不等式组,再根据不等式组无解即可得出a 的取值范围.【详解】解:解一元一次不等式组52355x x x a+≤-⎧⎨-+<⎩, 得:725x x a⎧≤-⎪⎨⎪>-⎩,∵不等式组无解, ∴752a -≥-, 解得:172a ≤, 故答案为:172a ≤. 【点睛】本题考查了一元一次不等式组的解法、一元一次不等式的解法,会根据不等式组无解求解参数a 的取值范围是解答的关键.13.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________.-2【分析】根据一元一次方程的定义列出关于m 的方程组求解即可【详解】解:∵∴解得m=-2故答案为-2【点睛】本题主要考查了一元一次方程的定义和不等式组的解法根据一元一次方程的定义列出关于m 的方程组成解析:-2【分析】根据一元一次方程的定义列出关于m 的方程组求解即可.【详解】解:∵||1(2)3m m x --= ∴2011m m -≠⎧⎨-=⎩,解得m=-2. 故答案为-2.【点睛】本题主要考查了一元一次方程的定义和不等式组的解法,根据一元一次方程的定义列出关于m 的方程组成为解答本题的关键.14.已知方程组3951x y a x y a +=+⎧⎨-=+⎩的解为正数,求a 的取值范围是_______.-<<4【分析】先解方程组用含a 的式子表示方程组的解根据方程组的解是正数列出关于a 的不等式组再求解【详解】解:①+②得:①-②得:所以原方程组的解为:∵方程组的解为正∴>0且>0解得:-<<4故填:解析:-54<a <4 【分析】先解方程组用含a 的式子表示方程组的解,根据方程组的解是正数,列出关于a 的不等式组,再求解.【详解】解:3951x y a x y a +=+⎧⎨-=+⎩①②, ①+②得:2810x a =+,45x a =+,①-②得:228y a =-+,4y a =-+,所以,原方程组的解为:454x a y a =+⎧⎨=-+⎩, ∵ 方程组的解为正,∴45a +>0且4a -+>0,解得:-54<a <4, 故填:-54<a <4. 【点睛】 本题考查了方程组的解法,以及一元一次不等式组的解法,解此类问题要先用字母a 表示方程组的解,再根据题意,列不等式组,最后求解.15.若关于x 的不等式组0521x m x -<⎧⎨-≤⎩的整数解有且只有4个,则m 的取值范围是:__________.【分析】先解不等式组得到解集为:<此时的整数解有且只有4个结合数轴分析可得到的取值范围【详解】解:由①得:<由②得:所以不等式组的解集为:<不等式组的整数解有且只有4个如图不等式组的整数解为<故答案解析:56m <≤【分析】先解不等式组,得到解集为:2x ≤<m ,此时的整数解有且只有4个,结合数轴分析可得到m 的取值范围.【详解】解:0521x m x -<⎧⎨-≤⎩①② 由①得:x <m ,由②得:24,x -≤-2,x ∴≥所以不等式组的解集为:2x ≤<m ,不等式组的整数解有且只有4个,如图,不等式组的整数解为2,3,4,5,5∴< 6.m ≤故答案为:56m <≤.【点睛】本题考查的是不等式组的整数解问题,掌握利用数轴分析得出不等式组中字母的取值范围是解题的关键.16.已知关于x 的不等式组0,10x a x +>⎧⎨->⎩的整数解共有3个,则a 的取值范围是___________.2<a≤3【分析】先求出每个不等式的解集再求出不等式组的解集根据整数解共有3个即可得出关于a 的不等式组求解即可【详解】解:解不等式①得:x-a 解不等式②得:x <1∴不等式组的解集为-a <x <1∵不等 解析:2<a≤3.【分析】先求出每个不等式的解集,再求出不等式组的解集,根据整数解共有3个即可得出关于a 的不等式组,求解即可.【详解】解:0,10x a x +>⎧⎨->⎩①②, 解不等式①得:x >-a ,解不等式②得:x <1,∴不等式组的解集为-a <x <1,∵不等式组的整数解共有3个,即-2,-1,0,∴-3≤-a <-2,∴2<a≤3,故答案是:2<a≤3.【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式组的整数解和已知得出关于a 的不等式组.17.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________.0【分析】求出不等式组的解集确定出最小整数解即可【详解】不等式组整理得:不等式组的解集为:-1<x≤2最小的整数解为0故答案为:0【点睛】本题主要考查一元一次不等式组的整数解掌握一元一次不等式组的求解析:0【分析】求出不等式组的解集,确定出最小整数解即可.【详解】不等式组整理得:21x x ≤⎧⎨>-⎩, ∴不等式组的解集为:-1<x ≤2,∴最小的整数解为0.故答案为:0.【点睛】本题主要考查一元一次不等式组的整数解,掌握一元一次不等式组的求解是解题关键. 18.定义[]x 表示不大于x 的最大整数、{}[]x x x =-,例如[]22=,[]2.83-=-,[]2.82=,{}20=,{}2.80.8=,{}2.80.2-=,则满足{}[]2x x =的非零实数x 值为_______.【分析】解析:1.5【分析】19.在实数范围内规定一种新的运算“☆”,其规则是:a ☆b=3a+b ,已知关于x 的不等式:x ☆m>1的解集在数轴上表示出来如图所示.则m 的值是________ .-2【分析】根据新运算法则得到不等式3通过解不等式即可求的取值范围结合图象可以求得的值【详解】∵☆∴根据图示知已知不等式的解集是∴故答案为:【点睛】本题主要考查了数轴上表示不等式的解集及解不等式本题解析:-2【分析】根据新运算法则得到不等式31x m +>,通过解不等式即可求m 的取值范围,结合图象可以求得m 的值.【详解】∵x ☆ 31m x m =+>, ∴13m x ->, 根据图示知,已知不等式的解集是1x >, ∴113m -=, 故答案为:2m =-.【点睛】本题主要考查了数轴上表示不等式的解集及解不等式,本题的关键是理解新的运算方法.20.不等式组12153114x x -⎧≥-⎪⎨⎪-<⎩的所有正整数解为_____.23【分析】分别求出每一个不等式的解集根据口诀:同大取大同小取小大小小大中间找大大小小无解了确定不等式组的解集进而可得所有正整数解【详解】解不等式①得:x≤3解不等式②得:x <5则不等式组的解集为x解析:2、3【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.进而可得所有正整数解.【详解】12153114x x -⎧≥-⎪⎨⎪-<⎩①②, 解不等式①,得:x≤3,解不等式②,得:x <5,则不等式组的解集为x≤3,∴不等式组的正整数解为:1、2、3.故答案为1、2、3.【点睛】本题考查了解一元一次不等式(组),不等式组的整数解,关键是能根据不等式的解集找出不等式组的解集.三、解答题21.解不等式组103124x x +≥⎧⎪⎨-<⎪⎩,并把它的解集表示在数轴上.解析:13x -≤<,在数轴上表示见解析.【分析】先对不等式组进行化简,然后在数轴上分别画出x 的取值,它们的公共部分就是不等式组的解集.【详解】解:103124x x +≥⎧⎪⎨-<⎪⎩①② 由①得:1x ≥-由②得:318x -<,∴3x <,∴不等式组的解集为13x -≤<在数轴上表示如下:【点睛】本题考查了一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.22.某县举办运动会需购买A ,B 两种奖品,若购买A 种奖品5件和B 种奖品2件,共需80元;若购买A 种奖品3件和B 种奖品3件,共需75元.(1)求A 、B 两种奖品的单价各是多少元?(2)大会组委会计划购买A .B 两种奖品共100件,购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍,设购买A 种奖品m 件,购买费用为W 元,写出W (元)与m (件)之间的函数关系式,并求出自变量m 的取值范围,以及确定最少费用W 的值.解析:(1)A 、B 两种奖品的单价分别是10元、15元;(2)1015(100)W m m =+-,7075m ≤≤,当75m =时,W 有最小值为1125.【分析】(1)设A 种奖品的单价是x 元,B 种奖品的单价是y 元,根据“钱数=A 种奖品单价×数量+B 种奖品单价×数量”可列出关于x 、y 的二元一次方程组,解方程组即可得出结论; (2)设购买A 种奖品m 件,则购买B 种奖品(100m -)件,根据购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍,可列出关于m 的一元一次不等式组,解不等式组即可得出m 的取值范围,再结合数量关系即可得出W 与m 之间的函数关系,根据一次函数的性质既可以解决最值问题.【详解】解:(1)设A 、B 两种奖品的单价分别为x 、y 元则52803375x y x y +=⎧⎨+=⎩,解得1015x y =⎧⎨=⎩∴A 、B 两种奖品的单价分别是10元、15元.(2)设购买A 种奖品m 件,则B 为(100m -)件由题意得:3(100)1015(100)1150m m m m ≤-⎧⎨+-≤⎩, 解得:7075m ≤≤1015(100)W m m =+-15005m =-∵50-<,∴W 随m 的增加而减少,当75m =时,W 有最小值为1125.【点睛】本题考查了解二元一次方程组、一元一次不等式组以及一次函数的性质,解题的关键是:(1)列出关于x 、y 的二元一次方程组;(2)根据数量关系列出W 关于m 的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组、函数关系或不等式组)是关键.23.为发展校园足球运动,某城区四校决定联合购买一批足球运动装备.市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少元;(2)若城区四校联合购买100套队服和()10a a >个足球,请用含a 的式子分别表示出到甲商场和乙商场购买装备所花费用;(3)在(2)的条件下,计算a 为何值时,两家商场所花费用相同;(4)在(3)的条件下,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?(直接写出方案)解析:(1)150元;100元;(2)甲商场()10014000a + ,乙商场()8015000a +元;(3)50a =;(4)当50a =时,两家花费一样;当1050a <<时,到甲处购买更合算;当50a 时,到乙处购买更合算【分析】(1)设每个足球的定价是x 元,则每套队服是()50x +元,根据“两套队服与三个足球的费用相等”得出等量关系,列出一元一次方程,求解即可;(2)根据甲商场和乙商场的方案列出式子即可;(3)令100140008015000,a a ++=解方程即可;(4)列出不等式分别求解即可.【详解】解:(1)设每个足球的定价是x 元,则每套队服是()50x +元.根据题意得()2503x x +=解得100,50150x x +==. 答:每套队服150元,每个足球100元.(2)到甲商场购买所花的费用为:()1001001501001001400010a a ⎛⎫⨯+-=+ ⎪⎝⎭元; 到乙商场购买所花的费用为:()100150+100808015000a a ⨯⨯%=+元;(3)由100140008015000,a a ++=得:50a =,所以:当50a =时,两家花费一样。
中考数学复习《不等式与不等式组》专项提升训练题-附答案
中考数学复习《不等式与不等式组》专项提升训练题-附答案学校:班级:姓名:考号:一、选择题1.下列不等式中,属于一元一次不等式的是()A.4>1B.3x−16<4C.1x<2D.4x−3<2y−72.下列不等式变形不正确的是()A.若a>b,则a+c>b+c B.若a<b,则a−1<b−1C.若a>b,则3a>3b D.若a<b,则−a<−b3.不等式的解集x≥1在数轴上表示正确的是()A.B.C.D.4.如果(m+3)x>2m+6的解集为x<2,那么m的取值范围是()A.m<0B.m<−3C.m>−3D.m是任意实数5.关于x的不等式x﹣1<a有3个非负整数解,则a的取值范围是()A.1<a<2 B.1<a≤2 C.1≤a≤2 D.2<a≤36.某超市花费1140元购进苹果100千克,销售中有5%的正常损耗,为避免亏本(其它费用不考虑),售价至少定为多少元/千克?设售价为x元/千克,根据题意所列不等式正确的是()A.100(1−5%)x≥1140B.100(1+5%)x≥1140C.100(1+5%)x≤1140D.100(1−5%)x≤11407.关于x的不等式组{x>2mx≥m−3的最小整数解为1,则m的取值范围是()A.−3≤m<1B.0≤m<12C.3<m≤4D.0≤m<12或3<m≤48.关于x的不等式组{x−13≤1a−x<2恰好只有四个整数解,则a的取值范围是()A.2≤a<3B.2≤a≤3C.a<3D.2<a<3二、填空题9.若a>b,则a+2b+2(填“>”或“<”或“=”).10.不等式−x+4>1的最大整数解是.11.已知不等式4x −3a >−1与不等式2(x −1)+3>5的解集相同,则a 的值是 . 12. 若关于x 的不等式组{x −a >3x+23−1>x−12无解,则a 的取值范围是 . 13.把一些书分给几名同学,如果每人分3本,那么余8本,如果前面的每名同学分5本,那么最后一人分不到3本,那么这些书共有 本. 三、解答题 14.解不等式(组): (1)3x −5<2(2+3x); (2){2x −5<4x −66x −3≤6−3x.15.解不等式组{3x +2≤x +6①5x −4>−3x +20②,并利用数轴确定不等式组的解集.16.为引导学生“爱读书,多读书,读好书”,某校七(2)班决定购买A 、B 两种书籍.若购买A 种书籍1本和B 种书籍3本,共需要180元;若购买A 种书籍3本和B 种书籍1本,共需要140元. (1)求A 、B 两种书籍每本各需多少元?(2)该班根据实际情况,要求购买A 、B 两种书籍总费用不超过700元,并且购买B 种书籍的数量是A 种书籍的 32 ,求该班本次购买A 、B 两种书籍有哪几种方案?17.某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元. (1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?并求出最省钱的购买方案18.某校七年级组织学生外出进行研学活动,现有40座和45座两种客车可供租用,若租m 辆40座车,需要花费2000元租车费用,但有15人没有座位;若租m 辆45座车,则需要花费2200元租车费用,但最后一辆车人数超过5人,不足15人. (1)求m 的值和出行人数;(2)学校准备一共租m 辆车,若预算租车费用不超过2110元,且保证所有人都有座位可坐,一共有哪几种租车方案?(3)在(2)的条件下,直接写出最少租车费用.参考答案1.B2.D3.B4.B5.B6.A7.B8.A9.>10.211.312.a≥−213.2614.(1)解:∵3x−5<2(2+3x)∴3x−5<4+6x3x−6x<4+5−3x<9∴x>−3;(2)解:由2x−5<4x−6得:x>0.5由6x−3≤6−3x得:x≤1则不等式组的解集为0.5<x≤115.解:{3x+2≤x+6①5x−4>−3x+20②解不等式①得x≤2解不等式②得:x>3在数轴上表示不等式①、不等式②的解集如下图所示由图可知,不等式①、②的解集没有公共部分∴不等式组无解.16.(1)解:设A种书籍每本x元,B种书籍每本y元,由题意得{x +3y =1803x +y =140 解得: {x =30y =50答:A 种书籍每本30元,B 种书籍每本50元。
(完整版)不等式与不等式组练习题答案
(完整版)不等式与不等式组练习题答案第九章不等式与不等式组测试1 不等式及其解集学习要求:知道不等式的意义;知道不等式的解集的含义;会在数轴上表⽰解集.(⼀)课堂学习检测⼀、填空题:1.⽤“<”或“>”填空:⑴4______-6; (2)-3______0;(3)-5______-1; (4)6+2______5+2;(5)6+(-2)______5+(-2); (6)6×(-2)______5×(-2). 2.⽤不等式表⽰:(1)m -3是正数______; (2)y +5是负数______; (3)x 不⼤于2______; (4)a 是⾮负数______;(5)a 的2倍⽐10⼤______; (6)y 的⼀半与6的和是负数______;(7)x 的3倍与5的和⼤于x 的31______;(8)m 的相反数是⾮正数______.3.画出数轴,在数轴上表⽰出下列不等式的解集: (1)?>213x(2)x ≥-4.(3)?≤51x(4)?-<312x⼆、选择题:4.下列不等式中,正确的是( ).(A)4385-<-(B)5172< (C)(-6.4)2<(-6.4)3 (D)-|-27|<-(-3)3 5.“a 的2倍减去b 的差不⼤于-3”⽤不等式可表⽰为( ). (A)2a -b <-3 (B)2(a -b )<-3 (C)2a -b ≤-3 (D)2(a -b )≤-3三、解答题:6.利⽤数轴求出不等式-2<x ≤4的整数解.(⼆)综合运⽤诊断⼀、填空题:7.⽤“<”或“>”填空:⑴-2.5______-5.2; (2);125______114--(3)|-3|______-(-2.3); (4)a 2+1______0; (5)0______|x |+4; (6)a +2______a .8.“x 的23与5的差不⼩于-4的相反数”,⽤不等式表⽰为______.⼆、选择题:9.如果a 、b 表⽰两个负数,且a <b ,则( ).(A)1>b a(B)1a 11< (D)ab <110.如图在数轴上表⽰的解集对应的是( ).(A)-2<x <4 (B)-2<x ≤4 (C)-2≤x <4 (D)-2≤x ≤4 11.a 、b 是有理数,下列各式中成⽴的是( ).(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 12.|a |+a 的值⼀定是( ).(A)⼤于零 (B)⼩于零 (C)不⼤于零 (D)不⼩于零三、判断题:13.不等式5-x >2的解集有⽆数多个. ( ). 14.不等式x >-1的整数解有⽆数多个. ( ).15.不等式32421<<-x 的整数解有0、1、2、3、4. ( ). 16.若a >b >0>c ,则.0>cab( ).四、解答题:17.若a 是有理数,⽐较2a 和3a 的⼤⼩.(三)拓⼴、探究、思考18.若不等式3x -a ≤0只有三个正整数解,求a 的取值范围.19.对于整数a 、b 、c 、d ,定义db a -=,已知3411<<db ,则b +d 的值为______.测试2 不等式的性质学习要求:知道不等式的三条基本性质,并会⽤它们解简单的⼀元⼀次不等式.(⼀)课堂学习检测⼀、填空题:1.已知a <b ,⽤“<”或“>”填空:⑴a +3______b +3; (2)a -3______b -3; (3)3a ______3b ;(4);2______2b a (5);7______7ba -- (6)5a +2______5b +2; (7)-2a -1______-2b -1; (8)4-3b ______6-3a . 2.⽤“<”或“>”填空: (1)若a -2>b -2,则a______b ; (2)若,33ba <则a ______b ; (3)若-4a >-4b ,则a ______b ;(4),22ba -<-则a ______b . 3.不等式3x <2x -3变形成3x -2x <-3,是根据______. 4.如果a 2x >a 2y (a ≠0).那么x______y .⼆、选择题:5.若a >2,则下列各式中错误的是( ). (A)a -2>0 (B)a +5>7 (C)-a >-2 (D)a -2>-4 6.已知a >b ,则下列结论中错误的是( ). (A)a -5>b -5 (B)2a >2b (C)ac >bc (D)a -b >0 7.若a >b ,且c 为有理数,则( ). (A)ac >bc (B)ac <bc (C)ac 2>bc 2 (D)ac 2≥bc 2 8.若由x <y 可得到ax >ay ,应满⾜的条件是( ). (A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0三、解答题:9.根据不等式的基本性质解下列不等式,并将解集表⽰在数轴上.(1)x -10<0.(2).621(3)2x ≥5.(4).131-≥-x10.⽤不等式表⽰下列语句并写出解集:⑴8与y 的2倍的和是正数;(2)a 的3倍与7的差是负数.(⼆)综合运⽤诊断⼀、填空题:11.(1)若x <a <0,则把x 2;a 2,ax 从⼩到⼤排列是______.(2)关于x 的不等式mx -n >0,当m ______时,解集是;mnx <当m ______时,解集是?>mn x 12.已知b <a <2,⽤“<”或“>”填空:(1)(a -2)(b -2)______0; (2)(2-a )(2-b )______0; (3)(a -2)(a -b )______0.13.不等式4x -3<4的解集中,最⼤的整数x =______. 14.如果ax >b 的解集为,abx >则a ______0.⼆、选择题:15.已知⽅程7x -2m +1=3x -4的根是负数,则m 的取值范围是( ).(A)25=m (B)25>m (C)25≤m 16.已知⼆元⼀次⽅程2x +y =8,当y <0时,x 的取值范围是( ).(A)x >4 (B)x <4 (C)x >-4 (D)x <-4 17.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是( ).(A)a <2 (B)a <3 (C)a <4 (D)a <5三、解答题:18.当x 取什么值时,式⼦563-x 的值为(1)零;(2)正数;(3)⼩于1的数.(三)拓⼴、探究、思考19.若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .20.解关于x 的不等式ax >b (a ≠0).测试3 解⼀元⼀次不等式会解⼀元⼀次不等式.(⼀)课堂学习检测⼀、填空题:1.⽤“>”或“<”填空:(1)若x ______0,y <0,则xy >0;(2)若ab >0,则b a ______0;若ab <0,则ab______0; (3)若a -b <0,则a ______b ;(4)当x >x +y ,则y ______0.2.当a ______时,式⼦152-a 的值不⼤于-3.3.不等式2x -3≤4x +5的负整数解为______.⼆、选择题:4.下列各式中,是⼀元⼀次不等式的是( ).(A)x 2+3x >1(B)03<-yx (C)5511≤-x(D)31312->+x x 5.关于x 的不等式2x -a ≤-1的解集如图所⽰,则a 的取值是( ).(A)0 (B)-3 (C)-2 (D)-1三、解下列不等式,并把解集在数轴上表⽰出来:6.2(2x -3)<5(x -1). 7.10-3(x +6)≤1.8.?-->+22531x x 9.-≥--+612131y y y10.求不等式361633->---x x 的⾮负整数解.11.求不等式6)125(53)34(2+<-x x 的所有负整数解.(⼆)综合运⽤诊断⼀、填空题:12.已知a <b <0,⽤“>”或“<”填空:⑴2a ______2b ;(2)a 2______b 2;(3)a 3______b 3;(4)a 2______b 3;(5)|a |______|b |(6)m 2a ______m 2b (m ≠0). 13.⑴已知x <a 的解集中的最⼤整数为3,则a 的取值范围是______;(2)已知x >a 的解集中最⼩整数为-2,则a 的取值范围是______.⼆、选择题:14.下列各对不等式中,解集不相同的⼀对是( ).(A)72423xx +<-与-7(x -3)<2(4+2x ) (B)3921+<-x x 与3(x -1)<-2(x +9) (C)31222-≥+x x 与3(2⼗x )≥2(2x -1) (D)x x ->+414321与3x >-1 15.如果关于x 的⽅程5432bx a x +=+的解不是负值,那么a 与b 的关系是( ) (A)b a 53>(B)a b 53≥(C)5a =3b(D)5a ≥3b三、解下列不等式:16.(1)3[x -2(x -7)]≤4x . (2).17)10(2383+-≤--y y y(3).151)13(21+<--y y y (4)-+≤--+15)2(22537313x x x(5)).1(32)]1(21[21-<---x x x x (6)->+-+2503.002.003.05.09.04.0x x x四、解答题:17.已知⽅程组?-=++=+②①m y x m y x 12,312的解满⾜x +y <0.求m 的取值范围.18.x 取什么值时,代数式413--x 的值不⼩于8)1(32++x 的值.19.已知关于x 的⽅程3232xm x x -=--的解是⾮负数,m 是正整数,求m 的值.*20.当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4 )5(的解集.(三)拓⼴、探究、思考21.适当选择a 的取值范围,使1.7<x <a 的整数解:(1)x 只有⼀个整数解; (2)x ⼀个整数解也没有.22.解关于x 的不等式2x +1≥m (x -1).(m ≠2)23.已知A =2x 2+3x +2,B =2x 2-4x -5,试⽐较A 与B 的⼤⼩.测试4 实际问题与⼀元⼀次不等式学习要求:会从实际问题中抽象出不等的数量关系,会⽤⼀元⼀次不等式解决实际问题.(⼀)课堂学习检测⼀、填空题:1.若x 是⾮负数,则5231x-≤-的解集是______. 2.使不等式x -2≤3x +5成⽴的负整数有______. 3.代数式231x-与代数式x -2的差是负数,则x 的取值范围为______ 4.6⽉1⽇起,某超市开始有偿..提供可重复使⽤的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装⼤⽶3公⽄、5公⽄和8公⽄.6⽉7⽇,⼩星和爸爸在该超市选购了3只环保购物袋⽤来装刚买的20公⽄散装⼤⽶,他们选购的3只环保购物袋⾄少..应付给超市______元.⼆、选择题:5.三⾓形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ). (A)13cm (B)6cm (C)5cm (D)4cm6.⼀商场进了⼀批商品,进价为每件800元,如果要保持销售利润不低于15%,则售价应不低于( ). (A)900元 (B)920元 (C)960元 (D)980元三、解答题:7.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?8.某次数学竞赛活动,共有16道选择题,评分办法是:答对⼀题给6分,答错⼀题倒扣2分,不答题不得分也不扣分.某同学有⼀道题未答,那么这个学⽣⾄少答对多少题,成绩才能在60分以上?(⼆)综合运⽤诊断⼀、填空题:9.直接写出解集:(1)4x -3<6x +4的解集是______; (2)(2x -1)+x >2x 的解集是______;(3)5231052--≤-x x x 的解集是______. 10.若m >5,试⽤m 表⽰出不等式(5-m )x >1-m 的解集______.⼆、选择题:11.初三⑴班的⼏个同学,毕业前合影留念,每⼈交0.70元,⼀张彩⾊底⽚0.68元,扩印⼀张相⽚0.50元,每⼈分⼀张,将收来的钱尽量⽤掉的前提下,这张相⽚上的同学最少有( ). (A)2⼈ (B)3⼈ (C)4⼈(D)5⼈12.某出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不⾜1km 按1km 计).某⼈乘这种出租车从甲地到⼄地共⽀付车费19元,设此⼈从甲地到⼄地经过的路程是x km ,那么x 的最⼤值是( ). (A)11 (B)8 (C)7 (D)5三、解答题:13.已知:关于x 、y 的⽅程组?-=++=+134,123p y x p y x 的解满⾜x >y ,求p 的取值范围.14.某⼯⼈加⼯300个零件,若每⼩时加⼯50个可按时完成;但他加⼯2⼩时后,因事停⼯40分钟.那么这个⼯⼈为了按时或提前完成任务,后⾯的时间每⼩时他⾄少要加⼯多少个零件?(三)拓⼴、探究、思考15.某商场出售A 型冰箱,每台售价2290元,每⽇耗电1度;⽽B 型节能冰箱,每台售价⽐A ⾼出10%,但每⽇耗电0.55度.现将A 型冰箱打折出售(打九折后的售价为原价的⼗分之九),问商场最多打⼏折时,消费者购买A 型冰箱才⽐购买B 型冰箱更合算?(按使⽤期10年,每年365天,每度电0.4元计算)16.某零件制造车间有20名⼯⼈,已知每名⼯⼈每天可制造甲种零件6个或⼄种零件5个,且每制造⼀个甲种零件可获利150元,每制造⼀个⼄种零件可获利260元,在这20名⼯⼈中,车间每天安排x 名⼯⼈制造甲零件,其余⼯⼈制造⼄种零件.⑴若此车间每天所获利润为y (元),⽤x 的代数式表⽰y ;(2)若要使每天所获利润不低于24000元,⾄少要派多少名⼯⼈去制造⼄种零件?测试5 ⼀元⼀次不等式组(⼀)学习要求:会解⼀元⼀次不等式组,并会利⽤数轴正确表⽰出解集.(⼀)课堂学习检测⼀、填空题:1.解不等式组?>--<+)2(223)1(,423x x 时,解⑴式,得______,解(2)式,得______.于是得到不等式组的解集是______.2.解不等式组-≥--≥-)2(21)1(,3212x x 时,解⑴式,得______,解(2)式,得______,于是得到不等式组的解集是______.3.⽤字母x 的范围表⽰下列数轴上所表⽰的公共部分: (1)________________________;(2)_______________________; (3)________________________.⼆、选择题:4.不等式组+<+>-5312,243x x x 的解集为( ).(A)x <-4 (B)x >2 (C)-4<x <2 (D)⽆解5.不等式组?>+<-023,01x x 的解集为( ).(A)x >1(B)132<<-x(C)32-三、解下列不等式组,利⽤数轴确定不等式组的解集.6.≥-≥-.04,012x x7.?>+≤-.074,03x x8.??+>-≤-.3342,121x x x x9.-5<6-2x <3.四、解答题:10.解不等式组??<-+≤+321),2(352x x x x 并写出不等式组的整数解.(⼆)综合运⽤诊断⼀、填空题:11.当x 满⾜______时,235x-的值⼤于-5⽽⼩于7. 12.不等式组≤-+<25 12,912x x x x 的整数解为______.⼆、选择题:13.如果a >b ,那么不等式组?<<.,b x a x 的解集是( ).(A)x <a(B)x <b(C)b <x <a(D)⽆解14.不等式组?+>+≤+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2(B)m ≥2 (C)m <1 (D)m >1三、解答题:15.求不等式组73123<--≤x 的整数解.16.解不等式组??-<-->-->+.3273,4536,7342x x x x x x17.当k 取何值时,⽅程组-=+=-52,53y x k y x 的解x 、y 都是负数?18.已知?+=+=+122,42k y x k y x 中的x 、y 满⾜且0<y -x <1,求k 的取值范围.(三)拓⼴、探究、思考19.已知a 是⾃然数,关于x 的不等式组?>-≥-.02,43x a x 的解集是x >2,求a 的值.20.关于x 的不等式组?->-≥-.123,0x a x 的整数解共有5个.求a 的取值范围.测试6 ⼀元⼀次不等式组(⼆)学习要求:进⼀步掌握⼀元⼀次不等式组.(⼀)课堂学习检测1.直接写出解集:(1)->>3,2x x 的解集是______;(2)-<<3,2x x 的解集是______;(3)??-><32x x 的解集是______;(4)??-<>3,2x x 的解集是______.2.⼀个两位数,它的⼗位数字⽐个位数字⼩2,如果这个数⼤于20且⼩于40,那么此数为______.⼆、选择题:3.如果式⼦7x -5与-3x +2的值都⼩于1,那么x 的取值范围是( ).(A)76<x (B)31>x (C)7631<4.已知不等式组?->--+-≤-).23(2)1(53,1)1(3)3(2x x x x x 它的整数解⼀共有( ).(A)1个(B)2个(C)3个(D)4个5.若不等式组?>≤1有解,则k 的取值范围是( ).(A)k <2 (B)k ≥2 (C)k <1三、解下列不等式组,并把解集在数轴上表⽰出来:6.??>-<-322,352x x x x7.??->---->-.6)2(3)3(2,132x x xx8.+>-≤+).2(28,142x x x9..234512x x x -≤-≤-(⼆)综合运⽤诊断⼀、填空题:10.不等式组<->+233,152x x 的所有整数解的和是______,积是______.11.k 满⾜______时,⽅程组?=-=+.4,2y x k y x 中的x ⼤于1,y ⼩于1.⼆、解下列不等式组:12.<+->+--.1)]3(2[21,312233x x x x x13.>-->-->-24,255,13x x x x x x三、解答题:14.k 取哪些整数时,关于x 的⽅程5x +4=16k -x 的根⼤于2且⼩于10? 15.已知关于x 、y 的⽅程组?-=-+=+3472m y x m y x ,的解为正数.(2)化简|3m +2|-|m -5|.(三)拓⼴、探究、思考16.若关于x 的不等式组+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.测试7 利⽤不等关系分析实际问题学习要求:利⽤不等式(组)解决较为复杂的实际问题;感受不等式(组)在实际⽣活中的作⽤.(⼀)课堂学习检测列不等式(组)解应⽤题:1.⼀个⼯程队原定在10天内⾄少要挖掘600m 3的⼟⽅.在前两天共完成了120m 3后,接到要求要提前2天完成掘⼟任务.问以后⼏天内,平均每天⾄少要挖掘多少⼟⽅?2.某城市平均每天产⽣垃圾700吨,由甲、⼄两个垃圾⼚处理.如果甲⼚每⼩时可处理垃圾55吨,需花费550元;⼄⼚每⼩时处理45吨,需花费495元,如果规定该城市每天⽤于处理垃圾的费⽤的和不能超过7150元,问甲⼚每天⾄少要处理多少吨垃圾?3.若⼲名学⽣,若⼲间宿舍,若每间住4⼈将有20⼈⽆法安排住处;若每间住8⼈,则有⼀间宿舍的⼈不空也不满,问学⽣有多少⼈?宿舍有⼏间?4.今年5⽉12⽇,汶川发⽣了⾥⽒8.0级⼤地震,给当地⼈民造成了巨⼤的损失.某中学全体师⽣积极捐款,其中九年级的3个班学⽣的捐款⾦额如下表:⽼师统计时不⼩⼼把墨⽔滴到了其中两个班级的捐款⾦额上,但他知道下⾯三条信息:信息⼀:这三个班的捐款总⾦额是7700元;信息⼆:(2)班的捐款⾦额⽐(3)班的捐款⾦额多300元;信息三:(1)班学⽣平均每⼈捐款的⾦额⼤于..51元...48元,⼩于请根据以上信息,帮助⽼师解决:①(2)班与(3)班的捐款⾦额各是多元;②(1)班的学⽣⼈数.(⼆)综合运⽤诊断5.某学校计划组织385名师⽣租车旅游,现知道出租公司有42座和60座客车,42座客车的租⾦为每辆320元,60座客车的租⾦为每辆460元.(1)若学校单独租⽤这两种客车各需多少钱?(2)若学校同时租⽤这两种客车8辆(可以坐不满),⽽且⽐单独租⽤⼀种车辆节省租⾦,请选择最节省的租车⽅案.(三)拓⼴、探究、思考A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建⼀间A型板房和⼀间B型板房所需板材及能安置的⼈数板房型号甲种板材⼄种板材安置⼈数A型板房54m226m2 5B型板房78m241m28问:这400间板房最多能安置多少灾民?全章测试(⼀)⼀、填空题:1.⽤“>”或“<”填空:(1)m +3______m -3;(2)4-2x ______5-2x ;(3);23______13--yy (4)a <b <0,则a 2______b 2;(5)若23yx -<-,则2x ______3y . 2.若使3233->-yy 成⽴,则y ______. 3.不等式x >-4.8的负整数解是______.⼆、选择题:4.x 的⼀半与y 的平⽅的和⼤于2,⽤不等式表⽰为( ).(A)2212>+y x (B)2212>++y x (C)222>+y x(D)221>+y x5.因为-5<-2,所以( ). (A)-5x <-2x (B)-5x >-2x (C)-5x =-2x (D)三种情况都可能 6.若a ≠0,则下列不等式成⽴的是( ). (A)-2a <2a (B)-2a <2(-a )(C)-2-a <2-a(D)aa 2(D)x >-1三、解不等式(组),并把解集在数轴上表⽰出来:9..11252476312-+≥---x x x10.<+-+--≤+.121331),3(410)8(2x x x x四、解答题:11.x 取何整数时,式⼦729+x 与2143-x 的差⼤于6但不⼤于8.12.当k 为何值时,⽅程1)(5332+-=-k x k x 的解是(1)正数;(2)负数;(3)零.13.已知⽅程组?-=+=-k y x k y x 513,2的解x 与y 的和为负数.求k 的取值范围.14.不等式m m x ->-2)(31的解集为x >2.求m 的值.15.某车间经过技术改造,每天⽣产的汽车零件⽐原来多10个,因⽽8天⽣产的配件超过200个.第⼆次技术改造后,每天⼜⽐第⼀次技术改造后多做配件27个,这样只做了4天,所做配件个数就超过了第⼀次改造后8天所做配件的个数.求这个车间原来每天⽣产配件多少个?16.仔细观察下图,认真阅读对话:根据对话的内容,试求出饼⼲和⽜奶的标价各是多少?全章测试(⼆) ⼀、填空题1.当m______时,⽅程5(x-m)=-2有⼩于-2的根.2.满⾜5(x-1)≤4x+8<5x的整数x为______.3.若11=--xx,则x的取值范围是______.4.已知b<0<a,且a+b<0,则按从⼩到⼤的顺序排列a、-b、-|a|、-|-b|四个数为______.⼆、选择题5.若0<a<b<1,则下列不等式中,正确的是( ).,11;11;1;1babababa<><>④③②①(A)①、③(B)②、③(C)①、④(D)②、④6.下列命题结论正确的是( ).(A)(1)、(2)、(3)(B)(2)、(3)(C)(3)(D)没有⼀个正确7.若不等式(a+1)x>a+1的解集是x<1,则a必满⾜( ).(A)a<0 (B)a>-1 (C)a<-1 (D)a<18.已知x<-3,那么|2+|3+x||的值是( ).(A)-x-1 (B)-x+1 (C)x+1 (D)x-19.如下图,对a、b、c三种物体的重量判断正确的是( ).(A)a<c(B)a<b(C)a>c(D)b<c三、解不等式(组):10.3(x+2)-9≥-2(x-1).11..57321<+<-x12.>--+<-.041131xxxx13.求≤-->32,134xxx的整数解.14.如果关于x的⽅程3(x+4)-4=2a+1的解⼤于⽅程3)43(41xa的解,求a的取值范围.15.某单位要印刷⼀批北京奥运会宣传资料,在需要⽀付制版费600元和每份资料0.3元印刷费的前提下,甲、⼄两个印刷⼚分别提出了不同的优惠条件,甲印刷⼚提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,⼄印刷⼚提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费。
初一数学不等式组提高练习
一元一次不等式组提高练习1、解不等式252133x -+-≤+≤-2、 求下列不等式组的整数解2(2)83373(2)82x x x x x x +<+⎧⎪-≥-⎨⎪-+>⎩3、解不等式:(1) 0)2)(1(<+-x x (2)0121>+-x x4、对于1x ≥的一切有理数,不等式()12x a a -≥都成立,求a 的取值范围。
5、已知1x =是不等式组()()352,23425x x a x a x -⎧≤-⎪⎨⎪-<+-⎩的解,求a 的取值范围.6、如果35x a =-是不等式()11233x x -<-的解,求a 的取值范围。
7、若不等式组841,x x x m +<-⎧⎨>⎩的解集为3x >,求m 的取值范围。
8、如果不等式组237,635x a b b x a-<⎧⎨-<⎩的解集为522x <<,求a 和b 的值。
9、不等式组⎪⎩⎪⎨⎧<-<-622131m x m x 的解集是36+<m x ,求m 的取值范围。
10、已知关于x 的不等式()12a x ->的解在2x <-的范围内,求a 的取值范围。
11、已知关于x 的不等式组010x a x ->⎧⎨->⎩,的整数解共有3个,求a 的取值范围。
12、已知关于x 的不等式组0321x a x -≥⎧⎨-≥-⎩的整数解共有5个,求a 的取值范围。
13、若关于x 的不等式组2145,x x x a ->+⎧⎨>⎩无解,求a 的取值范围。
14、设关于x 的不等式组22321x m x m ->⎧⎨-<-⎩无解,求m 的取值范围15、若不等式组⎩⎨⎧<->a x a x 无解,那么不等式⎩⎨⎧<+>-11a x a x 有没有解若有解,请求出不等式组的解集;若没有请说明理由16、若不等式组372,x x a a -≤⎧⎨-≥⎩有解,求a 的取值范围。
不等式(不等式组)提高经典练习题
不等式(不等式组)提高经典练习题1.1) 3x-4x+8≥x-3x+32x+8≥-32x≥-11x≤11/22) x-3x+8+2/x-82/7+1≥05x^2-25x+12≤0x∈[2/5,3]2.1) x≤-1/2或x≥53x+2≤2x-4x≤-63x+1<2x+4x<32(x+1)>5-x3x>3x>1综上,x∈(1,5]2) 3x+2<2(x+2)x<24.x-2<m-3x^2m-3x^2-2x-1>03x^2-m+2x+1<0根据二次函数的图像可知,当a<1时,不等式无解;当a≥1时,不等式的解为m∈(-∞,2a+1)。
5.x+a-2x-4a≥0x≥2aax+5-3a≥0x≥(3a-5)/a综上,x≥max{2a,(3a-5)/a},即x的解集为[x,∞)。
6.1) 7x-17<5x+132x<15x<7.52) 2x-ax=4x=(4+a)/2代入(1)得a≥-57.m-2-1-m=-3m/(3m-2)1/(3m-2)=1/(m-2)m≠2,5/38.当m≥2时,不等式的解为x∈(-∞,0)U(1,∞)。
当m<2时,不等式的解为x∈(-∞,0)U(1,(m-1)/(2m))。
9.1) -7≤2(1+3x)≤74≤3x≤24/3≤x≤2/32) 4x-10<3-3x7x<13x<13/73(1-x)>2(x+9)x>-25/75x+4>x^2*3.5+1.4x^2*3.5-5x-2.6≤01.2≤x≤1.911-2x≤3x+1x≥2综上,解集为[-4/3,2/3]∩(13/7,∞)。
10.-7≤x-m<7-2x14/3≤x<m+7/34个整数解可以是-3,-2,-1,0,1,2,3,4,5,6,7. 因此,m∈[-17/3,-14/3]∪[1,4]。
2021年初中数学不等式与不等式组专项提升训练
19.三个数3, 在数轴上从左到右依次排列,且以这三个数为边长能构成三角形,则 的取范围为______
20.不等式组 的解集是_____.
21.关于y的方程 的解为正数,关于x的不等式组 有且只有三个整数解,则符合条件的所有整数a的和为______.
(2)该超市A种型号电风扇每台售价260元,B种型号电风扇每件售价190元,超市根据市场需求,决定再采购这两种型号的电风扇共30台,若本次购进的两种电风扇全部售出后,总获利不少于1400元,求该超市本次购进A种型号的电风扇至少是多少台?
28.自2020年12月以来,我国全面有序地推进全民免费接种新冠疫苗,现某国药集团在甲、乙仓库共存放新冠疫苗450万剂,如果调出甲仓库所存新冠疫苗的60%和乙仓库所存新冠疫苗的40%后,剩余的新冠疫苗乙仓库比甲仓库多30万剂.
26.先化简,再求值: ,其中x是不等式组 的整数解.
27.一个电器超市购进A,B两种型号的电风扇后进行销售,若一台A种型号的电风扇进价比一台B种型号的电风扇进价多30元,用2000元购进A种型号电风扇的数量是用3400元购进B种型号电风扇的数量的一半.
(1)求每台A种型号电风扇和B种型号的电风扇进价分别是多少?
2021年初中数学不等式与不等式组专项提升训练
一、单选题
1.已知非负数 , , 满足 且 ,设 的最大值为 ,最小值为 ,则 的值是()
A.16B.15C.9D.7
2.若整数a使关于x的不等式组 有解且至多有四个整数解,且使关于y的分式方程 = 的解为非负数,则满足条件的所有a的值之和为()
A.63B.67C.68D.72
A.9B.11C.15D.18
12.若关于 的不等式组 无解,且关于 的分式方程 的解为非负数,那么所有满足条件的整数 的值之和为()
最新不等式提高题专项练习
精品文档一元一次不等式(组)常见试题分类练习一、解法常见考题:2x?y?1?3m,?①的解满足1、已知方程组x+y<0,求m的取值范围.?x?2y?1?m②?x?2y?4k,?2、已知中的x,y满足0<y-x<1,求k的取值范围.?2x?y?2k?1?x?15??x?3,??2的不等式组只有4个整数解,求、若关于xa的取值范围.3?2x?2??x?a?3?x?a?0,?4、关于x的不等式组的整数解共有5个,求a的取值范围.?3?2x??1?3x?4?a,?的解集是的不等式组x>2,求a的取值范围.5、已知a是自然数,关于x?x?2?0?6、若不等式组 X+8<4x-1 的解集是x>3,则m的取值范围是。
x>mx?9?5x?1,?的解集是x>27、不等式组,则m的取值范围是( ).?x?m?1?(B)m≥2(C)m≤1(D)m(A)m≤2≥1x?a?0,?xa的取值范围. 58、关于个,求的不等式组的整数解共有?3?2x??1?1-+8<4xx?? ________.m的解集为x>3,则的取值范围是9、若不等式组?x>m??1x+x?>0+32?恰有两个整数解.、试确定实数a的取值范围,使不等式组1045a+4?a?+>?x+1+x333x?4?a,?的解集是x>2的不等式组,求a的值.x11、已知a是自然数,关于?x?2?0?x?15??x?3,??2ax的取值范围.个整数解,求、若关于 4的不等式组只有12?2x?2??x?a?3?二、最后一间房问题:1、若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?精品文档.精品文档2、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。
3、把若干颗花生分给若干只猴子。
不等式与不等式组提高练习题
第 1页 / 共3页14题 不等式与不等式组综合练习题一、填空题1.不等式7-x >1的正整数解为: .2.当y _______时,代数式423y -的值至少为1. 3.当x________时,代数式523--x 的值是非正数. 4.若方程m x x -=+33 的解是正数,则m 的取值范围是_________.5.若x=23+a ,y=32+a ,且x >2>y ,则a 的取值范围是________. 6.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为 .7.若11|1|-=--x x ,则x 的取值范围是 . 8.不等式组110210x x ⎧+>⎪⎨⎪->⎩,.的解为 .9.当0<<a x 时,2x 与ax 的大小关系是_______________.10.若点P (1-m ,m )在第二象限,则(m-1)x>1-m 的解集为_______________.11.已知关于x 的不等式组0321x a x -≥⎧⎨-≥-⎩的整数解共有5个,则a 的取值范围是 .12.小明用100元钱购得笔记本和钢笔共30件,已知每本笔记本2元,每只钢笔5元.那么小明最多能买 只钢笔.13.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打 .二、选择题14.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为( )A .x <4B .x <2C .2<x <4D .x >215.把不等式组1020x x +≥⎧⎨->⎩的解集表示在数轴上,正确的是( )16.已知不等①、②、③的解集在数轴上的表示如图1所示,则它们的公共部分的解集是( )A .13x -<≤B .13x <≤C .11x -<≤D .无解17.若方程3m (x+1)+1=m (3-x )-5x 的解是负数,则mA .m>-1.25B .m<-1.25C .m>1.25D .m<1.25 第7题A .B .C .16题第 2页 / 共3页18.若不等式组841x x x m +<-⎧⎨>⎩,的解集为3x >,则m 的取值范围是( ) A .3m ≥ B .3m = C .3m < D .3m ≤19.已知关于x 的不等式组21x x x a <⎧⎪>-⎨⎪<⎩,,无解,则a 的取值范围是( ) A .1a ≤- B .12a -<< C .a ≥0 D .2a ≤20.某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费31元,那么甲地到乙地路程的最大值是( ).A .9千米B .11千米C .13千米D .15千米三、解答题21.解不等式1)1(22≥---x x . 22.解不等式341221x x +≤--. 23.解不等式组,并把它的解集表示在数轴上:24.解不等式组331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩,,≥并写出该不等式组的整数解.25.求满足不等式14(2x+1)- 15(3x+1)>-13的x 的最大整数值. 26.已知:关于x 的方程m x m x =--+2123的解的非正数,求m 的取值范围. 27.在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对了得10分,答错了或不答扣5分,则至少要答对几道题,其得分才会不少于80分?ww28.某市自来水公司按如下标准收取水费,若每户每月用水不超过5cm 3,则每立方米收费1.5元;若每户每月用水超过5cm 3,则超出部分每立方米收费2元。
不等式与不等式组专项训练(含答案详解)
《不等式与不等式组专项训练》一、选择:1.下列不等式一定成立的是()A.a≥﹣a B.3a>a C.a D.a+1>a2.若a>b,则下列不等式仍能成立的是()A.b﹣a<0B.ac<bc C.D.﹣b<﹣a3.解不等式中,出现错误的一步是()A.6x﹣3<4x﹣4B.6x﹣4x<﹣4+3C.2x<﹣1D.4.不等式的正整数解有()A.2个B.3个C.4个D.5个5.在下列不等式组中,解集为﹣1≤x<4的是()A.B.C.D.6.若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34B.22C.﹣3D.0二、填空:7.用不等式表示“6与x的3倍的和大于15”.8.不等式的最大正整数解是,最小正整数解是.9.一次不等式组的解集是.10.若y=2x+1,当x时,y<x.11.关于x的不等式ax+b<0(a<0)的解集为.12.若方程mx+13=4x+11的解为负数,则m的取值范围是.13.若a>b,则的解集为.14.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对道.三、解不等式或不等式组:15.解不等式或不等式组:(1)3(x﹣2)﹣4(1﹣x)<1(2)1﹣≥x+2(3)(4).四、解答下列各题:16.x取什么值时,代数式5(x﹣1)﹣2(x﹣2)的值大于x+2的相反数.17.k取什么值时,解方程组得到的x,y的值都大于1.18.某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.19.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.《不等式与不等式组专项训练》参考答案与试题解析一、选择:1.下列不等式一定成立的是()A.a≥﹣a B.3a>a C.a D.a+1>a【考点】不等式的性质.【分析】根据不等式的两边都加(或减去)同一个整式,不等号的方向不变,可得答案.【解答】解:A、a≤0时,a≤﹣a,故A错误;B、a≤0时,3a≤a,故B错误;C、a<﹣1时,a<,故C错误;D、1>0,1+a>a,故D正确;故选:D.【点评】本题考查了不等式的性质,熟记不等式得性质是解题关键.2.若a>b,则下列不等式仍能成立的是()A.b﹣a<0B.ac<bc C.D.﹣b<﹣a【考点】不等式的性质.【分析】根据不等式的基本性质分别判断,再选择.【解答】解:A、不等式的两边同时减去a,不等号的方向不变,则0<b﹣a,即b﹣a<0成立;B、不等式的两边同时乘以c,因为c的符号不确定,所以不等号的方向也不确定,故ac<bc不成立;C、不等式的两边同时除以b,因为b的符号不确定,所以不等号的方向也不确定,故不成立;D、不等式的两边同时乘以﹣1,不等号的方向改变变,则﹣a<﹣b,则﹣b<﹣a不成立.故选A.【点评】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.解不等式中,出现错误的一步是()A.6x﹣3<4x﹣4B.6x﹣4x<﹣4+3C.2x<﹣1D.【考点】解一元一次不等式.【专题】计算题.【分析】先去分母,移项,合并同类项,化系数为1即可求出x的取值范围,与各选项进行对照即可.【解答】解:去分母得,6x﹣3<4x﹣4,故A选项正确;移项得,6x﹣4x<﹣4+3,故B选项正确;合并同类项得,2x<﹣1,故C选项正确;化系数为1得,x<﹣,故D选项错误.故选D.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.4.不等式的正整数解有()A.2个B.3个C.4个D.5个【考点】一元一次不等式的整数解.【分析】先求出不等式的解集,再据此求出不等式的整数解.【解答】解:去分母,得4x﹣5<12,移项,得4x<12+5,系数化为1,得x<.于是大于0并小于的整数有1,2,3,4.共4个,故选C.【点评】正确解不等式,求出解集是解答本题的关键.解不等式应根据以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.在下列不等式组中,解集为﹣1≤x<4的是()A.B.C.D.【考点】解一元一次不等式组;不等式的解集.【分析】首先分别根据解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到确定出不等式组的解集,即可选出答案.【解答】解:A、不等式组的解集为无解,故此选项错误;B、不等式组的解集为x>4,故此选项错误;C、不等式组的解集为﹣1≤x<4,故此选项正确;D、不等式组的解集为x>4,故此选项错误;故选:C.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的确定规律.6.若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34B.22C.﹣3D.0【考点】解一元一次不等式.【分析】先解不等式≥4x+6,得出用a表示出来的x的取值范围,再根据解集是x≤﹣4,列出方程﹣=﹣4,即可求出a的值.【解答】解:∵≥4x+6,∴x≤﹣,∵x≤﹣4,∴﹣=﹣4,解得:a=22.故选B.【点评】本题考查的是解一元一次不等式,根据不等式的解集是x≤﹣4得出关于a的一元一次方程是解答此题的关键.二、填空:7.用不等式表示“6与x的3倍的和大于15”6+3x>15.【考点】由实际问题抽象出一元一次不等式.【分析】首先表示“x的3倍”为3x,再表示“6与x的3倍的和”为6+3x,最后再表示“大于15”为6+3x>15.【解答】解:根据题意,得:6+3x>15,故答案为:6+3x>15.【点评】此题主要考查了由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.8.不等式的最大正整数解是9,最小正整数解是1.【考点】一元一次不等式的整数解.【分析】去分母,解不等式求解集,在解集的范围内求最大正整数解和最小正整数解.【解答】解:去分母,得x+3≤12,解得x≤9,最大正整数解是9,最小正整数解是1,故答案为:9,1.【点评】本题考查了一元一次不等式的整数解.正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.9.一次不等式组的解集是﹣3<x<2.【考点】解一元一次不等式组.【专题】计算题.【分析】分别求出各个不等式的解集,再求出这些解集的公共部分即可.【解答】解:解不等式①,得x<2,解不等式②,得x>﹣3,所以不等式组的解集是﹣3<x<2.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).10.若y=2x+1,当x<﹣1时,y<x.【考点】一次函数与一元一次不等式.【分析】根据y<x即可得到一个关于x的不等式,解不等式求解.【解答】解:根据题意得:2x+1<x,解得:x<﹣1.故答案是:<﹣1.【点评】本题考查了一次函数与不等式,正确列出不等式是本题的关键.11.关于x的不等式ax+b<0(a<0)的解集为x>﹣.【考点】解一元一次不等式.【分析】先移项,再把x的系数化为1即可.【解答】解:移项得,ax<﹣b,x的系数化为1得,x>﹣.故答案为:x>﹣.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.12.若方程mx+13=4x+11的解为负数,则m的取值范围是m>4.【考点】解一元一次不等式.【分析】解关于x的方程得x=,由方程的解为负数得到关于m的不等式,解不等式即可.【解答】解:解方程mx+13=4x+11得:x=,∵方程的解为负数,∴<0,即4﹣m<0,解得:m>4,故答案为:m>4.【点评】本题主要考查解一元一次方程和不等式的能力,根据题意得出关于m的不等式是解题的关键.13.若a>b,则的解集为空集.【考点】不等式的解集.【专题】计算题;一元一次不等式(组)及应用.【分析】利用不等式组取解集的方法判断即可.【解答】解:∵a>b,∴的解集为空集,故答案为:空集【点评】此题考查了不等式的解集,熟练掌握不等式取解集的方法是解本题的关键.14.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对13道.【考点】一元一次不等式的应用.【专题】应用题.【分析】根据小明得分要超过90分,就可以得到不等关系:小明的得分≤90分,设应答对x道,则根据不等关系就可以列出不等式求解.【解答】解:设应答对x道,则10x﹣5(20﹣x)>90解得x>12∴x=13【点评】解决本题的关键是读懂题意,找到符合题意的不等关系式,正确表示出小明的得分是解决本题的关键.三、解不等式或不等式组:15.(20分)解不等式或不等式组:(1)3(x﹣2)﹣4(1﹣x)<1(2)1﹣≥x+2(3)(4).【考点】解一元一次不等式组;解一元一次不等式.【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可;(3)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可;(4)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)去括号得:3x﹣6﹣4+4x<1,3x+4x<1+6+4,7x<11,x<;(2)去分母得:6﹣2x+1≥6x+12,﹣2x﹣6x≥12﹣6﹣1,﹣8x≥5,x≤﹣;(3)∵解不等式①得:x≤1,解不等式②得:x>﹣3,∴不等式组的解集为﹣3<x≤1;(4)∵解不等式①得:x≤4,解不等式②得:x>7,∴不等式组无解.【点评】本题考查了解一元一次不等式和解一元一次不等式组的应用,能求出不等式或不等式组的解集是解此题的关键.四、解答下列各题:16.(8分)x取什么值时,代数式5(x﹣1)﹣2(x﹣2)的值大于x+2的相反数.【考点】解一元一次不等式.【分析】根据题意列出不等式,解不等式即可得.【解答】解:根据题意,得:5(x﹣1)﹣2(x﹣2)>﹣(x+2),去括号,得:5x﹣5﹣2x+4>﹣x﹣2,移项、合并,得:4x>﹣1,系数化为1,得:x>﹣,即x>﹣时,代数式5(x﹣1)﹣2(x﹣2)的值大于x+2的相反数.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.17.(8分)k取什么值时,解方程组得到的x,y的值都大于1.【考点】解一元一次不等式组;解二元一次方程组.【专题】方程与不等式.【分析】将k看作常数,解关于x、y的二元一次方程组,令其解大于1,就只需解关于k的不等式组即可【解答】解:①+②,得x=k+2①﹣②,得y=k﹣2∵x>1,y>1∴解之得:k>3即:当k>3时,解方程组得到的x,y的值都大于1【点评】本题考查了二元一次方程组解的解法与一元一次不等式组的解法,关键是解方程组时将k看作常数.18.(10分)(2016春•房山区期中)某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.【考点】一元一次不等式组的应用.【专题】比例分配问题.【分析】根据题意设安排住宿的房间为x间,并用含x的代数式表示学生人数,根据“每间住4人,则还余20人无宿舍住和;每间住8人,则有一间宿舍不空也不满”列不等式组解答.【解答】解:设安排住宿的房间为x间,则学生有(4x+20)人,根据题意,得解之得5.25≤x≤6.25又∵x只能取正整数,∴x=6∴当x=6,4x+20=44.(人)答:住宿生有44人,安排住宿的房间6间.【点评】解决本题的关键是读懂题意,找到符合题意的不等关系式组.要根据人数为正整数,推理出具体的人数.19.(12分)(2012春•东城区校级期中)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.【考点】一元一次不等式组的应用.【分析】本题首先找出题中的不等关系即甲种原料不超过360千克,乙种原料不超过290千克,然后列出不等式组并求出它的解集.由此可确定出具体方案.【解答】解:设安排生产A种产品x件,则安排生产B种产品(50﹣x)件.依题意得解得30≤x≤32∵x为正整数,∴x=30,31,32,∴有三种方案:(1)安排生产A种产品30件,B种产品20件;(2)安排生产A种产品31件,B种产品19件;(3)安排生产A种产品32件,B种产品18件.【点评】考查了一元一次不等式组的应用,解题关键是要读懂题目的意思,找出题中隐藏的不等关系甲种原料不超过360千克,乙种原料不超过290千克,列出不等式组解出即可.。
初一数学-不等式和不等式组提高练习-难度比较大
学生姓名 陈 年级 初三 授课时间 2012.5.19 教师姓名 刘 课时 2不等式和不等式组提高练习一、选择题1. 如果a 、b 表示两个负数,且a <b ,则( ). (A)1>b a (B)b a <1 (C)b a 11< (D)ab <12. a 、b 是有理数,下列各式中成立的是( ).(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b(C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b3. |a |+a 的值一定是( ).(A)大于零 (B)小于零 (C)不大于零 (D)不小于零4. 若由x <y 可得到ax >ay ,应满足的条件是( ).(A)a ≥0 (B)a ≤0 (C)a >0 (D)a <05. 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <16. 九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ).(A)2人 (B)3人 (C)4人 (D)5人7. 某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ).(A)11 (B)8 (C)7 (D)58. 若不等式组⎩⎨⎧>≤<k x x ,21有解,则k 的取值范围是( ). (A)k <2(B)k ≥2 (C)k <1 (D)1≤k <2 9. 不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ). (A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥110. 对于整数a ,b ,c ,d ,定义bd ac c d b a -=,已知3411<<d b ,则b +d 的值为_________. 11. 如果a 2x >a 2y (a ≠0).那么x ______y .12. 若x 是非负数,则5231x -≤-的解集是______. 13. 已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______.14. 6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少..应付给超市______元. 15. 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.16. 乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x 页,列出的不等式为______.17. k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1. 二、解下列不等式18. 2(2x -3)<5(x -1). 10-3(x +6)≤1.19. ⋅-->+22531x x ⋅-≥--+612131y y y20. 3[x -2(x -7)]≤4x ..17)10(2383+-≤--y y y21. .151)13(21+<--y y y .15)2(22537313-+≤--+x x x22. ).1(32)]1(21[21-<---x x x x⋅->+-+2503.0.02.003.05.09.04.0x x x三、解不等式组23. ⎩⎨⎧≥-≥-.04,012x x⎩⎨⎧>+≤-.074,03x x24. ⎪⎩⎪⎨⎧+>-<-.3342,121x x x x-5<6-2x <3.25. ⎪⎩⎪⎨⎧⋅>-<-322,352xx x x⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x x x26. ⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x.234512x x x -≤-≤-27. ⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x28. 解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x四、变式练习29. 若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .30. .已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.31. 已知方程组⎩⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0,求m 的取值范围.32. 适当选择a 的取值范围,使1.7<x <a 的整数解:(1) x 只有一个整数解;(2) x 一个整数解也没有.33. 当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.34. 已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.35. (类型相同)当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.36. (类型相同)已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.37. 已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.38. 关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.39. (类型相同)k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?40. (类型相同)已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.41. 若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.五、解答题42. 某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产量,求原来每天最多能生产多少辆汽车?43. 某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?44. 某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?45.某工人加工300个零件,若每小时加工50个就可按时完成;但他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?46.一个工程队原定在10天内至少要挖掘600m3的土方.在前两天共完成了120m3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?47.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?48.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?49.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.(1)若此车间每天所获利润为y(元),用x的代数式表示y.(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?50.某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)若该单位要印刷2400份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?51.2008年5月12日,汶川发生了里氏8.0级地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:二班的捐款金额比三班的捐款金额多300元;信息三:一班学生平均每人捐款的金额大于..48元,小于..51元.请根据以上信息,帮助老师解决:(1)二班与三班的捐款金额各是多少元?(2)一班的学生人数是多少?52.某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.53.在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B型板房所需板材及能安置的人数如下表所示:问:这400。
最新苏教版+七年级数学不等式练习题及参考答案优秀名师资料
苏教版七年级数学《不等式与不等式(组)》练习题班级_______姓名________成绩_________A卷·基础知识(一)一、选择题(4×8=32)1、下列数中是不等式>的解的有()76, 73, 79, 80, 74.9, 75.1, 90, 60A、5个B、6个C、7个D、8个2、下列各式中,是一元一次不等式的是()A、5+4>8B、C、≤5D、≥03、若,则下列不等式中正确的是()A、B、C、D、4、用不等式表示与的差不大于,正确的是()A、B、C、D、5、不等式组的解集为()A 、> B、<< C、< D、空集6、不等式>的解集为()A、> B 、<0 C、>0 D、<7、不等式<6的正整数解有()A 、1个B 、2个 C、3 个 D、4个8、下图所表示的不等式组的解集为()A 、 B、 C、 D、二、填空题(3×6=18)9、“的一半与2的差不大于”所对应的不等式是10、不等号填空:若a<b<0 ,则;;11、当时,大于212、直接写出下列不等式(组)的解集①②③13、不等式的最大整数解是14、某种品牌的八宝粥,外包装标明:净含量为330g10g,表明了这罐八宝粥的净含量的范围是三、解下列不等式,并把它们的解集在数轴上表示出来。
(6’×2=12’)15、16、四、解方程组(6×2=12)17、18、五、解答题(8×2=16)19、代数式的值不大于的值,求的范围20、方程组的解为负数,求的范围六、列不等式(组)解应用题(10)22、某次数学测验,共16个选择题,评分标准为:;对一题给6分,错一题扣2分,不答不给分。
某个学生有1题未答,他想自己的分数不低于70分,他至少要对多少题?七、附加题:(10’)22、已知,满足化简(二)一、选择题(4′×8=32′)1.若则必为() A、负整数B、正整数C、负数D、正数2.不等式组的解集是()A、B、C、D、无解3.下列说法,错误的是()A、的解集是B、-10是的解C、的整数解有无数多个D、的负整数解只有有限多个4.不等式组的解在数轴上可以表示为()A、 B、C、 D、5.不等式组的整数解是()A、-1,0B、-1,1C、0,1D、无解6.若<<0,则下列答案中,正确的是()A、<BB、>C、<D、>7.关于的方程的解都是负数,则的取值范围()A、>3B、<C、<3D、>-38.设“○”“△”“□”表示三种不同的物体,现用天平称了两次,情况如图所示,那么“○”“△”“□”质量从大到小的顺序排列为()A、□○△B、□△○C、△○□ D、△□○二、填空(3×10=30)9.当时,代数式的值不大于零10.若<1,则0(用“>”“=”或“”号填空)11.不等式>1,的正整数解是12. 不等式>的解集为<3,则13.若>>,则不等式组的解集是14.若不等式组的解集是-1<<1,则的值为15.有解集2<<3的不等式组是(写出一个即可)16.一罐饮料净重约为300g,罐上注有“蛋白质含量”其中蛋白质的含量为 _____ g17.若不等式组的解集为>3,则的取值范围是三、解答题(5′×2+6′×2+8′+8′=38′)18.解不等式①;②并分别把它们的解集在数轴上表示出来19.解不等式组①②20.关于的方程组的解满足>求的最小整数值21.一本英语书共98页,张力读了一周(7天),而李永不到一周就已读完,李永平均每天比张力多读3页,张力平均每天读多少页?(答案取整数)附加题(10)22.某工程队要招聘甲、乙两种工人150人,甲、乙两种工种的月工资分别为600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?10.下列说法中:①若a>b,则a-b>0;②若a>b,则ac2>bc2;③若ac>bc,则a>b;④若ac2>bc2,则a>b.正确的有()A、1个B、2个C、3个D、4个11.下列表达中正确的是()A、若x2>x,则x<0B、若x2>0,则x>0C、若x<1则x2<xD、若x<0,则x2>x12.如果不等式ax<b的解集是x<,那么a的取值范围是()A、a≥0B、a≤0C、a>0D、a<0一、填空题1.不等式2x<5的解有________个.2.“a的3倍与b的差小于0”用不等式可表示为_______________.3.如果一个三角形的三条边长分别为5,7,x,则x的取值范围是______________.4.在-2<x≤3中,整数解有__________________.5.下列各数0,-3,3,-0.5,-0.4,4,-20中,______是方程x+3=0的解;_______是不等式x+3>0的解;___________________是不等式x+3>0. 6.不等式6-x≤0的解集是__________.7.用“<”或“>”填空:(1)若x>y,则-;(2)若x+2>y+2,则-x______-y;(3)若a>b,则1-a ________ 1-b;(4)已知x-5<y-5,则x ___ y. 8.若∣m-3∣=3-m,则m的取值范围是__________.9.不等式2x-1>5的解集为________________.10.若6-5a>6-6b,则a与b的大小关系是____________.11.若不等式-3x+n>0的解集是x<2,则不等式-3x+n<0的解集是________. 12.三个连续正整数的和不大于12,符合条件的正整数共有________组.13.如果a<-2,那么a与的大小关系是___________.14.由x>y,得ax≤ay,则a ______0二、解答题1.根据下列的数量关系,列出不等式(1)x与1的和是正数(2)y的2倍与1的和大于3(3)x的与x的2倍的和是非正数(4)c与4的和的30%不大于-2(5)x除以2的商加上2,至多为5(6)a与b的和的平方不小于22.利用不等式的性质解下列不等式,并把解集在数轴上表示出来.(1)4x+3<3x (2)4-x≥4(3) 2x-4≥0 (4)-x+2>53.已知有理数m、n的位置在数轴上如图所示,用不等号填空.(1)n-m ____0;(2)m+n _____0;(3)m-n ____0;(4)n+1 ____0;(5)mn ____0;(6)m -1____0.4.已知不等式5x-2<6x+1的最小正整数解是方程3x-ax=6的解,求a的值. 5.试写出四个不等式,使它们的解集分别满足下列条件:(1) x=2是不等式的一个解;(2)-2,-1,0都是不等式的解;(3)不等式的正整数解只有1,2,3;(4)不等式的整数解只有-2,-1,0,1.6.已知两个正整数的和与积相等,求这两个正整数.解:不妨设这两个正整数为a、b,且a ≤b,由题意得:ab=a+b ①则ab=a+b≤b+b=2b,∴a≤2∵a为正整数,∴a=1或2.(1)当a=1时,代入①式得1·b=1+b不存在(2)当a=2时,代入①式得2·b=2+b,∴b=2.因此,这两个正整数为2和2.仔细阅读以上材料,根据阅读材料的启示,思考:是否存在三个正整数,它们的和与积相等?试说明你的理由.7.根据等式和不等式的基本性质,我们可以得到比较两个数大小的方法:若A-B >0,则A>B;若A-B=0,则A=B;若A-B<0,则A<B,这种比较大小的方法称为“作差比较法”,试比较2x2-2x与x2-2x的大小.A(一)一、1 A 2C 3D 4D 5B 6C 7C 8A二、9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式与不等式组专项练习(提高)
不等式与不等式组专项练习(能力提高)
1.已知方程组3133
x y k x y +=+⎧⎨+=⎩的解x 、y,且2<k<4,则x-y 的取值范围是( ) A.0<x-y<12
B.0<x-y<1
C.-3<x-y<-1
D.-1<x-y<1 (2002,广州)当a 取什么数值时,关于未知数x 的方程a 2x +4x-1=0只有正实数根?
2.若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .
3..已知关于x ,y 的方程组⎩⎨⎧-=++=+1
34,123p y x p y x 的解满足x >y ,求p 的取值范围. 4.已知方程组⎩
⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0,求m 的取值范围. 5.适当选择a 的取值范围,使1.7<x <a 的整数解:
(1) x 只有一个整数解;(2)x 一个整数解也没有.
6.当3
10)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集. 7.已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.
8.(类型相同)当k 取何值时,方程组⎩⎨⎧-=+=-5
2,53y x k y x 的解x ,y 都是负数. 9(类型相同)已知⎩
⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.
10.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-0
2,43x a x 的解集是x >2,求a 的值. 11.关于x 的不等式组⎩
⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.
12.(类型相同)k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?
13.(类型相同)已知关于x ,y 的方程组⎩
⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.
14.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 3
22,3215只有4个整数解,求a 的取值范围. 五、解答题
1. 在一次爆破中,用1米的导火索来引爆炸药,导火索的燃烧速度为0.5cm/s,
引爆员点着导火索后,至少以每秒多少米的速度才能跑到600m 或600m 以外的安全区域?
2.(2004.南宁)某饮料厂为了开发新产品,用A 、B 两种果汁原料各19kg 、2kg,试制甲、乙两种新型饮料共50kg,下表是试验的相关数据:
(1)假设甲种饮料需配制xkg,请你写出满足题意的不等式组,并求出其解集.
(2)设甲种饮料每千克成本为4元,乙种饮料每千克成本为3元, 这两种饮
料的成本总额为y 元,请写出y 与x 的函数表达式.并根据(1)的运算结
果, 确定当甲种饮料配制多少千克时,甲、乙两种饮料的成本总额最少? 3.爆破施工时,导火索燃烧的速度是0.8cm/s ,人跑开的速度是5m/s ,为了使点火的战士在施工时能跑到100m 以外的安全地区,导火索至少需要多长?
4.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?
5.已知李红比王丽大3岁,又知李红和王丽年龄之和大于30且小于33,求李红的年龄。
6.某工人计划在15天里加工408个零件,最初三天中每天加工24个,问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务?
7.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。
已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?
8.某工程队计划在10天内修路6km,施工前2天修完1.2km后,计划发生变化,准备提前2天完成修路任务,以后几天内平均每天至少要修路多少千米?
9.某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产量,求原来每天最多能生产多少辆汽车?
10.某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?
11.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?
11.某工人加工300个零件,若每小时加工50个就可按时完成;但他加工2小
时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?
12.一个工程队原定在10天内至少要挖掘600m3的土方.在前两天共完成了
120m3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?
13.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每
小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?
14.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间
住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间? 15.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙
种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.
(1)若此车间每天所获利润为y(元),用x的代数式表示y.
(2)(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制
造乙种零件?
16.某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印
刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂
提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)若该单位要印刷2400份宣传资料,则甲印刷厂的费用是
______,乙印刷厂的费用是______.
(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?
17.2008年5月12日,汶川发生了里氏8.0级地震,给当地人民造成了巨大的
损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:
(1)老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道
下面三条信息:
(2)信息一:这三个班的捐款总金额是7700元;
(3)信息二:二班的捐款金额比三班的捐款金额多300元;
(4)信息三:一班学生平均每人捐款的金额大于
..51元.
..48元,小于
(5)请根据以上信息,帮助老师解决:
(1)二班与三班的捐款金额各是多少元?
(2)一班的学生人数是多少?
18.某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客
车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.
(1)若学校单独租用这两种客车各需多少钱?
(2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车
辆节省租金,请选择最节省的租车方案.
19.在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和
乙种板材12000m2的任务.某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B型板房所需板材及能安置的人数如下表所示:
问:这400间板房最多能安置多少灾民?。