最新中考模拟数学试卷

合集下载

2024年浙江省中考数学模拟练习试卷(原卷版)

2024年浙江省中考数学模拟练习试卷(原卷版)

2024年浙江省中考数学模拟练习试卷(考试时间:120分钟 试卷满分:120分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下图是由一个长方体和一个圆柱组成的几何体,它的俯视图是( )A. B. C. D.2.下列计算正确的是( )A .422a a −=B .842a a a ÷=C .235a a a ⋅=D .()325b b =3.截至2022年3月24日,携带“祝融号”火星车的“天问一号”环绕器在轨运行609天,距离地球277000000千米;数据用科学记数法表示为( )A .627710×B .72.7710×C .82.810×D .82.7710×4.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.已知点P (m ﹣3,m ﹣1)在第二象限,则m 的取值范围在数轴上表示正确的是( )A .B .C .D .6.化简24142x x −−−的结果是( ) A .12x −+ B .12x −− C .12x + D .12x − 7 .从甲、乙、丙三人中任选两人参加青年志愿者活动,甲被选中的概率是( )A .13B .12C .23 D .198. 如图,AB 为O 的直径,C 、D 为O 上的点,AD CD =,若40CAB ∠=°,则CAD ∠=( )A .20°B .35°C .30°D .25°9.如图,在平面直角坐标系xOy 中,直线AB 经过A (4,0)、B (0,4),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( )A B .﹣1 C .2 D .10.如图,矩形ABCD 的内部有5个全等的小正方形,小正方形的顶点,,,E F G H 分别落在边,,,AB BC CD DA上,若20,16AB BC ==,则小正方形的边长为( )A .B .5C .D .二、填空题:本题共6小题,每小题3分,共18分。

2024年中考数学模拟试卷及答案

2024年中考数学模拟试卷及答案

20
21
22
23
-6-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
x+3≥-2,
5.在数轴上表示不等式组ቊ
的解集,正确的
7-x>5
是( C )
【解析】解不等式x+3≥-2,得x≥-5,解不等式7-
x>5,得x<2,∴-5≤x<2,只有C项符合题意.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
4
5
6
7
8
9
10
C.80°
11
12
13
14
15
16
D.85°
17
18
19
20
21
22
23
-8-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
【解析】∵AC∥DF,∠A=45°,∴∠FGB=∠A=
45°.∵∠DEF=90°,∠D=60°,∴∠F=180°-
∠DEF-∠D=180°-90°-60°=30°(依据:三角
知某电阻式粮食水分测量仪的内部电路如图1所示,将粮食放在湿
敏电阻R1上,使R1的阻值发生变化,其阻值随粮食水分含量的变化
关系如图2所示.观察图象,下列说法不正确的是(
D)
A.当没有粮食放置时,R1的阻值为40 Ω
B.R1的阻值随着粮食水分含量的增大而减小
C.该装置能检测的粮食水分含量的最大值是12.5%
16
17
18
19
20
21
22
23
-14-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)

中招考试数学模拟考试卷(附有答案解析)

中招考试数学模拟考试卷(附有答案解析)

中招考试数学模拟考试卷(附有答案解析)一.选择题(共10小题)1.下列实数中,比1大的数是()A.﹣2B.﹣C.D.22.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.3.用科学记数法表示0.000000202是()A.0.202×10﹣6B.2.02×107C.2.02×10﹣6D.2.02×10﹣7 4.下列计算正确的是()A.2a﹣a=1B.6a2÷2a=3aC.6a+2a=8a2D.(﹣2a2)3=﹣6a65.某企业车间有50名工人,某一天他们生产的机器零件个数统计如表:零件个数(个)678人数(人)152213表中表示零件个数的数据中,众数、中位数分别是()A.7个,7个B.7个,6个C.22个,22个D.8个,6个6.不等式的解集为()A.x≤B.1<x≤C.1≤x<D.x>17.已知直线l l∥l2,将一块直角三角板ABC按如图所示方式放置,∠ABC=90°,∠A=30°,若∠1=85°,则∠2的度数是()A.35°B.45°C.55°D.65°8.已知方程组,则x﹣y=()A.5B.2C.3D.49.反比例函数y=图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=﹣2D.若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是y<110.如图,在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE,连接BE,则tan∠EBC =()A.B.C.D.二.填空题(共6小题)11.分解因式:2x2﹣4xy+2y2=.12.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有个.13.圆内接正方形的边长为3,则该圆的直径长为.14.计算:(+a)•=.15.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为.16.如图,在菱形ABCD中,AB=6,∠A=60°,点E为边AD上一点,将点C折叠与点E重合,折痕与边CD和BC分别交于点F和G,当DE=2时,线段CF的长是.三.解答题(共9小题)17.计算:(﹣1)2020+|﹣2|+tan45°+.18.在一个不透明的口袋里装着分别标有汉字“中”、“国”、“加”、“油”的四个小球,除汉字不同外完全相同.摇匀后任意摸出一个球,记下汉字后不放回,再随机从中摸出一个球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“中国”或“加油”的概率.19.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是.20.为了解居民对垃圾分类相关知识的知晓程度(“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”),小明随机调查了若干人(每人必选且只能选择四种程度中的一种).根据调查结果绘制成如图两幅不完整的统计图:请你结合统计图所给信息解答下列问题:(1)小明共调查了人,扇形统计图中表示“C”的圆心角为°;(2)请在答题卡上直接补全条形统计图;(3)请你估计50000名市民中不太了解垃圾分类相关知识的人数.21.某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利50元.经调查发现:这种衬衫的售价每降低1元,平均每天能多售出2件,设每件衬衫降价x元.(1)降价后,每件衬衫的利润为元,平均每天的销量为件;(用含x的式子表示)(2)为了扩大销售,尽快滅少库存,商场决定采取降价措施,但需要平均每天盈利1600元,那么每件衬衫应降价多少元?22.如图,在△ABC中,AB=AC,AB是⊙O的直径,边BC交⊙O于点D,作DE⊥AC于点E,延长DE 和BA交于点F.(1)求证:DE是⊙O的切线;(2)若tan B=,AE=3,则直径AB的长度是.23.如图1,在平面直角坐标系中,点A的坐标是(﹣1,0),点B(2,3),点C(3,).(1)求直线AB的解析式;(2)点P(m,0)是x轴上的一个动点,过点P作直线PM∥y轴,交直线AB于点M,交直线BC于点N(P,M,N三点中任意两点都不重合),当MN=MP时,求点M的坐标;(3)如图2,取点D(4,0),动点E在射线BC上,连接DE,另一动点P从点D出发,沿线段DE以每秒1个单位的速度运动到点E,再沿线段EB以每秒个单位的速度运动到终点B,当点E的坐标是多少时,点P在整个运动过程中用时最少?请直接写出此时点E的坐标.24.在△ABC中,AB=AC,点O在BC边上,且OB=OC,在△DEF中,DE=DF,点O在EF边上,且OE=OF,∠BAC=∠EDF,连接AD,BE.(1)如图1,当∠BAC=90°时,连接AO,DO,则线段AD与BE的数量关系是,位置关系是;(2)如图2,当∠BAC=60°时,(1)中的结论还成立吗?请说明理由;(3)如图3,AC=3,BC=6,DF=5,当点B在直线DE上时,请直接写出sin∠ABD的值.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0),交y轴于点C,点D和点C关于对称轴对称,作DE⊥OB于点E,点M是射线EO上的动点,点N是y轴上的动点,连接DM,MN,设点N的坐标为(0,n).(1)求抛物线的解析式;(2)当点M,N分别在线段OE,OC上,且ME=ON时,连接CM,若△CMN的面积是,求此时点M的坐标;(3)是否存在n的值使∠DME=∠MNO=α(0°<α<90°)?若存在,请直接写出n的取值范围;若不存在,请说明理由.参考答案与解析一.选择题(共10小题)1.下列实数中,比1大的数是()A.﹣2B.﹣C.D.2【分析】直接估算无理数大小的方法以及实数比较大小的方法分析得出答案.【解答】解:∵1<<2;∴0<<1;故﹣2<﹣<<1<2;故选:D.2.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图形,从上面看有两层,上层有4个正方形,下层有一个正方形且位于左二的位置.【解答】解:从上面看,得到的视图是:;故选:A.3.用科学记数法表示0.000000202是()A.0.202×10﹣6B.2.02×107C.2.02×10﹣6D.2.02×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000202=2.02×10﹣7.故选:D.4.下列计算正确的是()A.2a﹣a=1B.6a2÷2a=3aC.6a+2a=8a2D.(﹣2a2)3=﹣6a6【分析】根据合并同类项的运算法则、同底数幂的除法、积的乘方分别进行计算即可得出答案.【解答】解:A、2a﹣a=a,故本选项错误;B、6a2÷2a=3a,故本选项正确;C、6a+2a=8a,故本选项错误;D、(﹣2a2)3=﹣8a6,故本选项错误;故选:B.5.某企业车间有50名工人,某一天他们生产的机器零件个数统计如表:零件个数(个)678人数(人)152213表中表示零件个数的数据中,众数、中位数分别是()A.7个,7个B.7个,6个C.22个,22个D.8个,6个【分析】根据众数和中位数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知7个出现次数最多,所以众数为7个;因为共有50个数据;所以中位数为第25个和第26个数据的平均数,即中位数为7个.故选:A.6.不等式的解集为()A.x≤B.1<x≤C.1≤x<D.x>1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣1>0,得:x>1;解不等式2x﹣4≤1,得:x≤;则1<x≤;故选:B.7.已知直线l l∥l2,将一块直角三角板ABC按如图所示方式放置,∠ABC=90°,∠A=30°,若∠1=85°,则∠2的度数是()A.35°B.45°C.55°D.65°【分析】利用对顶角相等及三角形内角和定理,可求出∠4的度数,由直线l1∥l2,利用“两直线平行,内错角相等”可求出∠2的度数.【解答】解:∵∠A+∠3+∠4=180°,∠A=30°,∠3=∠1=85°;∴∠4=65°.∵直线l1∥l2;∴∠2=∠4=65°.故选:D.8.已知方程组,则x﹣y=()A.5B.2C.3D.4【分析】方程组两方程相减即可求出所求.【解答】解:;①﹣②得:(2x+3y)﹣(x+4y)=16﹣13;整理得:2x+3y﹣x﹣4y=3,即x﹣y=3;故选:C.9.反比例函数y=图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=﹣2D.若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是y<1【分析】根据反比例函数的性质对A、B、D进行判断;根据反比例函数系数k的几何意义对C进行判断.【解答】解:A、反比例函数图象分布在第二、四象限,则k<0,所以A选项错误;B、在每一象限,y随x的增大而增大,所以B选项错误;C、矩形OABC面积为2,则|k|=2,而k<0,所以k=﹣2,所以C选项正确;D、若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是0<y<1,所以D选项错误.故选:C.10.如图,在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE,连接BE,则tan∠EBC =()A.B.C.D.【分析】根据题意,作出合适的辅助线,然后根据矩形的性质和正方形的性质,可以得到BG和EG的长,从而可以得到tan∠EBC的值.【解答】解:作EF⊥DC于点F,作EG⊥BC交BC的延长线于点G;则四边形CGEF是矩形;设AB=2a;∵在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE;∴EF=a,BC=2a;∴EG=a,CG=a;∴tan∠EBC=;故选:A.二.填空题(共6小题)11.分解因式:2x2﹣4xy+2y2=2(x﹣y)2.【分析】先提取公因式(常数2),再对余下的多项式利用完全平方公式继续分解.【解答】解:2x2﹣4xy+2y2;=2(x2﹣2xy+y2);=2(x﹣y)2.故答案为:2(x﹣y)2.12.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有20个.【分析】由摸到红球的频率稳定在0.2附近得出口袋中得到红色球的概率,进而求出白球个数即可.【解答】解:设白球个数为:x个;∵摸到红色球的频率稳定在0.2左右;∴口袋中得到红色球的概率为0.2=;∴=;解得:x=20;即白球的个数为20个;故答案为:20.13.圆内接正方形的边长为3,则该圆的直径长为3.【分析】连接BD,利用圆周角定理得到BD是圆的直径,然后根据边长利用勾股定理求得直径的长即可.【解答】解:如图;∵四边形ABCD是⊙O的内接正方形;∴∠C=90°,BC=DC;∴BD是圆的直径;∵BC=3;∴BD===3;故答案为:3.14.计算:(+a)•=.【分析】先把括号内通分,然后约分得到原式的值.【解答】解:原式=•=•=.故答案为.15.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为32m2.【分析】设垂直于墙面的长为xm,则平行于墙面的长为(16﹣x)m,首先列出矩形的面积y关于x的函数解析式,结合x的取值范围,利用二次函数的性质可得最值情况.【解答】解:设垂直于墙面的长为xm,则平行于墙面的长为(16﹣x)m,由题意可知:y=x(16﹣2x)=﹣2(x﹣4)2+32,且x<8;∵墙长为15m;∴16﹣2x≤15;∴0.5≤x<8;∴当x=4时,y取得最大值,最大值为32m2;故答案为:32m2.16.如图,在菱形ABCD中,AB=6,∠A=60°,点E为边AD上一点,将点C折叠与点E重合,折痕与边CD和BC分别交于点F和G,当DE=2时,线段CF的长是.【分析】过点F作FH⊥AD于H,易证∠DFH=30°,设CF=x,则DF=6﹣x,DH=(6﹣x),HF =(6﹣x),EH=DE+DH=5﹣,由折叠的性质得EF=CF=x,在Rt△EFH中,EF2=EH2+HF2,即可得出答案.【解答】解:过点F作FH⊥AD于H,如图所示:∵四边形ABCD是菱形,∠A=60°;∴AB=CD=6,∠EDF=120°;∴∠FDH=60°;∴∠DFH=30°;设CF=x;则DF=6﹣x,DH=DF=(6﹣x),HF=(6﹣x);∴EH=DE+DH=2+(6﹣x)=5﹣;由折叠的性质得:EF=CF=x;在Rt△EFH中,EF2=EH2+HF2;即x2=(5﹣)2+[(6﹣x)]2;解得:x=;∴CF=;故答案为:.三.解答题(共9小题)17.计算:(﹣1)2020+|﹣2|+tan45°+.【分析】直接利用特殊角的三角函数值以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:原式=1+﹣2+1﹣2=﹣.18.在一个不透明的口袋里装着分别标有汉字“中”、“国”、“加”、“油”的四个小球,除汉字不同外完全相同.摇匀后任意摸出一个球,记下汉字后不放回,再随机从中摸出一个球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“中国”或“加油”的概率.【分析】先根据题意列举出所有可能的结果与取出的两个球上的汉字恰能组成“中国”或“加油”的情况,再利用概率公式即可求得答案.【解答】解:列举如下:中国加油中/(国,中)(加,中)(油,中)国(中,国)/(加,国)(油,国)加(中,加)(国,加)/(油,加)油(中,油)(国,油)(加,油)/所有等可能的情况有12种,其中取出的两个球上的汉字恰能组成“中国”或“加油”的情况有4种;则取出的两个球上的汉字恰能组成“中国”或“龙岩加油”的概率为=.19.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是30.【分析】(1)根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC;(2)利用(1)中结论,根据全等三角形的性质即可解决问题;【解答】(1)证明:∵BE⊥CE,AD⊥CE;∴∠E=∠ADC=90°;∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°;∴∠EBC=∠DCA.在△BCE和△CAD中;;∴△BCE≌△CAD(AAS);(2)解:∵:△BCE≌△CAD,BE=5,DE=7;∴BE=DC=5,CE=AD=CD+DE=5+7=12.∴由勾股定理得:AC=13;∴△ACD的周长为:5+12+13=30;故答案为:30.20.为了解居民对垃圾分类相关知识的知晓程度(“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”),小明随机调查了若干人(每人必选且只能选择四种程度中的一种).根据调查结果绘制成如图两幅不完整的统计图:请你结合统计图所给信息解答下列问题:(1)小明共调查了500人,扇形统计图中表示“C”的圆心角为72°;(2)请在答题卡上直接补全条形统计图;(3)请你估计50000名市民中不太了解垃圾分类相关知识的人数.【分析】(1)从两个统计图中可知“A非常了解”的人数为150人,占调查人数的30%,可求出调查人数;用360°乘以“C”所占的百分比即可得出“C”的圆心角度数;(2)用总人数减去其它等级的人数求出B等级的人数,从而补全条形统计图;(3)用总人数乘以不太了解垃圾分类人数所占的百分比即可.【解答】解:(1)小明共调查的总人数是:150÷30%=500(人);扇形统计图中表示“C”的圆心角为:360°×=72°;故答案为:500,72;(2)B等级的人数有:500×40%=200人,补全条形统计图如图所示:(3)根据题意得:50000×=5000(人);答:估计50000名市民中不太了解垃圾分类相关知识的人数有5000人.21.某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利50元.经调查发现:这种衬衫的售价每降低1元,平均每天能多售出2件,设每件衬衫降价x元.(1)降价后,每件衬衫的利润为(50﹣x)元,平均每天的销量为(20+2x)件;(用含x的式子表示)(2)为了扩大销售,尽快滅少库存,商场决定采取降价措施,但需要平均每天盈利1600元,那么每件衬衫应降价多少元?【分析】(1)根据“这种衬衫的售价每降低1元时,平均每天能多售出2件”结合每件衬衫的原利润及降价x元,即可得出降价后每件衬衫的利润及销量;(2)根据总利润=每件利润×销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【解答】解:(1)∵每件衬衫降价x元;∴每件衬衫的利润为(50﹣x)元,销量为(20+2x)件.故答案为:(50﹣x);(20+2x).(2)依题意,得:(50﹣x)(20+2x)=1600;整理,得:x2﹣40x+300=0;解得:x1=10,x2=30.∵为了扩大销售,尽快减少库存;∴x=30.答:每件衬衫应降价30元.22.如图,在△ABC中,AB=AC,AB是⊙O的直径,边BC交⊙O于点D,作DE⊥AC于点E,延长DE 和BA交于点F.(1)求证:DE是⊙O的切线;(2)若tan B=,AE=3,则直径AB的长度是.【分析】(1)连接OD,AD,根据圆周角定理得到AD⊥BC,根据等腰三角形的性质得到∠BAD=∠CAD,推出OD∥AC,根据平行线的性质得到OD⊥DE,于是得到DE是⊙O的切线;(2)设AD=3k,BD=4k,根据勾股定理得到AB=5k,根据相似三角形的性质即可得到结论.【解答】解:(1)连接OD,AD;∵AB是⊙O的直径;∴AD⊥BC;∵AB=AC;∴∠BAD=∠CAD;∵OA=OD;∴∠OAD=∠ODA;∴∠DAC=∠ADO;∴OD∥AC;∵DE⊥AC;∴OD⊥DE;∴DE是⊙O的切线;(2)∵tan B==;∴设AD=3k,BD=4k;∴AB=5k;∵∠AED=∠ADB=90°,∠BAD=∠DAE;∴△ABD∽△DAE;∴=;∴=;∴k=;∴AB=5k=.故答案为:.23.如图1,在平面直角坐标系中,点A的坐标是(﹣1,0),点B(2,3),点C(3,).(1)求直线AB的解析式;(2)点P(m,0)是x轴上的一个动点,过点P作直线PM∥y轴,交直线AB于点M,交直线BC于点N(P,M,N三点中任意两点都不重合),当MN=MP时,求点M的坐标;(3)如图2,取点D(4,0),动点E在射线BC上,连接DE,另一动点P从点D出发,沿线段DE以每秒1个单位的速度运动到点E,再沿线段EB以每秒个单位的速度运动到终点B,当点E的坐标是多少时,点P在整个运动过程中用时最少?请直接写出此时点E的坐标.【分析】(1)设直线AB的解析式为y=kx+b,把A,B两点坐标代入,转化为解方程组即可.(2)由题意M(m,m+1),N(m,﹣m+4),根据MN=MP,构建方程解决问题即可.(3)如图2中,作BT∥AD,过点E作EK⊥BT于K.设直线BC交x轴于J.由BT∥OJ,推出∠BJO =∠TBJ,推出tan∠TBJ=tan∠BJO=,推出=,设EK=m,BK=2m,则BE=m,推出EK =BE,由点P在整个运动过程中的运动时间t=+=DE+BE=DE+EK,推出当D,E,K 共线,DE+EK的值最小.【解答】解:(1)设直线AB的解析式为y=kx+b;∵点A的坐标是(﹣1,0),点B(2,3);∴;解得:;∴直线AB的解析式为y=x+1;(2)∵点B(2,3),点C(3,);∴直线BC的解析式为y=﹣x+4;∵点P(m,0),PM∥y轴,交直线AB于点M,交直线BC于点N;∴M(m,m+1),N(m,﹣m+4);∵MN=MP;∴m+1=(﹣m+4)﹣(m+1);解得:m=;∴M(,);(3)如图2中,作BT∥AD,过点E作EK⊥BT于K.设直线BC交x轴于J.∵直线BC的解析式为y=﹣x+4;∴tan∠BJO=;∵BT∥OJ;∴∠BJO=∠TBJ;∴tan∠TBJ=tan∠BJO=;∴=,设EK=m,BK=2m,则BE=m;∴EK=BE;∵点P在整个运动过程中的运动时间t=+=DE+BE=DE+EK;∴当D,E,K共线,DE+EK的值最小,此时DE=DJ=2,EK=BK=1;∴点P在整个运动过程中的运动时间的最小值为2+1=3秒,此时E(4,2).24.在△ABC中,AB=AC,点O在BC边上,且OB=OC,在△DEF中,DE=DF,点O在EF边上,且OE=OF,∠BAC=∠EDF,连接AD,BE.(1)如图1,当∠BAC=90°时,连接AO,DO,则线段AD与BE的数量关系是AD=BE,位置关系是AD⊥BE;(2)如图2,当∠BAC=60°时,(1)中的结论还成立吗?请说明理由;(3)如图3,AC=3,BC=6,DF=5,当点B在直线DE上时,请直接写出sin∠ABD的值.【分析】(1)由等腰直角三角形的性质可得AO=BO,DO=EO,∠AOB=∠DOE=90°,由“SAS”可证△BOE≌△AOD,可得AD=BE,∠OBE=∠OAD,由直角三角形的性质可得AD⊥BE;(2)通过证明△AOD∽△BOE,可得=,∠OAD=∠OBE,可得结论;(3)如图3,连接AO,DO,由勾股定理可求AO的长,由(2)可知:△BEO∽△ADO,可求AD=2BE,由勾股定理可求解.【解答】解:(1)如图1,延长AD,BE交于点H;∵AB=AC,DE=DF,∠BAC=∠EDF=90°,OB=OC,OE=OF;∴AO=BO,DO=EO,∠AOB=∠DOE=90°;∴∠BOE=∠AOD;∴△BOE≌△AOD(SAS);∴AD=BE,∠OBE=∠OAD;∵∠OAB+∠OBA=90°=∠OBE+∠ABE+∠OAB;∴∠OAB+∠OAD+∠ABE=90°;∴∠AHB=90°;∴AD⊥BE;故答案为:AD=BE,AD⊥BE;(2)AD=BE不成立,AD⊥BE仍然成立;理由如下:如图2,连接AO,DO;∵AB=AC,DE=DF,∠BAC=∠EDF=60°;∴△ABC和△DEF是等边三角形;∵OB=OC,OE=OF;∴∠DOE=90°=∠AOB,DO=EO,AO=BO;∴∠AOD=∠BOE,;∴△AOD∽△BOE;∴=,∠OAD=∠OBE;∴AD=BE;∵∠OAB+∠OBA=90°=∠OBE+∠ABE+∠OAB;∴∠OAB+∠OAD+∠ABE=90°;∴∠AHB=90°;∴AD⊥BE;(3)如图3,连接AO,DO;∵AC=3=AB,OB=OC,BC=6;∴AO⊥BC,BO=3;∴AO===6;由(2)可知:△BEO∽△ADO,AD⊥BE;∴==2;∴AD=2BE;∵AB2=AD2+BD2;∴45=4BE2+(5+BE)2;∴BE=﹣1;∴AD=2﹣2;∴sin∠ABD==.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0),交y轴于点C,点D和点C关于对称轴对称,作DE⊥OB于点E,点M是射线EO上的动点,点N是y轴上的动点,连接DM,MN,设点N的坐标为(0,n).(1)求抛物线的解析式;(2)当点M,N分别在线段OE,OC上,且ME=ON时,连接CM,若△CMN的面积是,求此时点M的坐标;(3)是否存在n的值使∠DME=∠MNO=α(0°<α<90°)?若存在,请直接写出n的取值范围;若不存在,请说明理由.【分析】(1)将点A,B坐标代入抛物线解析式中,求解即可得出结论;(2)先求出点E坐标,进而表示出OM,利用三角形面积公式建立方程求解即可得出结论;(3)先判断出△MON∽△DEM,得出;再分点M在线段OE上和EO的延长线上,表示出ME,ON,进而得出n=,即可得出结论.【解答】解:∵抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0);∴设抛物线的解析式为y=a(x+1)(x﹣4)=ax2﹣3ax﹣4a;∴﹣4a=2;∴a=﹣;∴抛物线的解析式为y=﹣x2+x+2;(2)由(1)知,抛物线的解析式为y=﹣x2+x+2;∴C(0,2),对称轴为x=;∵点D和点C关于对称轴对称;∴D(3,2);∵DE⊥OB;∴E(3,0);∵N(0,n),且N在线段OC上;∴CN=OC﹣ON=2﹣n;∵ME=ON=n;∴OM=OE﹣ME=3﹣n;∵△CMN的面积是;∴S△CMN=CN•OM=(2﹣n)(3﹣n)=;∴n=或n=(舍去);∴M(,0);(3)∵∠DME=∠MNO=α,∠MON=∠DEM;∴△MON∽△DEM;∴;∵D(3,2);∴DE=2;设M(m,0);当m=0时,点M和点O重合,不能构成三角形MON;当点M在线段OE上时,则0<m<3;∴OM=m,ME=3﹣m;∴ON=n;∴;∴n===;∴0<n<;当点M在x轴负半轴时,则m<0;∴OM=﹣m,ME=3﹣m;∴ON=﹣n;∴;∴n===;∴n<0;即n的取值范围n<且n≠0.。

2024年湖北省武汉市九年级中考模拟调考数学试卷(含答案)

2024年湖北省武汉市九年级中考模拟调考数学试卷(含答案)

2024年湖北省武汉市九年级中考模拟调考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.−5的相反数是( )A. −5B. 5C. 15D. −152.对下列各表情图片的变换顺序描述正确的是( )A. 轴对称,平移,旋转B. 轴对称,旋转,平移C. 旋转,轴对称,平移D. 平移,旋转,轴对称3.下列事件中,是随机事件的是( )A. 通常温度降到0℃以下,纯净的水结冰B. 随意翻到一本书的某页,这页的页码是奇数C. 明天太阳从东方升起D. 任意画一个三角形,其内角和是360°4.如图所示的正三棱柱的主视图是( )A. B. C. D.5.下列整式计算的结果为a6的是( )A. a3+a3B. (a2)3C. a12÷a2D. (a3)36.光线照射到平面镜镜面会产生反射现象,物理学中,我们知道反射光线与法线(垂直于平面镜的直线叫法线)的夹角等于入射光线与法线的夹角.如图一个平面镜斜着放在水平面上,形成∠AOB形状,∠AOB=36°,在OB上有一点E,从点E射出一束光线(入射光线),经平面镜点D处反射光线DC刚好与OB平行,则∠DEB的度数为( )A. 71°B. 72°C. 54°D. 53°7.毕业季来临,甲、乙、丙三位同学随机站成一排照合影,甲站在中间的概率为( )A. 12B. 13C. 16D. 238.“漏壶”是一种古代计时器,在一次实践活动中,某小组同学根据“漏壶”的原理制作了如图所示的液体漏壶,由一个圆锥和一个圆柱组成的,中间连通,液体可以从圆锥容器中匀速漏到圆柱容器中,实验开始时圆柱容器中已有一部分液体,下表是实验记录的圆柱体容器液面高度y cm与时间xℎ的数据:时间x/ℎ12345圆柱体容器液面高度y/cm610141822如果本次实验记录的开始时间是上午8:00,那么当圆柱体容器液面高度达到8cm时是( )A. 8:30B. 9:30C. 10:00D. 10:309.如图,△ABC内接于⊙O,∠ACB=135°,CD⊥AB于点D,若AD=4,BD=6,则CD的长为( )A. 2B. 3C. 4D. 510.如图1,点P从边长为6的等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点Q,再从该点沿直线运动到顶点B.设点P运动的路程为x,PBPC=y,能反映点P运动时y随x变化关系的部分大致图象如图2,点P从点Q运动到B的路程为( )A. 6B. 3C. 23D. 3二、填空题:本题共6小题,每小题3分,共18分。

2024年重庆中考数学模拟预测试卷(六)(含答案)

2024年重庆中考数学模拟预测试卷(六)(含答案)

2024年重庆中考数学模拟预测试卷(六)一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列各数中,最小的数是()A.﹣2 B.﹣1 C.D.2.(4分)下列与杭州亚运会有关的图案中,中心对称图形是()A.B.C.D.3.(4分)如果两个相似三角形的周长之比为5:7,那么这两个三角形的面积之比为()A.5:7 B.7:5 C.25:49 D.49:254.(4分)正方形具备而矩形不具备的性质是()A.四条边都相等B.四个角都是直角C.对角线互相平分D.对角线相等5.(4分)正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同,如图反映了一天24小时内小明体温的变化情况,下列说法错误的是()A.清晨5时体温最低B.17时,小明体温是37.5℃C.从5时至24时,小明体温一直是升高的D.从0时至5时,小明体温一直是下降的6.(4分)估计3的运算结果应在()A.14到15之间B.15到16之间C.16到17之间D.17到18之间7.(4分)2023年以来,某厂生产的电子产品处于高速上升期,该厂生产一件产品起初的成本为225元,经过两次技术改进,现生产一件这种产品的成本比起初下降了30.2元,设每次技术改进产品的成本下降率均为x,则下列方程正确的是()A.225(1﹣2x)=225﹣30.2 B.30.2(1+x)2=225C.225(1﹣x)2=30.2 D.225(1﹣x)2=225﹣30.28.(4分)如图,AB为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线交AB的延长线于点D,DB=AD,连接AC,若AB=4,则AC的长度为()A.B.C.4 D.9.(4分)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°10.(4分)在多项式x﹣y﹣m﹣n(其中x>y>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|m﹣n|=x﹣y﹣m+n,|x ﹣y|﹣|m﹣n|=x﹣y﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有3种不同运算结果.其中正确的个数是()A.0 B.1 C.2 D.3二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:2﹣1﹣()0+|﹣|=.12.(4分)十三届全国政协共收到提案约29000件,数据29000用科学记数法表示为.13.(4分)有四张正面分别标有数字1、2、3、4的卡片,它们除数字外完全相同,将四张卡片背面朝上,洗匀后随机抽取两张,取出的两张卡片上的数字之和为偶数的概率是.14.(4分)根据如图所示的程序计算,若输入x的值为2,则输出的值为.15.(4分)如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,分别以AB、AD的长为半径作弧,两弧分别交CD、AB于点E,F,则图中阴影部分的面积为.16.(4分)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程的解是负整数,则所有满足条件的整数a之和是.17.(4分)在Rt△ABC中,∠ABC=90°,点D在BC边上,点E在AB边上,连接AD、ED,∠ADE=45°,且AE =CD.过点B作BF⊥AD,延长BF交AC于点G,连接DG,若∠DBF=∠CAD,CG+BE=5,则AC的长为.18.(4分)设a为正整数,对于一个四位正整数,若千位与百位的数字之和等于b,十位与个位的数字之和等于b ﹣1,则称这样的数为“b级收缩数”.例如正整数2634中,因为2+6=8,3+4=7=8﹣1,所以2634是“8级收缩数”,其中b=8.最小的“4级收缩数”是;若一个“6级收缩数”的千位数字与十位数字之积为6,且这个数能被19整除,则满足条件的数是.三.解答题(共8小题,满分78分)19.(8分)化简:(1)4x(x﹣2y)﹣(2x+y)(2x﹣y);(2).20.(10分)如图,在平行四边形ABCD中,AE平分∠BAD,交对角线BD于点E(1)用尺规完成以下基本作图:作∠BCD的平分线,交对角线BD于点F;(不写作法和证明,保留作图痕迹)(2)在(1)所作的图形中,求证:BE=DF.(请补全下面的证明过程,除题目给的字母外,不添加其它字母或者符号)解:(1)所作图形如图所示;(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,①.∴∠ABE=∠CDF.∵AE、CF分别平分∠BAD和∠DCB,∴∠BAE=∠BAD,②.∵四边形ABCD是平行四边形,∴③.∴∠BAE=∠DCF.在△ABE与△CDF中∴△ABE≌△CDF(ASA)∴BE=DF21.(10分)猜灯谜是我国独有的富有民族风格的一种文娱活动形式.某校开展了猜灯谜知识竞答活动,从七年级和八年级各随机抽取20名学生的竞答成绩(单位:分),进行整理、描述和分析(比赛成绩用x表示,共分成4组:A.90≤x≤100,B.80≤x<90,C.70≤x<80,D.60≤x<70).下面给出了部分信息:七年级学生B组的竞答成绩为:86,81,83,84,82,83,86,84.八年级被抽取学生的竞答成绩为:83,60,66,62,68,83,71,92,90,76,91,94,83,75,84,83,77,90,91,81.七八年级抽取的竞答成绩统计表年级七年级八年级平均数80 80中位数a83众数82 b请根据以上信息,解答下列问题:(1)填空:a=.b=,m=;(2)根据以上数据,你认为哪个年级学生的竞答成绩更好?请说明理由(写出一条理由即可);(3)该校七、八年级学生共有1200人,请你估计该校七、八年级学生中竞答成绩不低于90分的有多少人?22.(10分)宋代是茶文化发展的第二个高峰,宋代的饮茶主要以点茶为主,煎茶为辅,在点茶的基础上升华为斗茶、分茶和茶百戏.某网店销售两种点茶器具套装,已知甲种点茶器具套装的单价比乙种点茶器具套装的单价少30元,花1480元购进甲种点茶器具套装的数量是花890元购进乙种点茶器具套装数量的2倍.(1)求甲、乙两种点茶器具套装的单价.(2)某学校社团开展茶文化学习活动,从该网店购进甲、乙两种点茶器具套装共花了2252元,甲种点茶器具套装比乙种点茶器具套装多2套,则学校购进甲、乙两种点茶器具套装各多少套?23.(10分)如图,矩形ABCD中,AB=4,BC=3.动点P从点A出发,沿着折线A→B→C方向运动,到达点C时停止运动.设点P运动的路程为x(其中0<x<7),连接CP,记△ACP的面积为y,请解答下列问题:(1)直接写出y关于x的函数关系式,并注明自变量x的取值范围;(2)在给定的平面直角坐标系中,画出该函数的图象,并写出该函数的一条性质;(3)已知函数的图象如图所示,结合你所画的函数图象,请直接估计当y1=y时x的取值:(结果保留一位小数,误差范围不超过0.2).24.(10分)在公园里,同一平面内的五处景点的道路分布如图所示,经测量,点D、E均在点C的正北方向且CE =900米,点B在点C的正西方向,且米,点B在点A的南偏东60°方向且AB=600米,点D在点A 的东北方向.(参考数据:)(1)求道路AD的长度(结果保留根号);(2)若甲从A点出发沿A﹣D﹣E的路径去点E,与此同时乙从点B出发,沿B﹣A﹣E的路径去点E,在两人速度相同的情况下谁先到达点E?(结果精确到十分位)25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣2,0)和点B(4,0),与y轴交于点C.(1)求抛物线的函数表达式;(2)线段DE位于第四象限,且在线段BC上移动,EF∥y轴交抛物线于点F,连接DF.若,求△DEF的面积的最大值,及此时点E的坐标;(3)将该抛物线沿射线CB方向平移,使得新抛物线经过(2)中△DEF的面积取得最大值时对应的点E处,且与直线BC相交于另一点K.点P为新抛物线上的一个动点,当∠PEK和∠PKE中,其中一个角与∠ACB相等时,直接写出所有符合条件的点P的坐标,并写出其中一个点的求解过程.26.(10分)如图,在△ABC中,∠BAC=90°,AB=AC,点D为AC一点,连接BD.(1)如图1,若CD=4,∠ABD=15°,求AD的长;(2)如图2,过点A作AE⊥BD于点E,交BC于点M,AG⊥BC于点G,交BD于点N,求证:BM=CM+MN;(3)如图3,将△ABD沿BD翻折至△BDE处,在AC上取点F,连接BF,过点E作EH⊥BF交AC于点G,GE交BF 于点H,连接AH,若GE:BF=:2,AB=2,求AH的最小值.2024年重庆中考数学模拟预测试卷(六)一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列各数中,最小的数是()A.﹣2 B.﹣1 C.D.【答案】D2.(4分)下列与杭州亚运会有关的图案中,中心对称图形是()A.B.C.D.【答案】A3.(4分)如果两个相似三角形的周长之比为5:7,那么这两个三角形的面积之比为()A.5:7 B.7:5 C.25:49 D.49:25【答案】C4.(4分)正方形具备而矩形不具备的性质是()A.四条边都相等B.四个角都是直角C.对角线互相平分D.对角线相等【答案】A5.(4分)正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同,如图反映了一天24小时内小明体温的变化情况,下列说法错误的是()A.清晨5时体温最低B.17时,小明体温是37.5℃C.从5时至24时,小明体温一直是升高的D.从0时至5时,小明体温一直是下降的【答案】C6.(4分)估计3的运算结果应在()A.14到15之间B.15到16之间C.16到17之间D.17到18之间【答案】C7.(4分)2023年以来,某厂生产的电子产品处于高速上升期,该厂生产一件产品起初的成本为225元,经过两次技术改进,现生产一件这种产品的成本比起初下降了30.2元,设每次技术改进产品的成本下降率均为x,则下列方程正确的是()A.225(1﹣2x)=225﹣30.2 B.30.2(1+x)2=225C.225(1﹣x)2=30.2 D.225(1﹣x)2=225﹣30.2【答案】D8.(4分)如图,AB为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线交AB的延长线于点D,DB=AD,连接AC,若AB=4,则AC的长度为()A.B.C.4 D.【答案】D9.(4分)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°【答案】D10.(4分)在多项式x﹣y﹣m﹣n(其中x>y>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|m﹣n|=x﹣y﹣m+n,|x ﹣y|﹣|m﹣n|=x﹣y﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有3种不同运算结果.其中正确的个数是()A.0 B.1 C.2 D.3【答案】C二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:2﹣1﹣()0+|﹣|=0 .【答案】0.12.(4分)十三届全国政协共收到提案约29000件,数据29000用科学记数法表示为 2.9×104.【答案】2.9×104.13.(4分)有四张正面分别标有数字1、2、3、4的卡片,它们除数字外完全相同,将四张卡片背面朝上,洗匀后随机抽取两张,取出的两张卡片上的数字之和为偶数的概率是.【答案】.14.(4分)根据如图所示的程序计算,若输入x的值为2,则输出的值为 1 .【答案】1.15.(4分)如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,分别以AB、AD的长为半径作弧,两弧分别交CD、AB于点E,F,则图中阴影部分的面积为2+.【答案】2+.16.(4分)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程的解是负整数,则所有满足条件的整数a之和是﹣13 .【答案】﹣13.17.(4分)在Rt△ABC中,∠ABC=90°,点D在BC边上,点E在AB边上,连接AD、ED,∠ADE=45°,且AE =CD.过点B作BF⊥AD,延长BF交AC于点G,连接DG,若∠DBF=∠CAD,CG+BE=5,则AC的长为.【答案】.18.(4分)设a为正整数,对于一个四位正整数,若千位与百位的数字之和等于b,十位与个位的数字之和等于b ﹣1,则称这样的数为“b级收缩数”.例如正整数2634中,因为2+6=8,3+4=7=8﹣1,所以2634是“8级收缩数”,其中b=8.最小的“4级收缩数”是1303 ;若一个“6级收缩数”的千位数字与十位数字之积为6,且这个数能被19整除,则满足条件的数是2432 .【答案】1303,2432.三.解答题(共8小题,满分78分)19.(8分)化简:(1)4x(x﹣2y)﹣(2x+y)(2x﹣y);(2).【答案】(1)﹣8xy+y2;(2)﹣x3.20.(10分)如图,在平行四边形ABCD中,AE平分∠BAD,交对角线BD于点E(1)用尺规完成以下基本作图:作∠BCD的平分线,交对角线BD于点F;(不写作法和证明,保留作图痕迹)(2)在(1)所作的图形中,求证:BE=DF.(请补全下面的证明过程,除题目给的字母外,不添加其它字母或者符号)解:(1)所作图形如图所示;(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,①AB∥CD.∴∠ABE=∠CDF.∵AE、CF分别平分∠BAD和∠DCB,∴∠BAE=∠BAD,②∠DCF=∠BCD.∵四边形ABCD是平行四边形,∴③∠BAD=∠DCB.∴∠BAE=∠DCF.在△ABE与△CDF中∴△ABE≌△CDF(ASA)∴BE=DF【答案】(1)见解答;(2)AB∥CD,∠DCF=∠BCD,∠BAD=∠DCB,AB=CD.21.(10分)猜灯谜是我国独有的富有民族风格的一种文娱活动形式.某校开展了猜灯谜知识竞答活动,从七年级和八年级各随机抽取20名学生的竞答成绩(单位:分),进行整理、描述和分析(比赛成绩用x表示,共分成4组:A.90≤x≤100,B.80≤x<90,C.70≤x<80,D.60≤x<70).下面给出了部分信息:七年级学生B组的竞答成绩为:86,81,83,84,82,83,86,84.八年级被抽取学生的竞答成绩为:83,60,66,62,68,83,71,92,90,76,91,94,83,75,84,83,77,90,91,81.七八年级抽取的竞答成绩统计表年级七年级八年级平均数80 80中位数a83众数82 b请根据以上信息,解答下列问题:(1)填空:a=85 .b=83 ,m=40 ;(2)根据以上数据,你认为哪个年级学生的竞答成绩更好?请说明理由(写出一条理由即可);(3)该校七、八年级学生共有1200人,请你估计该校七、八年级学生中竞答成绩不低于90分的有多少人?【答案】(1)83.5,83,40;(2)七年级成绩较好,理由:因为七年级学生成绩的中位数比八年级的高,所以七年级成绩较好;(3)估计该校七、八年级学生中竞答成绩不低于90分的有300人.22.(10分)宋代是茶文化发展的第二个高峰,宋代的饮茶主要以点茶为主,煎茶为辅,在点茶的基础上升华为斗茶、分茶和茶百戏.某网店销售两种点茶器具套装,已知甲种点茶器具套装的单价比乙种点茶器具套装的单价少30元,花1480元购进甲种点茶器具套装的数量是花890元购进乙种点茶器具套装数量的2倍.(1)求甲、乙两种点茶器具套装的单价.(2)某学校社团开展茶文化学习活动,从该网店购进甲、乙两种点茶器具套装共花了2252元,甲种点茶器具套装比乙种点茶器具套装多2套,则学校购进甲、乙两种点茶器具套装各多少套?【答案】(1)甲种点茶器具套装的单价为148元,则乙种点茶器具套装的单价为178元;(2)甲种点茶器具套装为8套,乙种点茶器具套装6套.23.(10分)如图,矩形ABCD中,AB=4,BC=3.动点P从点A出发,沿着折线A→B→C方向运动,到达点C时停止运动.设点P运动的路程为x(其中0<x<7),连接CP,记△ACP的面积为y,请解答下列问题:(1)直接写出y关于x的函数关系式,并注明自变量x的取值范围;(2)在给定的平面直角坐标系中,画出该函数的图象,并写出该函数的一条性质;(3)已知函数的图象如图所示,结合你所画的函数图象,请直接估计当y1=y时x的取值:x1≈2.8,x2≈6.0 (结果保留一位小数,误差范围不超过0.2).【答案】(1);(2)作图见详解,当0<x<4时,y随x的增大而增大;当4<x<7时,y随x的增大而减小(答案不唯一);(3)x1≈2.8,x2≈6.0.24.(10分)在公园里,同一平面内的五处景点的道路分布如图所示,经测量,点D、E均在点C的正北方向且CE =900米,点B在点C的正西方向,且米,点B在点A的南偏东60°方向且AB=600米,点D在点A 的东北方向.(参考数据:)(1)求道路AD的长度(结果保留根号);(2)若甲从A点出发沿A﹣D﹣E的路径去点E,与此同时乙从点B出发,沿B﹣A﹣E的路径去点E,在两人速度相同的情况下谁先到达点E?(结果精确到十分位)【答案】(1)道路AD的长度约为米;(2)乙先到达点E.25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣2,0)和点B(4,0),与y轴交于点C.(1)求抛物线的函数表达式;(2)线段DE位于第四象限,且在线段BC上移动,EF∥y轴交抛物线于点F,连接DF.若,求△DEF的面积的最大值,及此时点E的坐标;(3)将该抛物线沿射线CB方向平移,使得新抛物线经过(2)中△DEF的面积取得最大值时对应的点E处,且与直线BC相交于另一点K.点P为新抛物线上的一个动点,当∠PEK和∠PKE中,其中一个角与∠ACB相等时,直接写出所有符合条件的点P的坐标,并写出其中一个点的求解过程.【答案】(1)y=x2﹣x﹣4;(2)△DEF的面积的最大值为1,点E(2,﹣2),(3)点P的坐标为:(3,﹣)或(0,2)或(﹣4,24)或(﹣1,).26.(10分)如图,在△ABC中,∠BAC=90°,AB=AC,点D为AC一点,连接BD.(1)如图1,若CD=4,∠ABD=15°,求AD的长;(2)如图2,过点A作AE⊥BD于点E,交BC于点M,AG⊥BC于点G,交BD于点N,求证:BM=CM+MN;(3)如图3,将△ABD沿BD翻折至△BDE处,在AC上取点F,连接BF,过点E作EH⊥BF交AC于点G,GE交BF 于点H,连接AH,若GE:BF=:2,AB=2,求AH的最小值.【答案】(1)2﹣2;(3)AH的最小值为﹣.。

2024年中考数学模拟测试试卷(带有答案)

2024年中考数学模拟测试试卷(带有答案)
A. B. C. D.
【答案】A
【解析】
【分析】设大巴车的平均速度为x千米/时则老师自驾小车的平均速度为 千米/时根据时间的等量关系列出方程即可.
【详解】解:设大巴车 平均速度为x千米/时则老师自驾小车的平均速度为 千米/时
根据题意列方程为:
故答案为:A.
【点睛】本题考查了分式方程的应用,找到等量关系是解题的关键.
21.教育部正式印发《义务教育劳动课程标准(2022年版)》,劳动课成为中小学的一门独立课程,湘潭市中小学已经将劳动教育融入学生的日常学习和生活中某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识,提高劳动技能.小明随机调查了该校10名学生某周在家做家务的总时间,并对数据进行统计分析,过程如下:

∴ ,故D选项正确
∵ 是直角三角形, 是斜边,则 ,故C选项错误
故选:C.
【点睛】本题考查了等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半,直径所对的圆周角是直角,切线的性质,熟练掌握以上知识是解题的关键.
12.如图,抛物线 与x轴交于点 ,则下列结论中正确的是()
A. B. C. D.
【答案】BD
【答案】2(答案不唯一)
【解析】
【分析】根据实数与数轴的对应关系,得出所求数的绝对值小于 ,且为整数,再利用无理数的估算即可求解.
【详解】解:设所求数为a,由于在数轴上到原点的距离小于 ,则 ,且为整数

∵ ,即
∴a可以是 或 或0.
故答案为:2(答案不唯一).
【点睛】本题考查了实数与数轴,无理数的估算,掌握数轴上的点到原点距离的意义是解题的关键.
15.如图,在 中 ,按以下步骤作图:①以点 为圆心,以小于 长为半径作弧,分别交 于点 ,N;②分别以 ,N为圆心,以大于 的长为半径作弧,在 内两弧交于点 ;③作射线 ,交 于点 .若点 到 的距离为 ,则 的长为__________.

山西2024年中考适应性模拟测试 (一)数学试卷及答案

山西2024年中考适应性模拟测试 (一)数学试卷及答案

山西2024年中考适应性模拟测试(一)数学试卷(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上。

写在本试卷上无效。

4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。

写在本试卷上无效。

5.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共10小题,每小题3分,共30分。

1.计算:()163⎛⎫-÷- ⎪⎝⎭的结果是()A.18- B.2C.18D.2-2.下列环保标志图案既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.下列各式计算正确的是()A.248a a a ⋅= B.336a a a += C.()23639a a -=- D.222(12)4ab a b -=4.如图,该几何体的左视图是()A. B. C. D.5.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-,著名的“断臂维纳斯”便是如此.若小明的身高满足此黄金分割比例,且肚脐至足底的长度为108cm ,则小明的身高约为()A.155cmB.165cmC.175cmD.185cm6.不等式组2022x x +>⎧⎨≤⎩的解为()A.21x -<≤B.21x -<<C.21x -≤≤ D.21x -≤<7.小明学习了物理中的欧姆定律发现:电阻两端的电压=电流强度×电流通过的电阻.已知某滑动变阻器两端电压恒定,当变阻器的电阻调节为10Ω时,测得通过该变阻器的电流为24A ,则通过该滑动变阻器的电流I (单位:A )与电阻R (单位:Ω)之间的函数关系图象大致是()A. B. C. D.8.如图,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是()B.cmC.3cm D.1cm9.如图,随机闭合开关1S 、2S 、3S 中的两个,则能让灯泡⊗发光的概率是()A.12B.13C.23D.1410.如图是二次函数()20y ax bx c a =++≠的一部分,对称轴是直线2x =-,关于下列结论:①0ab <;②240b ac ->;③<0a b c -+;④40b a -=;⑤方程20ax bx +=的两个根为10x =,24x =-.其中正确的结论有()A.①③④B.②③⑤C.①②⑤D.②④⑤二、填空题:本题共5小题,共15分。

中招考试数学模拟试卷(附带答案)

中招考试数学模拟试卷(附带答案)

中招考试数学模拟试卷(附带答案)(满分:120分考试时间:120分钟)一选择题(本大题共10小题共30.0分)1.2022的倒数的相反数为()A. −2022B. 2C. 12022D. −120222.下列运算错误的是()A.a+2a=3aB. (a2)3=a6C. a2⋅a3=a5D. a6÷a3=a23.如图所示的几何体它的俯视图是()A. B. C. D.4.如图AB//CD DA⊥AC垂足为A若∠ADC=35°则∠1的度数为()A. 65°B. 55°C. 45°D. 35°5.小明家1至6月份的用水量统计如图所示关于这组数据下列说法中错误的是()A. 众数是6吨B. 平均数是5吨C. 中位数是5吨D. 方差是436.如果关于x的分式方程mx−2−2x2−x=1无解那么m的值为()A. 4B. −4C. 2D. −27.用一块圆心角为216°的扇形铁皮做一个高为40cm的圆锥形工件(接缝忽略不计)那么这个扇形铁皮的半径是()cm.A. 30B. 50C. 60D. 808.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量)当x≤−2时y随x的增大而减小且−2≤x≤1时y的最大值为9则a的值为()A.1或−2B. 1C. √2D. −√2或√29. 如图 矩形ABCD 中 E 是AB 的中点 将△BCE 沿CE 翻折 点B落在点F 处 tan∠DCE =43.设AB =x △ABF 的面积为y 则y 与x的函数图象大致为( ) A. B.C. D.10.如图 四边形ABCD 为菱形 AB =BD 点B C D G 四个点在同一个圆⊙O 上 连接BG 并延长交AD 于点F 连接DG 并延长交AB 于点E BD 与CG 交于点H 连接FH 下列结论:①AE =DF ②FH//AB ③△DGH ∽△BGE ④当CG 为⊙O 的直径时 DF =AF .其中正确结论的个数是( )A. 1B. 2C. 3D. 4二 填空题(本大题共8小题 共24.0分)10. 我国推行“一带一路”政策以来 已确定沿线有65个国家加入 共涉及总人口约达46亿人 用科学记数法表示该总人口数为______人.11. 分解因式:2a 2−8b 2=______.12. 在一个口袋中有4个完全相同的小球 它们的标号分别为1 2 3 4 一人从中随机摸出一球记下标号后放回 再从中随机摸出一个小球记下标号 则两次摸出的小球的标号之和大于4的概率是______.13. 已知{x =2y =−3是方程组{ax +by =2bx +ay =3的解 则a 2−b 2=______.14.如图在平面直角坐标系中以O为圆心适当长为半径画弧交x轴于点M交y轴于点N再分别以点M N为圆心大于MN的长为半径画弧两弧在第二象限交于点P若点P的坐标为(a,b)则a 与b的数量关系为______.15.如图△ABC中A B两个顶点在x轴的上方点C的坐标是(−1,0).以点C为位似中心在x轴的下方作△ABC的位似图形△A′B′C并把△ABC放大到原来的2倍.设点B的对应点B′的横坐标是a则点B的横坐标是______.16.如图在直升机的镜头下观测牡丹园A处的俯角为30°B处的俯角为45°如果此时直升机镜头C处的高度CD为200米点A B D在同一条直线上则A B两点间的距离为______米.(结果保留根号)17.如图直线y=−x+5与双曲线y=kx (x>0)相交于A B两点与x轴相交于C点△BOC的面积是52.若将直线y=−x+5向下平移1个单位则所得直线与双曲线y=kx(x>0)的交点坐标为______ .18.如图放置的△OAB1△B1A1B2△B2A2B3…都是边长为1的等边三角形点A在x轴上点O B1B2B3…都在直线l上则点A2019的坐标是______.三解答题(本大题共7小题共66.0分)19.(1)计算:(−1)20229+(sin30°)−1+(5−√2)0−|3−√18|+82019×(−0.125)2019(2)解方程:2x +1=xx+220.为推进“传统文化进校园”活动某校准备成立“经典诵读”“传统礼仪”“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组):(1)报名参加课外活动小组的学生共有______人将条形图补充完整(2)扇形图中m=______n=______(3)根据报名情况学校决定从报名“经典诵读”小组的甲乙丙丁四人中随机安排两人到“地方戏曲”小组甲乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.21.如图⊙O是△ABC的外接圆AE平分∠BAC交⊙O于点E交BC于点D∠ABC的平分线BF交AD于点F.(1)求证:BE=EF(2)若DE=4DF=3求AF的长.(x>0)经过△OAB的顶点A和OB的中点C AB//x轴点A的坐标为(2,3).22.如图双曲线y=kx(1)确定k的值(2)若点D(3,m)在双曲线上求直线AD的解析式(3)计算△OAB的面积.23.某商场经营某种品牌的童装购进时的单价是60元.根据市场调查在一段时间内销售单价是80元时销售量是200件而销售单价每降低1元就可多售出20件.(1)写出销售量y件与销售单价x元之间的函数关系式(2)写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式(3)若童装厂规定该品牌童装销售单价不低于76元且商场要完成不少于240件的销售任务则商场销售该品牌童装获得的最大利润是多少?24.已知:如图抛物线y=ax2+3ax+c(a>0)与y轴交于C点与x轴交于A B两点A点在B点左侧.点B的坐标为(1,0)OC=3BO.(1)求抛物线的解析式(2)若点D是线段AC下方抛物线上的动点求四边形ABCD面积的最大值(3)若点E在x轴上点P在抛物线上.是否存在以A C E P为顶点且以AC为一边的平行四边形?若存在求出点P的坐标若不存在请说明理由.25.通过类比联想引申拓展研究典型题目可达到解一题知一类的目的.下面是一个案例请补充完整.原题:如图1点E F分别在正方形ABCD的边BC CD上∠EAF=45°连接EF则EF=BE+DF 试说明理由.(1)思路梳理∵AB=AD26.∴把△ABE绕点A逆时针旋转90°至△ADG可使AB与AD重合.∵∠ADC=∠B=90°27.∴∠FDG=180°点F D G共线.根据______易证△AFG≌______得EF=BE+DF.(2)类比引申如图2四边形ABCD中AB=AD∠BAD=90°点E F分别在边BC CD上∠EAF=45°.若∠B ∠D都不是直角则当∠B与∠D满足等量关系______时仍有EF=BE+DF.(3)联想拓展如图3在△ABC中∠BAC=90°AB=AC点D E均在边BC上且∠DAE=45°.猜想BD DE EC应满足的等量关系并写出推理过程.已知:如图抛物线y=ax2+3ax+c(a>0)与y轴交于C点与x轴交于A B两点A点在B点左侧.点B的坐标为(1,0)OC=3BO.(1)求抛物线的解析式(2)若点D是线段AC下方抛物线上的动点求四边形ABCD面积的最大值(3)若点E在x轴上点P在抛物线上.是否存在以A C E P为顶点且以AC为一边的平行四边形?若存在求出点P的坐标若不存在请说明理由.参考答案1.【答案】B的倒数为−3−3的相反数为3.【解析】解:根据相反数和倒数的定义得:−13故选:B.根据相反数的定义只有符号不同的两个数是互为相反数倒数的定义互为倒数的两数乘积为1求出即可.此题主要考查了相反数和倒数的定义正确记忆只有符号不同的两个数是互为相反数若两个数的乘积是1我们就称这两个数互为倒数.2.【答案】D【解析】解:∵a+2a=3a∴选项A不符合题意∵(a2)3=a6∴选项B不符合题意∵a2⋅a3=a5∴选项C不符合题意∵a6÷a3=a3∴选项D符合题意.故选:D.根据同底数幂的除法乘法合并同类项的方法以及幂的乘方与积的乘方的运算方法逐项判定即可.此题主要考查了同底数幂的除法乘法合并同类项的方法以及幂的乘方与积的乘方的运算方法要熟练掌握.3.【答案】B【解析】解:∵DA⊥AC垂足为A∴∠CAD=90°∵∠ADC=35°∴∠ACD=55°∵AB//CD∴∠1=∠ACD=55°故选:B.利用已知条件易求∠ACD的度数再根据两线平行同位角相等即可求出∠1的度数.本题主要考查了平行线的性质垂直的定义等知识点熟记平行线的性质定理是解题关键.4.【答案】C【解析】解:这组数据的众数为6吨平均数为5吨中位数为5.5吨方差为43吨 2.故选:C.根据众数平均数中位数和方差的定义计算各量然后对各选项进行判断.本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大则平均值的离散程度越大稳定性也越小反之则它与其平均值的离散程度越小稳定性越好.也考查了平均数众数中位数.5.【答案】A【解析】解:{3x<2x+4①3−x3≥2②由①得x<4由②得x≤−3由①②得原不等式组的解集是x≤−3故选:A.解出不等式组的解集即可得到哪个选项是正确的本题得以解决.本题考查解一元一次不等式组在数轴上表示不等式的解集解题的关键是明确解一元一次不等式组的方法.6.【答案】B【解析】【分析】本题考查了圆锥的计算属于基础题.根据题意可得r=35R可得(35R)2+402=R2即可得解.【解答】解:设这个扇形铁皮的半径为Rcm底面圆的半径为rcm根据题意得:2πr=216⋅π⋅R180即r=35R因为r2+402=R2所以(35R)2+402=R2解得R=50即这个扇形铁皮的半径为50cm.故选:B.7.【答案】B【解析】【分析】本题主要考查菱形的判定解题的关键是掌握菱形的定义和各判定及矩形的判定.根据菱形的定义及其判定矩形的判定对各选项逐一判断即可得.【解答】解:∵AO=CO BO=DO∴四边形ABCD是平行四边形当AB=AD或AC⊥BD时均可判定四边形ABCD是菱形当∠ABO=∠CBO时由AD//BC知∠CBO=∠ADO∴∠ABO=∠ADO∴AB=AD∴四边形ABCD是菱形当AC=BD时可判定四边形ABCD是矩形故选:B.8.【答案】A【解析】解:过点C1作C1N⊥x轴于点N过点A1作A1M⊥x轴于点M 由题意可得:∠C1NO=∠A1MO=90°∠1=∠2=∠3则△A1OM∽△OC1N∵OA=5OC=3∴OA1=5A1M=3∴OM=4∴设NO=3x则NC1=4x OC1=3则(3x)2+(4x)2=9解得:x=±35(负数舍去)则NO=95NC1=125故点C的对应点C1的坐标为:(−95,12 5).故选:A.直接利用相似三角形的判定与性质得出△ONC1三边关系再利用勾股定理得出答案.此题主要考查了矩形的性质以及勾股定理等知识正确得出△A1OM∽△OC1N是解题关键.9.【答案】C【解析】本题主要考查点与圆的位置关系解题的关键是根据直角三角形斜边上的中线等于斜边的一半得出AB取得最小值时点P的位置.由Rt△APB中AB=2OP知要使AB取得最小值则PO需取得最小值连接OM交⊙M于点P′当点P位于P′位置时OP′取得最小值据此求解可得.解:∵PA⊥PB∴∠APB=90°∵AO=BO∴AB=2PO若要使AB取得最小值则PO需取得最小值连接OM交⊙M于点P′当点P位于P′位置时OP′取得最小值过点M作MQ⊥x轴于点Q则OQ=3MQ=4∴OM=5又∵MP′=2∴OP′=3∴AB=2OP′=6故选C.10.【答案】D【解析】解:①∵四边形ABCD是菱形∴AB=BC=DC=AD又∵AB=BD∴△ABD和△BCD是等边三角形∴∠A=∠ABD=∠DBC=∠BCD=∠CDB=∠BDA=60°又∵B C D G四个点在同一个圆上∴∠DCH=∠DBF∠GDH=∠BCH∴∠ADE=∠ADB−∠GDH=60°−∠EDB∠DCH=∠BCD−∠BCH=60°−∠BCH∴∠ADE=∠DCH∴∠ADE=∠DBF在△ADE和△DBF中{∠EAD=∠FDB AD=DB∠ADE=∠DBF∴△ADE≌△DBF(ASA)∴AE=DF故①正确②由①中证得∠ADE=∠DBF∴∠EDB=∠FBA∵B C D G四个点在同一个圆上∠BDC=60°∠DBC=60°∴∠BGC=∠BDC=60°∠DGC=∠DBC=60°∴∠BGE=180°−∠BGC−∠DGC=180°−60°−60°=60°∴∠FGD=60°∴∠FGH=120°又∵∠ADB=60°∴F G H D四个点在同一个圆上∴∠EDB=∠HFB∴∠FBA=∠HFB∴FH//AB故②正确③∵B C D G四个点在同一个圆上∠DBC=60°∴∠DGH=∠DBC=60°∵∠EGB=60°∴∠DGH=∠EGB由①中证得∠ADE=∠DBF∴∠EDB=∠FBA∴△DGH∽△BGE故③正确④如下图∵CG为⊙O的直径点B C D G四个点在同一个圆⊙O上∴∠GBC=∠GDC=90°∴∠ABF=120°−90°=30°∵∠A=60°∴∠AFB=90°∵AB=BD∴DF=AF故④正确正确的有①②③④故选:D.①由四边形ABCD是菱形AB=BD得出△ABD和△BCD是等边三角形再由B C D G四个点在同一个圆上得出∠ADE=∠DBF由△ADE≌△DBF得出AE=DF②利用内错角相等∠FBA=∠HFB求证FH//AB③利用∠DGH=∠EGB和∠EDB=∠FBA求证△DGH∽△BGE④利用CG为⊙O的直径及B C D G四个点共圆求出∠ABF=120°−90°=30°再利用等腰三角形的性质求得DF=AF.此题综合考查了圆及菱形的性质等边三角形的判定与性质全等三角形的判定和性质运用四点共圆找出相等的角是解题的关键.解题时注意各知识点的融会贯通.11.【答案】4.6×109【解析】解:46亿=4.6×109.故答案为:4.6×109科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数.确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同.当原数绝对值>1时n是正数当原数的绝对值<1时n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数表示时关键要正确确定a的值以及n的值.12.【答案】2(a+2b)(a−2b)【解析】【分析】本题主要考查提公因式法分解因式和利用平方差公式分解因式熟记公式是解题的关键难点在于要进行两次分解因式.先提取公因式2再对余下的多项式利用平方差公式继续分解.【解答】解:2a2−8b2=2(a2−4b2)=2(a+2b)(a−2b).故答案为2(a+2b)(a−2b).13.【答案】58【解析】【分析】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.首先根据题意画出树状图然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和大于4的情况再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果 两次摸出的小球的标号之和大于4的有10种情况∴两次摸出的小球的标号之和大于4的概率是:1016=58.故答案为58. 14.【答案】1【解析】解:∵{x =2y =−3是方程组{ax +by =2bx +ay =3的解 ∴{2a −3b =2①2b −3a =3②解得 ①−② 得a −b =−15①+② 得a +b =−5∴a 2−b 2=(a +b)(a −b)=(−5)×(−15)=1 故答案为:1.根据{x =2y =−3是方程组{ax +by =2bx +ay =3的解 可以求得a +b 和a −b 的值 从而可以解答本题. 本题考查二元一次方程组的解 解答本题的关键是明确二元一次方程组的解得意义 巧妙变形 利用平方差公式解答.15.【答案】a +b =0【解析】解:利用作图得点OP 为第二象限的角平分线所以a +b =0.故答案为a +b =0.利用基本作图得OP 为第二象限的角平分线 则点P 到x y 轴的距离相等 从而得到a 与b 互为相反数.本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段作一个角等于已知角作已知线段的垂直平分线作已知角的角平分线过一点作已知直线的垂线).也考查了第二象限点的坐标特征.(a+3)16.【答案】−12【解析】解:设点B的横坐标为x则B C间的横坐标的长度为−1−x B′C间的横坐标的长度为a+1∵△ABC放大到原来的2倍得到△A′B′C∴2(−1−x)=a+1(a+3).解得x=−12(a+3).故答案为:−12设点B的横坐标为x然后表示出BC B′C的横坐标的距离再根据位似比列式计算即可得解.本题考查了位似变换坐标与图形的性质根据位似比的定义利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.17.【答案】(200√3−200)【解析】【分析】本题考查了含30°角直角三角形的性质勾股定理平行线性质等内容解决本题的关键是利用CD的长分别在两三角形中求出AD与BD的长.在三角形ACD中利用勾股定理求出AC长在三角形BCD中根据等腰三角形性质得到BD长即可求解.【解答】解:∵EC//AD∴∠A=30°∠CBD=45°CD=200∵CD⊥AB于点D.∴在Rt△ACD中∠CDA=90°AC=2CD=400∴AD=√AC2−CD2=200√3在Rt△BCD中∠CDB=90°∴DB=CD=200∴AB=AD−DB=200√3−200答:A B两点间的距离为(200√3−200)米.故答案为:(200√3−200)18.【答案】(20212,2019√32)【解析】解:∵△OAB1△B1A1B2△B2A2B3…都是边长为1的等边三角形点O B1B2B3…都在直线l上∴点B1的坐标为(12,√32)点B2的坐标为(1,√3)点B3的坐标(32,3√32)…点B n的坐标为(n2,n√32)∴点A n的坐标为(n2+1,n√32)∴点A2019的坐标为(20192+1,2019√32)即A2019的坐标为(20212,2019√32).故答案为:(20212,2019√32).根据等边三角形的性质结合一次函数图象上点的坐标特征可得出点B n的坐标进而可得出点A n的坐标即可求出结论.本题考查了点的规律问题根据点的坐标的变化找出点A n的坐标是解题的关键.19.【答案】解:(1)原式=−1+2+1−3√2+3−1=4−3√2(2)去分母得:2x+4+x2+2x=x2解得:x=−1经检验x=−1是分式方程的解.【解析】(1)原式利用乘方的意义零指数幂负整数指数幂法则绝对值的代数意义以及积的乘方运算法则计算即可求出值(2)分式方程去分母转化为整式方程求出整式方程的解得到x的值经检验即可得到分式方程的解.此题考查了解分式方程以及实数的运算熟练掌握运算法则是解本题的关键.20.【答案】解:(1)100(2)25108(3)树状图分析如下:∵共有12种情况恰好选中甲乙的有2种∴P(选中甲乙)=212=16.【解析】【分析】本题考查了扇形统计图条形统计图及列表与树状图法求概率的知识解题的关键是能够列树状图将所有等可能的结果列举出来难度不大.(1)用地方戏曲的人数除以其所占的百分比即可求得总人数减去其它小组的频数即可求得民族乐器的人数从而补全统计图(2)根据各小组的频数和总数分别求得m和n的值即可(3)列树状图将所有等可能的结果列举出来然后利用概率公式求解即可.【解答】解:(1)∵根据两种统计图知地方戏曲的有13人占13%∴报名参加课外活动小组的学生共有13÷13%=100人参加民族乐器的有100−32−25−13=30人统计图为:故答案为:100(2)∵m%=25100×100%=25%∴m=25n=30100×360°=108°故答案为:25108(3)见答案21.【答案】(1)证明:∵AE平分∠BAC∴∠1=∠4∵∠1=∠5∴∠4=∠5∵BF平分∠ABC∴∠2=∠3∵∠6=∠3+∠4=∠2+∠5即∠6=∠EBF∴EB=EF(2)解:∵DE=4DF=3∴BE=EF=DE+DF=7∵∠5=∠4∠BED=∠AEB∴△EBD∽△EAB∴BEEA =DEBE即7EA=47∴EA=494∴AF=AE−EF=494−7=214.【解析】(1)通过证明∠6=∠EBF得到EB=EF(2)先证明△EBD∽△EAB再利用相似比求出AE然后计算AE−EF即可得到AF的长.本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点叫做三角形的外心.也考查了圆周角定理.22.【答案】解:(1)将点A(2,3)代入解析式y=kx得:k=6(2)将D(3,m)代入反比例解析式y=6x得:m=63=2∴点D坐标为(3,2)设直线AD解析式为y=kx+b将A(2,3)与D(3,2)代入得:{2k +b =33k +b =2解得:{k =−1b =5则直线AD 解析式为y =−x +5(3)过点C 作CN ⊥y 轴 垂足为N 延长BA 交y 轴于点M∵AB//x 轴∴BM ⊥y 轴∴MB//CN//x 轴∵C 为OB 的中点∴N 为OM 的中点∴CN =12BM ON =12OM ∴S △OCN S △OBM =14∵A C 都在双曲线y =6x 上 ∴S △OCN =S △AOM =3由33+S △AOB =14 得:S △AOB =9则△AOB 面积为9.【解析】此题属于反比例函数综合题 涉及的知识有:待定系数法确定函数解析式 坐标与图形性质 三角形中位线定理 以及反比例函数k 的几何意义 熟练掌握待定系数法是解本题的关键.(1)将A 坐标代入反比例解析式求出k 的值即可(2)将D 坐标代入反比例解析式求出m 的值 确定出D 坐标 设直线AD 解析式为y =kx +b 将A 与D 坐标代入求出k 与b 的值 即可确定出直线AD 解析式(3)过点C 作CN ⊥y 轴 垂足为N 延长BA 交y 轴于点M 得到CN 与BM 平行 根据C 为OB 的中点 由三角形中位线定理得出N 为OM 的中点 得到CN =12BM ON =12OM 确定出S △OCN S△OBM =14 利用反比例函数k的几何意义得出S△OCN=S△AOM=3得到33+S△AOB =14求出三角形AOB面积即可.23.【答案】解:(1)根据题意得=−20x+1800所以销售量y件与销售单价x元之间的函数关系式为y=−20x+1800(60≤x≤80)(2)w=(x−60)y=(x−60)(−20x+1800)=−20x2+3000x−108000所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式w=−20x2+3000x−108000(3)根据题意得−20x+1800≥240解得x≤78∴76≤x≤78w=−20x2+3000x−108000对称轴为x=−30002×(−20)=75∵a=−20<0∴抛物线开口向下∴当76≤x≤78时w随x的增大而减小∴x=76时w有最大值最大值=(76−60)(−20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【解析】本题考查了二次函数的应用:根据实际问题列出二次函数关系式然后利用二次函数的性质特别是二次函数的最值问题解决实际中的最大或最小值问题.(1)销售量y件为200件加增加的件数:(80−x)×20(2)利润w等于单件利润×销售量y件即w=(x−60)(−20x+1800)整理即可(3)先利用二次函数的性质得到w=−20x2+3000x−108000的对称轴为x=−30002×(−20)=75而−20x+ 1800≥240得76≤x≤78根据二次函数的性质得到当76≤x≤78时w随x的增大而减小把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.24.【答案】(1)SAS △AFE(2) ∠B +∠D =180°(3)猜想:DE 2=BD 2+EC 2证明:连接DE′ 根据△AEC 绕点A 顺时针旋转90°得到△ABE′∴△AEC≌△ABE′∴BE′=EC AE′=AE∠C =∠ABE′ ∠EAC =∠E′AB在Rt △ABC 中∵AB =AC∴∠ABC =∠ACB =45°∴∠ABC +∠ABE′=90°即∠E′BD =90°∴E′B 2+BD 2=E′D 2又∵∠DAE =45°∴∠BAD +∠EAC =45°∴∠E′AB +∠BAD =45°即∠E′AD =45°在△AE′D 和△AED 中{AE′=AE ∠E′AD =∠DAE AD =AD∴△AE′D≌△AED(SAS)∴DE =DE′∴DE 2=BD 2+EC 2.【解析】解:(1)∵AB=AD∴把△ABE绕点A逆时针旋转90°至△ADG可使AB与AD重合.∴∠BAE=∠DAG∵∠BAD=90°∠EAF=45°∴∠BAE+∠DAF=45°∴∠EAF=∠FAG∵∠ADC=∠B=90°∴∠FDG=180°点F D G共线在△AFE和△AFG中{AE=AG∠EAF=∠FAG AF=AF∴△AFE≌△AFG(SAS)∴EF=FG即:EF=BE+DF.(2)∠B+∠D=180°时EF=BE+DF∵AB=AD∴把△ABE绕点A逆时针旋转90°至△ADG可使AB与AD重合∴∠BAE=∠DAG∵∠BAD=90°∠EAF=45°∴∠BAE+∠DAF=45°∴∠EAF=∠FAG∵∠ADC+∠B=180°∴∠FDG=180°点F D G共线在△AFE和△AFG中{AE=AG∠FAE=∠FAG AF=AF∴△AFE≌△AFG(SAS)∴EF=FG即:EF=BE+DF.(3)根据△AEC绕点A顺时针旋转90°得到△ABE′根据旋转的性质可知△AEC≌△ABE′得到BE′=EC AE′=AE∠C=∠ABE′∠EAC=∠E′AB根据Rt△ABC中的AB=AC得到∠E′BD=90°所以E′B2+ BD2=E′D2证△AE′D≌△AED利用DE=DE′得到DE2=BD2+EC2此题主要考查了几何变换关键是正确画出图形证明△AFG≌△AEF.此题是一道综合题难度较大题目所给例题的思路为解决此题做了较好的铺垫.25.【答案】解:(1)∵B(1,0)∴OB=1∵OC=3BO∴C(0,−3)∵y=ax2+3ax+c过B(1,0)C(0,−3)∴{c=−3a+3a+c=0解这个方程组得{a=34 c=−3∴抛物线的解析式为:y=34x2+94x−3(2)过点D作DM//y轴分别交线段AC和x轴于点M N在y=34x2+94x−3中令y=0得方程34x2+94x−3=0解这个方程得x1=−4∴A(−4,0)设直线AC的解析式为y=kx+b∴{0=−4k+bb=−3解这个方程组得{k=−34 b=−3∴AC的解析式为:y=−34x−3∵S四边形ABCD=S△ABC+S△ADC=152+12⋅DM ⋅(AN +ON) =152+2⋅DM 设D(x,34x 2+94x −3)当x =−2时 DM 有最大值3此时四边形ABCD 面积有最大值272(3)如图所示①过点C 作CP 1//x 轴交抛物线于点P 1 过点P 1作P 1E 1//AC 交x轴于点E 1 此时四边形ACP 1E 1为平行四边形∵C(0,−3)∴设P 1(x,−3)∴34x 2+94x −3=−3 解得x 1=0∴P 1(−3,−3)②平移直线AC 交x 轴于点E 交x 轴上方的抛物线于点P 当AC =PE 时 四边形ACEP 为平行四边形∵C(0,−3)∴设P(x,3)∴34x 2+94x −3=3 x 2+3x −8=0解得x =−3+√412或x =−3−√412此时存在点P 2(−3+√412,3)和P 3(−3−√412,3) 综上所述存在3个点符合题意 坐标分别是P 1(−3,−3) P 2(−3+√412,3) P 3(−3−√412,3).【解析】(1)已知了B 点坐标 易求得OB OC 的长 进而可将B C 的坐标代入抛物线中 求出待定系数的值 即可得出抛物线的解析式.(2)根据A C 的坐标 易求得直线AC 的解析式.由于AB OC 都是定值 则△ABC 的面积不变 若四边形ABCD 面积最大 则△ADC 的面积最大 可过D 作x 轴的垂线 交AC 于M x 轴于N 易得△ADC 的面积是DM与OA积的一半可设出N点的坐标分别代入直线AC和抛物线的解析式中即可求出DM的长进而可得出四边形ABCD的面积与N点横坐标间的函数关系式根据所得函数的性质即可求出四边形ABCD的最大面积.(3)本题应分情况讨论:①过C作x轴的平行线与抛物线的交点符合P点的要求此时P C的纵坐标相同代入抛物线的解析式中即可求出P点坐标②将AC平移令C点落在x轴(即E点)A点落在抛物线(即P点)上可根据平行四边形的性质得出P点纵坐标(P C纵坐标的绝对值相等)代入抛物线的解析式中即可求得P点坐标.此题考查了二次函数解析式的确定图形面积的求法平行四边形的判定和性质二次函数的应用等知识综合性强难度较大.。

2024年中考数学模拟考试试卷(含有答案)

2024年中考数学模拟考试试卷(含有答案)
【详解】解:
解不等式①得:
解不等式②得:
∴原不等式组的解集为:
∵不等式组的解集是



故选:B.
【点睛】本题考查了根据一元一次不等式组的解集求参数,准确熟练地进行计算是解题的关键.
7.象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点 的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为( )
3.中华鲟是地球上最古老的脊椎动物之一,距今约有140000000年的历史,是国家一级保护动物和长江珍稀特有鱼类保护的旗舰型物种,3月28日是中华鲟保护日,有关部门进行放流活动,实现鱼类物种的延续并对野生资源形成持续补充.将140000000用科学记数法表示应为( )
A. B. C. D.
【答案】B
8.如图,在 中 , 和 ,点 为 的中点,以 为圆心, 长为半径作半圆,交 于点 ,则图中阴影部分的面积是( )
A. B. C. D.
【答案】C
【解析】
【分析】连接 ,BD,作 交 于点 ,首先根据勾股定理求出 的长度,然后利用解直角三角形求出 、 的长度,进而得到 是等边三角形 ,然后根据 角直角三角形的性质求出 的长度,最后根据 进行计算即可.
【详解】解:如图所示,连接 ,BD,作 交 于点
∵在 中 ,AB=4

∵点 为 的中点,以 为圆心, 长为半径作半圆
∴ 是半圆的直径



又∵

∴பைடு நூலகம்是等边三角形



∴ .
故选:C.
【点睛】本题考查了 角直角三角形的性质,解直角三角形,等边三角形的性质和判定,扇形面积,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

中考数学模拟试卷(含有答案)

中考数学模拟试卷(含有答案)

中考数学模拟试卷(含有答案)一.单选题。

(共40分) 1.√25等于( )A.5B.﹣5C.±5D.25 2.下列正面摆放的几何体中,左视图是三角形的是( )3.据推算,全国每年减少10%的过度包装纸用量,那么可排放二氧化碳3 120 000吨,数3 120 000用科学记数法表示为( )A.3.12×106B.31.2×105C.312×104D.3.12×107 4.下列平面直角坐标系内的曲线中,既是中心对称图形,又是轴对称图形的是( )5.如图,下列结论正确的是( )A.b -a >0B.a+b <0C.|a |>|b |D.ac >0(第5题图) (第9题图)6.计算x+1x-1x 的结果是( )A.1B.xC.1x D.x+1x 27.不透明袋子中装有10个球,其中有6个红球和4个白球,它们除了颜色其余都相同,从袋中随机摸出1个球,是红球的概率是( ) A.15 B.25 C.35 D.3108.在平面直角坐标系中,一次函数y=kx -1的图象向上平移2个单位长度后经过点(2,3),则k 的值是( )A.1B.﹣1C.﹣2D.29.如图,在△ABC 中,AB=AC=2BC=4,以点B 为圆心,BC 长为半径画弧,与AC 交于点D ,则线段CD 的长为( )A.12B.1C.43 D.210.二次函数y=﹣x 2+2x+8的图像与x 轴交于B ,C 两点,点D 平分BC ,若在x 轴上侧的A 点为抛物线的动点,且∠BAC 为锐角,则AD 的取值范围是( )A.3<AD ≤9B.3≤AD ≤9C.4<AD ≤10D.3≤AD ≤8 二.填空题。

(共24分)11.因式分解:m 2-4= .12.如图,是由7个全等的正六边形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是 .(第12题图) (第13题图)13.如图,一个正方形剪去四个角后形成一个边长为√2的正八边形,则这个正方形的边长为 .14.已知m 是关于x 的方程x 2-2x -3=0的一个根,则m 2-2m+2020= .15.学校食堂按如图方式摆放餐桌和椅子,若用x 表示餐桌的张数,y 表示椅子的把数,请你写出椅子数y (把)与餐桌数x (张)之间的函数关系式 .(第15题图) (第16题图)16.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE与AB交于点E,且tan∠α=34,有以下结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤5,其中正确结论是(填序号)三.解答题。

2024年中考数学模拟考试试卷(有参考答案)

2024年中考数学模拟考试试卷(有参考答案)
2024年中考数学模拟考试试卷(有参考答案)
(满分150分;考试时间:120分钟)
学校:___________班级:___________姓名:___________考号:___________
(全卷共三个大题,满分150分,考试时间120分钟)
注意事项:
1.试题的答案书写在答题卡上,不得在试题卷上直接作答
故答案为: .
【点睛】本题考查了一元二次方程的应用增长率问题根据题意列出方程是解题的关键.
15.如图在 中 点D为 上一点连接 .过点B作 于点E过点C作 交 的延长线于点F.若 则 的长度为___________.
【答案】3
【解析】
【分析】证明 得到 即可得解.
【详解】解:∵





在 和 中:
19.计算:
(1) ;
(2)
【答案】(1)
(2)
【解析】
【分析】(1)先计算单项式乘多项式平方差公式再合并同类项即可;
(2)先通分计算括号内再利用分式的除法法则进行计算.
【小问1详解】
解:原式

【小问2详解】
原式

【点睛】本题考查整式的混合运算分式的混合运算.熟练掌握相关运算法则正确的计算是解题的关键.
∴ 最大取 此时
∴这个最大的递减数为8165.
故答案为:8165.
【点睛】本题考查一元一次方程和二元一次方程的应用.理解并掌握递减数的定义是解题的关键.
三、解答题:(本大题8个小题第19题8分其余每题各10分共78分)解答时每小题必须给出必要的演算过程或推理步骤画出必要的图形(包括辅助线)请将解答过程书写在答题卡中对应的位置上.
A.39B.44C.49D.54

2024年中考数学模拟考试试卷(带有答案)

2024年中考数学模拟考试试卷(带有答案)
6.在反比例函数 的图象上有两点 ,当 时有 ,则 的取值范围是()
A. B. C. D.
【答案】C
【解析】
【分析】根据题意可得反比例函数 图象在一三象限,进而可得 ,解不等式即可求解.
【详解】解:∵当 时有
∴反比例函数 的图象在一三象限

解得:
故选:C.
【点睛】本题考查了反比例函数图象 性质,根据题意得出反比例函数 的图象在一三象限是解题的关键.
故答案为①③④.
【点睛】本题主要考查全等三角形的性质与判定、等腰直角三角形的性质及平行四边形的性质与判定,熟练掌握全等三角形的性质与判定、等腰直角三角形的性质及平行四边形的性质与判定是解题的关键.
三、解答题(本大题共9个题,满分75分)
16.(1)计算: ;
(2)解分式方程: .
【答案】(1) ;(2)
【详解】解:如图:作 的垂直平分线 ,作 的垂直平分线 ,设 与 相交于点O,连接 ,则点O是 外接圆的圆心
由题意得:

∴ 是直角三角形



故选:D.
【点睛】本题考查了三角形的外接圆与外心,扇形面积的计算,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
8.如图,在 中 ,点 在边 上,且 平分 的周长,则 的长是()
A. B. C. D.
【答案】B
【解析】
【分析】用科学记数法表示较大的数时一般形式为 ,其中 , 为整数,据此判断即可.
【详解】解:数12910000用科学记数法表示为 .
故选:B.
【点睛】本题考查了科学记数法,科学记数法的表示形式为 的形式,其中 , 为整数.确定 的值时要看把原来的数,变成 时小数点移动了多少位, 的绝对值与小数点移动的位数相同.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)解不等式组
x5 3
x 1, 并写出该不等式组的整数解.
3 2( x 1) 10,
20.( 8 分)已知关于 x 的一元二次方程 x 2+( k ﹣ 5)x+1﹣ k=0,其中 k 为常数. (1)求证:无论 k 为何值,方程总有两个不相等实数根; ( 3 分) (2)已知函数 y=x 2+(k﹣ 5) x+1﹣ k 的图象不经过第三象限,求 k 的取值范围; ( 2 分) (3)若原方程的一个根大于 3,另一个根小于 3,求 k 的最大整数值. ( 3 分)
着 B﹣ A﹣D 在菱形 ABCD的边上运动, 运动到点 D 停止, 点 P′是点 P 关于 BD 的对称点, PP′
交 BD 于点 M ,若 BM=x,△ OPP′的面积为 y,则 y 与 x 之间的函数图象大致为(

精品文档
精品文档
A.
B.
C.
D.
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)
在平面直角坐标系中 该方程的解.类似地
, 画出直线 y= x+ 3 和双曲线 y= 1的图象 , 则两图象交点的横坐标即 x
, 我们可以判断方程 x 3- x - 1=0 的解的个数有 ( )
A.0 个
B.1 个
C.2 个
D.3 个
10.如图,菱形 ABCD的对角线 AC,BD 相交于点 O,AC=6, BD=8,动点 P 从点 B 出发,沿

A. a3+a3 B. a3?a2 C. a12÷ a2 D.( a2) 3
4.2017 年底湖北省已有 13 个市迈入 “高铁时代 ”,现正在建设的一项目,计划总投资
334
亿元人民币.把 334 亿用科学记数法可表示为(

A.0.334 × 1011 B. 3.34× 1010
C. 3.34× 109 D. 3.34× 102
5.如图是由 5 个相同的小正方体组成的立体图形,这个立体图形的左视图是(

A.
B.
C.
D.
6.将一副直角三角板按如图方式放置, 使直角顶点 C重合,当 DE∥ BC时,∠ α的度数是( )
度.
A.90 B. 120 C. 105 D. 100 精品文档
精品文档
7.如图,四边形 ABCD 中,∠ B=60°,∠ D=50°,将△ CMN 沿 MN 翻折得△ EMN,若 EM∥
11.因式分解: ab2﹣ 6ab+9a=

12.函数 y=
的自变量 x 的取值范围是

13.如图所示,为了测量出一垂直水平地面的某高大建筑物
AB 的高度,一测量人员在该建
筑物附近 C 处,测得建筑物顶端 A 处的仰角大小为 45°,随后沿直线 BC向前走了 100 米后
到达 D 处,在 D 处测得 A 处的仰角大小为 30°,则建筑物 AB 的高度约为
米.
(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:
≈1.41, ≈ 1.73)
14. 如图,在扇形 AOB中∠ AOB= 90°,正方形 CDEF的顶点 C是弧 AB的中点, 点 D 在 OB上, 点 E 在 OB的延长线上,当正方形 CDEF的边长为 2 2时,则阴影部分的面积为
15.如图 1,将 1 张菱形纸片 ABC的(∠ ADC> 90°)沿对角线 BD剪开,得到△ ABD和△ BCD.再 将△ BCD以 D 为旋转中心, 按逆时针方向旋转角 α,使 α=∠ADB,得到如图 2 所示的△ DB′C,
“书法、武
术、黄梅戏进校园 ”活动.今年 3 月份,该区某校举行了 “黄梅戏 ”演唱比赛,比赛成绩评定
为 A, B, C, D,E 五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下
两幅不完整的统计图,请根据图中信息,解答下列问题.
精品文档
2018 中考数学模拟试卷 6
命题人:尹国军 考试时间: 2018.5.6
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)
1.﹣ 的相反数等于(

A.
B.﹣ C. 4 D.﹣ 4
2.下列标志既是轴对称图形又是中心对称图形的是(

A.
B.
C.
D.
3.下列式子计算的结果等于 a6 的是(
21.( 8 分)如图, AB 是⊙ O 的直径,点 C 在⊙ O 上,点 D 在 AB 延长线上,且∠ BCD=∠ A. (1)求证: DC是⊙ O 的切线;( 4 分) (2)若∠ A=30°, AC=2 ,求图中阴影部分的面积. (4 分)
22.( 8 分)为了丰富校园文化,促进学生全面发展.市教育局在全区中小学开展
AB, EN∥ AD,则∠ C 的度数为(

A.110 °B. 115 °C. 120 °D. 125 °
8.如图,点 c 是⊙ O 的直径 AB 延长线上一点, CD 切⊙ O 于点 D,DE 为⊙ O 的弦,若∠ AED=60°,
⊙O 的半径是 2.则 CD的长(

A.4 B. 3 C.
D.
9.求一元二次方程 x 2+3x - 1= 0 的解 , 除了课本的方法外 ,我们也可以采用图象的方法:
6
在反比例函数 y= 图象上,它们的横坐标分别是
x
x1, x2 ,x3,…, x 2005,纵坐标分别是 1,
3
3, 5,…,共 2005 个连续奇数,过点 P1, P2,P3,…, P2005 分别作 y 轴的平行线,与 y=
x
的图象交点依次是 Q1(x1, y1), Q2(x 2, y 2), Q3(x 3,y 3),…, Q2005( x2005, y2005),则
精品文档
精品文档
连接 AC、BB′,∠ DAB=45°,有以下结论: ① AC=BB′;② AC⊥AB;③∠ CDA=90°;④ BB′= AB,
其中正确结论的序号是
.(把所有正确结论的序号都填在横线上)
16. 两个反比例函数 y= 3 ,y= 6 在第一象限内的图象如图所示,点
x
x
P1, P2,P3,…, P2005
y = 2005

三、解答题(本大题共 9 小题,共 72 分)
17.( 7 分)计算:
(π -3.14) 0+ |
2-1|- (
2 2

)
1-
2
sin45°+
(- 1)2 016.
81- a2
9- a
1
18. ( 7 分)先化简,后计算:
a2+
6a+
÷ 9
2a+
6
·
a+
,其中 9
a=
3- 3.
精品文档
相关文档
最新文档