2019版高考物理大二轮复习考前基础回扣练7动能定理功能关系
【推荐】2019届高考物理二轮复习力学考点集训专题10动能定理与功能关系.doc
考点10动能定理与功能关系1、如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度,木箱获得的动能一定( )A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功2、如图所示,桌面高度为h,质量为m的小球,从离桌面高H处自由落下,不计空气阻力,假设桌面处的重力势能为零,关于重力势能的说法正确的是( )A.重力势能是矢量,有正负之分B.刚开始下落时的重力势能为mg(H+h)C.落地时的重力势能为零D.落地时的重力势能为—mgh3、如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连.弹簧处于=,物块与桌面自然长度时物块位于O点(图中未标出).物块的质量为m,AB a间的动摩擦因数为μ.现用水平向右的力将物块从O点拉至A点,拉力做的功为W.撤去拉力后物块由静止向左运动,经O点到达B点时速度为零.重力加速度为g.则上述过程中( )A.物块在A 点时,弹簧的弹性势能等于12W mga μ-B.物块在B 点时,弹簧的弹性势能小于32W mga μ-C.经O 点时,物块的动能小于W mga μ-D.物块动能最大时,弹簧的弹性势能小于物块在B 点时弹簧的弹性势能 4、如图所示,一物体从长为L 、高为h 的光滑斜面顶端A 由静止开始下滑,则该物体滑到斜面底端B 时的速度大小为( )5、如图所示,在地面上以速度v 0抛出质量为m 的物体,抛出后物体落到比地面低h 的海平面上.若以地面为零势能面,不计空气阻力,则下列说法中正确的是( )A.物体上升到最高点时的重力势能为2012mvB.物体落到海平面时的重力势能为-mghC.物体在海平面上的动能为2012mv -mghD.物体在海平面上的机械能为2012mv6、如图所示,光滑水平平台上有一个质量为m 的物块,站在地面上的人用跨过定滑轮的绳子向右拉动物块,不计绳和滑轮的质量及滑轮的摩擦,且平台边缘离人手作用点竖直高度始终为h .当人以速度v 从平台的边缘处向右匀速前进位移x 时,则( )A.在该过程中,物块的运动可能是匀速的B.在该过程中,人对物块做的功为22222()mv x h x +C.在该过程中,人对物块做的功为212mvD.人前进x 时,7、如图所示,在高1.5m 的光滑平台上有一个质量为2kg 的小球被一细线拴在墙上,球与墙之间有一根被压缩的轻质弹簧。
[全国通用]2019版高考物理大二轮复习考前基础回扣练7动能定理功能关系2
回扣练7:动能定理 功能关系1.在光滑的水平面上有一静止的物体,现以水平恒力F 1推这一物体,作用一段时间后换成相反方向的水平恒力F 2推这一物体,当恒力F 2作用的时间与恒力F 1作用的时间相等时,物体恰好回到原处,此时物体的动能为32 J ,则在整个过程中,恒力F 1、F 2做的功分别为( )A .16 J 、16 JB .8 J 、24 JC .32 J 、0 JD .48 J 、-16 J解析:选B.设加速的末速度为v 1,匀变速的末速度为v 2,由于加速过程和匀变速过程的位移相反,又由于恒力F 2作用的时间与恒力F 1作用的时间相等,根据平均速度公式有v 12=-v 1+v 22,解得v 2=-2v 1,根据动能定理,加速过程W 1=12mv 21,匀变速过程W 2=12mv 2-12mv 21根据题意12mv 2=32 J ,故W 1=8J ,W 2=24 J ,故选B.2.如图甲所示,一次训练中,运动员腰部系着不可伸长的绳,拖着质量m=11 kg的轮胎从静止开始沿着笔直的跑道加速奔跑,绳与水平跑道的夹角是37°,5 s后拖绳从轮胎上脱落.轮胎运动的vt图象如图乙所示,不计空气阻力,已知sin 37°=0.6,cos 37°=0.8,g取10 m/s2.则下列说法正确的是( )A.轮胎与水平地面间的动摩擦因数μ=0.2B.拉力F的大小为55 NC.在0~5 s内,轮胎克服摩擦力做功为1 375 JD.在6 s末,摩擦力的瞬时功率大小为275 W解析:选D.撤去F后,轮胎的受力分析如图1所示,由速度图象得5 s~7 s内的加速度a2=-5 m/s2,根据牛顿运动定律有N2-mg=0,-f2=ma2,又因为f2=μN2,代入数据解得μ=0.5,故A错误;力F拉动轮胎的过程中,轮胎的受力情况如图2所示,根据牛顿运动定律有F cos 37°-f1=ma1,mg-F sin 37°-N1=0, 又因为f1=μN1,由速度图象得此过程的加速度a1=2 m/s2,联立解得:F=70 N,B错误;在0 s~5 s内,轮胎克服摩擦力做功为0.5×68×25 J=850 J,C错误;因6 s末轮胎的速度为5 m/s ,所以在6 s 时,摩擦力的瞬时功率大小为0.5×110×5 W =275 W ,D 正确;故选D.3.一质量为m 的电动汽车在平直公路上以恒定的功率加速行驶,当速度大小为v 时,其加速度大小为a ,设汽车所受的阻力恒为f .以下说法正确的是( )A .汽车的功率为fvB .当汽车的速度增加到2v 时,加速度为a2C .汽车行驶的最大速率为⎝ ⎛⎭⎪⎪⎪⎫1+ma f vD .当汽车的速度为v 时,行驶的距离为v 22a解析:选C.汽车做加速运动,由牛顿第二定律有:F -f =ma ,所以F =f +ma ,所以汽车的功率为P =Fv =(f +ma )v ,故A错误;当汽车的速度增加到2v 时,此时的牵引力为F =P2v=(f +ma )v2v=(f +ma )2,由牛顿第二定律有:F -f =ma 1,即(f +ma )2-f =ma 1,解得:a 1=ma -f2m,故B 错误;当汽车的牵引力与阻力相等时,汽车速度最大,即v m =Pf =(f +ma )vf=⎝ ⎛⎭⎪⎪⎪⎫1+ma f v ,故C 正确;由于以恒定的功率行驶,即做加速度减小的加速运动,行驶的距离不能用2ax =v 2求解.故D 错误.4.如图,两个相同的小球P 、Q 通过铰链用刚性轻杆连接,P 套在光滑竖直杆上,Q 放在光滑水平地面上.开始时轻杆贴近竖直杆,由静止释放后,Q 沿水平地面向右运动.下列判断正确的是( )A .P 触地前的速度一直增大B .P 触地前的速度先增大后减小C .Q 的速度一直增大D .P 、Q 的速度同时达到最大解析:选A.开始时P、Q的速度都为零,P受重力和轻杆的作用下做加速运动,而Q由于轻杆的作用,则开始时轻杆对Q做正功,Q加速,后对Q做负功,Q减速,当P到达底端时,P只有竖直方向的速度,而水平方向的速度为零,故Q的速度为零,所以在整个过程中,P的速度一直增大,Q的速度先增大后减小,故A正确,BCD错误;故选A.5.如图所示,两光滑直杆成直角竖直固定,OM水平,ON竖直,两个质量相同的有孔小球A、B(可视为质点)串在杆上通过长为L的非弹性轻绳相连,开始时小球A在水平向左的外力作用下处于静止状态,此时OB=45L,重力加速度为g,现将外力增大到原来的4倍(方向不变),则小球B运动到与O点的距离为35L时的速度大小为( )A. 1 510gL B.1515gLC.8255gL D .6255gL解析:选C.开始时A 到O 的距离: OA=L 2-⎝ ⎛⎭⎪⎪⎪⎫45L 2=35L ,以B 为研究对象,开始时B 受到重力、杆的支持力N 和绳子的拉力T ,如图,则:tan θ=Nmg ;由几何关系:tan θ=OAOB =35L45L =34;联立得:N =34mg ,以AB 组成的整体为研究对象,在水平方向二者受到拉力F和杆对B 的支持力N ,由于水平方向受力平衡,所以F =N =34mg ,现将外力增大到原来的4倍(方向不变),则:F ′=4F =3mg ,B 球向上运动时,小球B 运动到距O 点的距离35L 时,由几何关系得,A 到O 点的距离:OA ′=L 2-⎝ ⎛⎭⎪⎪⎪⎫35L 2=45L ,A 向左的距离:Δs =45L -35L =15L ,B 上升的距离:Δh =45L -35L =15L此时细绳与竖直方向之间夹角的正切值:tan θ′=43,则得 cos θ′=0.6,sin θ′=0.8由运动的合成与分解知识可知:A 球与B 球的速度之间的关系为: vB cos θ′=vA sin θ′可得vB =43vA以AB 球组成的整体为研究对象,拉力和重力对系统做功,由动能定理得: F ′·ΔS -mg Δh =12mv 2A +12mv 2B联立以上方程解得:vB =8255gL ,选项C 正确.故选C.6.(多选)某研究小组对一辆新能源实验小车的性能进行研究.小车的质量为1.0 kg ,他们让这辆小车在水平的直轨道上由静止开始运动,其v t 图象如图所示(除2~10 s 时间段图象为曲线外,其余时间段图象均为直线).已知2 s 后小车的功率P =9 W 保持不变,可认为在整个运动过程中小车所受到的阻力大小不变,下列说法正确的有( )A .0~2 s 时间内,汽车的牵引力是3.5 NB .汽车在第1 s 时的功率等于第14 s 时的功率的一半C .小车在0~10 s 内位移的大小为42 mD .2~10 s 时间内,汽车的平均速度是4.5 m/s解析:选BC.汽车的最大速度为v m =6 m/s ,则阻力f =Pv m=96 N =1.5 N ;在0~2 s 时间内,汽车的加速度a =32 m/s2=1.5 m/s2;则牵引力是F =ma +f =1×1.5 N +1.5 N =3 N ,选项A 错误;汽车在第1 s 末时的功率:P 1=Fv 1=3×1.5 W =4.5 W =12P 14,选项B 正确;在0~2 s 内的位移:s 1=12×2×3 m =3 m ;在2 s ~10 s 内由动能定理:Pt -fs 2=12mv 210-12mv 2,解得s 2=39 m ,则小车在0~10 s 内位移的大小为s =s 1+s 2=42 m ,选项C 正确;2~10 s 时间内,汽车不是匀加速运动,则平均速度是v ≠3+62m/s =4.5 m/s ,选项D 错误;故选BC.7.(多选)如图为“阿特伍德机”模型,跨过光滑的定滑轮用质量不计的轻绳拴接质量分别为m 和2m的物体甲、乙.将两物体置于同一高度,将装置由静止释放,经一段时间甲、乙两物体在竖直方向的间距为l ,重力加速度用g 表示.则在该过程中( )A .甲的机械能一直增大B .乙的机械能减少了23mglC .轻绳对乙所做的功在数值上等于乙的重力所做的功D .甲的重力所做的功在数值上小于甲增加的动能解析:选AB.机械能等于动能与重力势能之和,甲加速上升,其动能和重力势能均增加,所以机械能增加,故A 正确;甲和乙组成的系统机械能守恒,由机械能守恒定律得:2mg l 2=mg l 2+12mv 2+12×2mv 2,则解得:v =13gl ,乙动能增加量为12×2mv 2=13mgl ,重力势能减小2mg l 2=mgl ,所以机械能减小23mgl ,故B 正确;由于乙加速下降,则轻绳的拉力小于重力,因此轻绳对乙所做的功在数值上小于乙的重力所做的功,故C 错误;甲动能增加量为:ΔE k =12mv 2=16mgl ,甲的重力所做的功在数值上等于12mgl ,由此可知甲的重力所做的功在数值上大于甲增加的动能,故D 错误.所以AB 正确,CD 错误.8.(多选)如图所示,倾角为θ=37°的传送带以速度v =2 m/s 沿图示方向匀速运动.现将一质量为2 kg 的小木块,从传送带的底端以v 0=4 m/s 的初速度,沿传送带运动方向滑上传送带.已知小木块与传送带间的动摩擦因数为μ=0.5,传送带足够长,sin 37°=0.6,cos 37°=0.8,取g =10 m/s2.小物块从滑上传送带至到达最高点的过程中,下列说法正确的是( )A .运动时间为0.4 sB .发生的位移为1.6 mC .产生的热量为9.6 JD .摩擦力对小木块所做功为12.8 J解析:选BC.第一阶段:根据牛顿第二定律,mg sin θ+μmg cos θ=ma 1,得a 1=10 m/s2,第一阶段位移为x 1=v 2-v 20-2a1=0.6 m ,所用时间为t 1=v -v 0-a 1=0.2 s ,传送带位移为x 传1=vt 1=0.4 m ,划痕为Δx 1=x 1-x 传1=0.2 m ;第二阶段:mg sin θ-μmg cos θ=ma 2,得a 2=2 m/s2,第二阶段位移为x 2=v 22a 2=1 m ,所用时间为t 2=va 2=1 s ,传送带位移为x 传2=vt 2=2 m ,划痕为Δx 2=x 传1-x 2=1 m .由以上分析可知,物体运动总时间为t =t 1+t 2=1.2 s ;物体的总位移x =x 1+x 2=1.6 m ;产生总热量为Q =μmg cos θ·Δx 1+μmg cos θ·Δx 2=9.6 J ;摩擦力第一阶段做负功,第二阶段做正功,摩擦力对小木块所做功为W =-μmg cos θ·x 1+μmg cos θ·x 2=3.2 J ,综上分析可知BC 正确.9.(多选)如图所示,内壁光滑的绝缘管做成的圆环半径为R ,位于竖直平面内,管的内径远小于R .ab 为该环的水平直径,ab 及其以下区域处于水平向左的匀强电场中.现将质量为m 、电荷量为q的带正电小球从管中a 点由静止开始释放,已知qE =mg .则下列说法正确的是( )A .小球释放后,可以运动过b 点B .小球释放后,到达b 点时速度为零,并在bda 间往复运动C .小球释放后,第一次和第二次经过最高点c 时对管壁的压力之比为1∶6D .小球释放后,第一次经过最低点d 和最高点c 时对管壁的压力之比为5∶1解析:选AD.从a 到b 的过程,由动能定理qE ·2R =12mv 2b ,可知vb ≠0,故小球可以运动过b 点,则选项A 正确,B 错误;小球释放后,第一次经过最高点c 时有:N 1+mg =m v 21R,-mgR+Eq ·2R =12mv 21,因为qE =mg ,解得N 1=mg ;第二次经过最高点c 时有:Eq ·2R =12mv 2-12mv 21,同理可得N 2=5mg ,所以比值为1∶5,选项C 错误;小球释放后,第一次经过最低点d ,由动能定理mgR +EqR =12mv 2,在d 点有:N -mg =m v 2R,解得N =5mg .故D 正确;故选AD.10.(多选)如图所示,质量为M 、半径为R 的ABC 凹槽(为光滑圆槽的一部分)静止在光滑水平面上,B 为最低点,BC 为14圆弧,OA 与竖直方向夹角θ=60°,其右侧紧贴竖直墙壁PQ .一质量为m 的小物块(可视为质点)从D 处水平抛出,同时将ABC 凹槽锁定在地面上,小物块恰好从A 点无碰撞的射入凹槽 ,当其到达B 点时解除锁定,小物块刚好能达到C 点.不计空气阻力,重力加速度为g .则下列说法正确的是()A .从D 点抛出的初速度为v 0=gR2;D 点距A 点高度差h =3R 8B .小球第一次过B 点时对槽底的压力大小为2mgC .小球从C 点到B 点过程中,竖直墙壁对槽的冲量为I =m 2gR ,方向水平向左D .小球从C 到B 向A 运动的过程中,以小球、槽ABC 作为一个系统,机械能守恒、动量守恒解析:选AC.A 项:小物块恰好从A 点无碰撞的射入凹槽 ,即小球进入凹槽时的速度方向与凹槽相切,将速度分解为水平方向和竖直方向可知,v =2v 0,从A 到C 应用能量守恒可知,12m (2v 0)2=mgR sin 30°,解得v 0=gR 2,从D 到A 应用动能定理可得:mgh =12m (2v 0)2-12mv 20,解得:h =3R8,故A 正确;B 项:从A到B 应用动能定理,mgR (1-sin 30°)=12mv 2B -12mv 2A ,在B 点mv2B由重力与支持力的合力提供向心力可得,F N-mg=,由以上R两式解得F N=3mg,故B错误;C项:小球到B时的速度为vB1=2gR,根据动量定理可得:I=mvB1-0=m2gR,故C 正确;D项:小球从C到B向A运动的过程中,以小球、槽ABC 作为一个系统,由于没有摩擦,所以机械能守恒,但在小球从C 到B过程中,墙壁对槽有水平方向的作用力,所以系统所受外力不为零,故动量不守恒,故D错误.。
2019年高考物理三轮冲刺必背知识点归纳总结与汇编专题必背04 力学中的功能关系
专题必背04 力学中的功能关系【必背知识点】一、求功的方法比较1.恒力做功的求法(1)应用公式W=Fs cosα其中α是F、s间的夹角.(2)用动能定理(从做功的效果)求功:此公式可以求恒力做功也可以求变力做功.特别提醒:(1)应用动能定理求的功是物体所受合外力的功,而不是某一个力的功.(2)合外力的功也可用W合=F合s cosα或W合=F1s1cosα+F2s2cosα+…求解.2.变力做功的求法特别提醒:(1)摩擦力既可以做正功,也可以做负功,还可以不做功.(2)相互摩擦的系统内:一对静摩擦力做功的代数和总为零,静摩擦力起着传递机械能的作用,而没有机械能转化为其他形式的能;一对滑动摩擦力做功的代数和等于摩擦力与相对路程的乘积,其值为负值,W =-F f ·s 相对,且F f ·s 相对=ΔE 损=Q 内能.二、两种功率表达式的比较1.功率的定义式:P =W t ,所求出的功率是时间t 内的平均功率.2.功率的计算式:P =Fv cos θ,其中θ是力与速度间的夹角,该公式有两种用法:(1)求某一时刻的瞬时功率.这时F 是该时刻的作用力大小,v 取瞬时值,对应的P 为F 在该时刻的瞬时功率;(2)当v 为某段位移(时间)内的平均速度时,则要求这段位移(时间)内F 必须为恒力,对应的P 为F 在该段时间内的平均功率.特别提醒:公式P =Fv cos θ在高中阶段常用于机车类问题的处理,此时P 指发动机的输出功率,F 为牵引力,F f 为阻力,则任一时刻都满足P =F ·v ,机车任一状态的加速度a =F -F f m ,当机车匀速运动时,F =F f ,P =F ·v =F f ·v .三、对动能定理的理解1.对公式的理解(1)计算式为标量式,没有方向性,动能的变化为末动能减去初动能.(2)研究对象是单一物体或可以看成单一物体的整体.(3)公式中的位移和速度必须是相对于同一参考系,一般以地面为参考系.2.动能定理的优越性(1)适用范围广:应用于直线运动,曲线运动,单一过程,多过程,恒力做功,变力做功.(2)应用便捷:公式不涉及物体运动过程的细节,不涉及加速度和时间问题,应用时比牛顿运动定律和运动学方程方便,而且能解决牛顿运动定律不能解决的变力问题和曲线运动问题【必背方法技巧】动力学规律优先原则(1)对于单个物体,涉及位移的应优先选用动能定理,涉及运动时间的优先选用动量定理。
【重点推荐】2019高中物理 第七章 机械能守恒定律 7 动能和动能定理习题 新人教版必修2
7 动能和动能定理对点训练知识点一动能的理解和计算1.两个物体质量之比为1∶4,速度大小之比为4∶1,则这两个物体的动能之比为( ) A.1∶1B.1∶4C.4∶1D.2∶1知识点二对动能定理的理解2.在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小( )A.一样大B.水平抛的最大C.斜向上抛的最大D.斜向下抛的最大3.一质量为1kg的滑块以6m/s的初速度在光滑的水平面上向左滑行.从某一时刻起在滑块上施加一个向右的水平力,经过一段时间后,滑块的速度方向变成向右,大小仍为6m/s.在这段时间里水平力对滑块所做的功是( )A.0B.9JC.18JD.无法确定4.(多选)如图L7-7-1所示,一个质量是25kg的小孩从高为2m的滑梯顶端由静止滑下,滑到底端时的速度为2m/s.关于力对小孩做的功,以下说法正确的是(g取10m/s2)( )图L7-7-1A.重力做的功为500JB.合外力做功为50JC.克服阻力做功为50JD.支持力做功为450J5.速度为v的子弹恰可穿透一块固定的木板.如果子弹速度为2v,子弹穿透木板时所受阻力视为不变,则可穿透同样的固定木板( )A.2块B.3块C.4块D.8块6.(多选)在平直的公路上,汽车由静止开始做匀加速运动,当速度达到v max后,立即关闭发动机直至静止,其v-t图像如图L7-7-2所示.设汽车的牵引力为F,摩擦力为f,全程中牵引力做功为W1,克服摩擦力做功为W2,则( )图L7-7-2A.F∶f=3∶1B.W1∶W2=1∶1C.F∶f=4∶1D.W1∶W2=1∶3知识点三动能定理的基本计算7.(多选)一个物体沿直线运动,其v-t图像如图L7-7-3所示,已知在前2s内合外力对物体做功为W,则( )图L7-7-3A .从第1s 末到第2s 末,合外力做功为35WB .从第3s 末到第5s 末,合外力做功为-WC .从第5s 末到第7s 末,合外力做功为WD .从第3s 末到第4s 末,合外力做功为-23W8.某物体同时受到在同一直线上的两个力F 1、F 2的作用,物体由静止开始做直线运动,力F 1、F 2与其位移的关系图像如图L7-7-4所示,在这4m 内,物体具有最大动能时的位移是( )图L7-7-4A .1mB .2mC .3mD .4m综合拓展9.质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一轻弹簧O 端相距s ,如图L7-7-5所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为( )图L7-7-5A.12mv 20-μmg(s +x) B.12mv 20-μmgx C .μmgsD .μmg(s +x)10.质量相等的A 、B 两小球位于同一水平直线上,A 球被水平抛出的同时,B 球开始自由下落,两个小球的运动轨迹如图L7-7-6所示,空气阻力忽略不计,则( )图L7-7-6A .A 球做变加速曲线运动,B 球做匀变速直线运动 B .相同时间内A 、B 两球速度的变化量不相等C .两球经过O 点时的动能相等D .两球经过O 点时所受重力的瞬时功率相等11.运动员把质量为500g 的足球踢出后,足球上升的最大高度为10m ,且此时速度大小为20m/s ,然后落在地面上,不计空气阻力,重力加速度g 取10m/s 2,则运动员对足球做功为多少?足球落地时的速度为多大?12.如图L7-7-7所示,斜面倾角为θ.把一个质量为m 的小球从斜面底端正上方高为H 的位置以某一初速度水平向左抛出,小球以最小位移落在斜面上.不计空气阻力,sin37°=0.6,cos37°=0.8,重力加速度为g ,求小球落在斜面上时的动能和小球从抛出到落在斜面上过程中重力所做的功.图L7-7-713.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用,设某一时刻小球通过最低点B ,此时绳子的张力为7mg(g 为重力加速度),此后小球继续做圆周运动,经过半个圆周恰能通过最高点C ,求此过程中小球克服空气阻力所做的功.图L7-7-81.C2.A [解析]由动能定理知mgh =12mv 2t -12mv 20,所以v t =2gh +v 20,下落相同的高度,则末速度大小相同.3.A [解析]动能的大小与速度的方向无关,在这段时间里滑块的动能大小没有发生变化.据动能定理,W =12m(-6m/s)2-12m ·(6m/s)2=0.选项A 正确.4.AB [解析]重力做功与路径无关,W G =mgh =25×10×2J =500J ,选项A 正确;合外力做功W =ΔE k =12mv 2=12×25×22J =50J ,选项B 正确;因为W =W G +W 阻=50J ,所以W 阻=-450J ,即克服阻力做功为450J ,选项C 错误;支持力始终与速度方向垂直,不做功,选项D 错误.5.C [解析]设木板的厚度为d ,当子弹的速度为v 时,由动能定理知-fd =0-12mv 2.当子弹的速度为2v 时,设子弹能穿透n 块木板,由动能定理知-f·nd=0-12m(2v)2,联立两式解得n =4,故选项C 正确.6.BC [解析]对汽车运动的全过程应用动能定理,有W 1-W 2=0,得W 1∶W 2=1∶1;由图像知牵引力与阻力作用距离之比为x 1∶x 2=1∶4,由Fx 1-fx 2=0知F ∶f =4∶1.7.BC [解析]根据动能定理,合外力对物体做的功等于物体动能的变化量.前2s 内,合外力做功W =12mv 21,因此,从第1s 末到第2s 末,合外力做功W 1=12mv 21-12mv 21=0;从第3s 末到第5s 末,合外力做功W 2=0-12mv 21=-W ;从第5s 末到第7s 末,合外力做功W 3=12mv 21-0=W ;从第3s 末到第4s 末,合外力做功W 4=12m ⎝ ⎛⎭⎪⎫v 122-12mv 21=-34W.8.B [解析]由图像可看出,前2m 内合力对物体做正功,物体的动能增加,后2m 内合力对物体做负功,物体的动能减小,所以物体具有最大动能时的位移是2m.9.A [解析]由动能定理得-W -μmg(s +x)=0-12mv 20,W =12mv 20-μmg(s +x).10.D [解析]小球A 做平抛运动,是匀变速曲线运动,A 错误;根据加速度定义式可知,两球在相同时间内速度变化Δv =gt 相同,B 错误;根据动能定理可知,A 在O 点时的动能大,C 错误;两球质量相等,在经过O 点时的竖直分速度相同,故所受重力的瞬时功率相同,D 正确.11.150J 106m/s[解析]设运动员对足球做功为W ,对足球从静止到最高点过程,由动能定理有W -mgh =12mv 2,其中m =0.5kg ,h =10m ,v =20m/s ,解得W =150J.对足球从开始到落地过程,由动能定理有W =12mv 2地,解得v 地=106m/s.12.mgHcos 2θ+14mgHsin 2θ mgHcos 2θ[解析]如图所示,小球位移最小,由数学知识可知,小球平抛运动的水平、竖直位移分别为x =Hsin θcos θ、y =Hcos 2θ重力做功W G =mgy =mgHcos 2θ 又y =12gt 2=gx 22v 20由动能定理有mgy =E k -12mv 2解得E k =mgHcos 2θ+14mgHsin 2θ.13.12mgR [解析]小球运动到最低点,由于绳子的张力为小球重力的7倍,故有 7mg -mg =m v 2BR在B 点时,小球的动能为E kB =12mv 2B =3mgR小球恰好过C 点,有mg =m v 2CR在C 点时,小球的动能E kC =12mgR小球从B 点到C 点过程,设小球克服阻力做功为W f ,由动能定理有 -mg·2R-W f =E kC -E kB故小球从B 点到C 点过程克服阻力所做的功W f =12mgR.。
高考物理专题复习 ——功能关系综合运用(附参考答案)
高考物理专题复习——功能关系综合运用(附参考答案)知识点归纳:一、动能定理1.动能定理的表述合外力做的功等于物体动能的变化。
(这里的合外力指物体受到的所有外力的合力,包括重力)。
表达式为W=ΔE K动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。
实际应用时,后一种表述比较好操作。
不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功2.对外力做功与动能变化关系的理解:外力对物体做正功,物体的动能增加,这一外力有助于物体的运动,是动力;外力对物体做负功,物体的动能减少,这一外力是阻碍物体的运动,是阻力,外力对物体做负功往往又称物体克服阻力做功.功是能量转化的量度,外力对物体做了多少功;就有多少动能与其它形式的能发生了转化.所以外力对物体所做的功就等于物体动能的变化量.即.3.应用动能定理解题的步骤(1)确定研究对象和研究过程。
和动量定理不同,动能定理的研究对象只能是单个物体,如果是系统,那么系统内的物体间不能有相对运动。
(原因是:系统内所有内力的总冲量一定是零,而系统内所有内力做的总功不一定是零)。
(2)对研究对象进行受力分析。
(研究对象以外的物体施于研究对象的力都要分析,含重力)。
(3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负)。
如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功。
(4)写出物体的初、末动能。
(5)按照动能定理列式求解。
二、机械能守恒定律1.机械能守恒定律的两种表述(1)在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。
(2)如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。
2.对机械能守恒定律的理解:(1)机械能守恒定律的研究对象一定是系统,至少包括地球在内。
通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。
2019届高考物理二轮复习第章动量和能量功能关系与能量守恒定律的应用课件.ppt
2019-9-8
谢谢聆听
5
[解析] 由速度图象可知,A 加速运动时的加速度 aA1=2tv00, 减速运动时的加速度大小为 aA2=vt00,由牛顿第二定律有:F-Ff 1=m1·2tv00,Ff1=m1·vt00,解两式得:Ff 1=F3;B 加速运动时的加速 度大小为 aB1=4vt00,减速运动时的加速度大小为 aB2=vt00,由牛顿 第二定律有:F-Ff 2=m2·4vt00,Ff 2=m2·vt00,解两式得:Ff 2=45F, 所以 A、B 两物体与水平面的摩擦力之比为 :12,A 项正确;
2019-9-8
谢谢聆听
10
解析:质点经过 N 点时由牛顿第二定律得 qvB-mg=mvR2, 解得 v= gR,选项 A 错误;质点在磁场运动过程中,洛伦兹力 始终与质点的运动方向垂直,洛伦兹力不做功,选项 B 错误;质 点由静止下落至 P 点的过程,只有重力做功,质点机械能守恒, 选项 C 正确;质点由静止运动至 N 点的过程由动能定理得 2mgR
的水平力 F 拉物体,使它以相对传送带为 v1 的速度匀速从 A 滑行
到 B,这一过程中,拉力 F 所做的功为 W2、功率为 P2,物体和传
送带之间因摩擦而产生的热量为 Q2.下列关系中正确的是( )
A.W1=W2,P1<P2,Q1=Q2
B.W1=W2,P1<P2,Q1>Q2
C.W1>W2,P1=P2,Q1>Q2
2019-9-8
谢谢聆听
17
求: (1)要使赛车完成比赛,赛车在半圆轨道的 B 点对轨道的压 力至少为多大; (2)要使赛车完成比赛,电动机至少工作多长时间; (3)若电动机工作时间为 t0=5 s,当 R 为多少时赛车既能完 成比赛且飞出的水平距离又最大,水平距离最大是多少.
备战2019年高考物理总复习名师伴学 专题08 功能关系、机械能守恒定律及其应用 Word版含解析
考纲定位本讲共1个考点,一个二级考点(1)功能关系本讲高考频率非常高,本考点涵盖了前面动能定理、重力做功、机械能守恒等知识,高考中选择题多以难度比较大,计算题题中考查这个知识也是非常之高。
必备知识一、几种常见的功能关系及其表达式力做功能的变化定量关系合力的功动能变化W=E k2-E k1=ΔE k重力的功重力势能变化(1)重力做正功,重力势能减少(2)重力做负功,重力势能增加(3)W G=-ΔE p=E p1-E p2弹簧弹力的功弹性势能变化(1)弹力做正功,弹性势能减少(2)弹力做负功,弹性势能增加(3)W F=-ΔE p=E p1-E p2只有重力、弹簧弹力做功机械能不变化机械能守恒ΔE=0 除重力和弹簧弹力之外的其他力做的功机械能变化(1)其他力做多少正功,物体的机械能就增加多少(2)其他力做多少负功,物体的机械能就减少多少(3)W其他=ΔE一对相互作用的滑动摩擦力的总功机械能减少内能增加(1)作用于系统的一对滑动摩擦力一定做负功,系统内能增加(2)摩擦生热Q=F f·x相对二、两种摩擦力做功特点的比较类型比较静摩擦力滑动摩擦力不同点能量的转化方面只有机械能从一个物体转移到另一个物体,而没有机械能转化为其他形式的能(1)将部分机械能从一个物体转移到另一个物体(2)一部分机械能转化为内能,此部分能量就是系统机械能的损失量一对摩擦力的总功方面一对静摩擦力所做功的代数和总等于零一对滑动摩擦力做功的代数和总是负值相同点正功、负功、不做功方面两种摩擦力对物体均可以做正功,做负功,还可以不做功三、能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.表达式ΔE减=ΔE增.3.基本思路(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.题型洞察一.题型研究一:机械能守恒定律及其应用(一)真题再现1.(2018·江苏高考)如图所示,钉子A、B相距5l,处于同一高度。
(新)高中物理二轮复习功能关系专题
所谓的光芒光阴,其实不是此后,闪烁的日子,而是无人问津时,你对梦想的偏执。
一、动能定理动能定理的推导物体只在一个恒力作用下,做直线运动2V1 21 2 1 2V2w2 mv22mv1w= FS=m a ×2 a 即推行:物体在多个力的作用下、物体在做曲线运动、物体在变力的作用下结论:协力所做的功等于动能的增量,协力做正功动能增添,协力做负功动能减小协力做功的求法:1、受力剖析求协力,协力乘以在协力方向的位移(协力是恒力,位移相对地的位移)2、协力做的功等于各力做功的代数和二.应用动能定理解题的步骤(1)确立研究对象和研究过程。
(2)对研究对象受力剖析,判断各力做功状况。
(3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负)(4)写出物体的初、末动能。
依据动能定理列式求解。
【例】如下图,质量为m 的钢珠从超出地面h 处由静止自由着落,落到地面进入沙坑h/10 停止,则(1)钢珠在沙坑中遇到的均匀阻力是重力的多少倍?(2)若让钢珠进入沙坑 h/8,则钢珠在 h 处的动能应为多少?设钢珠在沙坑中所受均匀阻力大小不随深度改变。
H三、高中物理接触到的几种常用的功能关系1、重力做功等于重力势能的减小量2、弹力做功等于弹性势能的减小量3、电场力做功等于电势能的减小量4、合外力做功等于动能的变化量(动能定理)5、除重力之外其余力做功等于机械能的变化量6、摩擦力乘以相对位移代表有多少机械能转变为内能用于发热7、电磁感觉中战胜安培力做功量度多少其余形式能转变为电能用于发热8、能量守恒思路1.(2013 长·春模拟 )19 世纪初,科学家在研究功能关系的过程中,具备了能量转变和守恒的思想,对生活中相关机械能转变的问题有了清楚的认识,以下相关机械能的说法正确的选项是( )A.仅有重力对物体做功,物体的机械能必定守恒B.仅有弹力对物体做功,物体的机械能必定守恒C.摩擦力对物体做的功必定等于物体机械能的变化量D.合外力对物体做的功必定等于物体机械能的变化量2.(2013 ·北四市联考东)在高度为h、倾角为 30°的粗拙固定的斜面上,有一质量为m、与一轻弹簧拴3,且最大静摩擦力等于滑动摩擦力。
2019高考物理试题重点系列:专项07动量和能量解析版
2019 高考物理试题要点原创精选系列:专项07 动量和能量(解析版)【考点展望】展望本考点还是 2018 的高考的重和热门,可能以选择题的形式出现,观察动量的矢量性,辨析“动量和动能” 、“冲量与功”的基本看法;也可能常设置一个瞬时碰撞的情形,用动量定理求变力的冲量;或求出均匀力;或用动量守恒定律来判断在碰撞后的各个物体运动状态理等〕交织综合,也常与生产、生活、科技内容〔如碰撞、爆炸、反冲等〕相联合,这种问题一般过程复杂、难度大、能力要求高,常常是高考的压轴题、重力势能、弹性势能、机械能守恒定律、功能关系、能的转变和守恒定律是本单元的要点。
弹力做功和弹性势能变化的关系是典型的变力做功,应予以特别地关注。
【考点定位】本专题涉及的内容是动力学内容的连续和深入,此中的动量守恒定律、机械能守恒定律、能量守恒定律比牛顿运动定律的合用范围更广泛,是自然界中广泛合用的基本规律,所以是高中物理的要点,也是高考观察的要点之一。
高考中年年有,且常常成为高考的压轴题。
最近几年采纳综合考试后,试卷难度有所降落,所以动量和能量考题的难度也有必定降落。
要更加关注有关基本看法的题、定性分析现象的题和联系实质、联系现代科技的题。
试题常常是综合题,动量与能量的综合,也许动量、能量与平抛运动、圆周运动、热学、电磁学、原子物理等知识的综合。
试题的情形常常是物理过程较复杂的,也许是作用时间很短的,如变加快运动、碰撞、爆炸、打击、弹簧形变等。
考点 1 冲量动量动量定理【例 1】据报导, 2017 年一架英国战斗机在威尔士上空与一只秃鹰想撞飞机坠落,小小的飞鸟撞死宏大坚固的飞机,真难以想象,试经过估量,说明鸟类对飞机翱翔的威迫。
设飞鸟的质量 m=1kg,飞机的翱翔速度为v=800m/s ,假设二者相撞,试估量鸟对飞机的撞击力。
考点 2 动量守恒定律【例 2】一旧式高射炮的炮筒与水平面的夹角为α =60°,当它以 v0=100m/s 的速度发射出炮弹时,炮车反冲退后,炮弹的质量为 m=10kg,炮车的质量 M=200kg炮车与地面间动摩擦因数μ =0.2 ,如图 5-20-5所示 . 那么炮车后图 5-20-5退多远停下来 ?( 取 g=10m/s2)【分析】在发射炮弹过程中,因为地面对炮车支持力大于炮车的考点 3 爆炸碰撞反冲【例 3】甲、乙两球在圆滑水平轨道上同向运动,它们的动量分别是p甲 =5kg·m/s ,p 乙 =7kg·m/s ,甲追乙并发生碰撞,碰后乙球的动量变成 p’乙 =10kg· m/s,那么两球质量 m甲与 m乙的关系可能是A、 m甲=m乙B、 m乙 =2m甲C、 m乙=4m甲D、 m乙 =4m甲【三年真题】【2018 高考试题分析】〔2018 ·广东〕 17 图 4 是滑道压力测试的表示图,圆滑圆弧轨道与圆滑斜面相切,滑道底部 B 处安装一个压力传感器,其示数N表示该地方受压力的大小,某滑块从斜面上不一样高度h 处由静止下滑,经过 B 点,以下表述正确的有()A.N小于滑块重力B.N大于滑块重力C.N越大说明h 越大D.N越大说明h 越小〔2018 ·大纲版全国卷〕 21. 如图,大小相同的摆球 a 和 b 的质量分别为并排悬挂,均衡时两球恰好接触,现将摆球 a 向左侧拉开一小角度后开释,是弹性的,以下判断正确的选项是m和 3m,摆长相同,假设两球的碰撞A.第一次碰撞后的瞬时,两球的速度大小相等B.第一次碰撞后的瞬时,两球的动量大小相等C.第一次碰撞后,两球的最大摆角不相同D.发生第二次碰撞时,两球在各自的均衡地点〔2018 ·浙江〕 23、〔 16 分〕为了研究鱼所受水的阻力与其形状的关系,小明同学用白腊做成两条质量均为m、形状不一样的“ A 鱼”和“ B 鱼”,以以下图。
2019版高考物理二轮复习专题二功和能动量和能量第1讲动能定理机械能守恒定律功能关系的应用课件
-21-
1
2
3
4
5
【命题规律研究及预测】 分析高考试题可以看出,动能定理是 高考的重点,经常与直线运动等综合起来进行考查。功能关系也是 高考的重点,更是高考的热点。题型一般为选择题或计算题。 在2019年的备考过程中要重视动能定理和功能关系的复习。
-22-
考点一
考点二
考点三
功、功率、机车启动及相关图象问题的分析 题型1 功、功率及相关图象问题(H) 规律方法 计算功和功率时应注意的两个问题 1.功的计算 (1)恒力做功一般用功的公式或动能定理求解。 (2)变力做功一般用动能定理或图象法求解,用图象法求外力做功 时应注意横轴和纵轴分别表示的物理意义。 2.功率的计算 (1)明确是求瞬时功率还是平均功率。 ������ (2) P= 侧重于平均功率的计算,P=Fvcos α(α为F和v的夹角)侧 ������ 重于瞬时功率的计算。要注意P=Fvcos α可理解成力F的瞬时功率 等于该力乘以该力方向上的瞬时速度。
-24-
考点一
考点二
考点三
思维点拨根据功的公式W=Fx分析可知,在OA段和AB段物体受到恒 力的作用,并且图象的斜率表示的是物体受到的力的大小,由此可 以判断物体受到的拉力的大小,再由功率的公式可以判断功率的大 小。
分
讲
考点及题型 考点一 动量、冲量、动 量定理(L) 考点二 动量守恒定律 及应用(H) 考点三 动量与能量的 综合应用(M)
考题统计 2017 卷Ⅲ20 2017 卷Ⅰ14;2017 卷Ⅱ15 2018 卷Ⅱ15
2019 考情 预测
第2讲 动量和 能量观 点的应 用
分
讲 考点及题型 考点一 综合应用动 力学方法和能量观点 解决多过程问题(H) 考点二 力学三 大观点 的综合 应用 (H) 题型 1 阻 力作用与能 量耗散模型 问题 题型 2 用 力学三大观 点综合解决 问题
高中二轮复习专题05 动能定理、机械能守恒定律、功能关系的应用
专题05 动能定理、机械能守恒定律、功能关系的应用核心要点1、功恒力做功:W=Flcosa合力做功:W合=F合lcosa变力做功:图像法、转换法等2、功率瞬时功率:P=Fvcosa平均功率:P=wt机车启动:P=Fv3、动能定律表达式:W=12mv22−12mv12备考策略1、动能定理(1)应用思路:确定两状态(动能变化),一过程(各个力做的功)(2)适用条件:直线运动曲线运动均可;恒力变力做功均可;单个过程多个过程均可(3)应用技巧:不涉及加速度、时间和方向问题是使用2、机械能守恒定律(1)守恒条件:在只有重力或弹力做功的物体系统内守恒角度E1=E2(2)表达形式:转化角度△E k=△E p转移角度△E A=-△E p3、功能关系:(1)合力的功等于动能的增量(2)重力的功等于重力势能增量的负值(3)弹力的功等于弹性势能增量的负值(4)电场力的功等于电势能增量的负值(5)除了重力和系统内弹力之外的其他力的功等于机械能的增量考向一动能定理的综合应用1.应用动能定理解题的步骤图解2.应用动能定理的四点提醒(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学方法要简捷.(2)动能定理表达式是一个标量式,在某个方向上应用动能定理是没有依据的.(3)物体在某个运动过程中包含几个运动性质不同的小过程(如加速、减速的过程),对全过程应用动能定理,往往能使问题简化.(4)多过程往复运动问题一般应用动能定理求解.例1(2020·江苏卷·4)如图1所示,一小物块由静止开始沿斜面向下滑动,最后停在水平地面上.斜面和地面平滑连接,且物块与斜面、物块与地面间的动摩擦因数均为常数.该过程中,物块的动能E k与水平位移x关系的图像是()图1解析:由题意可知设斜面倾角为θ,动摩擦因数为μ1,则物块在斜面上下滑水平距离x时根据=E k,整理可得(mgtanθ-μ1mg)x=E k,即在斜面上运动能定理有mgxtan θ-μ1mgcos θxcosθ动时动能与x成线性关系;当小物块在水平面运动时,设水平面的动摩擦因数为μ2,由动能定理有一μ2mg(x一x0)=E k一E k0,其中E0为物块滑到斜面底端时的动能, x0为在斜面底端对应的水平位移,解得E k=E k0一μ2mg(x-x0),即在水平面运动时动能与x也成线性关系;综上分析可知A 项正确。
2019届高考物理二轮复习力学考点集训考点10动能定理与功能关系Word版含解析
考点10动能定理与功能关系1、如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度,木箱获得的动能一定( )A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功2、如图所示,桌面高度为h,质量为m的小球,从离桌面高H处自由落下,不计空气阻力,假设桌面处的重力势能为零,关于重力势能的说法正确的是( )A.重力势能是矢量,有正负之分B.刚开始下落时的重力势能为mg(H+h)C.落地时的重力势能为零D.落地时的重力势能为—mgh3、如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连.弹簧处于自然长度时物块位于O点(图中未标出).物块的质量为m,AB a=,物块与桌面间的动摩擦因数为μ.现用水平向右的力将物块从O点拉至A点,拉力做的功为W.撤去拉力后物块由静止向左运动,经O点到达B点时速度为零.重力加速度为g.则上述过程中( )A.物块在A点时,弹簧的弹性势能等于12W mgaμ-B.物块在B点时,弹簧的弹性势能小于32W mgaμ-C.经O 点时,物块的动能小于W mga μ-D.物块动能最大时,弹簧的弹性势能小于物块在B 点时弹簧的弹性势能4、如图所示,一物体从长为L 、高为h 的光滑斜面顶端A 由静止开始下滑,则该物体滑到斜面底端B 时的速度大小为( )5、如图所示,在地面上以速度v 0抛出质量为m 的物体,抛出后物体落到比地面低h 的海平面上.若以地面为零势能面,不计空气阻力,则下列说法中正确的是( )A.物体上升到最高点时的重力势能为2012mv B.物体落到海平面时的重力势能为-mghC.物体在海平面上的动能为2012mv -mgh D.物体在海平面上的机械能为2012mv 6、如图所示,光滑水平平台上有一个质量为m 的物块,站在地面上的人用跨过定滑轮的绳子向右拉动物块,不计绳和滑轮的质量及滑轮的摩擦,且平台边缘离人手作用点竖直高度始终为h .当人以速度v 从平台的边缘处向右匀速前进位移x 时,则( )A.在该过程中,物块的运动可能是匀速的B.在该过程中,人对物块做的功为22222()mv x h x + C.在该过程中,人对物块做的功为212mv D.人前进x 时,7、如图所示,在高1.5m 的光滑平台上有一个质量为2kg 的小球被一细线拴在墙上,球与墙之间有一根被压缩的轻质弹簧。
江苏专用2019高考物理二轮复习要点回扣专题8功能关系学案201901092141
要点8 功能关系[规律要点]1.两个基本概念——功和功率 (1)功的计算①恒力做功的计算公式W =Fl cos α。
②变力做功的计算a.用动能定理W =ΔE k 或功能关系W =ΔE 计算。
b.变力做功的功率一定时,用功率和时间计算W =Pt 。
c.将变力做功转化为恒力做功。
③总功的计算a.先求物体所受的合外力,再求合外力所做的功。
b.先求每个力做的功,再求各力做功的代数和。
(2)功率的计算P =Wt是功率的定义式,P =Fv 是功率的计算式,一般用于计算瞬时功率。
2.一个模型——机车启动模型P 不变:vF =P v↓ a =F -F 阻m↓加速度减小的加速直线运动F =F 阻a =0v m =P F 阻做速度为v m 的匀速直线运动vF =P 额v a =F -F 阻m↓4.(1)守恒条件:只有重力或系统内弹簧的弹力做功。
(2)机械能守恒定律的三种表达形式及用法5.一条主线——功能关系(1)合力做功与物体动能改变之间的关系:合力做的功等于物体动能的增量,即W 合=E k2-E k1(动能定理)。
(2)重力做功与物体重力势能改变之间的关系:重力做的功等于物体重力势能增量的负值,即W G =-ΔE p 。
(3)弹力做功与物体弹性势能改变之间的关系:弹力做的功等于物体弹性势能增量的负值,即W =-ΔE p 。
(4)除了重力和系统内弹力之外的力做功与机械能改变之间的关系: 其他力做的总功等于系统机械能的增量,即W 其他=ΔE 。
[保温训练]1.(多选)(2018·南京市、盐城市一模)游乐场的一种滑梯,它是由很小的一段弧形轨道将倾斜直轨道和水平轨道连接组成的,如图1所示。
一位小朋友从斜轨道顶端由静止开始自由下滑,经过很小一段弧形轨道滑到水平轨道上,继续滑动一段距离后停下。
则小朋友( )图1A.沿倾斜轨道下滑过程中机械能一定增加B.沿弧形轨道滑动过程中对轨道做了负功C.沿水平轨道滑动过程中,摩擦力对他做了负功D.在整个滑动过程中,重力做的功和他克服摩擦力做的功相等答案CD2.(多选)(2018·江苏无锡高三期中)如图2所示,一物体在外力F作用下,从A到E做匀变速曲线运动,已知在B点时的速度与加速度相互垂直,则下列说法中正确的是( )图2A.物体在A点处的速度最小B.物体在B点处的速度最小C.物体从A到D的运动过程中速率先减小后增大D.物体从A到D的运动过程中外力F做功的功率一直增大答案BC3.(2018·南京外国语学校等四模)背越式跳高是一项跳跃垂直障碍的运动项目,包括助跑、起跳、过杆和落地四个阶段,图3为从起跳到落地运动过程分解图,某同学身高1.80 m,体重60 kg,参加学校运动会成功地越过了1.90 m的横杆,该同学跳起时刻的动能可能是下列哪个值(g取10 m/s2)( )图3A.500 JB.600 JC.800 JD.2 000 J答案 C4.(2018·江苏高考)从地面竖直向上抛出一只小球,小球运动一段时间后落回地面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回扣练7:动能定理 功能关系1.在光滑的水平面上有一静止的物体,现以水平恒力F 1推这一物体,作用一段时间后换成相反方向的水平恒力F 2推这一物体,当恒力F 2作用的时间与恒力F 1作用的时间相等时,物体恰好回到原处,此时物体的动能为32 J ,则在整个过程中,恒力F 1、F 2做的功分别为( )A .16 J 、16 JB .8 J 、24 JC .32 J 、0 JD .48 J 、-16 J解析:选B.设加速的末速度为v 1,匀变速的末速度为v 2,由于加速过程和匀变速过程的位移相反,又由于恒力F 2作用的时间与恒力F 1作用的时间相等,根据平均速度公式有v 12=-v 1+v 22 ,解得v 2=-2v 1,根据动能定理,加速过程W 1=12mv 21,匀变速过程W 2=12mv 22-12mv 21根据题意12mv 22=32 J ,故W 1=8 J ,W 2=24 J ,故选B.2.如图甲所示,一次训练中,运动员腰部系着不可伸长的绳,拖着质量m =11 kg 的轮胎从静止开始沿着笔直的跑道加速奔跑,绳与水平跑道的夹角是37°,5 s 后拖绳从轮胎上脱落.轮胎运动的v t 图象如图乙所示,不计空气阻力,已知sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2.则下列说法正确的是( )A .轮胎与水平地面间的动摩擦因数μ=0.2B .拉力F 的大小为55 NC .在0~5 s 内,轮胎克服摩擦力做功为1 375 JD .在6 s 末,摩擦力的瞬时功率大小为275 W解析:选D.撤去F 后,轮胎的受力分析如图1所示,由速度图象得5 s ~7 s 内的加速度a 2=-5 m/s 2,根据牛顿运动定律有N 2-mg =0,-f 2=ma 2,又因为f 2=μN 2,代入数据解得μ=0.5,故A 错误; 力F 拉动轮胎的过程中,轮胎的受力情况如图2所示,根据牛顿运动定律有F cos 37°-f 1=ma 1,mg -F sin 37°-N 1=0, 又因为f 1=μN 1,由速度图象得此过程的加速度a 1=2 m/s 2,联立解得:F =70 N ,B 错误;在0 s ~5 s 内,轮胎克服摩擦力做功为0.5×68×25 J=850 J ,C 错误;因6 s 末轮胎的速度为5 m/s ,所以在6 s 时,摩擦力的瞬时功率大小为0.5×110×5 W=275 W ,D 正确;故选D.3.一质量为m 的电动汽车在平直公路上以恒定的功率加速行驶,当速度大小为v 时,其加速度大小为a ,设汽车所受的阻力恒为f .以下说法正确的是( )A .汽车的功率为fvB .当汽车的速度增加到2v 时,加速度为a2C .汽车行驶的最大速率为⎝⎛⎭⎪⎫1+ma f vD .当汽车的速度为v 时,行驶的距离为v 22a解析:选C.汽车做加速运动,由牛顿第二定律有:F -f =ma ,所以F =f +ma ,所以汽车的功率为P =Fv =(f +ma )v ,故A 错误;当汽车的速度增加到2v 时,此时的牵引力为F=P 2v =(f +ma )v 2v =(f +ma )2,由牛顿第二定律有:F -f =ma 1,即(f +ma )2-f =ma 1,解得:a 1=ma -f 2m ,故B 错误;当汽车的牵引力与阻力相等时,汽车速度最大,即v m =Pf=(f +ma )v f=⎝ ⎛⎭⎪⎫1+ma f v ,故C 正确;由于以恒定的功率行驶,即做加速度减小的加速运动,行驶的距离不能用2ax =v 2求解.故D 错误.4.如图,两个相同的小球P 、Q 通过铰链用刚性轻杆连接,P 套在光滑竖直杆上,Q 放在光滑水平地面上.开始时轻杆贴近竖直杆,由静止释放后,Q 沿水平地面向右运动.下列判断正确的是( )A .P 触地前的速度一直增大B .P 触地前的速度先增大后减小C .Q 的速度一直增大D .P 、Q 的速度同时达到最大解析:选A.开始时P 、Q 的速度都为零,P 受重力和轻杆的作用下做加速运动,而Q 由于轻杆的作用,则开始时轻杆对Q 做正功,Q 加速,后对Q 做负功,Q 减速,当P 到达底端时,P 只有竖直方向的速度,而水平方向的速度为零,故Q 的速度为零,所以在整个过程中,P 的速度一直增大,Q 的速度先增大后减小,故A 正确,BCD 错误;故选A.5.如图所示,两光滑直杆成直角竖直固定,OM 水平,ON 竖直,两个质量相同的有孔小球A 、B (可视为质点)串在杆上通过长为L 的非弹性轻绳相连,开始时小球A 在水平向左的外力作用下处于静止状态,此时OB =45L ,重力加速度为g ,现将外力增大到原来的4倍(方向不变),则小球B 运动到与O 点的距离为35L 时的速度大小为( )A.1510gL B .1515gL C.8255gL D .6255gL 解析:选C.开始时A 到O 的距离: OA =L 2-⎝ ⎛⎭⎪⎫45L 2=35L ,以B 为研究对象,开始时B 受到重力、杆的支持力N 和绳子的拉力T ,如图,则:tan θ=N mg ;由几何关系:tan θ=OA OB =35L45L =34;联立得:N =34mg ,以AB 组成的整体为研究对象,在水平方向二者受到拉力F 和杆对B 的支持力N ,由于水平方向受力平衡,所以F =N =34mg ,现将外力增大到原来的4倍(方向不变),则:F ′=4F =3mg ,B 球向上运动时,小球B 运动到距O 点的距离35L 时,由几何关系得,A 到O 点的距离:OA ′=L 2-⎝ ⎛⎭⎪⎫35L 2=45L , A 向左的距离:Δs =45L -35L =15L , B 上升的距离:Δh =45L -35L =15L此时细绳与竖直方向之间夹角的正切值:tan θ′=43,则得 cos θ′=0.6,sin θ′=0.8 由运动的合成与分解知识可知:A 球与B 球的速度之间的关系为: v B cos θ′=v A sin θ′可得v B =43v A以AB 球组成的整体为研究对象,拉力和重力对系统做功,由动能定理得: F ′·ΔS -mg Δh =12mv 2A +12mv 2B联立以上方程解得:v B =8255gL ,选项C 正确.故选C.6.(多选)某研究小组对一辆新能源实验小车的性能进行研究.小车的质量为1.0 kg ,他们让这辆小车在水平的直轨道上由静止开始运动,其v t 图象如图所示(除2~10 s 时间段图象为曲线外,其余时间段图象均为直线).已知2 s 后小车的功率P =9 W 保持不变,可认为在整个运动过程中小车所受到的阻力大小不变,下列说法正确的有( )A .0~2 s 时间内,汽车的牵引力是3.5 NB .汽车在第1 s 时的功率等于第14 s 时的功率的一半C .小车在0~10 s 内位移的大小为42 mD .2~10 s 时间内,汽车的平均速度是4.5 m/s解析:选BC.汽车的最大速度为v m =6 m/s ,则阻力f =P v m =96N =1.5 N ;在0~2 s 时间内,汽车的加速度a =32 m/s 2=1.5 m/s 2;则牵引力是F =ma +f =1×1.5 N+1.5 N =3 N ,选项A 错误;汽车在第1 s 末时的功率:P 1=Fv 1=3×1.5 W=4.5 W =12P 14,选项B 正确;在0~2 s 内的位移:s 1=12×2×3 m=3 m ;在2 s ~10 s 内由动能定理:Pt -fs 2=12mv 210-12mv 22,解得s 2=39 m ,则小车在0~10 s 内位移的大小为s =s 1+s 2=42 m ,选项C 正确;2~10 s 时间内,汽车不是匀加速运动,则平均速度是v ≠3+62 m/s =4.5 m/s ,选项D 错误;故选BC.7.(多选)如图为“阿特伍德机”模型,跨过光滑的定滑轮用质量不计的轻绳拴接质量分别为m 和2m 的物体甲、乙.将两物体置于同一高度,将装置由静止释放,经一段时间甲、乙两物体在竖直方向的间距为l ,重力加速度用g 表示.则在该过程中( )A .甲的机械能一直增大B .乙的机械能减少了23mglC .轻绳对乙所做的功在数值上等于乙的重力所做的功D .甲的重力所做的功在数值上小于甲增加的动能解析:选AB.机械能等于动能与重力势能之和,甲加速上升,其动能和重力势能均增加,所以机械能增加,故A 正确;甲和乙组成的系统机械能守恒,由机械能守恒定律得:2mg l2=mg l 2+12mv 2+12×2mv 2,则解得:v =13gl ,乙动能增加量为12×2mv 2=13mgl ,重力势能减小2mg l 2=mgl ,所以机械能减小23mgl ,故B 正确;由于乙加速下降,则轻绳的拉力小于重力,因此轻绳对乙所做的功在数值上小于乙的重力所做的功,故C 错误;甲动能增加量为:ΔE k =12mv 2=16mgl ,甲的重力所做的功在数值上等于12mgl ,由此可知甲的重力所做的功在数值上大于甲增加的动能,故D 错误.所以AB 正确,CD 错误.8.(多选)如图所示,倾角为θ=37°的传送带以速度v =2 m/s 沿图示方向匀速运动.现将一质量为2 kg 的小木块,从传送带的底端以v 0=4 m/s 的初速度,沿传送带运动方向滑上传送带.已知小木块与传送带间的动摩擦因数为μ=0.5,传送带足够长,sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2.小物块从滑上传送带至到达最高点的过程中,下列说法正确的是( )A .运动时间为0.4 sB .发生的位移为1.6 mC .产生的热量为9.6 JD .摩擦力对小木块所做功为12.8 J解析:选BC.第一阶段:根据牛顿第二定律,mg sin θ+μmg cos θ=ma 1,得a 1=10 m/s 2,第一阶段位移为x 1=v 2-v 20-2a 1=0.6 m ,所用时间为t 1=v -v 0-a 1=0.2 s ,传送带位移为x 传1=vt 1=0.4 m ,划痕为Δx 1=x 1-x传1=0.2 m ;第二阶段:mg sin θ-μmg cos θ=ma 2,得a 2=2 m/s 2,第二阶段位移为x 2=v 22a 2=1 m ,所用时间为t 2=va 2=1 s ,传送带位移为x 传2=vt 2=2 m ,划痕为Δx 2=x 传1-x 2=1 m .由以上分析可知,物体运动总时间为t =t 1+t 2=1.2 s ;物体的总位移x =x 1+x 2=1.6 m ;产生总热量为Q =μmg cos θ·Δx 1+μmg cos θ·Δx 2=9.6 J ;摩擦力第一阶段做负功,第二阶段做正功,摩擦力对小木块所做功为W =-μmg cosθ·x 1+μmg cos θ·x 2=3.2 J ,综上分析可知BC 正确.9.(多选)如图所示,内壁光滑的绝缘管做成的圆环半径为R ,位于竖直平面内,管的内径远小于R .ab 为该环的水平直径,ab 及其以下区域处于水平向左的匀强电场中.现将质量为m 、电荷量为q 的带正电小球从管中a 点由静止开始释放,已知qE =mg .则下列说法正确的是( )A .小球释放后,可以运动过b 点B .小球释放后,到达b 点时速度为零,并在bda 间往复运动C .小球释放后,第一次和第二次经过最高点c 时对管壁的压力之比为1∶6D .小球释放后,第一次经过最低点d 和最高点c 时对管壁的压力之比为5∶1 解析:选AD.从a 到b 的过程,由动能定理qE ·2R =12mv 2b ,可知v b ≠0,故小球可以运动过b 点,则选项A 正确,B 错误;小球释放后,第一次经过最高点c 时有:N 1+mg =m v 21R,-mgR +Eq ·2R =12mv 21,因为qE =mg ,解得N 1=mg ;第二次经过最高点c 时有:Eq ·2R =12mv 22-12mv 21,同理可得N 2=5mg ,所以比值为1∶5,选项C 错误;小球释放后,第一次经过最低点d ,由动能定理mgR +EqR =12mv 2,在d 点有:N -mg =m v2R ,解得N =5mg .故D 正确;故选AD.10.(多选)如图所示,质量为M 、半径为R 的ABC 凹槽(为光滑圆槽的一部分)静止在光滑水平面上,B 为最低点,BC 为14圆弧,OA 与竖直方向夹角θ=60°,其右侧紧贴竖直墙壁PQ .一质量为m 的小物块(可视为质点)从D 处水平抛出,同时将ABC 凹槽锁定在地面上,小物块恰好从A 点无碰撞的射入凹槽 ,当其到达B 点时解除锁定,小物块刚好能达到C 点.不计空气阻力,重力加速度为g .则下列说法正确的是( )A .从D 点抛出的初速度为v 0=gR2;D 点距A 点高度差h =3R8B .小球第一次过B 点时对槽底的压力大小为2mgC .小球从C 点到B 点过程中,竖直墙壁对槽的冲量为I =m 2gR ,方向水平向左D .小球从C 到B 向A 运动的过程中,以小球、槽ABC 作为一个系统,机械能守恒、动量守恒解析:选AC.A 项:小物块恰好从A 点无碰撞的射入凹槽 ,即小球进入凹槽时的速度方向与凹槽相切,将速度分解为水平方向和竖直方向可知,v =2v 0,从A 到C 应用能量守恒可知,12m (2v 0)2=mgR sin 30°,解得v 0=gR 2,从D 到A 应用动能定理可得:mgh =12m (2v 0)2-12mv 20,解得:h =3R 8,故A 正确;B 项:从A 到B 应用动能定理,mgR (1-sin 30°)=12mv 2B-12mv 2A ,在B 点由重力与支持力的合力提供向心力可得,F N -mg =mv 2BR ,由以上两式解得F N=3mg ,故B 错误;C 项:小球到B 时的速度为v B 1=2gR ,根据动量定理可得:I =mv B 1-0=m 2gR ,故C 正确;D 项:小球从C 到B 向A 运动的过程中,以小球、槽ABC 作为一个系统,由于没有摩擦,所以机械能守恒,但在小球从C 到B 过程中,墙壁对槽有水平方向的作用力,所以系统所受外力不为零,故动量不守恒,故D 错误.。