课程设计论文图的遍历
图的遍历算法
1图的遍历问题在实践中常常遇到这样的问题:给定n个点,从任一点出发对所有的点访问一次并且只访问一次。
如果用图中的顶点表示这些点,图中的边表示可能的连接,那么这个问题就可以表示成图的遍历问题,即从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。
图的遍历操作和树的遍历操作功能相似,是图的一种基本操作,图的许多其它操作都是建立在遍历操作的基础上。
由于图结构本身的复杂性,所以图的遍历操作也比较复杂,主要表现在以下几个方面:(1) 在图结构中,没有一个确定的首结点,图中任意一个顶点都可以作为第一个被访问的结点。
(2) 在非连通图中,从一个顶点出发,只能够访问它所在的连通分量上的所有顶点,因此,还需要考虑如何选取下一个出发点以访问图中其余的连通分量。
(3) 在图结构中,如果有回路存在,那么一个顶点被访问后,有可能沿回路又回到该顶点。
⑷在图结构中,一个顶点可以和其它多个顶点相连,当这样的顶点访问过后,存在如何选取下一个要访问的顶点的问题。
基于以上分析,图的遍历方法目前有深度优先搜索(DFS)和广度优先搜索(BFS)两种算法。
下面将介绍两种算法的实现思路,分析算法效率并编程实现。
1.1深度优先搜索算法深度优先搜索算法是树的先根遍历的推广,它的实现思想是:从图G的某个顶点V o出发,访问V o,然后选择一个与V o相邻且没被访问过的顶点V i访问,再从V i出发选择一个与V i相邻且未被访问的顶点V j进行访问,依次继续。
如果当前被访问过的顶点的所有邻接顶点都已被访问,贝U退回已被访问的顶点序列中最后一个拥有未被访问的相邻顶点的顶点W,从W出发按同样的方法向前遍历,直到图中所有顶点都被访问。
其递归算法如下:Boolean visited[MAX_VERTEX_NUM]; // 访问标志数组Status (*VisitFunc)(int v); //VisitFunc是访问函数,对图的每个顶点调用该函数void DFSTraverse (Graph G Status(*Visit)(i nt v)){VisitF unc = Visit;for(v=0; vvG.vex num; ++v)visited[v] = FALSE; //访问标志数组初始化for(v=0; v<G .vex num; ++v)if(!visited[v])DFS(G v); //对尚未访问的顶点调用DFS}void DFS(Graph G int v){ //从第v个顶点出发递归地深度优先遍历图Gvisited[v]=TRUE; VisitFunc(v); // 访问第v 个顶点for(w=FirstAdjVex(G ,v); w>=0;w=NextAdjVex(G ,v,w))//FirstAdjVex返回v的第一个邻接顶点,若顶点在G中没有邻接顶点,则返回空(0)。
数据结构课程设计题目
题目1:图的遍历功能:实现图的深度优先, 广度优先遍历算法,并输出原图结构及遍历结果。
分步实施:1) 初步完成总体设计,搭好框架;2)完成最低要求:两种必须都要实现,写出画图的思路;3)进一步要求:画出图的结构,有兴趣的同学可以进一步改进图的效果。
要求:1)界面友好,函数功能要划分好2)总体设计应画一流程图3)程序要加必要的注释4)要提供程序测试方案5)程序一定要经得起测试,宁可功能少一些,也要能运行起来,不能运行的程序是没有价值的。
题目2:n维矩阵乘法:A B-1功能:设计一个矩阵相乘的程序,首先从键盘输入两个矩阵a,b的内容,并输出两个矩阵,输出ab-1结果。
分步实施:1)初步完成总体设计,搭好框架,确定人机对话的界面,确定函数个数;2)完成最低要求:建立一个文件,可完成2维矩阵的情况;3)一步要求:通过键盘输入维数n。
有兴趣的同学可以自己扩充系统功能。
要求:1)界面友好,函数功能要划分好2)总体设计应画一流程图3)程序要加必要的注释4)要提供程序测试方案5)程序一定要经得起测试,宁可功能少一些,也要能运行起来,不能运行的程序是没有价值的。
题目3:数组应用功能:按照行优先顺序将输入的数据建成4维数组,再按照列优先顺序输出结果,给出任意处的元素值,并给出对应的一维数组中的序号。
分步实施:1.初步完成总体设计,搭好框架,确定人机对话的界面,确定函数个数;2.完成最低要求:完成第一个功能;3.进一步要求:进一步完成后续功能。
有兴趣的同学可以自己扩充系统功能。
要求:1)界面友好,函数功能要划分好2)总体设计应画一流程图3)程序要加必要的注释4)要提供程序测试方案5)程序一定要经得起测试,宁可功能少一些,也要能运行起来,不能运行的程序是没有价值的。
题目4:数组应用2功能:读入数组下标,求出数组A靠边元素之和;求从A[0][0]开始的互不相邻的各元素之和;当m=n时,分别求两条对角线上的元素之和,否则打印出m!=n的信息。
数据结构实验报告图的遍历讲解
数据结构实验报告图的遍历讲解一、引言在数据结构实验中,图的遍历是一个重要的主题。
图是由顶点集合和边集合组成的一种数据结构,常用于描述网络、社交关系等复杂关系。
图的遍历是指按照一定的规则,挨次访问图中的所有顶点,以及与之相关联的边的过程。
本文将详细讲解图的遍历算法及其应用。
二、图的遍历算法1. 深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,其基本思想是从一个顶点出发,沿着一条路径向来向下访问,直到无法继续为止,然后回溯到前一个顶点,再选择此外一条路径继续访问。
具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问。
(2)从v出发,选择一个未被访问的邻接顶点w,将w标记为已访问,并将w入栈。
(3)如果不存在未被访问的邻接顶点,则出栈一个顶点,继续访问其它未被访问的邻接顶点。
(4)重复步骤(2)和(3),直到栈为空。
2. 广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,其基本思想是从一个顶点出发,挨次访问其所有邻接顶点,然后再挨次访问邻接顶点的邻接顶点,以此类推,直到访问完所有顶点。
具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问,并将v入队。
(2)从队首取出一个顶点w,访问w的所有未被访问的邻接顶点,并将这些顶点标记为已访问,并将它们入队。
(3)重复步骤(2),直到队列为空。
三、图的遍历应用图的遍历算法在实际应用中有广泛的应用,下面介绍两个典型的应用场景。
1. 连通分量连通分量是指图中的一个子图,其中的任意两个顶点都是连通的,即存在一条路径可以从一个顶点到达另一个顶点。
图的遍历算法可以用来求解连通分量的个数及其具体的顶点集合。
具体步骤如下:(1)对图中的每一个顶点进行遍历,如果该顶点未被访问,则从该顶点开始进行深度优先搜索或者广度优先搜索,将访问到的顶点标记为已访问。
(2)重复步骤(1),直到所有顶点都被访问。
2. 最短路径最短路径是指图中两个顶点之间的最短路径,可以用图的遍历算法来求解。
采用邻接表存储结构实现图的广度优先遍历。
精心整理课程设计题目九:图的广度优先遍历基本要求:采用邻接表存储结构实现图的广度优先遍历。
(2)对任意给定的图(顶点数和边数自定),建立它的邻接表并输出;(3)实现图的广度优先遍历*/#include<iostream.h>#include<stdio.h>#include<malloc.h>#defineMAX_NUM20intvisited[MAX_NUM]={0};typedefintVertexType;typedefenum{DG=1,UDG}GraphKind;typedefstructArcNode{intadjvex;intweight;structArcNode*nextarc;ArcNode*info;}ArcNode;typedefstructVNode{VertexTypedata;ArcNode*firstarc;}VNode,AdjList[MAX_NUM];typedefstruct{AdjListvertices;intvexnum,arcnum;GraphKindkind;}ALGraph;voidPRIN(ALGraph&G);voidCreat_adjgraph(ALGraph&G);voidbfs(ALGraph&G,intv);voidCreat_adjgraphDG(ALGraph&G);voidCreat_adjgraphUDG(ALGraph&G);voidCreat_adjgraph(ALGraph&G);voidCreat_adjgraphDG(ALGraph&G){inti,s,d;ArcNode*p=NULL,*q=NULL;G.kind=DG;printf("请输入顶点数和边数:");scanf("%d%d",&G.vexnum,&G.arcnum);for(i=0;i<G.vexnum;++i){printf("第%d个顶点信息:",i+1);scanf("%d",&G.vertices[i].data);G.vertices[i].firstarc=NULL;}for(i=0;i<G.arcnum;++i){printf("第%d条边的起始顶点编号和终止顶点编号:",i+1);scanf("%d%d",&s,&d);while(s<1||s>G.vexnum||d<1||d>G.vexnum){printf("编号超出范围,重新输入");scanf("%d%d",&s,&d);}s--;d--;p=new(ArcNode);p->adjvex=d;p->nextarc=G.vertices[s].firstarc;G.vertices[s].firstarc=p;}}voidCreat_adjgraphUDG(ALGraph&G){inti,s,d;ArcNode*p,*q;G.kind=UDG;printf("请输入顶点数和边数:");scanf("%d%d",&G.vexnum,&G.arcnum);for(i=0;i<G.vexnum;++i){printf("第%d个顶点信息:",i+1);scanf("%d",&G.vertices[i].data);G.vertices[i].firstarc=NULL;}for(i=0;i<G.arcnum;++i){printf("第%d条边的起始顶点编号和终止顶点编号:",i+1);scanf("%d%d",&s,&d);while(s<1||s>G.vexnum||d<1||d>G.vexnum){printf("编号超出范围,重新输入");scanf("%d%d",&s,&d);}s--;d--;p=new(ArcNode);p->adjvex=d;p->nextarc=G.vertices[s].firstarc;G.vertices[s].firstarc=p;q=new(ArcNode);q->adjvex=s;q->nextarc=G.vertices[d].firstarc;G.vertices[d].firstarc=q;}}voidPRIN(ALGraph&G){inti;ArcNode*p;if(G.kind==DG||G.kind==UDG){for(i=0;i<G.vexnum;++i){printf("V%d:",G.vertices[i].data);p=G.vertices[i].firstarc;while(p!=NULL){printf("%d\t",p->adjvex+1);p=p->nextarc;}printf("\n");}}}voidbfs(ALGraph&G,intv){v--;ArcNode*p;intqueue[MAX_NUM],front=0,rear=0;intw,i;for(i=0;i<G.vexnum;i++)visited[i]=0;printf("%4d",v+1);visited[v]=1;rear=(rear+1)%MAX_NUM;queue[rear]=v;while(front!=rear){front=(front+1)%MAX_NUM;w=queue[front];p=G.vertices[w].firstarc;while(p!=NULL){if(visited[p->adjvex]==0){printf("%3d",p->adjvex+1);visited[p->adjvex]=1;rear=(rear+1)%MAX_NUM;queue[rear]=p->adjvex;}p=p->nextarc;}}printf("\n");}voidCreat_adjgraph(ALGraph&G){printf("1:有向图2:无向图\n");printf("请根据上述提示输入图的类型:");scanf("%d",&G.kind);switch(G.kind){caseDG:Creat_adjgraphDG(G);PRIN(G);break;caseUDG:Creat_adjgraphUDG(G);PRIN(G);break;default:printf("ERROR");break;}}voidmain(){ALGraphG;Creat_adjgraph(G);printf("\n");printf("广度优先搜索遍历序列为:\n");bfs(G,1);printf("\n");}。
图的遍历 实验报告
图的遍历实验报告一、引言图是一种非线性的数据结构,由一组节点(顶点)和节点之间的连线(边)组成。
图的遍历是指按照某种规则依次访问图中的每个节点,以便获取或处理节点中的信息。
图的遍历在计算机科学领域中有着广泛的应用,例如在社交网络中寻找关系紧密的人员,或者在地图中搜索最短路径等。
本实验旨在通过实际操作,掌握图的遍历算法。
在本实验中,我们将实现两种常见的图的遍历算法:深度优先搜索(DFS)和广度优先搜索(BFS),并比较它们的差异和适用场景。
二、实验目的1. 理解和掌握图的遍历算法的原理与实现;2. 比较深度优先搜索和广度优先搜索的差异;3. 掌握图的遍历算法在实际问题中的应用。
三、实验步骤实验材料1. 计算机;2. 编程环境(例如Python、Java等);3. 支持图操作的相关库(如NetworkX)。
实验流程1. 初始化图数据结构,创建节点和边;2. 实现深度优先搜索算法;3. 实现广度优先搜索算法;4. 比较两种算法的时间复杂度和空间复杂度;5. 比较两种算法的遍历顺序和适用场景;6. 在一个具体问题中应用图的遍历算法。
四、实验结果1. 深度优先搜索(DFS)深度优先搜索是一种通过探索图的深度来遍历节点的算法。
具体实现时,我们可以使用递归或栈来实现深度优先搜索。
算法的基本思想是从起始节点开始,选择一个相邻节点进行探索,直到达到最深的节点为止,然后返回上一个节点,再继续探索其他未被访问的节点。
2. 广度优先搜索(BFS)广度优先搜索是一种逐层遍历节点的算法。
具体实现时,我们可以使用队列来实现广度优先搜索。
算法的基本思想是从起始节点开始,依次遍历当前节点的所有相邻节点,并将这些相邻节点加入队列中,然后再依次遍历队列中的节点,直到队列为空。
3. 时间复杂度和空间复杂度深度优先搜索和广度优先搜索的时间复杂度和空间复杂度如下表所示:算法时间复杂度空间复杂度深度优先搜索O(V+E) O(V)广度优先搜索O(V+E) O(V)其中,V表示节点的数量,E表示边的数量。
图的遍历的实验报告
图的遍历的实验报告图的遍历的实验报告一、引言图是一种常见的数据结构,它由一组节点和连接这些节点的边组成。
图的遍历是指从图中的某个节点出发,按照一定的规则依次访问图中的所有节点。
图的遍历在许多实际问题中都有广泛的应用,例如社交网络分析、路线规划等。
本实验旨在通过实际操作,深入理解图的遍历算法的原理和应用。
二、实验目的1. 掌握图的遍历算法的基本原理;2. 实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法;3. 比较并分析DFS和BFS算法的时间复杂度和空间复杂度。
三、实验过程1. 实验环境本实验使用Python编程语言进行实验,使用了networkx库来构建和操作图。
2. 实验步骤(1)首先,我们使用networkx库创建一个包含10个节点的无向图,并添加边以建立节点之间的连接关系。
(2)接下来,我们实现深度优先搜索算法。
深度优先搜索从起始节点开始,依次访问与当前节点相邻的未访问过的节点,直到遍历完所有节点或无法继续访问为止。
(3)然后,我们实现广度优先搜索算法。
广度优先搜索从起始节点开始,先访问与当前节点相邻的所有未访问过的节点,然后再访问这些节点的相邻节点,依此类推,直到遍历完所有节点或无法继续访问为止。
(4)最后,我们比较并分析DFS和BFS算法的时间复杂度和空间复杂度。
四、实验结果经过实验,我们得到了如下结果:(1)DFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。
(2)BFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。
其中,V表示图中的节点数,E表示图中的边数。
五、实验分析通过对DFS和BFS算法的实验结果进行分析,我们可以得出以下结论:(1)DFS算法和BFS算法的时间复杂度都是线性的,与图中的节点数和边数呈正比关系。
(2)DFS算法和BFS算法的空间复杂度也都是线性的,与图中的节点数呈正比关系。
但是,DFS算法的空间复杂度比BFS算法小,因为DFS算法只需要保存当前路径上的节点,而BFS算法需要保存所有已访问过的节点。
遍历路径算法
遍历路径算法遍历路径算法是一种计算机科学中的算法,用于在图或树等数据结构中遍历或搜索路径,以找到特定节点、确定连通性或执行其他操作。
以下是一些常见的遍历路径算法:1. 深度优先搜索(Depth-First Search,DFS):DFS 是一种递归或堆栈(栈)驱动的算法,用于遍历树或图中的节点。
它首先探索一个节点的所有子节点,然后再递归地继续向下探索,直到到达叶子节点,然后返回上一级节点,继续探索其他子节点。
DFS 可以用于寻找路径、检测环、拓扑排序等问题。
2. 广度优先搜索(Breadth-First Search,BFS):BFS 以层次方式遍历图或树,从根节点开始,首先探索所有直接相邻的节点,然后再逐层向外扩展。
BFS 通常用于寻找最短路径或解决距离相关问题。
3. Dijkstra 算法:Dijkstra 算法用于寻找从一个起点到图中所有其他节点的最短路径。
它通过不断选择距离最短的节点来构建最短路径树。
4. A 搜索算法*:A* 搜索算法是一种启发式搜索算法,用于寻找从一个起点到目标节点的最短路径。
它使用启发式函数来评估节点的价值,并选择具有最小总代价的节点进行探索。
5. 贪婪搜索算法:贪婪搜索算法是一种启发式搜索算法,它总是选择最有希望的节点进行探索,但不一定能够找到全局最优解。
它通常用于解决某些优化问题,如旅行推销员问题。
6. 递归算法:递归算法是一种通过递归调用自身的方法,来遍历树或图中的路径。
递归算法可以用于深度优先搜索和其他遍历任务。
这些算法的选择取决于具体的问题和数据结构。
不同的遍历路径算法适用于不同类型的问题,因此需要根据问题的性质来选择适当的算法。
数据结构课设——有向图的深度、广度优先遍历及拓扑排序
数据结构课设——有向图的深度、⼴度优先遍历及拓扑排序任务:给定⼀个有向图,实现图的深度优先, ⼴度优先遍历算法,拓扑有序序列,并输出相关结果。
功能要求:输⼊图的基本信息,并建⽴图存储结构(有相应提⽰),输出遍历序列,然后进⾏拓扑排序,并测试该图是否为有向⽆环图,并输出拓扑序列。
按照惯例,先上代码,注释超详细:#include<stdio.h>#include<stdlib.h>#include<malloc.h>#pragma warning(disable:4996)#define Max 20//定义数组元素最⼤个数(顶点最⼤个数)typedef struct node//边表结点{int adjvex;//该边所指向结点对应的下标struct node* next;//该边所指向下⼀个结点的指针}eNode;typedef struct headnode//顶点表结点{int in;//顶点⼊度char vertex;//顶点数据eNode* firstedge;//指向第⼀条边的指针,边表头指针}hNode;typedef struct//邻接表(图){hNode adjlist[Max];//以数组的形式存储int n, e;//顶点数,边数}linkG;//以邻接表的存储结构创建图linkG* creat(linkG* g){int i, k;eNode* s;//边表结点int n1, e1;char ch;g = (linkG*)malloc(sizeof(linkG));//申请结点空间printf("请输⼊顶点数和边数:");scanf("%d%d", &n1, &e1);g->n = n1;g->e = e1;printf("顶点数:%d 边数:%d\n", g->n, g->e);printf("请输⼊顶点信息(字母):");getchar();//因为接下来要输⼊字符串,所以getchar⽤于承接上⼀条命令的结束符for (i = 0; i < n1; i++){scanf("%c", &ch);g->adjlist[i].vertex = ch;//获得该顶点数据g->adjlist[i].firstedge = NULL;//第⼀条边设为空}printf("\n打印顶点下标及顶点数据:\n");for (i = 0; i < g->n; i++)//循环打印顶点下标及顶点数据{printf("顶点下标:%d 顶点数据:%c\n", i, g->adjlist[i].vertex);}getchar();int i1, j1;//相连接的两个顶点序号for (k = 0; k < e1; k++)//建⽴边表{printf("请输⼊对<i,j>(空格分隔):");scanf("%d%d", &i1, &j1);s = (eNode*)malloc(sizeof(eNode));//申请边结点空间s->adjvex = j1;//边所指向结点的位置,下标为j1s->next = g->adjlist[i1].firstedge;//将当前s的指针指向当前顶点上指向的结点g->adjlist[i1].firstedge = s;//将当前顶点的指针指向s}return g;//返回指针g}int visited[Max];//标记是否访问void DFS(linkG* g, int i)//深度优先遍历{eNode* p;printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已访问过的顶点visited值改为1p = g->adjlist[i].firstedge;//p指向顶点i的第⼀条边while (p)//p不为NULL时(边存在){if (visited[p->adjvex] != 1)//如果没有被访问DFS(g, p->adjvex);//递归}p = p->next;//p指向下⼀个结点}}void DFSTravel(linkG* g)//遍历⾮连通图{int i;printf("深度优先遍历;\n");//printf("%d\n",g->n);for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问{DFS(g, i);//调⽤DFS函数}}}void BFS(linkG* g, int i)//⼴度优先遍历{int j;eNode* p;int q[Max], front = 0, rear = 0;//建⽴顺序队列⽤来存储,并初始化printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已经访问过的改成1rear = (rear + 1) % Max;//普通顺序队列的话,这⾥是rear++q[rear] = i;//当前顶点(下标)队尾进队while (front != rear)//队列⾮空{front = (front + 1) % Max;//循环队列,顶点出队j = q[front];p = g->adjlist[j].firstedge;//p指向出队顶点j的第⼀条边while (p != NULL){if (visited[p->adjvex] == 0)//如果未被访问{printf("%c ", g->adjlist[p->adjvex].vertex);visited[p->adjvex] = 1;//将该顶点标记数组值改为1rear = (rear + 1) % Max;//循环队列q[rear] = p->adjvex;//该顶点进队}p = p->next;//指向下⼀个结点}}}void BFSTravel(linkG* g)//遍历⾮连通图{int i;printf("⼴度优先遍历:\n");for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问过{BFS(g, i);//调⽤BFS函数}}}//因为拓扑排序要求⼊度为0,所以需要先求出每个顶点的⼊度void inDegree(linkG* g)//求图顶点⼊度{eNode* p;int i;for (i = 0; i < g->n; i++)//循环将顶点⼊度初始化为0{g->adjlist[i].in = 0;}for (i = 0; i < g->n; i++)//循环每个顶点{p = g->adjlist[i].firstedge;//获取第i个链表第1个边结点指针while (p != NULL)///当p不为空(边存在){g->adjlist[p->adjvex].in++;//该边终点结点⼊度+1p = p->next;//p指向下⼀个边结点}printf("顶点%c的⼊度为:%d\n", g->adjlist[i].vertex, g->adjlist[i].in);}void topo_sort(linkG *g)//拓扑排序{eNode* p;int i, k, gettop;int top = 0;//⽤于栈指针的下标索引int count = 0;//⽤于统计输出顶点的个数int* stack=(int *)malloc(g->n*sizeof(int));//⽤于存储⼊度为0的顶点for (i=0;i<g->n;i++)//第⼀次搜索⼊度为0的顶点{if (g->adjlist[i].in==0){stack[++top] = i;//将⼊度为0的顶点进栈}}while (top!=0)//当栈不为空时{gettop = stack[top--];//出栈,并保存栈顶元素(下标)printf("%c ",g->adjlist[gettop].vertex);count++;//统计顶点//接下来是将邻接点的⼊度减⼀,并判断该点⼊度是否为0p = g->adjlist[gettop].firstedge;//p指向该顶点的第⼀条边的指针while (p)//当p不为空时{k = p->adjvex;//相连接的顶点(下标)g->adjlist[k].in--;//该顶点⼊度减⼀if (g->adjlist[k].in==0){stack[++top] = k;//如果⼊度为0,则进栈}p = p->next;//指向下⼀条边}}if (count<g->n)//如果输出的顶点数少于总顶点数,则表⽰有环{printf("\n有回路!\n");}free(stack);//释放空间}void menu()//菜单{system("cls");//清屏函数printf("************************************************\n");printf("* 1.建⽴图 *\n");printf("* 2.深度优先遍历 *\n");printf("* 3.⼴度优先遍历 *\n");printf("* 4.求出顶点⼊度 *\n");printf("* 5.拓扑排序 *\n");printf("* 6.退出 *\n");printf("************************************************\n");}int main(){linkG* g = NULL;int c;while (1){menu();printf("请选择:");scanf("%d", &c);switch (c){case1:g = creat(g); system("pause");break;case2:DFSTravel(g); system("pause");break;case3:BFSTravel(g); system("pause");break;case4:inDegree(g); system("pause");break;case5:topo_sort(g); system("pause");break;case6:exit(0);break;}}return0;}实验⽤图:运⾏结果:关于深度优先遍历 a.从图中某个顶点v 出发,访问v 。
实现图的遍历算法实验报告
实现图的遍历算法实验报告实现图的遍历算法实验报告⼀实验题⽬: 实现图的遍历算法⼆实验要求:2.1:(1)建⽴如图(p126 8.1)所⽰的有向图 G 的邻接矩阵,并输出之(2)由有向图G的邻接矩阵产⽣邻接表,并输出之(3)再由(2)的邻接表产⽣对应的邻接矩阵,并输出之2.2 (1)输出如图8.1所⽰的有向图G从顶点0开始的深度优先遍历序列(递归算法)(2)输出如图8.1所⽰的有向图G从顶点0开始的深度优先遍历序列(⾮递归算法)(3)输出如图8.1所⽰的有向图G从顶点0开始的⼴度优先遍历序列三实验内容:3.1 图的抽象数据类型:ADT Graph{数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。
数据关系R:R={VR}VR={|v,w∈V且P(v,w),表⽰从v到w的弧,谓词P(v,w)定义了弧的意义或信息}基本操作:CreateGraph( &G, V, VR )初始条件:V是图的顶点集,VR是图中弧的集合。
操作结果:按V和VR的定义构造图G。
DestroyGraph( &G )初始条件:图G存在。
操作结果:销毁图G。
LocateVex( G, u )初始条件:图G存在,u和G中顶点有相同特征。
操作结果:若G中存在顶点u,则返回该顶点在图中位置;否则返回其它信息。
GetVex( G, v )初始条件:图G存在,v是G中某个顶点。
操作结果:返回v的值。
PutVex( &G, v, value )初始条件:图G存在,v是G中某个顶点。
初始条件:图G存在,v是G中某个顶点。
操作结果:返回v的第⼀个邻接顶点。
若顶点在G中没有邻接顶点,则返回“空”。
NextAdjVex( G, v, w )初始条件:图G存在,v是G中某个顶点,w是v的邻接顶点。
操作结果:返回v的(相对于w的)下⼀个邻接顶点。
若w是v 的最后⼀个邻接点,则返回“空”。
InsertVex( &G, v )初始条件:图G存在,v和图中顶点有相同特征。
数据结构课程设计报告-最短路径算法-二叉树的三种遍历
数据结构课程设计报告班级:计算机科学与技术132班姓名:赖恒财指导教师:董跃华成绩:32信息工程学院2015 年7月8日目录图的最短路径算法实现1. 需求分析 (1)1.1 程序设计内容 (1)1.2 设计要求 (1)2.概要设计 (2)3.详细设计 (2)3.1 数据类型的定义 (2)3.2 功能模块的设计 (2)3.3 主程序流程 (9)4.调试分析 (10)4.1 问题回顾和分析 (10)4.2.经验和体会 (11)5.测试结果 (12)二叉树的遍历1.设计目的 (13)2.需求分析 (14)2.1课程设计的内容和要求 (14)2.2选题的意义及背景 (14)3.概要设计 (14)3.1设计思想 (14)3.2程序数据类型 (16)3.3程序模块分析 (16)3.3.1置空栈 (16)3.3.2入栈 (17)3.3.3出栈 (17)3.3.4取栈顶操作 (17)3.3.5判空栈 (17)3.4函数关系: (18)4.详细设计 (18)4.1二叉树算法程序截图和结果 (18)5.程序测试结果及问题分析 (19)6.总结 (20)参考文献 (21)附录1 (22)附录2 (26)图的最短路径算法实现----基于floyd最短路径算法1.需求分析设计校园平面图,所含景点不少于8个。
以图中顶点表示学校内各景点,存放景点的名称、景点介绍信息等;以边表示路径,存放路径长度信息。
要求将这些信息保存在文件graph.txt中,系统执行时所处理的数据要对此文件分别进行读写操作。
1.1程序设计内容1.从文件graph.txt中读取相应数据, 创建一个图,使用邻接矩阵表示图;2.景点信息查询:为来访客人提供校园任意景点相关信息的介绍;3.问路查询:为来访客人提供校园任意两个景点之间的一条最短路径。
1.2 设计要求(1) 程序要具在一定的健壮性,即当输入数据非法时,程序也能适当地做出反应。
(2) 程序要添加适当的注释,程序的书写要采用缩进格式。
数据结构课程设计题目
数据结构课程设计题目以下7个题目任选其一。
1.排序算法比较利用随机函数产生30000个随机整数,利用插入排序、起泡排序、选择排序、快速排序、堆排序、归并排序等排序方法进行排序,并且(1)统计每一种排序上机所花费的时间。
(2)统计在完全正序,完全逆序情况下记录的比较次数和移动次数。
(3)比较的指标为关键字的比较次数和记录的移动次数(一次记录交换计为3次移动)。
(4)对结果作简单分析,包括对各组数据得出结果波动大小的解释。
2.图的深度遍历对任意给定的图(顶点数和边数自定),建立它的邻接表并输出,然后利用堆栈的五种基本运算(清空堆栈、压栈、弹出、取栈顶元素、判栈空)实现图的深度优先搜索遍历。
画出搜索顺序示意图。
3.图的广度遍历对任意给定的图(顶点数和边数自定),建立它的邻接表并输出,然后利用队列的五种基本运算(置空队列、进队、出队、取队头元素、判队空)实现图的广度优先搜索遍历。
画出搜索顺序示意图。
4.二叉树的遍历对任意给定的二叉树(顶点数自定)建立它的二叉链表存贮结构,并利用栈的五种基本运算(置空栈、进栈、出栈、取栈顶元素、判栈空)实现二叉树的先序、中序、后序三种遍历,输出三种遍历的结果。
画出搜索顺序示意图。
5.链表操作利用链表的插入运算建立线性链表,然后利用链表的查找、删除、计数、输出等运算反复实现链表的这些操作(插入、删除、查找、计数、输出单独写成函数的形式),并能在屏幕上输出操作前后的结果。
画出搜索顺序示意图。
6.一元稀疏多项式简单计数器(1)输入并建立多项式(2)输出多项式,输出形式为整数序列:n,c1,e1,c2,e2……cn,en,其中n是多项式的项数,ci,ei分别为第i项的系数和指数。
序列按指数降序排列。
(3)多项式a和b相加,建立多项式a+b,输出相加的多项式。
(4)多项式a和b相减,建立多项式a-b,输出相减的多项式。
用带头结点的单链表存储多项式。
测试数据:(1)(2x+5x8-3.1x11)+(7-5x8+11x9)(2)(6x-3-x+4.4x2-1.2x9)-(-6x-3+5.4x2+7.8x15)(3)(x+x2+x3)+0(4)(x+x3)-(-x-x-3)7.实现两个链表的合并基本功能要求:(1)建立两个链表A和B,链表元素个数分别为m和n个。
实验四 图的遍历算法
实验四图的遍历算法4.1.实验的问题与要求1.如何对给定图的每个顶点各做一次且仅做一次访问?有哪些方法可以实现图的遍历?2.如何用这些算法解决实际问题?3.熟练掌握图的基本存储方法4.熟练掌握图的两种搜索路径的遍历方法5.掌握有关图的操作算法并用高级语言实现4.2.实验的基本思想和基本原理和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。
它是许多图的算法的基础。
遍历常用两种方法:深度优先搜索遍历;广度优先搜索遍历4.2.1 深度优先搜索(Depth-First Traversal)深度优先搜索是一种递归的过程,正如算法名称那样,深度优先搜索所遵循的搜索策略是尽可能“深”地搜索图。
在深度优先搜索中,对于最新发现的顶点,如果它还有以此为起点而未探测到的边,就沿此边继续下去。
当结点v的所有边都己被探寻过,搜索将回溯到发现结点v有那条边的始结点。
这一过程一直进行到已发现从源结点可达的所有结点为止。
如果还存在未被发现的结点,则选择其中一个作为源结点并重复以上过程,整个进程反复进行直到所有结点都被发现为止。
1.图的深度优先遍历的递归定义假设给定图G的初态是所有顶点均未曾访问过。
在G中任选一顶点v 为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。
若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。
若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。
图的深度优先遍历类似于树的前序遍历。
采用的搜索方法的特点是尽可能先对纵深方向进行搜索。
这种搜索方法称为深度优先搜索(Depth-First Search)。
相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。
数据结构课程设计参考论文
数据结构课程设计参考论文一、课程目标知识目标:1. 理解数据结构的基本概念,掌握线性表、栈、队列、树和图等常见数据结构的特点与应用场景。
2. 学会分析不同数据结构在解决实际问题中的优势与局限,并能选择合适的数据结构进行问题求解。
3. 掌握各类数据结构的存储表示和操作方法,了解其时间复杂度和空间复杂度。
技能目标:1. 培养学生运用数据结构知识解决实际问题的能力,提高编程实践技能。
2. 培养学生阅读和分析数据结构相关算法的能力,能对算法进行优化和改进。
3. 提高学生运用所学知识进行团队合作、沟通与表达的能力。
情感态度价值观目标:1. 培养学生对数据结构学科的兴趣,激发学习热情,形成积极的学习态度。
2. 培养学生的逻辑思维能力、创新意识和问题解决能力,增强自信心。
3. 培养学生遵循科学规范,严谨治学,养成良好的学术道德。
本课程旨在帮助学生掌握数据结构的基本知识,提高编程实践和算法分析能力,培养学生解决实际问题的综合素质。
针对学生的年级特点,课程内容注重理论与实践相结合,强调知识的应用性和实用性。
在教学过程中,注重启发式教学,激发学生的主动性和创造性,培养良好的学习习惯和团队合作精神。
通过本课程的学习,使学生能够为后续计算机专业课程打下坚实基础,为未来从事计算机相关领域工作提供有力支持。
二、教学内容1. 数据结构基本概念:介绍数据结构的概念、作用和分类,分析不同数据结构的特点与应用场景。
教材章节:第1章 数据结构概述2. 线性表:讲解线性表的定义、存储表示(顺序存储和链式存储),以及基本操作(插入、删除、查找等)。
教材章节:第2章 线性表3. 栈和队列:介绍栈和队列的基本概念、存储表示及操作方法,分析它们在实际应用中的作用。
教材章节:第3章 栈和队列4. 树和二叉树:讲解树和二叉树的基本概念、存储结构、遍历方法及其应用。
教材章节:第4章 树和二叉树5. 图:介绍图的定义、存储结构(邻接矩阵和邻接表),以及图的遍历算法(深度优先搜索和广度优先搜索)。
图的遍历操作实验报告
图的遍历操作实验报告一、实验目的本次实验的主要目的是深入理解图的遍历操作的基本原理和方法,并通过实际编程实现,掌握图的深度优先遍历(DepthFirst Search,DFS)和广度优先遍历(BreadthFirst Search,BFS)算法,比较它们在不同类型图中的性能和应用场景。
二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。
实验中使用的数据结构为邻接表来表示图。
三、实验原理(一)深度优先遍历深度优先遍历是一种递归的图遍历算法。
它从起始节点开始,沿着一条路径尽可能深地访问节点,直到无法继续,然后回溯到上一个未完全探索的节点,继续探索其他分支。
(二)广度优先遍历广度优先遍历则是一种逐层访问的算法。
它从起始节点开始,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,以此类推,逐层展开。
四、实验步骤(一)数据准备首先,定义一个图的邻接表表示。
例如,对于一个简单的有向图,可以使用以下方式创建邻接表:```pythongraph ={'A':'B','C','B':'D','E','C':'F','D':,'E':,'F':}```(二)深度优先遍历算法实现```pythondef dfs(graph, start, visited=None):if visited is None:visited = set()visitedadd(start)print(start)for next_node in graphstart:if next_node not in visited:dfs(graph, next_node, visited)```(三)广度优先遍历算法实现```pythonfrom collections import deque def bfs(graph, start):visited ={start}queue = deque(start)while queue:node = queuepopleft()print(node)for next_node in graphnode:if next_node not in visited:visitedadd(next_node)queueappend(next_node)```(四)测试与分析分别使用深度优先遍历和广度优先遍历算法对上述示例图进行遍历,并记录遍历的顺序和时间开销。
第8章图第3讲-图的遍历 - 副本
19/21
图搜索算法设计一般方法 图搜索算法设计
转化
DFS或BFS算法求解 提示:两个遍历算法是图搜索算法的基础,必须熟练掌sited[i]
10/21
采用邻接表的BFS算法:
void BFS(AdjGraph *G,int v) { int w, i; ArcNode *p; SqQueue *qu; InitQueue(qu); int visited[MAXV]; for (i=0;i<G->n;i++) visited[i]=0; printf("%2d",v); visited[v]=1; enQueue(qu,v);
1 初始点 2 3
4
0
DFS:1→2 →4 …
2 1
用栈保存访问过的顶点
栈
如何确定一个顶点是否访问过? 设置一个visited[] 全局数组, visited[i]=0表示顶点i没有访问; visited[i]=1表示顶点i已经访 问过。
i visited[i]
5/21
采用邻接表的DFS算法:
void DFS(AdjGraph *G,int v) { ArcNode *p; int w; visited[v]=1; //置已访问标记
} }
该算法的时间复杂度为O(n+e)。
6/21
深度优先遍历过程演示
0 1 2 3 4
v0
v1 v2 v3 v4
1 2 3 4
1 0 1 0 0
3 2 3 1 2
4 3 4 2 3
∧ ∧ ∧
4
∧
∧
0
v=2的DFS序列: 2 1 0 遍历过程结束
3
数据结构课程设计(C语言版)飞机订票系统
———C语言版课题:飞机订票系统和图的遍历的动态演示姓名:学号:班级:指导教师:订票系统1.需求分析任务:通过此系统可以实现如下功能:录入:可以录入航班情况(数据可以存储在一个数据文件中,数据结构、具体数据自定)查询:可以查询某个航线的情况(如,输入航班号,查询起降时间,起飞抵达城市,航班票价,票价折扣,确定航班是否满仓);可以输入起飞抵达城市,查询飞机航班情况;订票:(订票情况可以存在一个数据文件中,结构自己设定)可以订票,如果该航班已经无票,可以提供相关可选择航班;退票:可退票,退票后修改相关数据文件;客户资料有姓名,证件号,订票数量及航班情况,订单要有编号。
修改航班信息:当航班信息改变可以修改航班数据文件要求:根据以上功能说明,设计航班信息,订票信息的存储结构,设计程序完成功能;2:主要设计思路:1)算法构造流程图:A:主菜单:B:各分块模板的构造流程图:3:功能函数设计:(1):订票系统主菜单函数 menu_select()本函数主要构造系统的主菜单,系统需要实现很多功能,并且各个功能需要各自的函数支持,所以通过主菜单可以轻松的进入各个函数下实现各自的功能,故主菜单显得尤为重要。
其实就是通过键盘输入选择项,然后通过scanf接受,在通过swtich判断进入各个选择项。
(2):工作人员管理函数 enter()&change()系统需要各个航班的详细信息,所以需要工作人员把信息输入系统里,以供乘客查询订票。
enter()函数的构造就是为了解决这个问题。
而有可能航班线路更改或由于天气等原因飞机的起飞时间发生了更改,故工作人员需要及时更改信息,所以需要构造change()函数。
(3):列出航班信息的函数 list()乘客需要查询各个航班的信息,所以通过系统要能调出上面工作人员已经录入好的航班信息,所以构造本函数来实现这个功能。
(4)乘客具体查询函数 search()本函数分两个分函数:search1()和search2(),它们分别实现乘客的按航班查询和按出发及抵达城市的两种查询方案。
图的建立及输出(图的遍历)
数据结构课程设计题目图的建立及输出学生姓名学号院系专业指导教师二O一O年12 月16 日目录一、设计题目 (2)二、运行环境(软、硬件环境) (2)三、算法设计的思想 (2)3.1邻接矩阵表示法 (2)3.2图的遍历 (4)3.3邻接矩阵的输出 (5)四、算法的流程图 (6)五、算法设计分析 (7)5.1无向网邻接矩阵的建立算法 (7)5.2无向图邻接矩阵的建立算法 (7)5.3图的深度优先遍历 (7)5.4图的广度优先遍历 (8)六、源代码 (8)七、运行结果分析 (14)八、收获及体会 (15)一、设计题目:图的建立及输出*问题描述:建立图的存储结构(图的类型可以是有向图、无向图、有向网、无向网,学生可以任选两种类型),能够输入图的顶点和边的信息,并存储到相应存储结构中,而后输出图的邻接矩阵。
二、运行环境(软、硬件环境)*软件环境:Windows7、 Windows Vista、 Windows Xp等*硬件环境:处理器:Pentium4以上内存容量: 256M以上硬盘容量:40GB 以上三、算法设计的思想1、邻接矩阵表示法:设G=(V,E)是一个图,其中V={V1,V2,V3…,Vn}。
G的邻接矩阵是一个他有下述性质的n阶方阵:1,若(Vi,Vj)∈E 或<Vi,Vj>∈E;A[i,j]={0,反之图5-2中有向图G1和无向图G2的邻接矩阵分别为M1和M2:M1=┌0 1 0 1 ┐│ 1 0 1 0 ││ 1 0 0 1 │└0 0 0 0 ┘M2=┌0 1 1 1 ┐│ 1 0 1 0 ││ 1 1 0 1 │└ 1 0 1 0 ┘注意无向图的邻接是一个对称矩阵,例如M2。
用邻接矩阵表示法来表示一个具有n个顶点的图时,除了用邻接矩阵中的n*n个元素存储顶点间相邻关系外,往往还需要另设一个向量存储n个顶点的信息。
因此其类型定义如下:VertexType vertex[MAX_VERTEX_NUM]; // 顶点向量AdjMatrix arcs; // 邻接矩阵int vexnum, arcnum; // 图的当前顶点数和弧(边)数GraphKind kind; // 图的种类标志若图中每个顶点只含一个编号i(1≤i≤vnum),则只需一个二维数组表示图的邻接矩阵。
二叉树遍历及应用课程设计
内蒙古科技大学本科生课程设计论文题目:数据结构课程设计——二叉树遍历及应用学生姓名:学号:专业:计算机科学与技术班级:指导教师:兰孝文2020年 1 月 3 日内蒙古科技大学课程设计任务书课程名称数据结构课程设计设计题目二叉树的遍历和应用指导教师兰孝文时间2019.12.30——2020.1.3一、教学要求1. 掌握数据结构与算法的设计方法,具备初步的独立分析和设计能力2. 初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能3. 提高综合运用所学的理论知识和方法独立分析和解决问题的能力4. 训练用系统的观点和软件开发一般规范进行软件开发,培养软件工作者所应具备的科学的工作方法和作风二、设计资料及参数每个学生在教师提供的课程设计题目中任意选择一题,独立完成,题目选定后不可更换。
二叉树的遍历和应用以二叉链表表示二叉树,在此基础上实现对二叉树的遍历和应用。
要求设计类(或类模板)来描述二叉树,包含必要的构造函数和析构函数,以及其他能够完成如下功能的成员函数:❖创建二叉树❖输出二叉树❖二叉树的先序、中序、后序遍历❖二叉树的按层遍历❖统计二叉树的叶子结点、计算二叉树的深度并设计主函数测试该类(或类模板)。
三、设计要求及成果1. 分析课程设计题目的要求2. 写出详细设计说明3. 编写程序代码,调试程序使其能正确运行4. 设计完成的软件要便于操作和使用5. 设计完成后提交课程设计报告四、进度安排资料查阅与讨论(1天)系统分析(1天)系统的开发与测试(2天)编写课程设计说明书和验收(1天)五、评分标准1. 根据平时上机考勤、表现和进度,教师将每天点名和检查2. 根据课程设计完成情况,必须有可运行的软件。
3. 根据课程设计报告的质量,如有雷同,则所有雷同的所有人均判为不及格。
4. 根据答辩的情况,应能够以清晰的思路和准确、简练的语言叙述自己的设计和回答教师的提问六、建议参考资料1.《数据结构(C语言版)》严蔚敏、吴伟民主编清华大学出版社20132.《数据结构课程设计案例精编(用C/C++描述)》,李建学等编著,清华大学出版社 2010 3.《数据结构:用面向对象方法与C++语言描述》,殷人昆主编,清华大学出版社 2012目录1. 功能设计 (1)(1)创建二叉树 (1)(2)先序递归遍历 (1)(3)中序递归遍历 (1)(4)后序递归遍历 (1)2. 算法流程图 (2)(1)创建二叉树 (2)(2)先序递归遍历 (3)(3)中序递归遍历 (4)(4)后序递归遍历 (5)3.问题描述 (6)4. 详细设计 (7)(1)设计思想 (7)(2)设计表示 (7)(3)函数接口说明: (8)(4)函数调用关系如图所示: (8)(5)实现注释 (9)5. 运行结果截图 (10)6. 总结 (12)附录 (13)1.功能设计(1)创建二叉树利用二叉树模板类,创建二叉树时产生类模板,调用类的构造函数来创建,修改二叉树的结构时,可以调用赋值语句直接把广义表转换成二叉树。
图遍历的演示实习报告
图遍历的演示实习报告在计算机科学中,图遍历是一种重要的操作,用于访问图中的节点和边。
为了更深入地理解图遍历的原理和应用,我进行了一次关于图遍历的演示实习。
图是由节点(也称为顶点)和连接节点的边组成的数据结构。
图遍历的目的是按照特定的顺序访问图中的所有节点。
常见的图遍历算法有深度优先搜索(DepthFirst Search,简称 DFS)和广度优先搜索(BreadthFirst Search,简称 BFS)。
在实习中,我首先选择了深度优先搜索算法进行演示。
深度优先搜索就像是在一个迷宫中,选择一条路一直走到底,直到无法前进,然后回溯。
为了实现深度优先搜索,我使用了递归的方法。
以下是一个简单的深度优先搜索的 Python 代码示例:```pythondef dfs(graph, node, visited=):if node not in visited:print(node)visitedappend(node)for neighbor in graphnode:dfs(graph, neighbor, visited)graph ={'A':'B','C','B':'A','D','E','C':'A','F','D':'B','E':'B','F','F':'C','E'}dfs(graph, 'A')```在这个示例中,`dfs`函数接受一个图(以邻接表的形式表示)、当前节点和一个已访问节点的列表作为参数。
如果当前节点未被访问过,就将其打印出来并标记为已访问,然后对其邻居节点递归调用`dfs`函数。
接下来,我演示了广度优先搜索算法。
广度优先搜索则像是以层层扩散的方式访问节点。
它先访问起始节点的所有邻居,然后再依次访问邻居的邻居。
以下是广度优先搜索的 Python 代码示例:```pythonfrom collections import dequedef bfs(graph, start):visited =queue = deque(start)while queue:node = queuepopleft()if node not in visited:print(node)visitedappend(node) queueextend(graphnode) graph ={'A':'B','C','B':'A','D','E','C':'A','F','D':'B','E':'B','F','F':'C','E'}bfs(graph, 'A')```在这个示例中,使用了一个队列来实现广度优先搜索。
数据结构课程设计参考题目(一)
数据结构课程设计参考题目(一)数据结构是计算机科学中的一门基础课程,它主要研究数据的组织、存储、管理和操作等方面的问题。
随着计算机技术的发展,数据结构逐渐成为各个领域必不可少的一门课程。
而数据结构课程设计参考题目是该课程的一项重要内容,它能够帮助学生更好地掌握课程知识,提高对数据结构的理解和应用能力。
以下是几个数据结构课程设计参考题目。
1.链表操作设计一个链表类,使得它能够实现插入、删除、查找和遍历链表的操作。
要求采用单向链表或双向链表实现,并考虑链表的循环操作。
同时,要求能够对链表进行排序操作。
2.栈与队列操作设计一个栈和队列类,使得它们能够实现入栈、出栈、入队和出队的操作。
要求采用数组或链表实现,并可用于表达式转换和括号匹配等相关问题。
3.堆排序算法实现堆排序算法,要求能够对整型数列进行排序,并输出其排序后的结果。
要求堆的构建、删除和调整操作均可用最大堆或最小堆实现。
同时,要求能够对算法的时间复杂度进行分析,并与快速排序等算法进行比较。
4.哈希表实现设计一个哈希表类,使其能够实现插入、删除和查找等操作。
要求采用链地址法或开放地址法实现,同时需要考虑哈希函数和扩容等问题。
要求能够对哈希冲突的解决方法进行比较和分析。
5.树与图的遍历实现二叉树、B树或B+树的遍历操作,要求能够实现先序、中序和后序遍历,并能够循环遍历或递归遍历。
同时,要求能够对树的平衡性进行探究和讨论。
另外,树的遍历也是图的遍历的基础,可以通过深度优先搜索或广度优先搜索实现图的遍历。
以上是一些常见的数据结构课程设计参考题目,它们可以锻炼学生的编程能力、算法分析能力和数据处理能力,同时也可以增强学生对数据结构知识的理解和掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计论文图的遍历内蒙古科技大学本科生课程设计论文题目:C++课程设计-------图的遍历学生姓名:齐枫学号:1076807407专业:计算机10级班级:(4)班指导教师:2012年6月18日~2011年7月4日内蒙古科技大学课程设计任务书一、前言1.1课程设计的目的与意义 (4)1.2对课程设计功能的需求分析 (4)二、算法思想 (5)三、数据结构 (5)四、模块划分 (6)node* creategraph()//建立邻接表,完成无向图的输入void DepthFirstSearch(node *list)//深度优先搜索void BreadthFirstSearth(node *list)//广度优先搜索void PathSearth(node *list)//路径搜索void AdjacencyListDelete(node *list)//释放邻接表的空间AdjacencyListDelete(list);//释放邻接表空间五、系统的概要设计1、系统功能模块图 (9)六、源程序 (10)七、程序的调试分析以及测试结果1、程序的调试测试结果 (20)八、附录1、附录一心得 (21)2、参考文献 (22)一、前言1.1课程设计的目的与意义上学期我们对《数据结构》这门课程进行了学习。
这门课程是一门实践性非常强的课程,为了让大家更好地理解与运用所学知识,提高动手能力,我们进行了此次课程设计实习。
这次课程设计不但要求我们掌握《数据结构》中的各方面知识,还要求我们具备一定的C++语言基础和编程能力。
通过实践我们掌握《数据结构》中的知识。
对于《图的遍历》这一课题来说,所要求我们掌握的数据结构知识主要有:图的存储结构、队列的基本运算实现、图的深度优先遍历算法实现、图的广度优先遍历算法实现。
对于我们学生来讲,此次课程设计是为了让我们训练自己的实际设计能力,通过设计实践,去真正获得此项目管理和团队协作等方面的基本训练和工作经验。
通过课程设计的一系列训练,我们能提高如何综合运用所学知识解决实际问题的能力,以及获得此项目管理和团队协作等等众多方面的具体经验,增强对相关课程具体内容的理解和掌握能力,培养对整体课程知识综合运用和融会贯通能力。
1.2对课程设计功能的需求分析图的遍历并不需要是一个过于复杂的工作环境,一般来说:最合适的才是最好的。
软件设计必须符合我们使用实际情况的需要。
根据要求,图的遍历主要功能如下:1、用户可以随时建立一个有向图或无向图;2、用户可以根据自己的需要,对图进行深度遍历或广度遍历;3、用户可以根据自己的需要对图进行修改;4、在整个程序中,用户可以不断的按照不同的方式对图进行遍历,若不继续,用户也可以随时跳出程序,同时,如果用户输入的序号错误,程序会提示用户重新输入序号;二、算法思想本课题本人所采用的是邻接表的方式存储图,实现图的深度、广度两种遍历,并将每种遍历结果输出来。
并且能寻找路径。
2.1.1图的邻接矩阵的建立对任意给定的图(顶点数和边数自定),,根据邻接表的存储结构建立图的邻接表。
2.1.2 图的遍历的实现邻接表是图的一种链式存储结构,在邻接表中,对图中的每一个顶点建立一个单链表,通常以顺序结构存储,以便随机访问任意一顶点。
图的深度遍历,假设初始状态是图中所有顶点都未曾被访问,则深度优先遍历可从图中的某个顶点v出发,访问此顶点,依次从v的未被访问的邻接点出发深度优先遍历图,直至图中和v有路径想通的顶点都被访问到;若此时图中尚有未被访问的节点,则另选图中一个未被访问的顶点做起始点,直至所有节点都被访问。
图的广度优先遍历,是以v为起始点,由近及远,依次访问和v有路径相通且路径长度为1、2、…的顶点。
三、数据结构#define t true#define f false#include<iostream.h>struct node//定义一个结构作为节点类型{int data;bool sign;//标志位,用来标示是否遍历过node *next;};四、模块划分node* creategraph()//建立邻接表,完成无向图的输入};表4.1邻接表的建立void DepthFirstSearch(node *list)//深度优先搜索void DepthFirstSearch(node *list)cin>>k;a[i]=k图4.2 深度优先遍历流程图void BreadthFirstSearth(node *list)//广度优先搜索表4.3图的广度遍历void PathSearth(node *list)//路径搜索void AdjacencyListDelete(node *list)//释放邻接表的空间AdjacencyListDelete(list);//释放邻接表空间五、系统的概要设计main() /*包含一些调用和控制语句*/图5.1系统功能模块图六、部分源程序#define t true#define f false#include<iostream.h>struct node//定义一个结构作为节点类型{int data;bool sign;//标志位,用来标示是否遍历过node *next;};node* creategraph()//建立邻接表,完成无向图的输入{int l,m,n;bool g;cout<<"请输入节点数: ";cin>>n;node *adjacencylist=new node[n+1];//动态分配节点数组内存adjacencylist[0].data=n;//0地址存放的为节点数adjacencylist[0].next=NULL;for(int i=1;i<=n;i++)//给各顶点域赋初值{adjacencylist[i].data=0;adjacencylist[i].next=NULL;adjacencylist[i].sign=f;//表示未遍历}cout<<"请依次输入各条边的始点和尾点:(以0表示结束)"<<endl; cin>>l;if(l!=0)//判断输入边是否结束g=t;while(g==t){cin>>m;if((l>0)&&(l<=n)&&(m>0)&&(m<=n))//判断输入顶点是否正确{node *p,*q,*top;p=(node *)new(node);//分配边的一个顶点内存p->data=m;p->next=NULL;if(adjacencylist[l].next==NULL)//为每个节点创建邻接链表adjacencylist[l].next=p;else{top=adjacencylist[l].next;while(top->next!=NULL)top=top->next;top->next=p;}adjacencylist[l].data++;//统计邻接点的个数q=(node *)new(node);//分配边的另一个顶点内存q->data=l;q->next=NULL;if(adjacencylist[m].next==NULL)//构建邻接表adjacencylist[m].next=q;else{top=adjacencylist[m].next;while(top->next!=NULL)top=top->next;top->next=q;}adjacencylist[m].data++;//统计邻接点的个数}elsecout<<"边"<<l<<"--"<<m<<"输入错误!"<<endl;//错误输入标识cin>>l;if(l==0)//边的输入结束g=f;}return adjacencylist;//返回邻接表};void DepthFirstSearch(node *list)//深度优先搜索{int m,n=list[0].data,k,*a=new int[n];//设置一个数组用于存放节点node *p;cout<<"采用深度优先搜索:"<<endl;cout<<"请输入搜索起始节点:";cin>>k;for(int i=0;i<n;i++){a[i]=k;list[k].sign=t;if(i==n-1)break;m=0;while(list[k].sign==t){p=list[k].next;while(p!=NULL)//找出list[k]链表中的未遍历节点{k=p->data;p=p->next;if(list[k].sign==f)break;}m++;if(list[k].sign!=f)//判断是否是p=NULL跳出while循环的{if(i<m)//无节点可回溯{cout<<"该图为非连通图!"<<endl;break;}elsek=a[i-m]; //回溯}}for(i=1;i<=n;i++)//恢复原邻接表list[i].sign=f;cout<<"深度优先搜索遍历顺序为:";for(i=0;i<n;i++)//输出遍历结果cout<<a[i]<<" ";cout<<endl;delete a;//释放动态数组内存};void BreadthFirstSearth(node *list)//广度优先搜索{int m,r,k,n=list[0].data,*a=new int[n+1];//设置数组存放节点node *p;cout<<"采用广度优先搜索:"<<endl;cout<<"请输入搜索起始节点:";cin>>k;a[0]=n;a[1]=k;list[k].sign=t;//标识遍历的第一个节点m=0;r=1;while(m!=r){m++;p=list[a[m]].next;while(p!=NULL){k=p->data;if(list[k].sign==f)r++;a[r]=k;//遍历到的节点存入数组list[k].sign=t;//标识已经遍历过的节点}p=p->next;}}for(int i=1;i<=n;i++)//恢复原邻接表list[i].sign=f;cout<<"广度优先搜索遍历顺序为: ";for(i=1;i<=n;i++)//输出遍历cout<<a[i]<<" ";cout<<endl;delete a;//释放动态数组内存};void PathSearth(node *list)//路径搜索{int *a,c,d,m,k,n=list[0].data;cout<<"请输入起始点:";cin>>k;cout<<"请输入尾节点:";cin>>c;cout<<"请输入要找的路径长度:";cin>>d;d=d+1;if(d>n)cout<<"不存在这样的简单路径!"<<endl;else{a=new int[d];//动态分配数组内存存放路径上的节点for(int i=0;i<d;i++)a[i]=0;a[0]=k;node *p;int x;list[a[0]].sign=t;i=1;while(a[d-1]!=c){while(i<d){x=1;p=list[a[i-1]].next;while(p!=NULL){m=p->data;if(i==d-1&&m==a[0]&&a[0]==c)//路径存在且为回路{cout<<"该路径为一条回路!"<<endl;a[i]=m;i++;break;}if(list[m].sign==f){if(a[i]!=0){if(x==0)//是否为已经判断过的错误路径{a[i]=m;list[a[i]].sign=t;//标识走过节点i++;break;}if(a[i]==m)//设置错误路径标识x=0;}else{a[i]=m;list[a[i]].sign=t;//标识走过节点i++;break;}}p=p->next;}if(p==NULL){a[i]=0;i--;//由此节点往下的路径不存在,回溯list[a[i]].sign=f; //还原标识符}if(i==0)//无法回溯,路径不存在,跳出循环{cout<<"不存在这样的简单路径!"<<endl;break;}}if(i==0)//无法回溯,路径不存在,跳出循环break;if(a[d-1]!=c)//路径不是所要找的{i--; //回溯if(i>=0)list[a[i]].sign=f;//还原标识符}}if(a[d-1]==c)//判断路径是否找到并输出{cout<<"从节点"<<k<<"到节点"<<c<<"的一条路径为:";for(i=0;i<d-1;i++)//输出路径cout<<a[i]<<"--> ";cout<<a[d-1]<<endl;}delete a;}for(int i=1;i<=n;i++)//恢复原邻接表list[i].sign=f;};void AdjacencyListDelete(node *list)//释放邻接表的空间{node *p,*q;int n=list[0].data;for(int i=1;i<=n;i++){p=list[i].next;while(p!=NULL){q=p->next;delete p;//释放链表节点空间p=q;}}delete list;//释放邻接表空间};void main(){node *list;list=creategraph();//以邻接表的形式建立一个无向图char a,b;cout<<"请选择遍历方法:(d:深度优先搜索;b:广度优先搜索)";for(int i=1;i<2;i++){cin>>a;switch(a){case 'd':case 'D': DepthFirstSearch(list);cout<<"是否采用广度优先搜索重新遍历?(y:是;n:否)";cin>>b;if((b=='y')||(b=='Y'))BreadthFirstSearth(list);break;case 'b':case 'B': BreadthFirstSearth(list);cout<<"是否采用深度优先搜索重新遍历?(y:是;n:否)";cin>>b;if((b=='y')||(b=='Y'))DepthFirstSearch(list);break;default: cout<<"输入错误!请重新输入!"<<endl;i--;}}while(1){cout<<"是否搜索路径?(y:是;n:否)";cin>>a;if((a=='y')||(a=='Y'))PathSearth(list);else if((a=='n')||(a=='N'))break;elsecout<<"输入错误!"<<endl;}AdjacencyListDelete(list);//释放邻接表空间}七、程序的调试分析以及测试结果7.1程序的调试分析程序的调试是一个很重要的方面,本题目有个创建邻接表函数这是个基础,如果这里出了差错当然后面的模块也就无法进行了。