平面直角坐标系中的规律问题经典练习题
平面直角坐标系找规律题型分类(大全)解析
平面直角坐标系找规律题型解析1、如图,正方形ABCD 的顶点分别为A(1,1) B(1,-1) C(-1,-1) D(-1,1),y 轴上有一点P(0,2)。
作点P 关于点A 的对称点p1,作p1关于点B 的对称点p2,作点p2关于点C 的对称点p3,作p3关于点D 的对称点p4,作点p4关于点A 的对称点p5,作p5关于点B 的对称点p6┅,按如此操作下去,则点p2011的坐标是多少?解法1:对称点P1、P2、P3、P4每4个点,图形为一个循环周期。
设每个周期均由点P1,P2,P3,P4组成。
第1周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)第2周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)第3周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)第n 周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)2011÷4=502…3,所以点P2011的坐标与P3坐标相同,为(-2,0)解法2:根据题意,P1(2,0) P2(0,-2) P3(-2,0) P4(0,2)。
根据p1-pn 每四个一循环的规律,可以得出:P4n (0,2),P4n+1(2,0),P4n+2(0,-2),P4n+3(-2,0)。
2011÷4=502…3,所以点P2011的坐标与P3坐标相同,为(-2,0)总结:此题是循环问题,关键是找出每几个一循环,及循环的起始点。
此题是每四个点一循环,起始点是p 点。
2、在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:A4( , ),A8( , ),A10( , ),A12( );(2)写出点A4n 的坐标(n 是正整数);(3)按此移动规律,若点Am 在x 轴上,请用含n 的代数式表示m (n 是正整数)(4)指出蚂蚁从点A2011到点A2012的移动方向.(5)指出蚂蚁从点A100到点A101的移动方向.(6)指出A106,A201的的坐标及方向。
中考数学小专题(五) 平面直角坐标系中点的变化规律
是
.
第4题 图
5 . ( 2 0 2 2 ·咸 宁 市 通 城 县 期 末 ) 如 图 , 在 平 面 直 角 坐 标 系
中,有若干个整数点,其顺序按图中“→”方向排列,
如:(1,0),(2,0),(2,1),(3,2),
(3,1()7,,(6)3,0),…,根据这个规律,第22个点的
坐标为
.
类型三 沿坐标轴延伸运动的点的坐标规律
ቤተ መጻሕፍቲ ባይዱ
3.(2022·恩施州来凤县期末)如图,动点P在平面直角坐标
系中按图中箭头所示方向运动,第1次从原点运动到点
(1,1),第2次接着运动到点(2,0),第3次接着运动
到点(3,2A)……按这样的运动规律,经过第2 022次运动
A后.(,2动0点22P,的坐B标.(是2(022, )
类型四 环绕型运动中点的坐标规律
6.在平面直角坐标系中,设一动点自点P0(1,0)处向上运
动1个单位长度至点P1(1,1),然后向左运动2个单位长
度至点P2处,再向下运动3个单位长度至点P3处,再向右运
动4个单位长度至点P4处,再向上运动5个单位长度至点P5
处,如此继续B 运动下去,设点Pn(xn,yn),n=1,2,
小专题(五) 平面直角坐标系中点的
变化规律
类型一 利用有序数对表示数列中的规律 1.(2022·孝感市安陆市期末)将从1开始的连续自然数按以下规律
若有序数对(n,m)表示第n行,从左到右第m个数,如:
(3,2)表示6,(则1表0,示1989)的有序数对是
.
类型二 新定义中的坐标规律
2.(2022·随州市曾都区期末)在平面直角坐标系中,对于点
平面直角坐标系中找规律类题目专项练习(含答案)
1. 正整数按如下的规律排列:则上起第2007行,左起第2008列的数是( )(D )A. 22007B. 22008 C. 20082007+ D. 20082007⨯2. 如图,一个粒子在第一象限内及x 轴、y 轴上运动,第1min 从原点运动到(1,0),第2min 从(1,0)运动到(1,1),然后它接着按图中箭头所示的方向运动(在第一象限内运动时,运动方向与x 轴或y 轴平行),且每分钟移动1个单位长度,则第2020min 时,这个粒子所在位置的坐标是___________.()4,44()3. 如图,在直角坐标系中,已知点A (-3,0),B (0,4),对△OAB 连续作旋转变换,依次得到三角形①,②,③,④,...则第2020个三角形(不包含△OAB )的直角顶点的坐标为________.()0,8076()4. 有一根起点为0的数轴,现有同学将它弯折,如图所示,已知虚线上第一行为0,第二行为6,第三行为21,则第n 行的数是_________.(2)23)(33(--n n )5. 如图所示,等边三角形的边长依次为2,4,6,8,……,其中)1,0(1A ,)31,1(2--A ,)31,1(3-A ,)2,0(4A ,)322,2(5--A ,……,按此规律排下去,则2019A 的坐标为_________________.()3673673,673(-)6. 将正整数按如图所示的规律排列下去,若用有序实数对),(m n 表示第n 排,从左到右第m 个数,如)3,4(表示实数9,则)50,100(表示的实数是___________.(5000)7. 在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形的内部不包含边界上的点。
观察如图所示的中心在原点,一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,......,则边长为100的正方形内部的整点的个数为___________.(9801)8. 如图,在直角坐标系中,以原点O 为圆心的同心圆的半径由内向外依次为1,2,3,4,......,同心圆与直线x y x y -==,分别交于⋅⋅⋅4321,,,A A A A ,则点30A 的坐标是___________.()24,24(-)9. 在平面直角坐标系xOy 中,直线22:-=x y l 与x 轴交于点1A ,如图所示,依次作正方形O C B A 111,正方形⋅⋅⋅,1222C C B A ,正方形1-n n n n C C B A ,使得点n A A A A ⋅⋅⋅,,,321在直线l 上,点n C C C C ⋅⋅⋅,,,321在y 轴正半轴上,则正方形1-n n n n C C B A 的面积是__________.(2223-⎪⎭⎫ ⎝⎛n )10. 如图,点n A A A A ⋅⋅⋅,,,321在x 轴正半轴上,点n C C C C ⋅⋅⋅,,,321在y 轴正半轴上,点n B B B B ⋅⋅⋅,,,321在第一象限角平分线OM 上,n n B B B B B B OB 132211-=⋅⋅⋅=== a 23=,n n n n C B B A C B B A C B B A C B B A ⊥⋅⋅⋅⊥⊥⊥,,,,333322221111,......,则第n 个四边形n n n C B OA 的面积是_____________.(2283a n )11. 在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A 1,第二次移动到点A 2,......第n 次移动到点A n ,则点A 2021的坐标是__________.()1,1010()12. 如图,直线OD 与x 轴所夹的锐角为30°,1OA 的长为2,121B A A ∆、232B A A ∆、343B A A ∆... n n n B A A 1+∆均为等边三角形,点1321,,,-⋅⋅⋅n A A A A 在x 轴正半轴上依次排列,点n B B B B ⋅⋅⋅,,,321在直线OD 上依次排列,则点n B 的坐标为_________.()23,23(11--⋅⋅n n )13. 如图,直线x l ⊥1轴于点)0,1(,直线x l ⊥2轴于点)0,2(,直线x l ⊥3轴于点⋅⋅⋅,)0,3(直线x l n ⊥轴于点)0,(n ,函数x y =的图象与直线n l l l l ⋅⋅⋅321,,分别交于n A A A ⋅⋅⋅,,21;函数x y 3=的图象与直线n l l l l ⋅⋅⋅321,,分别交于n B B B ⋅⋅⋅,,21,如果11B OA ∆的面积记作1S ,四边形1221B B A A 的面积记作2S ,四边形2332B B A A 的面积记作⋅⋅⋅3S 四边形11--n n n n B B A A 的面积记作n S ,那么2020S = ____________.(4039)14. 如图,在平面直角坐标系中,半径均为1个单位长度的半圆⋅⋅⋅,,,321O O O 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2021秒时,点P 的坐标是_________.()1,2021()15. 如图,一个动点A 在平面直角坐标系中做折线运动,第1次从点)1,1(--到)1,0(1A ,第2次运动到)1,3(2-A ,第3次运动到)1,8(3A ,第4次运动到⋅⋅⋅⋅⋅⋅-)1,15(4A 按这样的运动规律,第100次运动到100A ,100A 的坐标是__________.()1,9999(-)16. 将正整数按如图所示的规律在平面直角坐标系中进行排列,每个正整数对应一个整点坐标),(y x ,其中x ,y 均为整数,如数5对应的坐标为)1,1(-,则数2020对应的坐标为__________.()22,17(-)17. 如图,在平面直角坐标系中,第一次将OAB ∆变换成11B OA ∆,第二次将11B OA ∆变换成22B OA ∆,第三次将22B OA ∆变换成33B OA ∆,已知)3,1(A ,)3,2(1A ,)3,4(2A ,)3,8(3A ,)0,2(B ,)0,4(1B ,)0,8(2B ,)0,16(3B ,按这样的变换规律,将OAB ∆进行n (n 为正整数)次变换,得到n n B OA ∆,则点n A 的坐标是__________,点n B 的坐标是__________.()0,2(,)3,2(1+n n )18. 如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2020次,点P 依次落在点2020321,,,,P P P P ⋅⋅⋅的位置,则点2020P 的坐标为_________.()1,2019()19. 如图,在平面直角坐标系中,将ABO ∆绕点A 顺时针旋转到11C AB ∆的位置,点B ,O分别落在点1B ,1C 处,点1B 在x 轴上,再将11C AB ∆绕点1B 顺时针旋转到211C B A ∆的位置,点2C 在x 轴上,将211C B A ∆绕点2C 顺时针旋转到222C B A ∆的位置,点2A 在x 轴上,依次进行下去⋅⋅⋅⋅⋅⋅若点)4,0(,)0,35(B A ,则点2017B 的坐标是__________.()0,10086()20. 如图,等边三角形的顶点)1,3(,)1,1(B A ,规定把等边三角形ABC 先沿x 轴翻折,再向左平移1个单位长度为一次变换,如果这样连续经过2016次变换后,等边三角形ABC 中顶点C 的坐标为___________.()13,2014(+-)21. 如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如⋅⋅⋅,)0,3(,)1,3(,)2,3(,)1,2(,)0,2(,)0,1(根据这个规律探究可得,第200个点的坐标为___________.()9,20()22. 如图所示,把多块大小不同的30°直角三角板摆放在平面直角坐标系中,第一块三角板AOB 的一条直角边与x 轴重合且点A 的坐标为)0,2(,∠ABO =30°;第二块三角板的斜边1BB 与第一块三角板的斜边AB 垂直且交x 轴于点1B ;第三块三角板的斜边21B B 与第二块三角板的斜边1BB 垂直且交y 轴于点2B ;第四块三角板的斜边32B B 与第三块三角板的斜边21B B 垂直且交x 轴于点3B ;⋅⋅⋅⋅⋅⋅按此规律继续下去,则点2018B 的坐标为__________.())3(2,0(2019⨯-)23. 如图,点)2,2(1A 在直线x y =上,过点1A 作11B A ∥y 轴交直线x y 21=于点1B ,以点1A 为直角顶点,11B A 为直角边在11B A 的右侧作等腰直角111C B A ∆,再过点1C 作22B A ∥y 轴,分别交直线x y =和x y 21=于点22,B A 两点,以点2A 为直角顶点,22B A 为直角边在22B A 的右侧作等腰直角⋅⋅⋅∆222C B A ,按此规律进行下去,则等腰直角n n n C B A ∆的面积为___________.(用含正整数n 的代数式表示)(22)23(21-⋅n )24. 如图,直线133:+=x y l 与x 轴正方向夹角为30°,点⋅⋅⋅,,,321A A A 在x 轴上,点⋅⋅⋅,,,321B B B 在直线l 上,⋅⋅⋅∆∆∆33222111,,A B A A B A A OB 均为等边三角形,则2020A 的横坐标为___________.(3)12(2020⋅-)25. 正方形⋅⋅⋅,,,23331222111C C B A C C B A O C B A 按如图所示的方式放置,点⋅⋅⋅,,,321A A A 和点⋅⋅⋅,,,321C C C 分别在直线)0(>+=k b kx y 和x 轴上,已知点)2,3(,)1,1(21B B ,则点n B 的坐标是___________.()2,12(1--n n )26. 如图,在平面直角坐标系中,点⋅⋅⋅,,,321A A A 和⋅⋅⋅,,,321B B B 分别在直线bkx y +=和x 轴上,⋅⋅⋅∆∆∆33222111,,B A B B A B B OA 都是等腰直角三角形,如果)23,27(,)1,1(21A A ,那么点n A 的纵坐标是__________.(1)23(-n )27. 已知直线nx n n y l n 11:++-=(n 是不为零的正整数),当n =1时,直线12:1+-=x y l 与x 轴和y 轴分别交于点1A 和1B ,设11OB A ∆(其中O 是平面直角坐标系的原点)的面积为1S ;当n =2时,直线2123:2+-=x y l 与x 轴和y 轴分别交于点2A 和2B ,设22OB A ∆的面积为2S ;⋅⋅⋅⋅⋅⋅依次类推,直线n l 与x 轴和y 轴分别交于点n A 和n B ,设n n OB A ∆的面积为n S ,则n S S S S +⋅⋅⋅+++321=__________.(22+n n )28. 如图,已知直线x y l 33:=,过点)1,0(A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ;过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ,⋅⋅⋅按此作法继续下去,则点n A 的坐标为__________.()4,0(n)29. 如图,直线x y l 33:1=,直线x y l 3:2=,B 为2l 上的一点,且B 点的坐标为)32,2(,作直线1BA ∥x 轴,交直线1l 于点1A ,再作11A B ⊥1l 于点1A ,交直线2l 于点1B ,作21A B ∥x 轴,交直线1l 于点2A ,再作22A B ⊥1l 于点1A ,交直线2l 于点2B ,作32A B ∥x 轴,交直线1l 于点⋅⋅⋅3A 按此作法继续作下去,则n A 的坐标为__________.()23,23(n n ⋅⋅)30. 如图,在平面直角坐标系中,点⋅⋅⋅,,,321A A A ,点⋅⋅⋅,,,321B B B ,均在x 轴上,且2132211113221==⋅⋅⋅=====⋅⋅⋅===--n n n n B B B B B B B A A A A A OA OA ,分别以n n n n B B B B B B B A A A A A OA OA 132211113221,,,,,,,,,--⋅⋅⋅⋅⋅⋅为底边的等腰三角形的第三个顶点n n D D D D C C C C ,,,,,,,,,321321⋅⋅⋅⋅⋅⋅在直线2+=x y 上,记11C OA ∆的面积为1S ,22C OA ∆的面积为⋅⋅⋅,2S ,n n n C A A 1-∆的面积为n S ,记111D B A ∆的面积为1T ,221D B B ∆的面积为⋅⋅⋅,2T ,n n n D B B 1-∆的面积为n T ,那么n n T T T S S S +⋅⋅⋅++++⋅⋅⋅++2121=___________.(22n )。
七年级平面直角坐标系动点规律问题(经典难题)
平面直角坐标系动点问题(一)找规律1.如图1,一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )图1A .(4,0)B .(5,0)C .(0,5)D .(5,5)图22、如图2,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点A 55的坐标是( ) A 、(13,13) B 、(﹣13,﹣13) C 、(14,14) D 、(﹣14,﹣14)3.如图3,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,其顺序按图中点的坐标分别为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…的规律排列,根据这个规律,第2019个点的横坐标为 .4.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示。
图3(1)填写下列各点的坐标:1A (____,____),3A (____,____),12A (____,____); (2)写出点n A 4的坐标(n 是正整数); (3)指出蚂蚁从点100A 到101A 的移动方向.5.观察下列有序数对:(3,﹣1)(﹣5,)(7,﹣)(﹣9,)…根据你发现的规律,第100个有序数对是 .6、观察下列有规律的点的坐标:依此规律,A 11的坐标为 ,A 12的坐标为 .7、以0为原点,正东,正北方向为x 轴,y 轴正方向建立平面直角坐标系,一个机器人从原点O 点出发,向正东方向走3米到达A 1点,再向正北方向走6米到达A 2,再向正西方向走9米到达A 3,再向正南方向走12米到达A 4,再向正东方向走15米到达A 5,按此规律走下去,当机器人走到A 6时,A 6的坐标是 .8、如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2019次,点P 依次落在点201921,,,P P P 的位置,则点2019P 的横坐标为 .9、如图,在平面直角坐标系上有个点P (1,0),点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P 第100次跳动至点P 100的坐标是 .点P 第2019次跳动至点P 2019的坐标是 .图4 图5 10、如图5,已知A l (1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),….则点A 2019的坐标为 .1PAOyxP1. 如图,一个粒子在第一象限内及x 、y 轴上运动,在第一分钟内它从原点运动到()1,0,而后它接着按图所示在x 轴、y 轴平行的方向上来回运动,且每分钟移动1个长度单位,那么,在1989分钟后这个粒子所处的位置是( ).A .()35,44B .()36,45C .()37,45D .()44,352. 如果将点P 绕定点M 旋转180︒后与点Q 重合,那么称点P 与点Q 关于点M 对称,定点M 叫做对称中心,此时,点M 是线段PQ 的中点,如图,在直角坐标系中,ABO △的顶点A 、B 、O 的坐标分别为()1,0、()0,1、()0,0,点1P ,2P ,3P ,…中相邻两点都关于ABO △的一个顶点对称,点1P 与点2P 关于点A 对称,点2P 与点3P 关于点B 对称,点3P 与点4P 关于点O 对称,点4P 与点5P 关于点A 对称,点5P 与点6P 关于点B 对称,点6P 与点7P 关于点O 对称,…对称中心分别是A ,B ,O ,A ,B ,O ,…且这些对称中心依次循环,已知1P 的坐标是()1,1.试写出点2P 、7P 、100P 的坐标.3. 如图,在平面直角坐标系中,四边形各顶点的坐标分别为:()0,0A ,()7,0B ,()9,5C ,()2,7D .(1)求此四边形的面积.(2)在坐标轴上,你能否找到一点P ,使50PBC S =△?若能,求出P 点坐标;若不能,请说明理由.4. 如图①,已知OABC 是一个长方形,其中顶点A 、B 的坐标分别为()0,a 和()9,a ,点E在AB 上,且13AE AB =,点F 在OC 上,且13OF OC =.点G 在OA 上,且使GEC △的面积为20,GFB △的面积为16,试求a 的值.图②5. 如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,()1,2,()2,2……根据这个规律,第2019个点的横坐标为_______.6. 在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点()0,4A ,点B 是x 轴正半轴上的整点,记AOB △内部(不包括边界)的整点个数为m ,当3m =时,点B 的横坐标的所有可能值是_______;当点B 的横坐标为4n (n 为正整数)时,m =________(用含n 的代数式表示).7. 如图,把自然数按图的次序排在直角坐标系中,每个自然数都对应着一个坐标.如1的对应点是原点()0,0,3的对应点是()1,1,16的对应点是()1,2-,那么2019的对应点的坐标是_______.8.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙由点()2,0A 同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以每秒1个单位长度的速度匀速运动,物体乙按顺时针方向以每秒2个单位长度的速度匀速运动,求两个物体开始运动后的第2019次相遇地点的坐标.9. 在平面直角坐标系中,如图①,将线段AB 平移至线段CD ,连接AC 、BD . (1)直接写出图中相等的线段、平行的线段; (2)已知()3,0A -、()2,2B --,点C 在y 轴的正半轴上.点D 在第一象限内,且5ACD S =△,求点C 、D 的坐标;(3)如图②,在平面直角坐标系中,已知一定点,()1,0M ,两个动点(),21E a a +、(),23F b b -+,请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM .若存在,求以点O 、M 、E 、F 为顶点的四边形的面积,若不存在,请说明理由.图②10 . 如图,AOCD 是放置在平面直角坐标系内的梯形,其中O 是坐标原点.点A 、C 、D 的坐标分别为()0,8,()5,0,()3,8,若点P 在梯形内,且PAD POC S S =△△,PAO PCD S S =△△,求P 点的坐标.11. 操作与研究(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点'P B .点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段''A B ,其中点A ,B 的对应点分别为'A ,'B .如图①,若点A 表示的数是3-,则点'A 表示的数是______;若点'B 表示的数是2,则点表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点'E 与点E 重合,则点E 表示的数是_________.(2)如图②,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位()0,0m n >>,得到正方形''''A B C D 及其内部的点,其中点A ,B 的对应点分别为'A ,'B .已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点'F 与点F 重合,求点F 的坐标.图①A B'-1-2-3-412340图②(二)几何综合问题1、已知点A 的坐标是(3,0)、AB=5,(1)当点B 在X 轴上时、求点B 的坐标、(2)当AB//y 轴时、求点B 的坐标2、如图,已知A 、B 两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x 轴上行驶,从原点O 出发.(1)汽车行驶到什么位置时离A 村最近?写出此点的坐标. (2)汽车行驶到什么位置时离B 村最近?写出此点的坐标. (3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?4.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形D C 3-1BA O x y PDCBAOx y (2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①DCP BOP CPO ∠+∠∠的值不变,②DCP CPOBOP∠+∠∠的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.5.已知:在平面直角坐标系中,四边形ABCD 是长方形, ∠A =∠B =∠C =∠D =90°,AB ∥CD ,AB =CD =8cm ,AD =BC =6cm ,D 点与原点重合,坐标为(0,0). (1)写出点B 的坐标.(2)动点P 从点A 出发以每秒3个单位长度的速度向终点B 匀速运动, 动点Q 从点C 出发以每秒4个单位长度的速度沿射线CD 方向匀速运动,若P ,Q 两点同时出发,设运动时间为t 秒,当t 为何值时,PQ ∥BC ?(3)在Q 的运动过程中,当Q 运动到什么位置时,使△ADQ 的面积为9? 求出此时Q 点的坐标.6.如图在平面直角坐标系中,A(a,0),B(b,0),(﹣1,2).且|2a+b+1|+=0.(1)求a、b的值;(2)①在y轴的正半轴上存在一点M,使S△COM=S△ABC,求点M的坐标.②在坐标轴的其他位置是否存在点M,使S△COM=S△ABC仍成立?若存在,请直接写出符合条件的点M的坐标.7.如图,在下面的直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b 满足关系式.(1)求a,b的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.8.在平面直角坐标系中,点A(a,b)是第四象限内一点,AB⊥y轴于B,且B(0,b)是y轴负半轴上一点,b2=16,S△AOB=12.(1)求点A和点B的坐标;(2)如图1,点D为线段OA(端点除外)上某一点,过点D作AO垂线交x轴于E,交直线AB于F,∠EOD、∠AFD的平分线相交于N,求∠ONF的度数.(3)如图2,点D为线段OA(端点除外)上某一点,当点D在线段上运动时,过点D作直线EF交x轴正半轴于E,交直线AB于F,∠EOD,∠AFD的平分线相交于点N.若记∠ODF=α,请用α的式子表示∠ONF的大小,并说明理由.。
平面直角坐标系典型例题含标准答案
平面直角坐标系一、知识点复习1.有序数对:有顺序的两个数a与b组成的数对,记作(a,b)。
注意a与b的先后顺序对位置的影响。
2.平面直角坐标系(1)定义:在同一平面内画两条相互垂直并且原点重合的数轴,组成平面直角坐标系。
这个平面叫做坐标平面。
(2)平面直角坐标系中点的坐标:通常若平面直角坐标系中有一点A,过点A作横轴的垂线,垂足在横轴上的坐标为a,过点A作纵轴的垂线,垂足在纵轴上的坐标为b,有序实数对(a,b)叫做点A的坐标,其中a叫横坐标,b叫做纵坐标。
第二象限第一象限----------- o---------- 耳匕 ----------- :第二壕限第四象限"- -------------- S1——3.各象限内的点与坐标轴上的点的坐标特征:4.特殊位置点的特殊坐标5.对称点的坐标特征:关于芯轴对称关于¥轴对称关于原点对称6.点到坐标轴的距离:点P(x, y)到X轴距离为卜|,到y轴的距离为|x|7.点的平移坐标变化规律:简单记为“左减右加,上加下减”二、典型例题讲解考点1:点的坐标与象限的关系1.在平面直角坐标系中,点P (-2, 3)在第( )象限.A. 一B.XC.aD.四2.若点P(a,a -2)在第四象限,则a的取值范围是( )A. 一 2 < a < 0B. 0 < a < 2C. a > 2D. a < 03.在平面直角坐标系中,点P (-2, x2 +1 )所在的象限是( )A.第一象限B.第二象限仁第三象限 D.第四象限考点2:点在坐标轴上的特点1.点P(m + 3,m +1)在%轴上,则P点坐标为( )A. (0,-2)B. (2,0)C. (4,0)D. (0,-4)2.已知点P(m,2m-1)在y轴上,则P点的坐标是。
3.若点P (x, y)的坐标满足xy=0 (x/y),则点P必在( )A.原点上B. x轴上C. y轴上D. x轴上或y轴上(除原点)考点3:对称点的坐标1.平面直角坐标系中,与点(2,-3)关于原点中心对称的点是( )A. (-3,2)B. (3,-2)C. (-2,3)D. (2,3)2.已知点A的坐标为(-2, 3),点B与点A关于x轴对称,点C与点B关于y轴对称,则点 C 关于x轴对称的点的坐标为( )A.(2, -3)B.(-2, 3)C.(2, 3)D.(-2, -3)3.若坐标平面上点P (a, 1)与点Q (-4, b)关于x轴对称,则( )A. a=4, b=-1B. a=-4, b=1C. a=-4, b=-1D. a=4, b=1考点4:点的平移1.已知点A (-2, 4),将点A往上平移2个单位长度,再往左平移3个单位长度得到点A’, 则点A’的坐标是( )A.(-5, 6)B.(1, 2)C.(1, 6)D.(-5, 2)2.已知A (2, 3),其关于x轴的对称点是B, B关于y轴对称点是C,那么相当于将A经过 ( )的平移到了 C.A.向左平移4个单位,再向上平移6个单位B.向左平移4个单位,再向下平移6个单位C.向右平移4个单位,再向上平移6个单位D.向下平移6个单位,再向右平移4个单位3.如图,A, B的坐标为(2, 0), (0, 1),若将线段AB平移至A1B1,则a+b的值为( )A. 2B. 3C. 4D. 5考点5:点到坐标轴的距离1.点M (-3, -2)到y轴的距离是( )A. 3B. 2C. -3D. -22.点P到x轴的距离是5,到y轴的距离是6,且点P在x轴的上方,则P点的坐标为.3.已知P (2-x, 3x-4)到两坐标轴的距离相等,则x的值为( )3 3 3A. 3B. -1C. 3 或-1D.-或 12 2 2考点6:平行于x轴或y轴的直线的特点1.如图,八口〃8s乂轴,下列说法正确的是( )3 CA. A与D的横坐标相同B. C与D的横坐标相同C. B与C的纵坐标相同D. B与D的纵坐标相同2.已知点A (m+1, -2)和点B (3, m-1),若直线八8〃乂轴,则m的值为( )A. 2B. -4C. -1D. 33.已知点M (-2, 3),线段MN=3,且MN〃y轴,则点N的坐标是( )A. (-2, 0)B.(1, 3)C.(1, 3)或(-5, 3)D.(-2, 0)或(-2, 6)考点7:角平分线的理解 1.已知点A (3a+5, a-3)在二、四象限的角平分线上,则a=考点8:特定条件下点的坐标1.如图,已知棋子“车”的坐标为(-2, 3),棋子“马”的坐标为(1, 3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(-2,2)考点9:面积的求法(割补法)1. (1)在平面直角坐标系中,描出下列3个点:A (-1, 0), B (3, -1), C (4, 3)(2)顺次连接A, B, C,组成AABC,求4ABC的面积.参考答案:(1)略(2)8.52.如图,在四边形ABCD中,A、B、C、D的四个点的坐标分别为(0, 2)(1, 0)(6, 2)(2, 4),求四边形ABCD的面积.3.在图中A (2, -4)、B (4, -3)、C (5, 0),求四边形ABCO的面积考点10:根据坐标或面积的特点求未知点的坐标1.已知A (a, 0)和B点(0, 10)两点,且AB与坐标轴围成的三角形的面积等于20,则a 的值为( )A. 2B. 4C. 0 或 4D. 4 或-42.如图,已知:A(—5,4)、B(—2,—2)、C(0,2)(1)求A ABC的面积;(2) y轴上是否存在点P,使得A PBC面积与A ABC的面积相等,若存在求出P点的坐标,若不存在,请说明理由。
专题:平面直角坐标系中的变化规律(含答案)
专题:平面直角坐标系中的变化规律——掌握不同规律,以不变应万变◆类型一沿坐标轴方向运动的点的坐标规律探究1.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2016次运动后,动点P的坐标是________.2.(2017·阿坝州中考)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0),…,则点P2017的坐标是________.◆类型二绕原点呈“回”字形运动的点的坐标规律探究3.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.如图,由里向外数第2个正方形开始,分别是由第1个正方形各顶点的横坐标和纵坐标都乘2,3,…得到的,请你观察图形,猜想由里向外第10个正方形四条边上的整点个数共有() A.10个B.20个C.40个D.80个第3题图第4题图4.(2017·温州中考)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧P1P2︵,P2P3︵,P3P4︵,…得到斐波那契螺旋线,然后顺次连接P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(-1,0),P3(0,-1),则该折线上的点P9的坐标为()A.(-6,24) B.(-6,25)C.(-5,24) D.(-5,25)◆类型三图形变化中的点的坐标探究5.(2017·河南模拟)如图,点A(2,0),B(0,2),将扇形AOB沿x轴正方向做无滑动的滚动,在滚动过程中点O的对应点依次记为点O1,点O2,点O3…,则O10的坐标是()A.(16+4π,0) B.(14+4π,2)C.(14+3π,2) D.(12+3π,0)6.如图,在直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1变换成三角形OA2B2,第三次将三角形OA2B2变换成三角形OA3B3.已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换后的三角形有何变化,找出规律,按此变换规律再将三角形OA3B3变换成三角形OA4B4,则A4的坐标是__________,B4的坐标是__________;(2)若按(1)中找到的规律将三角形OAB进行了n次变换,得到三角形OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测点A n的坐标是__________,点B n的坐标是__________.参考答案与解析1.(2016,0)解析:结合图象可知,当运动次数为偶数次时,P点运动到x轴上,且横坐标与运动次数相等.∵2016为偶数,∴运动2016次后,动点P的坐标是(2016,0).2.(672,1)解析:由已知得P7(2,1),P13(4,1),所以P6n+1(2n,1).因为2017÷6=336……1,所以P2017(336×2,1),即P2017(672,1).3.C解析:每个正方形四个顶点一定为整点,由里向外第n个正方形每条边上除顶可见,第n个正方形每条边上除顶点外还有(n-1)个整点,四条边上除顶点外有4(n-1)个整点,加上4个顶点,共有4(n-1)+4=4n(个)整点.当n=10时,4n=4×10=40,即由里向外第10个正方形的四条边上共有40个整点.故选C.4.B解析:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离为21+5=26,所以P9的坐标为(-6,25),故选B.5.C6.(1)(16,3)(32,0)(2)(2n,3)(2n+1,0)解析:(1)∵A1(2,3),A2(4,3),A3(8,3),∴A4的横坐标为24=16,纵坐标为3.故点A4的坐标为(16,3).又∵B1(4,0),B2(8,0),B3(16,0),∴B4的横坐标为25=32,纵坐标为0.故点B4的坐标为(32,0).(2)由A1(2,3),A2(4,3),A3(8,3),可以发现它们各点坐标的关系为横坐标是2n,纵坐标都是3.故点A n的坐标为(2n,0).由B1(4,0),B2(8,0),B3(16,0),可以发现它们各点坐标的关系为横坐标是2n+1,纵坐标都是0.故点B n的坐标为(2n+1,0).。
平面直角坐标系找规律压轴及平行线解答题压轴题
七下平行线,平面直角坐标系压轴题一.填空题(共13小题)1.已知点M(3,2)与点N(x,y)在同一条平行于x轴的直线上,且点N到y轴的距离为5,则点N的坐标为.2.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为.3.如图的坐标平面上有一正五边形ABCDE,其中C、D两点坐标分别为(1,0)、(2,0).若在没有滑动的情况下,将此五边形沿着x轴向右滚动,则滚动过程中,经过点(75,0)的是(填A、B、C、D或E).4.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为Pn,则点P3的坐标是;点P2014的坐标是.5.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),AB=5.对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为.6.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2008次,点P依次落在点P1,P2,P3,P4,…,P2008的位置,则P2008的坐标为.大全7.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为.8.如图,将边长为2的等边三角形沿x轴正方向连续翻折2012次,依次得到点P1,P2,P3…P2012.则点P2012的坐标是.9.如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A 7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为.10.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根据这个规律探索可得,第90个点的坐标为.11.如图所示,在平面直角坐标系中,有若干个整数点,其顺序按图中箭头方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),…,根据这个规律探索可得,第102个点的坐标为.大全大全12.如图,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3…已知:A (1,3),A 1(2,3),A 2(4,3),A 3(8,3);B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).观察每次变换前后的三角形有何变化,按照变换规律,第五次变换后得到的三角形A 5的坐标是 ,B 5的坐标是 .13.如图,在平面直角坐标系上有点A (1,0),点A 第一次向左跳动至点A 1(﹣1,1),第二次向右跳动至点A 2(2,1),第三次向左跳动至点A 3(﹣2,2),第四次向右跳动点A 4(3,2),…,依次规律跳动下去,点A 第2017次跳动至点A 2017的坐标是 .二.解答题(共27小题)14.如图,已知直线AB ∥CD ,直线EF 分别与AB 、CD 相交于点E 、F ,FM 平分∠EFD ,点H 是射线EA 上一动点(不与点E 重合),过点H 的直线交EF 于点P ,HM 平分∠BHP 交FM 于点M .(1)如图1,试说明:∠HMF=(∠BHP+∠DFP ); 请在下列解答中,填写相应的理由:解:过点M 作MQ ∥AB (过直线外一点有且只有一条直线与这条直线平行). ∵AB ∥CD (已知),∴MQ ∥CD (如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∴∠1=∠3,∠2=∠4( ) ∴∠1+∠2=∠3+∠4(等式的性质) 即∠HMF=∠1+∠2.∵FM 平分∠EFD ,HM 平分∠BHP (已知) ∵∠1=∠BHP ,∠2=∠DFP ( )∴∠HMF=∠BHP+∠DFP=(∠BHP+∠DFP)(等量代换).(2)如图2,若HP⊥EF,求∠HMF的度数;(3)如图3,当点P与点F重合时,FN平分∠HFE交AB于点N,过点N 作NQ⊥FM于点Q,试说明无论点H在何处都有∠EHF=2∠FNQ.15.如图1,直线m∥n,点B、F在直线m上,点E、C在直线n上,连结FE并延长至点A,连结BA和CA,使∠AEC=∠BAC.(1)求证:∠BFA+∠BAC=180°;(2)请在图1中找出与∠CAF相等的角,并加以证明;(3)如图2,连结BC交AF于点D,作∠CBF和∠CEF的角平分线交于点M,若∠ADC=α,请直接写出∠M的度数(用含α的式子表示)16.已知直线AB∥CD,M,N分别是AB,CD上的点.(1)若E是AB,CD内一点.①如图甲所示,请写出∠BME,∠DNE,∠MEN之间的数量关系,并证明.大全②如图乙所示,若∠1=∠BME,∠2=∠DNE,请利用①的结论探究∠F 与∠MEN的数量关系.(2)若E是AB,CD外一点.①如图丙所示,请直接写出∠EMB,∠END,∠E之间的数量关系.②如图丁所示,已知∠BMP=∠EMB,在射线MP上找一点G,使得∠MGN=∠E,请在图中画出点G的大致位置,并求∠ENG:∠GND的值.17.已知,AB∥CD,点E为射线FG上一点.(1)如图1,若∠EAF=30°,∠EDG=40°,则∠AED= °;(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;(3)如图3,DI平分∠EDC,交AE于点K,交AI于点I,且∠EAI:∠BAI=1:2,∠AED=22°,∠I=20°,求∠EKD的度数.18.小明在学习了“平行线的判定和性质”知识后,对下面问题进行探究:在平面内,直线AB∥CD,E为平面内一点,连接BE、CE,根据点E 的位置探究∠B和∠C、∠BEC的数量关系.(1)当点E分别在如下图①、图②和图③所示的位置时,请你直接写出三个图形中相应的∠B和∠C、∠BEC的数量关系:图①中:;图②中:,图③大全中:.(2)请在以上三个结论中选出一个你喜欢的结论加以证明.(3)运用上面的结论解决问题:如图④,AB∥CD,BP平分∠ABE,CP平分∠DCE,∠BEC=100°,∠BPC的度数是.(直接写出结果,不用写计算过程)19.如图1,AC平分∠DAB,∠1=∠2.(1)试说明AB与CD的位置关系,并予以证明;(2)如图2,当∠ADC=120°时,点E、F分别在CD和AC的延长线上运动,试探讨∠E和∠F的数量关系;(3)如图3,AD和BC交于点G,过点D作DH∥BC交AC于点H,若AC ⊥BC,问当∠CDH为多少度时,∠GDC=∠ADH.20.已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;大全(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则= .21.如图1,MN∥PQ,直线AD与MN、PQ分别交于点A、D,点B在直线PQ上,过点B作BG⊥AD,垂足为点G.(1)求证:∠MAG+∠PBG=90°;(2)若点C在线段AD上(不与A、D、G重合),连接BC,∠MAG和∠PBC 的平分线交于点H,请在图2中补全图形,猜想并证明∠CBG与∠AHB的数量关系;(3)若直线AD的位置如图3所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出∠CBG与∠AHB的数量关系.22.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,大全第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABEn﹣1和∠DCEn﹣1的平分线,交点为En.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE2C=∠BEC;(3)猜想:若∠En=α度,那∠BEC等于多少度?(直接写出结论).23.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B 转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN= °;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.24.已知,直线AB∥DC,点P为平面上一点,连接AP与CP.大全(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.25.已知直线AB∥CD.(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.(3)如图3,点E在直线BD的右侧,BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED的数量关系.26.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,大全求∠EBC的度数.27.如图,直线AB∥CD,直线MN与AB,CD分别交于点M,N,ME,NE 分别是∠AMN与∠CNM的平分线,NE交AB于点F,过点N作NG⊥EN交AB于点G.(1)求证:EM∥NG;(2)连接EG,在GN上取一点H,使∠HEG=∠HGE,作∠FEH的平分线EP 交AB于点P,求∠PEG的度数.28.已知,∠AOB=90°,点C在射线OA上,CD∥OE.(1)如图1,若∠OCD=120°,求∠BOE的度数;(2)把“∠AOB=90°”改为“∠AOB=120°”,射线OE沿射线OB平移,得O′E,其他条件不变,(如图2所示),探究∠OCD、∠BO′E的数量关系;(3)在(2)的条件下,作PO′⊥OB垂足为O′,与∠OCD的平分线CP大全交于点P,若∠BO′E=α,请用含α的式子表示∠CPO′(请直接写出答案).29.如图1.将线段AB平移至CD,使A与D对应,B与C对应,连AD、BC.(1)填空:AB与CD的关系为,∠B与∠D的大小关系为(2)如图2,若∠B=60°,F、E为 BC的延长线上的点,∠EFD=∠EDF,DG平分∠CDE交BE于G,求∠FDG.(3)在(2)中,若∠B=α,其它条件不变,则∠FDG= .30.已知:如图,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①所示,求证:OB∥AC.(注意证明过程要写依据)(2)如图②,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠大全BOF.(ⅰ)求∠EOC的度数;(ⅱ)求∠OCB:∠OFB的比值;(ⅲ)如图③,若∠OEB=∠OCA.此时∠OCA度数等于.(在横线上填上答案即可)31.数学思考:(1)如图1,已知AB∥CD,探究下面图形中∠APC和∠PAB、∠PCD的关系,并说明你探究的结论的正确性.推广延伸:(2)①如图2,已知AA1∥BA3,请你猜想∠A1、∠B1、∠B2、∠A2、∠A3的关系,并证明你的猜想;②如图3,已知AA1∥BAn,直接写出∠A1、∠B1、∠B2、∠A2、…∠Bn﹣1、∠An的关系.拓展应用:(3)①如图4,若AB∥EF,用含α,β,γ的式子表示x,应为A.α+β+γ B.β+γ﹣α C.180°﹣α﹣γ+β D.180°+α+β﹣γ②如图5,AB∥CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP=50°,则∠GHM的大小是.32.已知,直线AB∥CD(1)如图1,点E在直线BD的左侧,猜想∠ABE、∠CDE、∠BED的数量大全关系,并证明你的结论;(2)如图2,点E在直线BD的左侧,BF、DF分别平分∠ABE、∠CDE,猜想∠BFD和∠BED的数量关系,并证明你的结论;(3)如图3,点E在直线BD的右侧,BF、DF分别平分∠ABE、∠CDE;那么第(2)题中∠BFD和∠BED的数量关系的猜想是否仍成立?如果成立,请证明;如果不成立,请写出你的猜想,并证明.33.阅读下列材料并填空:(1)探究:平面上有n个点(n≥2)且任意3个点不在同一条直线上,经过每两点画一条直线,一共能画多少条直线?我们知道,两点确定一条直线.平面上有2个点时,可以画条直线,平面内有3个点时,一共可以画条直线,平面上有4个点时,一共可以画条直线,平面内有5个点时,一共可以画条直线,…平面内有n个点时,一共可以画条直线.(2)迁移:某足球比赛中有n个球队(n≥2)进行单循环比赛(每两队之间必须比赛一场),一共要进行多少场比赛?有2个球队时,要进行场比赛,有3个球队时,要进行场比赛,有4个球队时,要进行场比赛,…那么有20个球队时,要进行场比赛.34.若∠C=α,∠EAC+∠FBC=β大全(1)如图①,AM是∠EAC的平分线,BN是∠FBC的平分线,若AM∥BN,则α与β有何关系?并说明理由.(2)如图②,若∠EAC的平分线所在直线与∠FBC平分线所在直线交于P,试探究∠APB与α、β的关系是.(用α、β表示)(3)如图③,若α≥β,∠EAC与∠FBC的平分线相交于P1,∠EAP1与∠FBP1的平分线交于P2;依此类推,则∠P5= .(用α、β表示)35.已知,AB∥CD,点E为射线FG上一点.(1)如图1,直接写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数.36.已知AB∥CD,点P在直线AB、CD之间,连接AP、CP.(1)探究发现:(填空)填空:如图1,过P作PQ∥AB,大全∴∠A+∠1= °()∵AB∥CD(已知)∴PQ∥CD()∴∠C+∠2=180°结论:∠A+∠C+∠APC= °;(2)解决问题:①如图2,延长PC至点E,AF、CF分别平分∠PAB、∠DCE,试判断∠P 与∠F存在怎样的数量关系并说明理由;②如图3,若∠APC=100°,分别作BN∥AP,DN∥PC,AM、DM分别平分∠PAB,∠CDN,则∠M的度数为(直接写出结果).37.如图1,AB∥CD,E是AB、CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.直接写出∠AFD 与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.38.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图1,一束光线m射到平面镜a 上,被a反射后的光线为n,则入射光线m、反射光线n与平面镜a所夹大全的锐角∠1=∠2.(1)如图2,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2= °,∠3= °.(2)在(1)中m∥n,若∠1=55°,则∠3= °;若∠1=40°,则∠3= °.(3)由(1)、(2),请你猜想:当两平面镜a、b的夹角∠3= °时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?(4)如图3,两面镜子的夹角为α°(0<α<90)时,进入光线与离开光线的夹角为β°(0<β<90).试探索α与β的数量关系.直接写出答案..39.已知EF∥MN,一直角三角板如图放置.∠ACB=90°.(1)如图1,若∠1=60°,则∠2= 度;(2)如图2,若∠1=∠B﹣20°.则∠2= 度;(3)如图3,延长AC交直线MN于D,GH平分∠CGN,DK平分∠ADN交GH于K,问∠GKD是否为定值,若是求值,不是说明理由.40.已知AD∥CE,点B为直线AD、CE所确定的平面内一点.(1)如图1所示,求证:∠ADB=∠B+∠BFE.(2)如图2,FG平分∠BFE,DG交FG于点G交BF于点H,且∠BDG:∠ADG=2:1,∠B=20°,∠DGF=30°,求∠BHD的度数.大全1.(﹣5,2)或(5,2);2. (1,3)或(5,1)3. B;4.(8,3),(5,0);5.(8052,0)6.(2007,1)7. 45.8.(4023,).9.(5,﹣5).10.(﹣5,13).11.(14,10);12.(32,3),(64,0);13.(﹣1009,1009)七下平行线,平面直角坐标系压轴题参考答案与试题解析一.填空题(共13小题)1.已知点M(3,2)与点N(x,y)在同一条平行于x轴的直线上,且点N到y轴的距离为5,则点N的坐标为(﹣5,2)或(5,2).【分析】根据点M(3,2)与点N(x,y)在同一条平行于x轴的直线上,可得点M的纵坐标和点N的纵坐标相等,由点N到y轴的距离为5,可得点N的横坐标的绝对值等于5,从而可以求得点N的坐标.【解答】解:∵点M(3,2)与点N(x,y)在同一条平行于x轴的直线上,∴点M的纵坐标和点N的纵坐标相等.∴y=2.∵点N到y轴的距离为5,∴|x|=5.得,x=±5.∴点N的坐标为(﹣5,2)或(5,2).故答案为:(﹣5,2)或(5,2).【点评】本题考查坐标与图形的性质,解题的关键是明确与x轴平行的直线上所有点的纵坐标相等,到y轴的距离是点的横坐标的绝对值.2.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为(1,3)或(5,1).【分析】分两种情况①当A平移到点C时,②当B平移到点C时,分别利用平移中点的变化规律求解即可.大全【解答】解:①如图1,当A平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点A的横坐标增大了1,纵坐标增大了2,平移后的B坐标为(1,3),②如图2,当B平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点B的横坐标增大了3,纵坐标增大2,∴平移后的A坐标为(5,1),故答案为:(1,3)或(5,1).【点评】本题考查坐标系中点、线段的平移规律,关键要理解在平面直角坐标系中,图形的平移与图形上某点的平移相同,从而通过某点的变化情况来解决问题.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.3.如图的坐标平面上有一正五边形ABCDE,其中C、D两点坐标分别为(1,0)、(2,0).若在没有滑动的情况下,将此五边形沿着x轴向右滚动,则滚动过程中,经过点(75,0)的是 B (填A、B、C、D或E).【分析】根据点(75,0)的横坐标是5的倍数,而该正五边形滚动5次正好一周,由此可知经过(5,0)的点经过(75,0),找到经过(5,0)的点即可.【解答】解:∵C、D两点坐标分别为(1,0)、(2,0).∴按题中滚动方法点E经过点(3,0),点A经过点(4,0),点B经过点(5,0),∵点(75,0)的横坐标是5的倍数,而该正五边形滚动5次正好一周,∴可知经过(5,0)的点经过(75,0),∴点B经过点(75,0).故答案为:B.【点评】本题考查了正多边形和圆及坐标与图形性质,解题的关键是了大全解正五边形滚动5次正好一个轮回,并由此判断经过点(75,0)的点就是经过(5,0)的点.4.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为Pn ,则点P3的坐标是(8,3);点P2014的坐标是(5,0).【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2014除以6,根据商和余数的情况确定所对应的点的坐标即可.【解答】解:如图,经过6次反弹后动点回到出发点(0,3),当点P第3次碰到矩形的边时,点P的坐标为:(8,3);∵2014÷6=335…4,∴当点P第2014次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(5,0).故答案为:(8,3),(5,0).【点评】此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.5.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为(8052,0).【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个大全三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2013除以3,根据商为671可知第2013个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.【解答】解:∵点A(﹣3,0)、B(0,4),∴AB==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2013÷3=671,∴△2013的直角顶点是第671个循环组的最后一个三角形的直角顶点,∵671×12=8052,∴△2013的直角顶点的坐标为(8052,0).故答案为:(8052,0).【点评】本题是对点的坐标变化规律的考查了,难度不大,仔细观察图形,得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.6.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2008次,点P依次落在点P1,P2,P3,P4,…,P2008的位置,则P2008的坐标为(2007,1).【分析】根据图形得出点的坐标变化规律,再根据规律对2008 变形,得出结论.【解答】解:根据规律P1(1,1),P2(2,0)=P3,P4(3,1),P5(5,1),P6(6,0)=P7,P8(7,1)…每4个一循环,可以判断P2008坐标在502次循环后与P4坐标纵坐标一致,坐标应该是(2007,1)故答案为:(2007,1)【点评】本题主要考查了对正方形的性质,坐标与图形性质等知识点的理解和掌握,体现了由特殊到一般的数学方法,这一解答问题的方法在考查本节的知识点时经常用到,是在研究特例的过程中总结规律.7.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为45 .大全【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2012个点是(45,13),所以,第2012个点的横坐标为45.故答案为:45.【点评】本题考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题的关键.8.如图,将边长为2的等边三角形沿x轴正方向连续翻折2012次,依次得到点P1,P2,P3…P2012.则点P2012的坐标是(4023,).【分析】根据等边三角形的性质易求得P1的坐标为(1,);在等边三角形翻折的过程中,P点的纵坐标不变,而每翻折一次,横坐标增加2个单位(即等边三角形的边长),可根据这个规律求出点P2012的坐标.【解答】解:易得P1(1,);而P1P2=P2P3=2,∴P2(3,),P3(5,);依此类推,Pn(1+2n﹣2,),即Pn(2n﹣1,);大全当n=2012时,P2012(4023,).故答案为:(4023,).【点评】考查了规律型:点的坐标.解答此类规律型问题时,通常要根据简单的条件得到一般化规律,然后根据规律求特定的值.9.如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A 7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为(5,﹣5).【分析】由=5易得A20在第四象限,根据A4的坐标,A8的坐标,A12的坐标不难推出A20的坐标.【解答】解:∵=5,∴A20在第四象限,∵A4所在正方形的边长为2,A4的坐标为(1,﹣1),同理可得:A8的坐标为(2,﹣2),A12的坐标为(3,﹣3),∴A20的坐标为(5,﹣5),故答案为:(5,﹣5).【点评】本题考查坐标与图形的性质,解题关键是首先找出A20所在的象限.10.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根据这个规律探索可得,第90个点的坐标为(﹣5,13).【分析】观察可知,纵坐标的数值与点的个数相等,然后求出第90个点大全的纵坐标,以及在这一坐标中的序数,再根据纵坐标是奇数的从右到左计数,纵坐标是偶数的从左到右计数,然后解答即可.【解答】解:(0,1),共1个,(0,2),(1,2),共2个,(1,3),(0,3),(﹣1,3),共3个,…,依此类推,纵坐标是n的共有n个坐标,1+2+3+…+n=,当n=13时,=91,所以,第90个点的纵坐标为13,(13﹣1)÷2=6,∴第91个点的坐标为(﹣6,13),第90个点的坐标为(﹣5,13).故答案为:(﹣5,13).【点评】本题考查了点的坐标与规律变化问题,观察出纵坐标的数值与相应的点的坐标的个数相等是解题的关键.11.如图所示,在平面直角坐标系中,有若干个整数点,其顺序按图中箭头方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),…,根据这个规律探索可得,第102个点的坐标为(14,10).【分析】应先判断出第102个数在第几行,第几列,再根据分析得到的规律求解.【解答】解:把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列,依此类推,则第一列有一个数,第二列有2个数,第n列有n 个数.则n 列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.因为105=1+2+3+…+14,则第102个数一定在第14列,由下到上是第11个数.因而第102个点的坐标是(14,10).故答案填:(14,10).【点评】本题考查了学生阅读理解并总结规律的能力,解决的关键是能正确找出题目中点的规律.大全大全12.如图,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3…已知:A (1,3),A 1(2,3),A 2(4,3),A 3(8,3);B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).观察每次变换前后的三角形有何变化,按照变换规律,第五次变换后得到的三角形A 5的坐标是 (32,3) ,B 5的坐标是 (64,0) .【分析】寻找规律求解.【解答】解:A 、A 1、A 2…A n 都在平行于X 轴的直线上,点的纵坐标都相等,所以A 5的纵坐标是3;这些点的横坐标有一定的规律:A n =2n.因而点A 5的横坐标是25=32; B 、B 1、B 2…B n 都在x 轴上,B 5的纵坐标是0;这些点的横坐标也有一定的规律:B n =2n+1,因而点B 5的横坐标是B 5=25+1=64. ∴点A 5的坐标是(32,3),点B 5的坐标是(64,0).故答案分别是:(32,3),(64,0).【点评】考查X 轴上的点的特征与平行于X 轴的直线上点的特点.注意数形结合思想在此的应用,找到点的变化规律是解题的关键.13.如图,在平面直角坐标系上有点A (1,0),点A 第一次向左跳动至点A 1(﹣1,1),第二次向右跳动至点A 2(2,1),第三次向左跳动至点A 3(﹣2,2),第四次向右跳动点A 4(3,2),…,依次规律跳动下去,点A 第2017次跳动至点A 2017的坐标是 (﹣1009,1009). .【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【解答】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2), 第6次跳动至点的坐标是(4,3), 第8次跳动至点的坐标是(5,4), …第2n 次跳动至点的坐标是(n+1,n ),则第2018次跳动至点的坐标是(1010,1009), 第2017次跳动至点A 2017的坐标是(﹣1009,1009).故答案为:(﹣1009,1009).【点评】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.二.解答题(共27小题)14.如图,已知直线AB∥CD,直线EF分别与AB、CD相交于点E、F,FM 平分∠EFD,点H是射线EA上一动点(不与点E重合),过点H的直线交EF于点P,HM平分∠BHP交FM于点M.(1)如图1,试说明:∠HMF=(∠BHP+∠DFP);请在下列解答中,填写相应的理由:解:过点M作MQ∥AB(过直线外一点有且只有一条直线与这条直线平行).∵AB∥CD(已知),∴MQ∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∴∠1=∠3,∠2=∠4(两直线平行,内错角相等)∴∠1+∠2=∠3+∠4(等式的性质)即∠HMF=∠1+∠2.∵FM平分∠EFD,HM平分∠BHP(已知)∵∠1=∠BHP,∠2=∠DFP(角平分线定义)∴∠HMF=∠BHP+∠DFP=(∠BHP+∠DFP)(等量代换).(2)如图2,若HP⊥EF,求∠HMF的度数;(3)如图3,当点P与点F重合时,FN平分∠HFE交AB于点N,过点N作NQ⊥FM于点Q,试说明无论点H在何处都有∠EHF=2∠FNQ.【分析】(1)根据两直线平行,内错角相等,以及角平分线定义进行判断即可;(2)先根据HP⊥EF,AB∥CD,得到∠EHP+∠DFP=90°,再根据(1)中结论即可得到∠HMF的度数;(3)先根据题意得到∠NFQ=90°﹣∠FNQ,再根据FN平分∠HFE,FM平分∠EFD,即可得出∠HFD=2∠NFQ,最后根据∠EHF+∠HFD=180°,即可得出∠EHF=2∠FNQ.【解答】解:(1)由MQ∥CD,得到∠1=∠3,∠2=∠4,其依据为:两直线平行,内错角相等;由FM平分∠EFD,HM平分∠BHP,得到∠1=∠BHP,∠2=∠DFP,其依据为:角平分线定义.大全故答案为:两直线平行,内错角相等;角平分线定义.(2)如图2,∵HP⊥EF,∴∠HPE=90°,∴∠EHP+∠HEP=180°﹣90°=90°(三角形的内角和等于180°)又∵AB∥CD,∴∠HEP=∠DFP.∴∠EHP+∠DFP=90°.由(1)得:∠HMF=(∠EHP+∠DFP)=×90°=45°.(3)如图3,∵NQ⊥FM,∴∠NFQ+∠FNQ=180°﹣90°=90°(三角形的内角和等于180°).∴∠NFQ=90°﹣∠FNQ.∵FN平分∠HFE,FM平分∠EFD,又∵∠NFQ=∠NFE+∠QFE=(∠HFE+∠EFD)=∠HFD,∴∠HFD=2∠NFQ.又∵AB∥CD,∴∠EHF+∠HFD=180°,∴∠EHF=180°﹣∠HFD=180°﹣2∠NFQ=180°﹣2(90°﹣∠FNQ)=2∠FNQ,即无论点H在何处都有∠EHF=2∠FNQ.【点评】本题主要考查了平行线的性质与判定,角平分线的定义以及平行公理的运用,解决问题的关键是掌握:两直线平行,内错角相等;两直线平行,同旁内角互补.15.如图1,直线m∥n,点B、F在直线m上,点E、C在直线n上,连结FE并延长至点A,连结BA和CA,使∠AEC=∠BAC.(1)求证:∠BFA+∠BAC=180°;(2)请在图1中找出与∠CAF相等的角,并加以证明;(3)如图2,连结BC交AF于点D,作∠CBF和∠CEF的角平分线交于点M,若∠ADC=α,请直接写出∠M的度数(用含α的式子表示)大全。
平面直角坐标系找规律100题
以下是关于在平面直角坐标系中寻找规律的100道题目:1. 绘制点(1, 1), (2, 4), (3, 9), (4, 16), ... 并继续这个规律。
2. 连接点(-1, 0), (0, 1), (1, 0), (0, -1), (-1, 0) 形成一个图形。
这个图形是什么?3. 找到缺失的坐标:(2, 5), (4, 10), (6, ?)。
4. 绘制点(0, 0), (1, 1), (2, 4), (3, 9), ... 并继续这个规律。
5. 连接点(1, 1), (2, 2), (3, 3), (4, 4), ... 形成一条直线。
这条直线的斜率是多少?6. 找到缺失的坐标:(3, 6), (5, ?), (7, 14)。
7. 绘制点(-1, 0), (-2, 0), (-3, 0), (-4, 0), ... 并继续这个规律。
8. 连接点(0, 1), (1, 0), (0, -1), (-1, 0), (0, 1) 形成一个图形。
这个图形是什么?9. 找到缺失的坐标:(2, 4), (4, ?), (6, 12)。
10. 绘制点(1, 1), (2, 4), (3, 9), (4, 16), ... 并找出这个规律的方程。
11. 连接点(1, 2), (2, 4), (3, 6), (4, 8), ... 形成一条直线。
这条直线的斜率是多少?12. 找到缺失的坐标:(2, 5), (4, ?), (6, 11)。
13. 绘制点(-1, -1), (0, 0), (1, 1), (2, 2), ... 并继续这个规律。
14. 连接点(-1, 1), (-2, 2), (-3, 3), (-4, 4), ... 形成一条直线。
这条直线的斜率是多少?15. 找到缺失的坐标:(3, 6), (5, ?), (7, 13)。
16. 绘制点(0, 0), (1, 1), (2, 4), (3, 9), ... 并找出这个规律的方程。
七年级数学下册 专题训练:平面直角坐标系中点的规律探究(精选30题)(解析版)
七年级下册数学《第七章平面直角坐标系》专题:平面直角坐标系中点的规律探究一、选择题(共10题)1.(2022秋•定远县期中)如图,在平面直角坐标系中,点A(﹣1,0),点A第1次向上跳动1个单位至点A1(﹣1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…依此规律跳动下去,点A第2022次跳动至点A2022的坐标是()A.(505,1009)B.(﹣506,1010)C.(﹣506,1011)D.(506,1011)【分析】设第n次跳动至点A n,根据部分点A n坐标的变化找出变化规律“A4n(﹣n﹣1,2n),A4n+1(﹣n﹣1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数)”,依此规律结合2022=505×4+2即可得出点A2022的坐标.【解答】解:设第n次跳动至点A n,观察,发现:A(﹣1,0),A1(﹣1,1),A2(1,1),A3(1,2),A4(﹣2,2),A5(﹣2,3),A6(2,3),A7(2,4),A8(﹣3,4),A9(﹣3,5),…,∴A4n(﹣n﹣1,2n),A4n+1(﹣n﹣1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数).∵2022=505×4+2,∴A2022(506,1011).故选:D.【点评】本题考查了规律型中点的坐标,根据部分点A n坐标的变化找出变化规律是解题的关键.2.(2022秋•古田县期中)在平面直角坐标系中,设一质点M自P0(1,0)处向上运动1个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,…如此继续运动下去.设P n(x n,y n),n=1,2,3…,则x1+x2+…+x2017的值为()A.2016B.2017C.﹣2016D.2015【分析】根据给定的平移规律,可得x1=1,x2=﹣1,x3=﹣1,x4=3,进一步可得x1+x2+x3+x4=1+(﹣1)+(﹣1)+3=2,同理可得x5+x6+x7+x8=3+(﹣3)+(﹣3)+5=2,再根据2017÷4=504...1,进一步计算即可.【解答】解:根据题意,可得x1=1,x2=﹣1,x3=﹣1,x4=3,∴x1+x2+x3+x4=1+(﹣1)+(﹣1)+3=2,同理可得x5+x6+x7+x8=3+(﹣3)+(﹣3)+5=2,∵2017÷4=504...1,∴x2017=2×504+1=1009,∴x1+x2+…+x2017=504×2+1009=2017,故选:B.【点评】本题考查了坐标与平移,找出点坐标之间的规律是解题的关键.3.(2022秋•李沧区期末)如图,在平面直角坐标系中,A1(1,﹣2),A2(2,0),A3(3,2),A4(4,0),…根据这个规律,点A2023的坐标是()A.(2022,0)B.(2023,0)C.(2023,2)D.(2023,﹣2)【分析】由图形得出点的横坐标依次是1、2、3、4、…、n,纵坐标依次是﹣2、0、2、0、﹣2、0、2、…,四个一循环,继而求得答案.【解答】解:观察图形可知,点的横坐标依次是1、2、3、4、…、n,纵坐标依次是﹣2、0、2、0、﹣2、0、2、…,四个一循环,2023÷4=505……3,所以点A2023坐标是(2023,2).故选:C.【点评】本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解题的关键是根据图形得出规律.4.(2021春•浉河区期末)如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次向右跳动3个单位至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次向右跳动5个单位至点A4(3,2),…,以此规律跳动下去,点A第2021次跳动至点A2021的坐标是()A.(﹣1009,1009)B.(﹣1010,1010)C.(﹣1011,1011)D.(﹣1012,1012)【分析】根据点的坐标、坐标的平移寻找规律即可求解.【解答】解:因为A1(﹣1,1),A2(2,1),A3(﹣2,2),A4(3,2),A5(﹣3,3),A6(4,3),A7(﹣4,4),A8(5,4),…A2n﹣1(﹣n,n),A2n(n+1,n)(n为正整数),所以2n﹣1=2021,n=1011,所以A2020(﹣1011,1011),故选:C.【点评】本题考查了点的坐标、坐标的平移,解决本题的关键是寻找点的变化规律.5.(2021秋•九江期末)如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙都从点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2022次相遇点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,0)D.(﹣1,﹣1)【分析】根据两个物体运动速度和矩形周长,得到两个物体的相遇时间间隔,进而得到两个点相遇的位置规律.【解答】解:由已知,矩形周长为12,∵甲、乙速度分别为1单位/秒,2单位/秒,则两个物体每次相遇时间间隔为121+2=4秒,则两个物体相遇点依次为(﹣1,1)、(﹣1,﹣1)、(2,0),∵2022=3×673…3,∴第2022次两个物体相遇位置为(2,0),故选:A.【点评】本题为平面直角坐标系内的动点坐标规律探究题,解答关键是找到两个物体相遇的位置的变化规律.6.(2022春•启东市期中)如图,在平面直角坐标系xOy中,点A坐标是(1,1).若记点A坐标为(a1,a2),则一个点从点A出发沿图中路线依次经过B(a3,a4),C(a5,a6),D(a7,a8)…,每个点的横纵坐标都是整数,按此规律一直运动下去,则a2020+a2021+a2022的值为()A.2021B.2022C.1011D.1012【分析】观察已知点的坐标可得,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2021=1011,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,进而可得结果.【解答】解:由直角坐标系可知A(1,1),B(2,﹣1),C(3,2),D(4,﹣2),……,即a1=1,a2=1,a3=2,a4=﹣1,a5=3,a6=2,a7=4,a8=﹣2,……,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2021=1011,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,∴a2021=﹣505,2023÷4=505……3,∴a2022=506,故a2020+a2021+a2022=1012,故选:D.【点评】本题主要考查了规律型:点的坐标,探索数字与字母规律是解题关键.7.(2022•浉河区校级开学)如图,在平面直角坐标系中,A1(2,0),B1(0,1),A1B1的中点为C1;A2(0,3),B2(﹣2,0),A2B2的中点为C2;A3(﹣4,0),B3(0,﹣3),A3B3的中点为C3;A4(0,﹣5),B4(4,0),A4B4的中点为C4;…;按此做法进行下去,则点C2022的坐标为()A.(﹣1012,−20232)B.(﹣1011,20232)C.(﹣1011,−20232)D.(﹣1012,−20212)【分析】根据题意得点∁n的位置按4次一周期的规律循环出现,可求得点C2022在第二象限,从而可求得该题结果.【解答】解:由题意可得,点∁n的位置按4次一周期的规律循环出现,∵2022÷4=505……2,∴点C2022在第二象限,∵位于第二象限内的点C2的坐标为(﹣1,32),点C6的坐标为(﹣3,72),点C10的坐标为(﹣5,112),……∴点∁n的坐标为(−2,r12),∴当n=2022时,−2=−20222=−1011,r12=2022+12=20232,∴点C2022的坐标为(﹣1011,20232),故选:B.【点评】此题考查了点的坐标方面规律性问题的解决能力,关键是能根据题意确定出该点的出现规律.8.(2022春•冷水滩区校级期中)如图,已知A1(1,2)A2(2,2)A3(3,0)A4(4,﹣2)A5(5,﹣2)A6(6,0)……,按这样的规律,则点A2021的坐标为()A.(2021,2)B.(2020,2)C.(2021,﹣2)D.2020,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【解答】解:观察发现,每6个点形成一个循环,∵A6(6,0),∴OA6=6,∵2021÷6=336…5,∴点A2021的位于第337个循环组的第5个,∴点A2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,∴点A2021的坐标为(2021,﹣2).故选:C.【点评】本题考查了平面直角坐标系中的点的规律问题,发现题中的规律并正确计算出点A2021所处的循环组是解题的关键.9.(2022春•宣化区期末)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒2个单位长度,则第2022秒时,点P的坐标是()A.(2021,0)B.(2021,﹣1)C.(2022,1)D.(2022,0)【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2015的坐标.【解答】解:半径为1个单位长度的半圆的周长为:12×2×1=,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒2个单位长度,∴点P1秒走12个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2022÷4=505余2,∴P的坐标是(2022,0),故选:D.【点评】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.10.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,﹣1)…根据这个规律探索可得,第100个点的坐标()A.(14,0)B.(14,﹣1)C.(14,1)D.(14,2)【分析】观察图形可知,横坐标相等的点的个数与横坐标相同,根据求和公式求出第100个点的横坐标以及在这一横坐标中的所有点中的序数,再根据横坐标是奇数时从上向下排列,横坐标是偶数时从下向上排列,然后解答即可.【解答】解:由图可知,横坐标是1的点共有1个,横坐标是2的点共有2个,横坐标是3的点共有3个,横坐标是4的点共有4个,…,横坐标是n的点共有n个,1+2+3+…+n=or1)2,当n=13时,13×(13+1)2=91,当n=14时,14×(14+1)2=105,所以,第100个点的横坐标是14,∵100﹣91=9,∴第100个点是横坐标为14的点中的第9个点,∵第142=7个点的纵坐标是0,∴第9个点的纵坐标是2,∴第100个点的坐标是(14,2).故选:D.【点评】本题是对点的变化规律的考查,观察得到横坐标相等的点的个数与横坐标相同是解题的关键,还要注意横坐标为奇数和偶数时的排列顺序不同.二、填空题(共10题)11.(2022春•东洲区期末)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(﹣1,1),第2次接着运动到点(﹣2,0),第3次接着运动到点(﹣3,2),…,按这样的运动规律,经过第2022次运动后,动点P的坐标是.A.(2022,0)B.(﹣2022,0)C.(﹣2022,1)D.(﹣2022,2)【分析】观察图形可知:每4次运动为一个循环,并且每一个循环向左运动4个单位,用2022÷4可判断出第2022次运动时,点P在第几个循环第几次运动中,进一步即可计算出坐标.【解答】解:动点P的运动规律可以看作每运动四次为一个循环,每个循环向左运动4个单位,∵2022÷4=505……2,∴第2022次运动时,点P在第506次循环的第2次运动上,∴横坐标为﹣(505×4+2)=﹣2022,纵坐标为0,∴此时P(﹣2022,0).故答案为:(﹣2022,0).【点评】本题考查规律型:点坐标,解答时注意探究点的运动规律,又要注意动点的坐标的象限符号.12.(2022秋•肃州区校级期末)如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…则点A2022的坐标是.【分析】根据题意可以发现规律:A4n(﹣n,n),A4n+1(n+1,n),A4n+2(n+1,﹣n ﹣1),A4n+3(﹣n﹣1,﹣n﹣1),根据规律求解即可.【解答】解:根据题意可以发现规律:A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),A6(2,﹣2),A7(﹣2,﹣2),A8(﹣2,2),…,∴A4n(﹣n,n),A4n+1(n+1,n),A4n+2(n+1,﹣n﹣1),A4n+3(﹣n﹣1,﹣n﹣1),∵2022=4×505+2,∴点A2022的坐标为(506,﹣506),故答案为:(506,﹣506).【点评】本题主要考查规律性:点的坐标,读懂题意,找出点的坐标规律是解答此题的关键.13.(2021秋•同安区期末)如图,点A(0,1),点A1(2,0),点A2(3,2),点A3(5,1)…,按照这样的规律下去,点A2021的坐标为.【分析】观察图形得到奇数点的规律为,A1(2,0),A3(5,1),A5(8,2),…,A2n﹣1(3n﹣1,n﹣1),由2021是奇数,且2021=2n﹣1,则可求A2n﹣1(3032,1010).【解答】解:观察图形可得,A1(2,0),A3(5,1),A5(8,2),…,A2n﹣1(3n﹣1,n﹣1),A2(3,2),A4(6,3),A6(9,4),…,A2n(3n,n+1),∵2021是奇数,且2021=2n﹣1,∴n=1011,(3032,1010),∴A2n﹣1故答案为(3032,1010).【点评】本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键.14.(2022•嘉峪关一模)如图,平面直角坐标系xOy内,动点P按图中箭头所示方向依次运动,第1次从点(0,1)运动到点(1,0),第二次运动到点(2,﹣2),第3次运动到点(3,0),……按这样的运动规律,动点P第2022次运动到的点的坐标是.【分析】根据图形分析点P的运动规律:第n次运动到的点的横坐标为n,纵坐标每四次为一个循环,即可得到答案.【解答】解:∵第1次运动到点(1,0),第二次运动到点(2,﹣2),第3次运动到点(3,0),…,∴第n次运动到的点的横坐标为n,纵坐标每四次一个循环,从第一次运动到的纵坐标开始,分别为0、﹣2、0、1、…,∵2022÷4=505⋯2,∴动点P第2022次运动到的点的坐标是(2022,﹣2),故答案为:(2022,﹣2).【点评】此题考查了图形坐标的规律,正确理解图形运动坐标变化规律,得到点P的坐标是解题的关键.15.(2022秋•涡阳县校级月考)如图,一动点在第一象限内及x轴,y轴上运动,第一分钟,它从原点运动到(1,0),第二分钟,从(1,0)运动到(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向来回运动,每分钟运动1个单位长度.第30分钟,动点所在的位置的坐标是.【分析】根据移动次数与点的坐标的所呈现的规律进行计算即可.【解答】解:根据移动的方向,距离所呈现的规律可得,当移动到点(1,0)时,对应的移动次数为1次,当移动到点(2,0)时,对应的移动次数为4+2×2=8次,当移动到点(3,0)时,对应的移动次数为8+1=9次,当移动到点(4,0)时,对应的移动次数为9+3×2+1+4×2=24次,当移动到点(5,0)时,对应的移动次数为24+1=25次,所以移动30次,所对应的点的坐标为(5,5),故答案为:(5,5).【点评】本题考查点的坐标,发现移动次数与点的坐标所呈现的规律是正确解答的关键.16.(2022•绥化三模)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,点P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2),…,根据这个规律,点P2022的坐标为.【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第四象限,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限,被4除余3的点在第一象限的角平分线上,点P2022的在第三象限,且横纵坐标的绝对值=2022÷4的商,纵坐标是2022÷4的商+1,再根据第三项象限内点的符号得出答案即可.【解答】解:∵2022÷4=505…2,∴点P2022在第二象限,∵P6(﹣1,2),P10(﹣2,3),P14(﹣3,4),…,6÷4=1…2,10÷4=2…2,14÷2=3..2,…,∴P2022(﹣505,506).故答案为:(﹣505,506).【点评】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,所在正方形,然后就可以进一步推得点的坐标.17.(2022秋•杏花岭区校级期中)在平面直角坐标系xOy中,对于点P(x,y),我们把点P1(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,⋯,A n,若点A1的坐标为(3,1),则点A2022的坐标为.【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2022除以4,根据商和余数的情况确定点A2022的坐标即可.【解答】解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2022÷4=505余2,∴点A2022的坐标与A2的坐标相同,为(0,4);故答案为:(0,4).【点评】此题考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.18.(2022春•长安区校级期中)如图1,弹性小球从点P(0,3)出发,沿图中所示方向运动,每当小球碰到长方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到长方形的边时,记为点P1,第2次碰到长方形的边时,记为点P2,…,第n次碰到长方形的边时,记为点P n,则点P3的坐标是;点P2022的坐标是.【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2022除以6,根据商和余数的情况确定所对应的点的坐标即可.【解答】解:如图,根据图形知点P3的坐标是(8,3),根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(0,3),∵2022÷6=337,当点P第2021次碰到矩形的边时为第337个循环组的第6次反弹,点P的坐标为(0,3),故答案为:(8,3),(0,3).【点评】本题考查了矩形的性质、点的坐标的规律;作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.19.(2022春•五华区校级期中)如图,在直角坐标系中,长方形OABC的长为2,宽为1,将长方形OABC沿x轴翻转1次,点A落在A1处,翻转2次,点A落在A2处,翻转3次,点A落在A3处(点A3与点A2重合),翻转4次,点A落在A4处,以此类推…,若翻转2022次,点A落在A2022处,则A2022的坐标为.【分析】探究规律,利用规律解决问题即可.【解答】解:由题意A1(3,2),A2(A3)(5,0),A4(6,1),•••,发现4次一个循环,∵2022÷4=505.....2,∴A2022的纵坐标与A2相同,横坐标=505×6+5=3035,∴A2022(3035,0),故答案为:(3035,0).【点评】本题考查坐标与图形的变化﹣对称,规律型问题,解题的关键是学会探究规律的方法,属于中考填空题中的压轴题.20.(2022春•江岸区校级月考)如图,在平面直角坐标系中,有若干个横坐标,纵坐标均为整数的点.其顺序按图中“→”方向依次排列:(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→…根据这个规律,第87个点的坐标为,第2022个点的坐标为.【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点的横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束.例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,......,右下角的点的横坐标为9时,共有92=81个,9是奇数,以横坐标为9,纵坐标为0的点结束,故第87个点的坐标为(10,5),右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),∴第2020个点的坐标为(45,3)故答案为:(10,5),(45,3).【点评】本题考查了点的坐标的规律变化,观察出点的个数按照平方数的规律变化是解题的关键.三、解答题(共10题)21.(2022秋•无为市月考)在平面直角坐标系中,一个动点A从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次只移动1个单位长度,其行走路线如图所示.(1)填写下列各点的坐标:A4,A6,A12,A14.(2)按此规律移动,n为正整数,则点A4n的坐标为,点A4n+2的坐标为.(3)动点A从点A2022到点A2023的移动方向是.(填“向上”、“向右”或“向下”)【分析】(1)根据点的坐标变化即可填写各点的坐标;(2)根据(1)发现规律即可写出点A4n的坐标(n为正整数);(3)根据(2)发现的规律,每四个点一个循环,进而可得蜗牛从点A2020到点A2021的移动方向.【解答】解:(1)根据点的坐标变化可知:各点的坐标为:A4(2,0),A6(3,1),A12(6,0),A14(7,1);故答案为:(2,0),(3,1),(6,0),(7,1);(2)根据(1)发现:点A4n的坐标(n为正整数)为(2n,0);点A4n+2的坐标为(2n+1,1);故答案为:(2n,0),(2n+1,1);(3)因为每四个点一个循环,所以2023÷4=505…3.所以从点A2022到点A2023的移动方向是向下.故答案为:向下.【点评】本题考查了规律型﹣点的坐标,解决本题的关键是根据点的坐标变化发现规律,总结规律,运用规律.22.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0)…(1)填写下列各点的坐标:P9(、),P12(、),P15(、)(2)写出点P3n的坐标(n是正整数);(3)点P60的坐标是(、);(4)指出动点从点P210到点P211的移动方向.【分析】由题意可以知道,动点运动的速度是每次运动一个单位长度,(0,1)→(1,1)→(1,0)→(1,﹣1)……通过观察找到有规律的特殊点,如P3、P6、P9、P12,发现其中规律是脚标是3的倍数的点,依次排列在x轴上,且相距1个单位,明确这个规律即可解决以上所有问题.【解答】解:(1)由动点运动方向与长度可得P3(1,0),P6(2,0),可以发现脚标是3的倍数的点,依次排列在x轴上,且相距1个单位,即动点运动三次与横轴相交,故答案为P9(3,0),P12(4、0),P15(5、0).(2)由(1)可归纳总结点P3n的坐标为P3n(n,0),(n是正整数);(3)根据(2),∵60=3×20,∴点P60的横坐标是20故点P60的坐标是(20、0)故答案为(20、0).(4)∵210=3×70,符合(2)中的规律∴点P210在x轴上,又由图象规律可以发现当动点在x轴上时,偶数点向上运动,奇数点向下运动,而点P210是在x轴上的偶数点所以动点从点P210到点P211的移动方向应该是向上.【点评】本题是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定动点移动的数字与方向上的规律,然后再进一步按规律解决要求的点的位置.23.(2021秋•长丰县期末)如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2、4、6、8、…,顶点依次用A1、A2、A3、A4、…表示.(1)请直接写出A5、A6、A7、A8的坐标;(2)根据规律,求出A2022的坐标.【分析】(1)看图观察即可直接写出答案;(2)根据正方形的性质找出部分A n点的坐标,根据坐标的变化找出变化规律“A4n+1(﹣n﹣1,﹣n﹣1),A4n+2(﹣n﹣1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,﹣n﹣1)(n 为自然数)”,依此即可得出结论.【解答】解:(1)A5(﹣2,﹣2),A6(﹣2,2),A7(2,2),A8(2,﹣2);(2)观察发现:A1(﹣1,﹣1),A2(﹣1,1),A3(1,1),A4(1,﹣1),A5(﹣2,﹣2),A6(﹣2,2),A7(2,2),A8(2,﹣2),A9(﹣3,﹣3),…,∴A4n+1(﹣n﹣1,﹣n﹣1),A4n+2(﹣n﹣1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,﹣n﹣1)(n为自然数),∵2022=505×4+2,∴A2022(﹣506,506).【点评】本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n+1(﹣n﹣1,﹣n﹣1),A4n+2(﹣n﹣1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,﹣n﹣1)(n为自然数)”.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标的变化找出变化规律是关键.24.一个质点在第一象限及x轴、y轴移动,在第一秒时,它从原点移动到(0,1),然后按着下列左图中箭头所示方向移动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动1个单位.(1)该质点移动到(1,1)的时间为秒,移动到(2,2)的时间为秒,移动到(3,3)的时间为秒,…,移动到(n,n)的时间为秒.(2)该质点移动到(7,4)的时间为秒.【分析】(1)根据图形可得出质点移动到(1,1),(2,2),(3,3)的时间,根据规律可得出质点移动(n,n)的时间;(2)现有(1)的结论得出(7,7)的时间,再加上3即可得出移动到(7,4)的时间.【解答】解:(1)由图可知移动到(1,1)的时间为2秒,移动到(2,2)的时间为6秒,移动到(3,3)的时间为12秒,根据变化规律可得移动到(n,n)的时间为n(n+1),故答案为:2,6,12,n(n+1);(2)由(1)可得移动到(7,7)的时间为7×8=56,56+3=59,∴移动到(7,4)的时间为59秒,故答案为59.【点评】本题主要考查点的坐标的变化规律,关键是要能找到质点移动到(n,n)的时间的规律.25.(2022•马鞍山一模)如图,某小区绿化区的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中.已知小正方形的边长为1,A1的坐标为(2,2),A2的坐标为(5,2).(1)A3的坐标为,A n的坐标为用含n的代数式表示;(2)若护栏长为2020,则需要小正方形个,大正方形个.【分析】(1)根据已知条件与图形可知,大正方形的对角线长为2,由此可得规律:A1,A 2,A 3,…,A n 各点的纵坐标均为2,横坐标依次大3,由此便可得结果;(2)先求出一个小正方形与一个大正方形所构成的护栏长度,再计算2020米包含多少这样的长度,进而便可求出结果.【解答】解:(1)∵A 1的坐标为(2,2)、A 2的坐标为(5,2),∴A 1,A 2,A 3,…,A n 各点的纵坐标均为2,∵小正方形的边长为1,∴A 1,A 2,A 3,…,A n 各点的横坐标依次大3,∴A 3(5+3,2),A n (2+3+3+⋅⋅⋅+3︸(K1)个3,2),即A 3(8,2),A n (3n ﹣1,2),故答案为(8,2);(3n ﹣1,2);(2)∵2020÷3=673…1,∴需要小正方形674个,大正方形673个.【点评】本题是点的坐标的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.26.如图,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变成△OA 2B 2,第三次将△OA 2B 2变成△OA 3B 3,已知A (1,5),A 1(2,5),A 2(4,5),A 3(8,5);B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)观察每次变换前后三角形有何变化,找出规律.按此规律将△OA 3B 3变成△OA 4B 4,则A 4的坐标是,B 4的坐标是.(2)若按第(1)题中找到的规律将△OAB 进行n 次变换,得到△OA n B n ,比较每次变换中三角形顶点的坐标有何变化,找出规律,推测A n 的坐标是,B n 的坐标是.【分析】(1)对于A 1,A 2,A n 坐标找规律可将其写成竖列,比较从而发现A n 的横坐标为2n ,而纵坐标都是5,同理B 1,B 2,B n 也一样找规律.(2)根据第一问得出的A 4的坐标和B 4的坐标,再此基础上总结规律即可知A n 的坐标是(2n ,5),B n 的坐标是(2n +1,0).【解答】解:(1)因为A(1,5),A1(2,5),A2(4,5),A3(8,5)…纵坐标不变为5,同时横坐标都和2有关,为2n,那么A4(16,5);因为B(2,0),B1(4,0),B2(8,0),B3(16,0)…纵坐标不变,为0,同时横坐标都和2有关为2n+1,那么B的坐标为B4(32,0);故答案为:(16,5),(32,0);(2)由上题第一问规律可知A n的纵坐标总为5,横坐标为2n,B n的纵坐标总为0,横坐标为2n+1,∴A n的坐标是(2n,5),B n的坐标是(2n+1,0).故答案为:(2n,5),(2n+1,0).【点评】本题考查了学生观察图形及总结规律的能力,涉及的知识点为:平行于x轴的直线上所有点纵坐标相等,x轴上所有点的纵坐标为0.27.小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图),他把图形与x轴正半轴的交点依次记作A1(1,0),A2(5,0),…A n,图形与y轴正半轴的交点依次记作B1(0,2),B2(0,6),…B n,图形与x轴负半轴的交点依次记作C1(﹣3,0),C2(﹣7,0),…∁n,图形与y轴负半轴的交点依次记作D1(0,﹣4),D2(0,﹣8),…D n,发现其中包含了一定的数学规律.请根据你发现的规律完成下列题目:(1)请分别写出下列点的坐标:A3,B3,C3,D3;(2)请分别写出下列点的坐标:A n,B n,∁n,D n;(3)请求出四边形A5B5C5D5的面积.【分析】(1)根据点的坐标规律解答即可;(2)根据点的坐标规律解答即可;(3)根据四边形A5B5C5D5的面积=△5B5+△5B5+△5B5+△5B5计算即可.【解答】解:(1)A3(9,0),B3(0,10),C3(﹣11,0),D3(0,﹣12).(2)A n(4n﹣3,0),B n(0,4n﹣2),∁n(﹣4n+1,0),D n(0,﹣4n).(3)∵A5(17,0),B5(0,18),C5(﹣19,0),D5(0,﹣20).∴四边形A5B5C5D5的面积=△5B5+△5B5+△5B5+△5B5=12×17×18+12×18×19+12×19×20+12×20×17=684.故答案为:A3(9,0),B3(0,10),C3(﹣11,0),D3(0,﹣12).A n(4n﹣3,0),B n(0,4n﹣2),∁n(﹣4n+1,0),D n(0,﹣4n).【点评】此题考查点的坐标,关键是根据图形得出点的坐标的规律进行分析.28.(2021春•自贡期末)综合与实践问题背景:(1)已知A(1,2),B(3,2),C(1,﹣1),D(﹣3,﹣3).在平面直角坐标系中描出这几个点,并分别找到线段AB和CD中点P1、P2,然后写出它们的坐标,则P1,P2.探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为.拓展应用:(3)利用上述规律解决下列问题:已知三点E(﹣1,2),F(3,1),G(1,4),第四个点H(x,y)与点E、点F、点G中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点H的坐标.【分析】(1)根据坐标的确定方法直接描点,:分别读出各点的纵横坐标,即可得到各中点的坐标;(2)根据(1)中的坐标与中点坐标找到规律;(3)利用(2)中的规律进行分类讨论即可答题.【解答】解:(1)如图:A(1,2),B(3,2),C(1,﹣1),D(﹣3,﹣3).在平面直角坐标系中描出它们如下:线段AB和CD中点P1、P2的坐标分别为(2,2)、(﹣1,﹣2)故答案为:(2,2)、(﹣1,﹣2).(2)若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为(1+22,1+22).故答案为:(1+22,1+22).(3)∵E(﹣1,2),F(3,1),G(1,4),∴EF、FG、EG的中点分别为:(1,32)、(2,52)、(0,3)∴①HG过EF中点(1,32)时,r12=1,r42=32解得:x=1,y=﹣1,故H(1,﹣1);②EH过FG中点(2,52)时,−1+2=2,2+2=52解得:x=5,y=3,故H(5,3);③FH过EG的中点(0,3)时,3+2=0,1+2=3解得:x=﹣3,y=5,故H(﹣3,5).∴点H的坐标为:(1,﹣1),(5,3),(﹣3,5).【点评】本题考查了坐标与图形性质.通过此题,要熟记平面直角坐标系中线段中点的横坐标为对应线段的两个端点的横坐标的平均数,中点的纵坐标为对应线段的两个端点的纵坐标的平均数.29.(2022•包河区二模)如图,在平面直角坐标系中,点A1的坐标为(1,0)、点A2的坐标为(2,0)、点A3的坐标为(3,0)、…,过点A1、A2、A3、…分别作x轴垂线,交直线y=x于点B1、B2、B3、…,△OA1B1覆盖的整点(横、纵坐标均为整数的点)的个数记为P1,面积的值记为S1;△OA2B2覆盖的整点的个数记为P2,面积的值记为S2;△OA3B3覆盖的整点的个数记为P3,面积的值记为S3;…(1)由题意可知:P1=3、S1=12;P2=6、S2=2;P3=10、S3=92;则P4=、S4=;(2)P7﹣S7=;。
难点探究专题:平面直角坐标系中点的坐标的变化规律(选做)
难点探究专题:平面直角坐标系中点的坐标的变化规律(选做)——掌握不同规律,以不变应万变◆类型一沿坐标轴运动的点的坐标的探究1.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2016次运动后,动点P的坐标是________.2.如图,平面直角坐标系上的点A(1,0)第1次跳至点A1(-1,1),第2次跳至点A2(2,1),第3次跳至点A3(-2,2),第4次跳至点A4(3,2)……依此规律跳下去,点A第100次跳至的点A100的坐标是________.第2题图第3题图3.★如图,一个动点在第一象限内及x轴、y轴上运动,第1分钟从原点运动到(1,0),第2分钟内从(1,0)运动到(1,1),然后它接着按图中箭头所示的方向来回运动(在第一象限内运动时,运动方向与x轴或y轴平行),且每分钟移动1个单位长度.(1)当动点所在位置是(2,2)时,所经过的时间是________;(2)在第2016分钟时,这个动点所在位置的坐标是________.◆类型二绕原点呈“回”字形运动的点的坐标的探究4.(甘孜州中考)如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6,…则顶点A20的坐标为________.第4题图第5题图5.★如图,一甲虫从原点出发按图示方向作折线运动,第1次从原点到A1(1,0),第2次运动到A2(1,1),第3次运动到A3(-1,1),第4次运动到A4(-1,-1),第5次运动到A5(2,-1)……则第2015次运动到的点A2015的坐标是________.◆类型三图形变化的点的坐标的探究6.如图,长方形ABCD 的两边BC 、CD 分别在x 轴、y 轴上,点C 与原点重合,点A (-1,2),将长方形ABCD 沿x 轴向右翻滚,经过1次翻滚点A 对应点记为A 1,经过2次翻滚点A 对应点记为A 2……依此类推,经过5次翻滚后点A 对应点A 5的坐标为( )A .(5,2)B .(6,0)C .(8,0)D .(8,1)7.如图,在直角坐标系中,第1次将△OAB 变换成△OA 1B 1,第2次将△OA 1B 1变换成△OA 2B 2,第3次将△OA 2B 2变换成△OA 3B 3.已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)观察每次变换后的三角形有何变化,找出规律,按此变换规律再将△OA 3B 3变换成△OA 4B 4,则A 4的坐标是________,B 4的坐标是________;(2)若按第(1)题找到的规律将△OAB 进行了n 次变换,得到△OA n B n ,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n 的坐标是________,B n 的坐标是__________.参考答案与解析1.(2016,0) 解析:结合图象可知,当运动次数为偶数次时,P 点运动到x 轴上,且横坐标与运动次数相等.∵2016为偶数,∴运动2016次后,动点P 的坐标是(2016,0).2.(51,50) 解析:由题意,得A 100在第一象限,纵坐标为1002=50,横坐标比纵坐标大1.∴点A 100的坐标为(51,50).3.(1)6分钟(2)(44,8) 解析:观察图形得第12分钟坐标为(1,0),第22分钟坐标为(0,2),第32分钟坐标为(3,0),第42分钟坐标为(0,4)……∵2016<452=2025,第2025分钟坐标为(45,0),第2024分钟坐标为(44,0),2024-2016=8,∴在第2016分钟时,这个动点所在位置的坐标是(44,8).4.(5,-5) 解析:∵20÷4=5,∴点A 20在第四象限.∵点A 4所在正方形的边长为2,∴点A 4的坐标为(1,-1),同理可得点A 8的坐标为(2,-2),点A 12的坐标为(3,-3),∴点A 20的坐标为(5,-5).5.(-504,504) 解析:观察图形序号(大于4),被4除余数为1的点在第四象限,被4除余数为2的点在第一象限,余数为3的点在第二象限,能被4整除的点在第三象限.2015被4除商为503,余数为3.由A 3(-1,1),A 7(-2,2),可得A 2015(-504,504).6.D 解析:由题意可得下图,经过5次翻滚后点A 对应点A 5的位置如图所示,故A 5的坐标为(8,1).故选D.7.(1)(16,3) (32,0) (2)(2n ,3) (2n +1,0)解析:(1)∵A 1(2,3),A 2(4,3),A 3(8,3),∴A 4的横坐标为24=16,纵坐标为3.故A 4的坐标为(16,3).∵B 1(4,0),B 2(8,0),B 3(16,0),∴B 4的横坐标为25=32,纵坐标为0.故点B 4的坐标为(32,0);(2)由A 1(2,3),A 2(4,3),A 3(8,3),可以发现它们各点坐标的关系为横坐标是2n ,纵坐标都是3.故A n 的坐标为(2n ,3).由B 1(4,0),B 2(8,0),B 3(16,0),可以发现它们各点坐标的关系为横坐标是2n +1,纵坐标都是0.故B n 的坐标为(2n +1,0).。
(完整版)平面直角坐标系规律题(带答案)
平面直角坐标系规律题1.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2).....根据这个规律,第2016个点的坐标为什么?2.如图,一个质点在第一象限及x轴、y轴上运动,一秒钟后,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒运动一个单位长度,那么第2016秒后质点所在位置的坐标是()3.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(-1,1),第四次向右跳动5个单位至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是______.第2016次呢?4.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,……,依此规律跳动下去,点P第100次跳动至点P100的坐标是()。
第2016个点的坐标是()5、如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n是自然数)的坐标为________.答案:1.解:根据图形,以最外边的正方形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2016个点是(45,9),2.(8 ,44)3.观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故答案为:(51,50).4.经过观察可得:以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100÷2=50;其中4的倍数的跳动都在y轴的右侧,那么第100次跳动得到的横坐标也在y轴右侧.P1横坐标为1,P4横坐标为2,P8横坐标为3,依此类推可得到:P n的横坐标为n÷4+1(n是4的倍数).故点P100的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P第100次跳动至点P100的坐标是(26,50).5.由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),所以,点A4n+1(2n,1).故答案为:(2n,1).。
坐标系规律探索习题
坐标系规律探索习题一.选择题(共3小题)1.如图,动点P 按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,2),⋯,按这样的运动规律,则第2021次运动到点( )A .(2021,1)B .(2021,2)C .(2020,1)D .(2021,0)2.如图,在平面直角坐标系中,(1,1)A ,(1,1)B -,(1,2)C --,(1,2)D -.把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A B C D A -----⋯的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(1,1)-B .(1,1)-C .(1,2)--D .(1,2)-3.点1A ,2A ,3A ,⋯,(n A n 为正整数)都在数轴上.点1A 在原点O 的左边,且11AO =;点2A 在点1A 的右边,且212A A =;点3A 在点2A 的左边,且323A A =;点4A 在点3A 的右边,且434A A =;⋯,依照上述规律,点2008A ,2009A 所表示的数分别为( ) A .2008,2009-B .2008-,2009C .1004,1005-D .1004,1004-二.填空题(共17小题)4.如图,在平面直角坐标系中,函数2y x =和y x =-的图象分别为直线1l ,2l ,过点(1,0)作x 轴的垂线交1l 于点1A ,过点1A 作y 轴的垂线交2l 于点2A ,过点2A 作x 轴的垂线交1l 于点3A ,过点3A 作y 轴的垂线交2l 于点4A ,⋯依次进行下去,则点2022A 的坐标为 .5.如图,在平面直角坐标系xOy 中,1(1,0)A ,2(3,0)A ,3(6,0)A ,4(10,0)A ,⋯,以12A A 为对角线作第一个正方形1121AC A B ,以23A A 为对角线作第二个正方形2232A C A B ,以34A A 为对角线作第三个正方形3343A C A B ,⋯,顶点1B ,2B ,3B ,⋯都在第一象限,按照这样的规律依次进行下去,点5B 的坐标为 ;点n B 的坐标为 .6.如图,在平面直角坐标系中,一动点沿箭头所示的方向,每次移动一个单位长度,依次得到点1(0,1)P ,2(1,1)P ,3(1,0)P ,4(1,1)P-,5(2,1)P -⋯则2018P 的坐标是 .7.如图,点(0,0)O ,(0,1)B 是正方形1OBB C 的两个顶点,以它的对角线1OB 为一边作正方形121OB B C ,以正方形121OB B C 的对角线2OB 为一边作正方形232OB B C ,写出点3B 的坐标为 ;再以正方形232OB B C 的对角线3OB 为一边作正方形343OB B C ,⋯依此规律作下去,点2013B 的坐标为 .8.在平面直角坐标系xOy 中,有一只电子青蛙在点(1,0)A 处.第一次,它从点A 先向右跳跃1个单位,再向上跳跃1个单位到达点1A ; 第二次,它从点1A 先向左跳跃2个单位,再向下跳跃2个单位到达点2A ; 第三次,它从点2A 先向右跳跃3个单位,再向上跳跃3个单位到达点3A ; 第四次,它从点3A 先向左跳跃4个单位,再向下跳跃4个单位到达点4A ;⋯依此规律进行,点6A 的坐标为 ;若点n A 的坐标为(2013,2012),则n = . 9.如图,在平面直角坐标系中,有一个正六边形ABCDEF ,其中C 、D 的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个正六边形沿着x 轴向右滚动,则在滚动过程中,这个正六边形的顶点A 、B 、C 、D 、E 、F 中,会经过点(54,2)的是 .10.如图,在平面直角坐标系xOy 中,1A 是以O 为圆心,2为半径的圆与过点(0,1)且平行于x 轴的直线1l 的一个交点;2A 是以原点O 为圆心,3为半径的圆与过点(0,2)-且平行于x 轴的直线2l 的一个交点;3A 是以原点O 为圆心,4为半径的圆与过点(0,3)且平行于x 轴的直线3l 的一个交点;4A 是以原点O 为圆心,5为半径的圆与过点(0,4)-且平行于x 轴的直线4l 的一个交点;⋯,且点1A 、2A 、3A 、4A 、⋯都在y 轴右侧,按照这样的规律进行下去,点6A 的坐标为 ,点n A 的坐标为 (用含n 的式子表示,n 是正整数).11.如图,在平面直角坐标系上有个点(1,0)P ,点P 第1次向上跳动1个单位至点1(1,1)P ,紧接着第2次向左跳动2个单位至点2(1,1)P -,第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,⋯,依此规律跳动下去,点P 第100次跳动至点100P 的坐标是 .12.如图,在平面直角坐标系上有点(1,0)A ,点A 第一次跳动至点1(1,1)A -,第四次向右跳动5个单位至点4(3,2)A ,⋯,依此规律跳动下去,点A 第100次跳动至点100A 的坐标是 .13.在平面直角坐标系中,已知3个点的坐标分别为:1(1,1)A 、2(0,2)A 、3(1,1)A -.一只电子蛙位于坐标原点处,第1次电子蛙由原点跳到以1A 为对称中心的对称点1P ,第2次电子蛙由1P 点跳到以2A 为对称中心的对称点2P ,第3次电子蛙由2P 点跳到以3A 为对称中心的对称点3P ,⋯,按此规律,电子蛙分别以:1A 、2A 、3A 为对称中心继续跳下去.问当电子蛙跳了2009次后,电子蛙落点的坐标是2009P .14.观察下列有序数对:(3,1)(5--,1)(72,1)(93--,1)4⋯根据你发现的规律,第100个有序数对是 .15.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)(4,0)⋯⋯,根据这个规律探索可得,第100个点的坐标为 .16.如图,已知直线l 与x 轴夹角为30︒,过点(2,0)A 作直线l 的垂线,垂足为点1A ,过点1A 作12A A x ⊥轴,垂足为点2A ,过点2A 作23A A l ⊥,垂足为点3A ,⋯,这样依次下去,得到一组线段:1AA ,12A A ,23A A ,⋯,则线段20202021A A 的长为 .17.如图,点(0,0)O 、(0,1)B 是正方形1OBB C 的两个顶点,以对角线1OB 为一边作正方形121OB B C ,再以正方形121OB B C 的对角线2OB 为一边作正方形232OB B C ,⋯,依次下去,则对角线2020OB 的长= .18.以水平数轴的原点O 为圆心,过正半轴Ox 上的每一刻度点画同心圆,将Ox 逆时针依次旋转30︒、60︒、90︒、⋯、330︒得到11条射线,构成如图所示的“圆”坐标系,点A 、B 的坐标分别表示为(5,0)︒、(4,300)︒,则点C 的坐标表示为 .19.如图所示,将边长为1的正方形OAPB 沿x 轴正方向翻转2008次,点P 依次落在点1P ,2P ,3P ,⋯,2008P 的位置,则2008P 的横坐标2008x = .20.如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2008次,点P 依次落在点1P ,2P ,32008P P ⋯的位置,则点2008P 的横坐标为 .三.解答题(共2小题)21.如图:在直角坐标系中,第一次将AOB ∆变换成△11OA B ,第二次将三角形变换成△22OA B ,第三次将△22OA B ,变换成△33OA B ,已知(1,3)A ,1(3,3)A ,2(5,3)A ,3(7,3)A ;(2,0)B ,1(4,0)B ,2(8,0)B ,3(16,0)B .(1)观察每次变换前后的三角形有何变化,找出规律,按此变化规律再将△33OA B 变换成△44OA B ,则4A 的坐标是 ,4B 的坐标是 .(2)若按(1)找到的规律将OAB ∆进行了n 次变换,得到△n n OA B ,比较每次变换中三角形顶点有何变化,找出规律,推测n A 的坐标是 ,n B 的坐标是 .22.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标: 1(A , ), 3(A , ), 12(A , );(2)写出点4n A 的坐标(n 是正整数); (3)指出蚂蚁从点100A 到101A 的移动方向.坐标系规律探索习题参考答案与试题解析一.选择题(共3小题) 1.解:由图可知,每运动四次出现的形状都是一样的, 202145051÷=⋯⋯,∴第2021次运动到点(2021,1),故选:A . 2.解:(1,1)A ,(1,1)B -,(1,2)C --,(1,2)D -,1(1)2AB ∴=--=,1(2)3BC =--=,1(1)2CD =--=,1(2)3DA =--=,∴绕四边形ABCD 一周的细线长度为232310+++=,2012102012÷=⋯,∴细线另一端在绕四边形第202圈的第2个单位长度的位置,即点B 的位置,点的坐标为(1,1)-. 故选:B .3.解:根据题意分析可得:点1A ,2A ,3A ,⋯,n A 表示的数为1-,1,2-,2,3-,3,⋯依照上述规律,可得出结论: 点的下标为奇数时,点在原点的左侧;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2; 当n 为偶数时,11n n A A +=--;所以点2008A 表示的数为:200821004÷=, 2009A 表示的数为:20081100411005A --=--=-.故选:C .二.填空题(共17小题) 4.解:当1x =时,2y =,∴点1A 的坐标为(1,2);当2y x =-=时,2x =-,∴点2A 的坐标为(2,2)-;同理可得3(2,4)A --,4(4,4)A -,5(4,8)A ,6(8,8)A --,7(8,16)A --,8(16,16)A -⋯⋯,∴22141(2,2)n n n A ++,212142(2,2)n n n A +++-, 212243(2,2)n n n A +++--,222244(2,2)(n n n A n +++-为自然数), 202250542=⨯+,∴点2022A 的坐标为50521(2⨯+-,505212)⨯+,即点2022A 的坐标为1011(2-,10112). 故答案为:1011(2-,10112).5.解:分别过点1B ,2B ,3B ,作1B D x ⊥轴,2B E x ⊥轴,3B F x ⊥轴于点D ,E ,F , 1(1,0)A ,12312A A ∴=-=,1A D ,1=,2OD =,11B D A D =,1=,可得出1(2,1)B ,2(3,0)A ,32633A A ∴=-=,232EB =,2232B E EA ==,39622OE =-=, 可得29(2B ,3)2,同理可得出:3(8,2)B ,425(2B ,5)2,⋯, 1B ,2B ,3B ,⋯的横坐标分别为:42,92,162,252⋯,∴点5B 的横坐标为:362, 点n B 的横坐标为:2(1)2n +,1B ,2B ,3B ,⋯的纵坐标分别为:1,32,42,52,⋯,∴点5B 的纵坐标为:632=, 点n B 的纵坐标为:12n +, ∴点5B 的坐标为(18,3);点n B 的坐标为:2(1)1(,)22n n ++.故答案为:(18,3),2(1)1(,)22n n ++.6.解:由图可得,6(2,0)P ,12(4,0)P ,⋯,6(2,0)n P n ,61(2,1)n P n +, 20166336÷=,6336(2336,0)P ⨯∴⨯,即2016(672,0)P ,2017(672,1)P ∴,2018(673,1)P故答案为:(673,1).7.解:根据题意和图形可看出每经过一次变化,都顺时针旋转45︒, 从B 到3B 经过了3次变化,453135︒⨯=︒,31⨯=.∴点3B 所在的正方形的边长为3B 位置在第四象限. ∴点3B 的坐标是(2,2)-;可得出:1B 点坐标为(1,1), 2B 点坐标为(2,0), 3B 点坐标为(2,2)-,4B 点坐标为(0,4)-,5B 点坐标为(4,4)--, 6(8,0)B -,7(8,8)B - 8(0,16)B ,9(16,16)B ,由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的倍, 201382515÷=⋯,2013B ∴的纵横坐标符号与点5B 的相同,纵横坐标都是负值,2013B ∴的坐标为1006(2-,10062)-.故答案为:(2,2)-,1006(2-,10062)-. 8.解:青蛙在点(1,0)A 处,∴第一次在点(2,1),第二次在点(0,1)-, 第三次在点(3,2), 第四次在点(1,2)--, 第五次在点(4,3), 第六次在点(2,3)--,从上可以看出除去一二两次,奇数次横纵坐标每次加一,偶数则每次减一, 6(162,062)A ∴-÷-÷得:(2,3)--,点n A 的坐标为(2013,2012),在第一象限,若以第一次的结果为基础,设置为m , (22,12)An m m +÷+÷, 222013m +÷=, 4022m =,1402214023n m =+=+=;故答案为:(2-,3-,),4023. 9.解:如图所示:当滚动到A D x '⊥轴时,E 、F 、A 的对应点分别是E '、F '、A ',连接A D ',过点F '作F G A D '⊥'于点G ,过点E '作E H A D '⊥'于点H ,六边形ABCDEF 是正六边形, 1602F A D FAB ∴∠''=∠=︒,906030A F G ∴∠''=︒-︒=︒, 1122A G A F ∴'=''=,同理可得12HD =, 2A D ∴'=,(2,0)D(2,2)A ∴',2OD =,正六边形滚动6个单位长度时正好滚动一周,∴从点(2,2)开始到点(54,2)正好滚动52个单位长度,52846=⋯, ∴恰好滚动8周多4个, ∴会过点(54,2)的是点E .故答案为:E .10.解:点1A 是以原点O 为圆心,半径为2的圆与过点(0,1)且平行于x 轴的直线1l 的一个交点,1A ∴的坐标为:,1),即1),2A 是以原点O 为圆心,3为半径的圆与过点(0,2)-且平行于x 轴的直线2l 的一个交点,2A ∴的坐标为2)-同理可得:3A 的坐标为3)点n A 的坐标为1(1))n n +-⋅,则:点6A 的坐标为6)-;故答案为:6)-,1(1))n n +-⋅;11.解:经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100250÷=;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,依此类推可得到:n P 的横坐标为41(n n ÷+是4的倍数).故点100P 的横坐标为:1004126÷+=,纵坐标为:100250÷=,点P 第100次跳动至点100P 的坐标是(26,50). 故答案为:(26,50).12.解:观察发现,第2次跳动至点的坐标是(2,1), 第4次跳动至点的坐标是(3,2), 第6次跳动至点的坐标是(4,3), 第8次跳动至点的坐标是(5,4),⋯第2n 次跳动至点的坐标是(1,)n n +,∴第100次跳动至点的坐标是(51,50).故答案为:(51,50).13.解:根据题意1P 点为原点关于点1A 为对称中心的点,所以1(2,2)P ,类似地2(2,2)P -,3(0,0)P ,即回到了原点,所以可以看出电子蛙每从原点开始,每跳三次就会回到原点,20093÷余数是2,所以第2009次电子蛙落点的坐标为2P 点的坐标(2,2)-.故答案为:(2,2)-.14.解:观察后发现第n 个有序数对可以表示为: 第n 个有序数对的坐标为1((1)(21)n n +-⋅+,1(1))n n-⋅.∴第100个有序数对是1(201,)100-.故答案填1(201,)100-. 15.解:因为1231391+++⋯+=,所以第91个点的坐标为(13,0).因为在第14列点的走向为向上,故第100个点在此行上,横坐标就为14,纵坐标为从第92个点向上数8个点,即为8; 故第100个点的坐标为(14,8). 故填(14,8).16.解:由题可知,直线l 与x 轴的夹角为30︒, 12sin301AA ∴=︒=, 130AOA ∠=︒, 160A AO ∴∠=︒,1230AA A ∴∠=︒, 121cos30A A AA ∴=︒,同理,223121cos30cos 30A A A A AA =︒=︒,234231cos30cos 30A A A A AA =︒=︒,⋯11cos 30n n n A A AA +∴=︒,当2010n =,202020192020A A =,故答案为2020.17.解:根据题意和图形可看出每经过一次变化,都顺时针旋转45︒,∴旋转8次则OB 旋转一周,从B 到2020B 经过了2020次变化, 202082524÷=⋯,∴从B 到2020B 与4B 都在y 轴负半轴上,202010102∴=,∴点2020B 的坐标是1010(0,2)-.2020OB ∴的长10102,故答案为10102.18.解:如图所示:点C 的坐标表示为(3,240)︒. 故答案为:(3,240)︒. 19.解:根据规律1(1,1)P ,23(2,0)P P =,4(3,1)P , 5(5P ,671)(6,0)P P =,8(7,1)P ⋯每4个一循环,可以判断2008P 在502次循环后与4P 一致:纵坐标为1,横坐标比下标小1,坐标应该是(2007,1),故答案为2007.20.解:观察图形结合翻转的方法可以得出1P 、2P 的横坐标是1,3P 的横坐标是2.5,4P 、5P 的横坐标是4,6P 的横坐标是5.5⋯依此类推下去,2005P 、2006P 的横坐标是2005,2007P 的横坐标是2006.5,2008P 、2009P 的横坐标就是2008.故答案为:2008. 三.解答题(共2小题)21.解:(1)已知(1,3)A ,1(3,3)A ,2(5,3)A ,3(7,3)A ;对于1A ,2A ,n A 坐标找规律比较从而发现n A 的横坐标为21n +,而纵坐标都是3; 同理1B ,2B ,n B 也一样找规律,规律为n B 的横坐标为12n +,纵坐标为0. 由上规律可知:(1)4A 的坐标是(9,3),4B 的坐标是(32,0); (2)n A 的坐标是(21,3)n +,n B 的坐标是1(2n +,0) 22.解:(1)1(0,1)A ,3(1,0)A ,12(6,0)A ; (2)当1n =时,4(2,0)A , 当2n =时,8(4,0)A , 当3n =时,12(6,0)A , 所以4(2,0)n A n ;(3)点100A 中的n 正好是4的倍数,所以点100A 和101A 的坐标分别是100(50,0)A ,101A 的(50,1),所以蚂蚁从点100A 到101A 的移动方向是从下向上.。
《平面直角坐标系》经典练习题
《平面直角坐标系》章节复习考点1:考点的坐标与象限的关系知识解析:各个象限的点的坐标符号特征如下:(特别值得注意的是,坐标轴上的点不属于任何象限.)1、在平面直角坐标中,点M (-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 2、在平面直角坐标系中,点P (-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 3、若点P (a ,a -2)在第四象限,则a 的取值范围是( ).A .-2<a <0B .0<a <2C .a >2D .a <0 4、点P (m ,1)在第二象限内,则点Q (-m ,0)在( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上 5、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 6、在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 . 7、对任意实数x ,点2(2)P x x x -,一定不在..( ) A .第一象限B .第二象限C .第三象限D .第四象限8、如果a -b <0,且ab <0,那么点(a ,b)在( )A 、第一象限B 、第二象限C 、第三象限,D 、第四象限.考点2:点在坐标轴上的特点x 轴上的点纵坐标为0, y 轴上的点横坐标为0.坐标原点(0,0)1、点P (m+3,m+1)在x 轴上,则P 点坐标为( )A .(0,-2)B .(2,0)C .(4,0)D .(0,-4) 2、已知点P (m ,2m -1)在y 轴上,则P 点的坐标是 。
考点3:考对称点的坐标知识解析:1、关于x轴对称: A(a,b)关于x轴对称的点的坐标为(a,-b)。
2、关于y轴对称: A(a,b)关于y轴对称的点的坐标为(-a,b)。
3、关于原点对称: A(a,b)关于原点对称的点的坐标为(-a,-b)。
平面直角坐标系规律题(解析版)
第15讲平面直角坐标系规律题【类题训练】1.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(4,0),F(﹣4,0)同时出发,沿长方形BCDE的边作环绕运动.物体甲按逆时针方向以4个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2022次相遇地点的坐标是()A.(2,﹣2)B.(﹣2,﹣2)C.(﹣2,2)D.(2,2)【分析】利用行程问题中的相遇问题,由于矩形的边长为8和4,物体甲是物体乙的速度的2倍,求得每一次相遇的地点,找出规律即可解答.【解答】解:由题意知:矩形的边长为8和4,①第一次相遇物体甲与物体乙运动的时间为(2+4+4+2)÷(4+2)=2(秒),∴第一次相遇地点的坐标是(﹣2,2);②第二次相遇物体甲与物体乙运动的时间为(8×2+4×2)÷(4+2)=4(秒),∴第二次相遇地点的坐标是(4,0);③第三次相遇地点的坐标是(﹣2,﹣2);④第四次相遇地点的坐标是(﹣2,2);…则每相遇三次,为一个循环,∵2022÷3=674,故两个物体运动后的第2022次相遇地点的坐标为:(﹣2,﹣2),故答案为:B.2.如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)……,则第50个点的坐标为()A.(7,6)B.(8,8)C.(9,6)D.(10,5)【分析】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),结合图形找出部分a n的值,根据数值的变化找出变化规律“a n=n”,再罗列出部分S n的值,根据数值的变化找出变化规律“S n=”,依次变化规律解不等式100≤即可得出结论.【解答】解:设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),观察,发现规律:a1=1,a2=2,a3=3,…,∴a n=n.S1=a1=1,S2=a1+a2=3,S3=a1+a2+a3=6,…,∴S n=1+2+…+n=.当50≤S n,即50≤,解得:n≤﹣(舍去),或n≥.∵9<<10,则第50个点的横坐标为10.故选:D.3.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角(∠AOM=∠BOM),当点P第2022次碰到矩形的边时,点P的坐标为()A.(0,3)B.(5,0)C.(1,4)D.(8,3)【分析】动点的反弹与光的反射入射是一个道理,根据反射角与入射角的定义可以在格点中作出图形,可以发现,在经过6次反射后,动点回到起始的位置,将2019除以6得到336,且余数为3,说明点P第2022次碰到矩形的边时为第336个循环组的第6次反弹,因此点P的坐标为(0,3).【解答】解:如图,根据反射角与入射角的定义作出图形,解:如图,第6次反弹时回到出发点,∴每6次碰到矩形的边为一个循环组依次循环,∵2022÷6=337,∴点P第2022次碰到矩形的边时是第336个循环组的第6次碰边,坐标为(0,3).故选:A.4.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第30次运动后,动点P的坐标是()A.(30,1)B.(30,0)C.(30,2)D.(31,0)【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0, (4)个数一个循环,进而可得经过第30次运动后,动点P的坐标.【解答】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,4个数一个循环,因为30÷4=7……2,所以经过第30次运动后,动点P的坐标是(30,0).故选:B.5.如图,动点P从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2),……则第2022秒点P所在位置的坐标是()A.(44,2)B.(44,3)C.(45,3)D.(45,2)【分析】分析点P在坐标系中的运动路线,寻找点P运动至x轴或y轴时的点坐标的规律.【解答】解:根据题意列出P的坐标寻找规律.P1(1,0);P8(2,0);P9(3,0);P24(4,0);P48(6,0);即P2n(2n+2)坐标为(2n,0).P2024(44,0).∴P2022坐标为P2024(44,0)退回两个单位→(44,1)→(44,2).故选:A.6.如图,在平面直角坐标系中,A1(2,0),B1(0,1),A1B1的中点为C1;A2(0,3),B2(﹣2,0),A2B2的中点为C2;A3(﹣4,0),B3(0,﹣3),A3B3的中点为C3;A4(0,﹣5),B4(4,0),A4B4的中点为C4;…;按此做法进行下去,则点C2022的坐标为()A.(﹣1012,﹣)B.(﹣1011,)C.(﹣1011,﹣)D.(﹣1012,﹣)【分析】根据题意得点∁n的位置按4次一周期的规律循环出现,可求得点C2022在第二象限,从而可求得该题结果.【解答】解:由题意可得,点∁n的位置按4次一周期的规律循环出现,∵2022÷4=505……2,∴点C2022在第二象限,∵位于第二象限内的点C2的坐标为(﹣1,),点C6的坐标为(﹣3,),点C10的坐标为(﹣5,),……∴点∁n的坐标为(﹣,),∴当n=2022时,﹣=﹣=﹣1011,==,∴点C2022的坐标为(﹣1011,),故选:B.7.如图,已知A1(1,2)A2(2,2)A3(3,0)A4(4,﹣2)A5(5,﹣2)A6(6,0)……,按这样的规律,则点A2021的坐标为()A.(2021,2)B.(2020,2)C.(2021,﹣2)D.2020,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【解答】解:观察发现,每6个点形成一个循环,∵A6(6,0),∴OA6=6,∵2021÷6=336…5,∴点A2021的位于第337个循环组的第5个,∴点A2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,∴点A2021的坐标为(2021,﹣2).故选:C.8.如图,正方形的边长依次为2,4,6,8,……,他们在直角坐标系中的位置如图所示,其中A1(1,1),A2(﹣1,1),A3(﹣1.﹣1),A1(1,﹣1),A5(2.,2),A6(﹣2,2),A7(﹣2,﹣2),A8(2.﹣2),A9(3,3),A10(﹣3,3),……,按此规律接下去,则A2016的坐标为()A.(﹣504,﹣504)B.(504,﹣504)C.(﹣504,504)D.(504,504)【分析】由正方形的中心都是位于原点,边长依次为2,4,6,8,…,可得第n个正方形的顶点横坐标与纵坐标的绝对值都是n.计算2016÷4,根据商和余数知道是第几个正方形的顶点,且在哪一个象限,进而得出A2016的坐标.【解答】解:∵2016÷4=504,∴顶点A2016是第504个正方形的顶点,且在第二象限,横坐标是﹣504,纵坐标是504,∴A2016(﹣504,504),故选:C.9.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第一次移动到A1,第二次移动到A2,…,第n次移动到A n,则A2022的坐标是()A.(2022,0)B.(1011,1)C.(1011,0)D.(2022,1)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2022的坐标.【解答】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,2022÷4=505……2,所以A2022的坐标为(505×2+1,1),则A2021的坐标是(1011,1).故选:B.10.如图,正方形ABCD的中心与坐标原点O重合,将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……依此类推,则点D2022的坐标是.【分析】由题意观察发现:每四个点一个循环,D4n+2(﹣4n﹣3,4n+2),由2022=505×4+2,推出D2022(﹣2023,2022).【解答】解:∵将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,∴D1(1,2),∵再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……∴D2(﹣3,2),D3(﹣3,﹣4),D4(5,﹣4),D5(5,6),D6(﹣7,6),……,观察发现:每四个点一个循环,D4n+2(﹣4n﹣3,4n+2),∵2022=4×505+2,∴D2022(﹣2023,2022);故答案为:(﹣2023,2022).11.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,﹣1)…,根据这个规律探索可得,第10个点的坐标为,第55个点的坐标为.【分析】从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,…依此类推横坐标为n的有n个点.题目要求写出第10个点和第55个点的坐标,我们可以通过加法计算算出第10个点和第50个点分别位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.【解答】解:在横坐标上,第一列有一个点,第二列有2个点…第n个有n个点,并且奇数列点数对称而偶数列点数y轴上方比下方多一个,∵1+2+3+4=10,1+2+3+…+10=55,∴第10个点在第4列自下而上第4行,所以奇数列的坐标为(n,)(n,﹣1)…(n,);偶数列的坐标为(n,)(n,﹣1)…(n,1﹣),由加法推算可得到第55个点位于第10列自下而上第10行.代入上式得第10个点的坐标为(4,2),第55个点的坐标为(10,5),故答案为:(4,2),(10,5).12.如图,在平面直角坐标系中,AB∥EG∥x轴,BC∥DE∥HG∥AP∥y轴,点D,C,P,H在x轴上,A(1,2),B(﹣1,2),D(﹣3,0),E(﹣3,﹣2),G(3,﹣2).(1)若点M在线段EG上,当点M与点A的距离最小时,点M的坐标为;(2)把一条长为2022个单位长度且无弹性的细线(粗细忽略不计)的一端固定在A处,并按AB→C→D→E→F→G→H→P→A…的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标为.【分析】(1)根据“垂线段最短”可确定点M的坐标;(2)先计算出该图形的周长是20,再由2022÷20的计算结果确定此题结果.【解答】解:(1)由垂线段最短可得,当AM⊥EG时点M与点A的距离最小,由题意得此时M的坐标为(1,﹣2),故答案为:(1,﹣2);(2)由题意得,此图形的周长为:2×[3﹣(﹣3)+2﹣(﹣2)]=2×(6+4)=2×10=20,∵2022÷20=101……2,∴细线的另一端在点B的位置,即另一端所在位置的点的坐标为(﹣1,2),故答案为:(﹣1,﹣2).13.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的规律第13次运动到点的坐标;经过第2022次运动后,动点P的坐标.【分析】由题意可得点P的运动按4次一周期的规律循环出现,再根据计算2022÷4=5…2可得此题结果.【解答】解:由题意可得,点P第n次运动后的横坐标为n,纵坐标按1,0,2,0,1,…4次一周期的规律循环出现,∵13÷4=3•1,2022÷4=5…2,∴第13次运动到点的坐标(13,1);经过第2022次运动后,动点P的坐标是(2022,0),故答案为:(13,1),(2022,0).14.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第22个点的坐标为.【分析】观察图形,可知:每列的个数成等差数列,由等差数列的求和公式可得出第22个点为第7列的由上往下第1个,可求出第22个点的坐标(此处纵坐标为6﹣1).【解答】解:观察图形,可知:每列的个数成等差数列.∵1+2+3+4+5+6=21,∴第22个点为第7列从上往下的第1个.∴第22个点的坐标为(7,6).故答案为:(7,6).15.如图,在平面直角坐标系中,点A1在x轴的正半轴上,且OA1=1,以点A1为直角顶点,逆时针方向作Rt△A1OA2,使A1A2=OA1;再以点A2为直角顶点,逆时针方向作Rt △A2OA3,使A2A3=OA2;再以点A3为直角顶点,逆时针方向作Rt△A3OA4,使A3A4=OA3;依次进行作下去,则点A2022的坐标为.【分析】本题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.【解答】解:由已知,点A每次旋转转动45°,则转动一周需转动8次,每次转动点A 到原点的距离变为转动前的倍,∵2022=252×8+6,根据规律OAn=()n﹣1,∴OA2022=()2021,∴点A2022的在第三象限的角平分线上,∴点A2022的横坐标为:﹣()2021÷=﹣()2020=﹣21010,点A2022的纵坐标为:﹣()2021÷=﹣()2020=﹣21010∴点A2022的坐标为(﹣21010,﹣21010),故答案为:(﹣21010,﹣21010).16.在平面直角坐标系中,﹣蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标:A4(,),A8(,);(2)写出点A4n的坐标(n是正整数)A4n(,);(3)求出A2022的坐标.【分析】根据题意可直接找出点的坐标规律,A4n(2n,0),A4n+1(2n,1),A4n+2(2n+1,1),A4n+3(2n+1,0),根据规律直接求出A4(2,0),A8(4,0),A4n(2n,0)A2022(1012,1).【解答】解:观察图形可知,A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),...,A4n(2n,0),A4n+1(2n,1),A4n+2(2n+1,1),A4n+3(2n+1,0),(1)根据题意,可直接读出A4(2,0),A8(4,0),故答案为:2,0,4,0;(2)根据点的坐标规律可知,A4n(2n,0),故答案为:2n,0;(3)∵2022=4×505+2,∴A2022(1011,1).17.对于任何实数a,可用[a]表示不超过a的最大整数,即整数部分,{a}表示a的小数部分.例如:[1.3]=1,{﹣2.6}=0.4.(1)[]=,{﹣}=;(2)在平面直角坐标系中,有一序列点P1([1],{1}),P2([],{}),P3([],{}),P4([2],{2}),P5([],{}),…请根据这个规律解决下列问题:①点P10的坐标是;②横坐标为10的点共有个;③在前2022个点中,纵坐标相等的点共有个,并求出这些点的横坐标之和.【分析】(1)根据题意直接求解即可;(2)①根据题意找出点P n的坐标为P n([],{}),然后再求出点P10的坐标即可;②根据[]=10,可推出100≤n<121,再找出其中的整数即可;③将前几个点的坐标求出,找出规律:当n的值为平方数时,纵坐标为0,只有纵坐标为0时的点的纵坐标相等,再根据44<<45进行求解即可.【解答】解:(1)∵1<2<4,∴1<<2,∴[]=1,∵﹣4<﹣3<﹣1,∴﹣2<﹣<﹣1,∴{﹣}=﹣﹣(﹣2)=2﹣,故答案为:1,2﹣;(2)∵P1([1],{1}),P2([],{}),P3([],{}),P4([2],{2}),P5([],{}),…∴可发现点P n的坐标为P n([],{}),①根据规律可知,点P10的坐标为([],{}),∵9<10<16,∴3<<4,∴[]=3,{}=﹣3,∴点P10的坐标是(3,﹣3),故答案为:(3,﹣3);②∵点P n的坐标为P n([],{}),∴当[]=10时,100≤n<121,其中的整数共21个,故答案为:21;③根据题意可得,P1(1,0),P2(1,﹣1),P3(1,﹣1),P4(2,0),P5(2,﹣2),P6(2,﹣2),P7(2,﹣2),P8(2,2﹣2),P9(3,0),P10(3,﹣3),…可以发现,当n的值为平方数时,纵坐标为0,只有纵坐标为0时的点的纵坐标相等,∵44<<45,∴在前2022个点中,纵坐标相等的点共有44个,这些点的横坐标之和为1+2+3+...+44=990,∴在前2022个点中,纵坐标相等的点共有44个,这些点的横坐标之和为990,故答案为:44.18.在平面直角坐标系中,乙蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动一个单位,其行走路线如图所示.(1)填写下列各点的坐标:A4();A8();A12()(2)指出蚂蚁从点A100到A101的移动方向.【分析】(1)观察图形可知,A4,A8、A12都在x轴上,求出OA4、OA8、OA12的长度,然后写出坐标即可;(2)根据100是4的倍数,可知从点A100到A101的移动方向与从点O到A1的方向一致.【解答】解:(1)由图可知,A4,A8、A12都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=2,OA8=4,OA12=6,∴A4(2,0),A8(4,0),A12(6,0)(2))∵100÷4=25,∴100是4的倍数,∴从点A100到A101的移动方向与从点O到A1的方向一致,为↑.故答案为:2,0;4,0;6,0.19.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将OA2B2变换成△OA3B3;已知变换过程中各点坐标分别为A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则A4的坐标为,B4的坐标为.(2)按以上规律将△OAB进行n次变换得到△OA n B n,则A n的坐标为,B n的坐标为;(3)△OA n B n的面积为.【分析】(1)根据题目中的信息可以发现A1、A2、A3各点坐标的关系为横坐标是2n,纵坐标都是3,故可求得A4的坐标;B1、B2、B3各点的坐标的关系为横坐标是2n+1,纵坐标都为0,从而可求得点B4的坐标.(2)根据(1)中发现的规律可以求得A n、B n点的坐标;(3)依据A n、B n点的坐标,利用三角形面积计算公式,即可得到结论.【解答】解:(1)∵A1(2,3)、A2(4,3)、A3(8,3).∴A4的横坐标为:24=16,纵坐标为:3.故点A4的坐标为:(16,3).又∵B1(4,0)、B2(8,0)、B3(16,0).∴B4的横坐标为:25=32,纵坐标为:0.故点B4的坐标为:(32,0).故答案为:(16,3),(32,0).(2)由A1(2,3)、A2(4,3)、A3(8,3),可以发现它们各点坐标的关系为横坐标是2n,纵坐标都是3.故A n的坐标为:(2n,3).由B1(4,0)、B2(8,0)、B3(16,0),可以发现它们各点坐标的关系为横坐标是2n+1,纵坐标都是0.故B n的坐标为:(2n+1,0);故答案为:(2n,3),(2n+1,0);(3)∵A n的坐标为:(2n,3),B n的坐标为:(2n+1,0),∴△OA n B n的面积为×2n+1×3=3×2n.。
人教版七年级数学下册平面直角坐标系规律试题专项训练无答案(1)
⼈教版七年级数学下册平⾯直⾓坐标系规律试题专项训练⽆答案(1)平⾯直⾓坐标系规律题⼀.选择题(共32⼩题)1.如图,在⼀单位为1的⽅格纸上,△A1A2A3,△A3A4A5,△A5A6A7……,都是斜边在x 轴上,斜边长分别为2,4,6,……的等腰直⾓三⾓形,若A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所⽰规律,A2020的坐标为()A.(1010,0)B.(1012,0)C.(2,1012)D.(2,1010)2.如图:在平⾯直⾓坐标系中,⼀动点从原点O出发,沿着箭头所⽰⽅向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0)…则点P2020的坐标是()A.(673,﹣1)B.(673,1)C.(336,﹣1)D.(336,1)3.如图,⼀个机器⼈从点O出发,向正西⽅向⾛2m到达点A1;再向正北⽅向⾛4m到达点A2,再向正东⽅向⾛6m到达点A3,再向正南⽅向⾛8m到达点A4,再向正东⽅向⾛10m到达点A5,按如此规律⾛下去,当机器⼈⾛到点A时,点A2019在第()象限.A.⼀B.⼆C.三D.四4.如图,在单位为1的⽅格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直⾓三⾓形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所⽰规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)5.如图,在平⾯直⾓坐标系中,点A1.A2.A3.A4.A5.A6的坐标依次为A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…按此规律排列,则点A2019的坐标是()A.(1009,1)B.(1009,0)C.(1010,1)D.(1010.0)6.如图,在平⾯直⾓坐标系中,正⽅形ABCD的边长是2,点A的坐标是(﹣1,1),动点P从点A出发,以每秒2个单位长度的速度沿A→B→C→D→A→.…路线运动,当运动到2019秒时,点P的坐标为()A.(1,1)B.(1,3)C.(﹣1,3)D.(﹣1,1)7.如图,点O(0,0),A(0,1)是正⽅形OAA1B的两个顶点,以OA1对⾓线为边作正⽅形OA1A2B1,再以正⽅形的对⾓线OA2作正⽅形OA2A3B2,…,依此规律,则点A7的坐标是()A.(﹣8,0)B.(8,﹣8)C.(﹣8,8)D.(0,16)8.如图,在平⾯直⾓坐标系中,有若⼲个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)…根据这个规律,第2019个点的坐标为()A.(45,6)B.(45,13)C.(45,22)D.(45,0)9.如图,在平⾯直⾓坐标系中,AB∥EG∥x轴,BC∥DE∥HG∥AP∥y轴,点D、C、P、H在x轴上,A(1,2),B(﹣1,2),D(﹣3,0),E(﹣3,﹣2),G(3,﹣2),把⼀条长为2018个单位长度且没有弹性的细线线的粗细忽略不计)的⼀端固定在点A处,并按A﹣B﹣C﹣D﹣E﹣F﹣G﹣H﹣﹣P﹣A…的规律紧绕在图形“凸”的边上,则细线另⼀端所在位置的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,0)D.(1,0)10.如图,动点P在平⾯直⾓坐标系中按图中箭头所⽰⽅向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是()A.(2018,1)B.(2018,0)C.(2018,2)D.(2019,0)11.如图,在平⾯直⾓坐标系中,每个最⼩⽅格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“→”⽅向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2017的坐标为()A.(﹣504,﹣504)B.(﹣505,﹣504)C.(504,﹣504)D.(﹣504,505)12.如图,⼀个质点在第⼀象限及x轴,y轴上运动,在第⼀秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所⽰⽅向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动⼀个单位,那么第24秒时质点所在位置的坐标是()A.(0,5)B.(5,0)C.(0,4)D.(4,0)13.如图,在平⾯直⾓坐标系上有个点P(1,0),点P第1次向上跳动1个单位⾄点P1(1,1),紧接着第2次向左跳动2个单位⾄点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次⼜向上跳动1个单位,第6次向左跳动4个单位,…依此规律跳动下去,则点P第2017次跳动⾄P2017的坐标是()A.(504,1007)B.(505,1009)C.(1008,1007)D.(1009,1009)14.如图,在平⾯直⾓坐标系中,有若⼲个整数点,其顺序按图中“→”⽅向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,﹣1)…根据这个规律探索可得,第100个点的坐标()A.(14,0 )B.(14,﹣1)C.(14,1 )D.(14,2 )15.如图,所有正⽅形的中⼼均在坐标原点,且各边与x轴或y 轴平⾏,从内到外,它们的边长依次为2,4,6,8,…顶点依次⽤A1,A2,A3,A4表⽰,则顶点A2018的坐标是()A.(504,﹣504)B.(﹣504,504)C.(505,﹣505)D.(﹣505,505)16.如图,在平⾯直⾓坐标系中,有若⼲个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)…根据这个规律,第2016个点的坐标为()A.(45,9)B.(45,13)C.(45,22)D.(45,0)17.如图,第⼀个正⽅形的顶点A1(﹣1,1),B1(1,1);第⼆个正⽅形的顶点A2(﹣3,3),B2(3,3);第三个正⽅形的顶点A3(﹣6,6),B3(6,6)按顺序取点A1,B2,A3,B4,A5,B6…,则第12个点应取点B12,其坐标为()A.(12,12)B.(78,78)C.(66,66)D.(55,55)18.如图,⼀个点在第⼀象限及x轴、y轴上移动,在第⼀秒钟,它从原点移动到点(1,0),然后按照图中箭头所⽰⽅向移动,即(0,0)→(1,0)→(1,1)→)(0,1)→(0,2)→……,且每秒移动⼀个单位,那么第2018秒时,点所在位置的坐标是()A.(6,44)B.(38,44)C.(44,38)D.(44,6)19.在平⾯直⾓坐标系中,⼀动点从原点出发按向上、向右、向下、向右的⽅向依次不断移动,每次移动1个单位,其移动的路线如图所⽰,则该动点移动到点A100时的坐标是()A.(49,0)B.(49,1)C.(50,0)D.(50,1)20.如图,在平⾯直⾓坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),……依次扩展下去,则P2018的坐标为()A.(﹣503,503)B.(504,504)C.(﹣506,﹣506)D.(﹣505,﹣505)21.如图,动点P从点(3,0)出发,沿所⽰⽅向运动,每当碰到长⽅形OABC的边时反弹,反弹后的路径与长⽅形的边的夹⾓为45°,第1次碰到长⽅形边上的点的坐标为(0,3)……第2018次碰到长⽅形边上的坐标为()A.(1,4)B.(5,0)C.(8,3)D.(7,4)22.如图,在平⾯直⾓坐标系中,⼀动点从原点O出发,沿着箭头所⽰⽅向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P2017的坐标是()A.(671,﹣1)B.(672,0)C.(672,1)D.(672,﹣1)23.如图,在平⾯直⾓坐标系xOy中,点P(1,0).点P 第1次向上跳动1个单位⾄点P1(1,1),紧接着第2次向左跳动2个单位⾄点P2(﹣1,1),第3次向上跳动1个单位⾄点P3,第4次向右跳动3个单位⾄点P4,第5次⼜向上跳动1个单位⾄点P5,第6次向左跳动4个单位⾄点P6,….照此规律,点P 第100次跳动⾄点P100的坐标是()A.(﹣26,50)B.(﹣25,50)C.(26,50)D.(25,50)24.如图,在直⾓坐标系中,设⼀动点⾃P0(1,0)处向上运动1个单位长度⾄P1(1,1),然后向左运动2个单位⾄P2处,再向下运动3个单位⾄P3处,再向右运动4个单位⾄P4处,再向上运动5个单位⾄P5处,…如此继续运动下去,设P n(x n,y n),n=1,2,3,…则x1+x2+…+x99+x100=()A.0B.﹣49C.50D.﹣5025.如图,⼀只跳蚤在第⼀象限及x轴、y轴上跳动,在第⼀秒钟,它从原点跳动到(0,1),然后接着按图中箭头所⽰⽅向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动⼀个单位,那么第24秒时跳蚤所在位置的坐标是()A.(0,3)B.(4,0)C.(0,4)D.(4,4)26.如图,在平⾯直⾓坐标系上有个点P(1,0),点P第1次向上跳运1个单位⾄点P1(1,1)紧接着第2次向左跳动2个单位⾄点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳运3个单位,第5次⼜向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第2016次跳动⾄点P2016的坐标是()A.(505,1008)B.(﹣505,1008)C.(504,1007)D.(﹣504.1007)27.如图,在平⾯直⾓坐标系中,有若⼲个整数点,其顺序按图中“→”⽅向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0).根据这个规律探索可得,第50个点的坐标为()A.(10,5)B.(9,3)C.(10,4)D.(50,0)28.如图,在⼀个单位为1的⽅格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直⾓三⾓形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所⽰规律,A2017的横坐标为()A.1010B.2C.1D.﹣100629.如图,⼀个粒⼦在第⼀象限内及x、y轴上运动,在第⼀分钟内它从原点O运动到(1,0),⽽后它接着按图所⽰在与x 轴、y轴平⾏的⽅向上来回运动,且每分钟移动1个长度单位,那么2017分钟后这个粒⼦所处的位置是()A.(7,45)B.(8,44)C.(44,7)D.(45,8)30.如图,在平⾯直⾓坐标系中,⼀动点从原点O出发,沿着箭头所⽰⽅向,每次移动⼀个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是()A.(672,0)B.(673,1)C.(672,﹣1)D.(673,0)31.如图,在平⾯直⾓坐标系上有点A(1,0),点A第⼀次跳动⾄点A1(﹣1,1),第⼆次点A1跳动⾄点A2(2,1),第三次点A2跳动⾄点A3(﹣2,2),第四次点A3跳动⾄点A4(3,2),……依此规律跳动下去,则点A2017与点A2018之间的距离是()A.2017B.2018C.2019D.202032.如图,⼀个粒⼦从原点出发,每分钟移动⼀次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→……,则2018分钟时粒⼦所在点的横坐标为()A.886B.903C.946D.990评卷⼈得分⼆.填空题(共10⼩题)33.如图,在平⾯直⾓坐标内有点A0(1,0),点A0第⼀次跳动到点A1(﹣1,1),第⼆次点A1跳动到A2(2,1),第三次点A2跳动到A3(﹣2,2),第四次点A3跳动到A4(3,2),……依此规律动下去,则点A2018的坐标是.34.如图,所有正三⾓形的⼀边平⾏于x轴,⼀顶点在y轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次⽤A1、A2、A3、A4、…表⽰,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距⼀个单位,则A2017的坐标是.35.如图,所有正⽅形的中⼼均在坐标原点O,且各边均与x轴成y轴平⾏,从内到外,它们的边长依次是2,4,6,8,…,每个正⽅形从第三象限的顶点开始,按顺时针⽅向顺序,依次记为A1,A2,A3,A4,A5,A6,A7,A8;…,则顶点A10的坐标为.36.如图,在平⾯直⾓坐标系中,有若⼲个横坐标分别为整数的点,其顺序按图中“→”⽅向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的横坐标为.37.如图,在平⾯直⾓坐标系中,有若⼲个整数点,其顺序按图中“→”⽅向排列,如(1,0)、(2,0)、(2,1)、(3,1)、(3,0)、(3,﹣1)、…,根据这个规律探索可得,第220个点的坐标为.38.如图,在平⾯直⾓坐标系中,点A的坐标为(1,0),点A第1次跳动⾄点A1(﹣1,1),第2次向右跳动3个单位长度⾄点A2(2,1),第3次跳动⾄点A3(﹣2,2),第4次向右跳动5个单位长度⾄点A4(3,2),…,依此规律跳动下去,第100次跳动⾄点A100的坐标是.39.如图,在平⾯直⾓坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次扩展下去,则P2018的坐标为.40.如图,在平⾯直⾓坐标系中,第⼀次将三⾓形OAB变换成三⾓形OA1B1,第⼆次将三⾓形OA1B1换成三⾓形OA2B2,第三次将三⾓形OA2B2换成三⾓形OA3B3,……,若A (﹣3,1),A1(﹣3,2),A2(﹣3,4),A3(﹣3,8),点B(0,2),B1(0,4),B2(0,6),B3(0,8),按这样的规律,将三⾓形OAB进⾏2018次变换,得到三⾓形OA2018B2018,则A2018的坐标是.41.如图,动点P在平⾯直⾓坐标系中按图中箭头所⽰⽅向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第100次运动后,动点P的坐标是.42.正六边形ABCDE在平⾯直⾓坐标系内的位置如图所⽰,点A的坐标为(﹣2,0),点B在原点,把正六边形ABCDEF沿x 轴正半轴作⽆滑动的连续翻转,每次翻转60°,经过2017次翻转之后,点B的坐标是.评卷⼈得分三.解答题(共8⼩题)43.在平⾯直⾓坐标系中,⼀只蚂蚁从原点O出发,按向上,向右,向下,向右…的⽅向依次不断移动,每次移动1个单位,其⾏⾛路线如图所求.(1)填写下列各点的坐标A4(,)A8(,)A12(,)(2)直接写出A4n的坐标(n是正整数)(,)(3)说明从点A2016到点A2018的移动⽅向.44.(1)如图,在x轴上,点A的坐标为3,点B的坐标为5,则AB的中点C的坐标为(2)在图中描出点A(2,1)和B(4,3),连结AB,找出AB的中点D并写出D的坐标.(3)已知点M(a,b),N(c,d),根据以上规律直接写出MN的中点P的坐标.45.如图,在平⾯直⾓坐标系中,有若⼲个整数点,其顺序按图中“→”⽅向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…,如果(1,0)是第⼀个点,探究规律如下:(1)坐标为(3,0)的是第个点,坐标为(5,0)的是第个点;( 2 )坐标为(7,0)的是第个点;(3)第74个点的坐标为.46.如图,在平⾯直⾓坐标系中,第⼀将△OAB变成△OA1B1,第⼆次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后的三⾓形,找出规律,按此变化规律再将△OA3B3变换成△OA4B4,则A4的坐标是,B4的坐标是;(2)若按第(1)题找到的规律将△OAB进⾏n次变换,得到△OA n B n,⽐较每次变换中三⾓形顶点坐标有何变化,找出规律,推测A n的坐标是,B n的坐标是.(3)在前⾯⼀系列三⾓形变化中,你还发现了什么?47.如图,在直⾓坐标系中,第⼀次将△OAB变换成△OA1B1,第⼆次将△OA1B1变成△OA2B2,第三次将△OA2B2变成△OA3B3,已知A(1,5),A1(2,5),A2(4,5),A3(8,5);B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后三⾓形有何变化,找出规律.按此规律将△OA3B3变成△OA4B4,则A4的坐标是,B4的坐标是.(2)若按第(1)题中找到的规律将△OAB进⾏n次变换,得到△OA n B n,⽐较每次变换中三⾓形顶点的坐标有何变化,找出规律,推测A n的坐标是,,B n的坐标是.(3)判断△OA n B n的形状,并说明理由.48.⼩明在学习了平⾯直⾓坐标系后,突发奇想,画出了这样的图形(如图),他把图形与x轴正半轴的交点依次记作A1(1,0),A2(5,0),…A n,图形与y轴正半轴的交点依次记作B1(0,2),B2(0,6),…B n,图形与x轴负半轴的交点依次记作C1(﹣3,0),C2(﹣7,0),…?n,图形与y轴负半轴的交点依次记作D1(0,﹣4),D2(0,﹣8),…D n,发现其中包含了⼀定的数学规律.请根据你发现的规律完成下列题⽬:(1)请分别写出下列点的坐标:A3,B3,C3,D3;(2)请分别写出下列点的坐标:A n,B n,?n,D n;(3)请求出四边形A5B5C5D5的⾯积.49.如图,在平⾯直⾓坐标系中,第⼀次将三⾓形OAB变换成三⾓形OA1B1,第⼆次将三⾓形OA1B1,变换成三⾓形OA2B2,第三次将三⾓形OA2B2变换成三⾓形OA3B3,已知A(﹣3,1),A1(﹣3,2),A2(﹣3,4),A3(﹣3,8);B(0,2),B1(0,4),B2(0,6),B3(0,8).(1)观察每次变换前后三⾓形有何变化,找出规律,按此变换规律再将三⾓形OA3B3变换成OA4B4,则点A4的坐标为,点B4的坐标为.(2)若按(1)题找到的规律,将三⾓形OAB进⾏n次变换,得到三⾓形OA n B n,则点A n的坐标是,B n的坐标是.50.如图,在直⾓坐标系中,第⼀次将△OAB变换成△OA1B1,第⼆次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.已知A(1,3),A1(﹣2,﹣3),A2(4,3),A3(﹣8,﹣3),B(2,0),B1(﹣4,0),B2(8,0),B3(﹣16,0).(1)观察每次变换前后的三⾓形有何变化,找出其中的规律,按此变化规律再将△OA3B3变换成△OA4B4,则A4点的坐标为,B4点的坐标为.(2)若按第(1)题找到的规律将△OAB进⾏了n次变换,得到△OA n B n,推测点A n的坐标为,B n的坐标为.。
平面直角坐标系找规律100题
平面直角坐标系找规律100题【实用版】目录一、平面直角坐标系的基本概念1.有序数对和点2.平行于坐标轴的直线上的点的坐标特点3.各象限的角平分线上的点的坐标特点二、平面直角坐标系中的找规律问题1.6 个 1 循环2.点 P4n 在直线 yx 上(第三象限)3.初一数学题中的平面直角坐标系和找规律4.平面直角坐标系专题三、平面直角坐标系中的公式及做题技巧1.相邻 4 项之和都是 02.关于 x 轴、y 轴、原点的对称性四、平面直角坐标系中的例题解析1.点 A(-2, 1) 所在象限2.点 P 关于 x 轴、y 轴的对称点3.三角形 ABC 的面积和平移问题正文一、平面直角坐标系的基本概念平面直角坐标系是由两条互相垂直的直线组成的,通常称为 x 轴和y 轴。
它们将平面分成四个部分,称为第一、二、三、四象限。
在平面直角坐标系中,每个点都可以用一个有序数对 (a, b) 表示,其中 a 表示点在 x 轴上的位置,b 表示点在 y 轴上的位置。
1.有序数对和点有序数对是指有顺序的两个数 a 与 b 组成的数对,记作 (a, b)。
在平面直角坐标系中,一个点的位置可以表示为一个有序数对 (a, b),其中 a 表示点在 x 轴上的坐标,b 表示点在 y 轴上的坐标。
2.平行于坐标轴的直线上的点的坐标特点平行于 x 轴 (或横轴) 的直线上的点的纵坐标相同;平行于 y 轴(或纵轴) 的直线上的点的横坐标相同。
3.各象限的角平分线上的点的坐标特点第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。
二、平面直角坐标系中的找规律问题1.6 个 1 循环在平面直角坐标系中,有一组数据为 1, 1, 2, 1, 3, 1, 4, 1,...,可以发现每 6 个数循环一次,即 1, 1, 2, 1, 3, 1。
2.点 P4n 在直线 yx 上(第三象限)已知点 P 的坐标为 (x, y),其中 x = 4n,n 为整数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【题型6】坐标中的规律问题
已知,点A(-2,3)、B(4,3)、C(-1,-3).
(1)求A 、B 两点之间的距离.
(2)求点C 到x 轴的距离.
(3)求△ABC 的面积.
(4)观察线段AB 与x 轴的关系,若点D 是线段AB 上一点,则点D 的纵坐标有什么特点?
【变式训练】
1.如图,写出平行四边形ABCD 的顶点A 和顶点B 的坐标,并判断A 与B 、C 与D 的坐标有什么关系.
2.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.
(1)填写下列各点的坐标:A 4( , ),A 8( , ),A 12( , );
(2)写出点A 4n 的坐标(n 是正整数) ;
(3)蚂蚁从点A 100到点A 101的移动方向是 .
3.在平面直角坐标系中,有若干个横坐标为整数的点,其顺序按图中箭头所示方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,那么第23个点的坐标是 .
4.小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图),他把图形与x 轴正半轴的交点依次记作A 1(1,0),A 2(5,0),…,A n ,图形与y 轴正半轴的交点依次记作B 1(0,2),B 2(0,6),…,B n ,图形与x 轴负半轴的交点依次记作C 1(-3,0),C 2(-7,0),…,
O 1 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10
A 11 A 12 x
y
C n ,图形与y 轴负半轴的交点依次记作
D 1(0,-4),D 2(0,-8),…,D n .经研究,他发现其中包含了一定的数学规律. 请你根据其中的规律完成下列题目:
(1)请分别写出下列各点的坐标:A 3 ,B 3 ,C 3 ,D 3 ;
(2)请分别写出下列各点的坐标:A n ,B n ,C n ,D n ;
(3)请求出四边形A 5B 5C 5D 5的面积.
6.如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2008次,点P 依次落在点1232008P P P P ,,,
,的位置,则点2008P 的横坐标为 . 7.如图,已知A l (1,0)、A 2(1,1)、A 3(-1,1)、A 4(-1,-1)、A 5(2,-1)、….则点A 2007
第3题 第4题
第6题。