微积分(二)课后题答案,复旦大学出版社__第六章
微积分第二册习题六答案
习 题 六 (A )1.根据定积分的几何意义说明下列各式的正确性 (1)0d cos 20=⎰x x π(2)x x x x d )1(2d )1(22222+=+⎰⎰-(3)0d 311=⎰-x x (3)x x dx x d 42111⎰⎰==解:(1)该定积分的几何意义如右图所示阴影部分面积的代数和,由对称性可知正确. (2)该定积分的几何意义如右图所示阴影部分面积的代数和,且在) 2 , 2(-范围内对称,所以是正确的.(3)该定积分的几何意义如右图所示阴影部分面积的代数和,且关于原点对称,所以正确. (4)原式dx x ⎰-=112等式左边的定积分的几何意义是右边图形阴影部分面积的代数和的2倍,且又因为阴影部分在1) , 1(-范围内关于轴对称,所以等式两边相等.2.不计算积分,比较下列积分值的大小 (1)x x d 210⎰与x x d 310⎰ (2)x x d 231⎰与x x d 331⎰(2)x x d ln 43⎰与x x d )(ln 243⎰ (4)x x d sin 20⎰π与x x d 20⎰π解:(1)由定积分的比较性可知在1) , 0(范围内32x x >,所以前者大于后者. (2)由定积分的比较性可知在3) , 1(范围内32x x <,所以前者小于后者. (3)由定积分的比较性可知在4) , 3(范围内2)(ln ln x x <,所以前者小于后者.1=a (4)由定积分的比较性可知在)2, 0(π范围x x <sin ,所以前者小于后者.3.用定积分性质估计下列积分值 (1)x d e2x -1⎰(2)x x d )sin 1(2454+⎰ππ(3)x xx d 151+⎰(4)x xxd sin 20⎰π解:(1)因为2x e -在]1 , 0[范围内的最大值为1,最小值为1-e 所以由定积分的估值定理可知:dx dx e dx e x l 12111⎰⎰⎰≤≤--1211≤≤⇒--⎰dx e e x(2)因为x 2sin 1+在22]45 , 4[ππ的最大值为2,最小值为1。
微积分第二版课后习题答案
微积分第二版课后习题答案【篇一:微积分(上册)习题参考答案】0.11.(a)是(b)否(c)是(d)否2.(a)否(b)否(c)否(d)是(e)否(f)否(g)是(h)否(i)是1,2,3},{1,2,4},{1,3,4}, 3.f,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{{2,3,4},{1,2,3,4}.4. a?b5. a?b6~15. 略。
16. 证明:先证a-(b-c)?(ab)惹(ac).若x?a(b-c),则x蜗a,x①如果x?c,则x蜗a,②如果x?c,则x?b,所以x?aa-(b-c)?(ab)惹(ac).再证a-(b-c)惹(ac)?a(b-c).若x¢?(ab)惹(ac),则,x¢?ab或x¢吻ac.①如果x¢吻ac,有x¢?c,所以,x¢?bc,又x¢?a,于是x¢?a(b-c) ②如果x¢锨ac,x¢?ab,则有x¢?a,x¢?c,x¢?b,所以,x¢?bc,于是x¢?a(b-c). 因此有(a-b)惹(ac)?a(b-c).综上所述,a-(b-c)=(a-b)惹(ac),证毕. 17~19. 略。
20. cda.21. a?b{(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)};禳1镲xx?r,睚2镲铪参考答案禳禳11镲镲,,a?d-1,-,0,1,2,3,?a-c=睚0,-1,-睚镲镲44铪铪禳1镲a=睚-1,-,0,1,2,7.镲4铪xx危r,1x 2}x3,a?b={,a-b={xx?r,2x3}.b-cb-c;(ac),因此有b,也有x?(ab)惹a2={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)};b2={(u,v),(u,v),(v,u),(v,v)}22. a={(x,y,z)}x,y,z危?.0323~25. 略。
微积分第六章习题解答
y ex
解 A (e e ) dx
x x 0
1
1 e 2. e
y e x
19
P40 习题6.6 1.求由下列各曲线所围成的图形的面积: 1 (7) y x 与直线 x 2, y 2 ; y x
1 解 A ( x 2) dx 1 x
2
2
f ( x)
x 采用分部积分的方法 ,
1
其中 f ( x ) dx ,
x
1
x
e dt .
1 2 x
t 2
f ( x ) e
I
f ( x) x
0
dx 2 f ( x ) d x
0
1 1 0 0
1
2 f ( x ) x 2
x df ( x )
2 f (1) 0 2
22
P40 习题6.6 3 y x , x 2, y 0 所围成的图形,分别绕 x 轴及 y 轴 5. 由
旋转, 计算所得两个旋转体的体积.
y
128 6 , 解 Vx x dx 0 7
2
8
V y 2 2 8 y dy
0
8
2 3
y
y f ( x)
e2 1 I ,
1 2 I (e 1) . 2
14
P28 习题6.5 10.
计算下列定积分:
2
0
ln 2
x3 ex
x 2 t 1 ln 2 t t e dt dx 2 0
ln 2 0
1 ln 2 1 t t t de t e 2 0 2
1 ln 2 t e dt 2 0
微积分(二)课后题答案,复旦大学出版社_第五章
于是
∫ f (x)dx = ∫ (− cos x + C )dx = − sin x +C1x +C2 .
其中 C1,C2 为任意常数,取 C1 = C2 = 0 ,得 f (x) 的一个原函数为 − sin x .
注意 此题答案不唯一.如若取 C1 = 1,C2 = 0 得 f (x) 的一个原函数为 −sin x − x .
=
1 22
∫
1 d( 2x −1
2x
−
1)
−
2
1 2
∫
1 d( 2x +1) 2x +1
1 = ln
22
1
2x +1 − 2
ln 2
2x
+1
+
C
=
1 22
ln
2x −1 +C 2x +1
(18)∫
(x
+
dx 1)(x
(4)由 Q′(P) = −1000(1)P ln 3 得 3
∫ ∫ Q(P) =
[−1000(1)P ln 3]dx = −1000 ⋅ ln 3
(
1 )
P dx
=
1000
⋅
(
1)P
+
C.
3
3
3
将 P=0 时,Q=1000 代入上式得 C=0
所以需求量与价格的函数关系是 Q(P) = 1000(1)P . 3
2 1− x2
1− x2
1− x2
(11)∵
d
(arctan
3
x)
=
1
3 +9
x
2
dx
高等数学b2第六章教材答案
高等数学b2第六章教材答案高等数学B2 第六章教材答案第一节:函数极值和最值1. 函数的极值和最值是函数在定义域内的特殊点,它们在数学和实际问题中具有重要的应用价值。
下面是第六章教材中相关习题的答案:习题1:a) 求函数$f(x) = 3x^2 - 6x + 2$在区间[-1, 2]上的极大值和极小值。
解:首先求函数$f'(x) = 6x - 6$的零点,即$6x - 6 = 0$,得$x = 1$。
将$x = -1, x = 1, x = 2$代入$f(x)$中,分别得到$f(-1) = 13, f(1) = -1, f(2)= 10$。
所以$f(x)$在$x = 1$处取得极小值-1,在$x = -1$处取得极大值13。
b) 求函数$g(x) = x^3 - \frac{9}{2}x^2 + 3$在整个定义域上的最大值和最小值。
解:首先求函数$g'(x) = 3x^2 - 9x$的零点,即$3x^2 - 9x = 0$,得$x = 0, x = 3$。
将$x = 0, x = 3$代入$g(x)$中,分别得到$g(0) = 3, g(3) =\frac{27}{2}$。
所以$g(x)$在$x = 3$处取得最大值$\frac{27}{2}$,在$x = 0$处取得最小值3。
2. 函数的极值和最值在实际问题中有很多应用,比如优化问题、经济学中的最大效益等。
通过求解函数的极值和最值,可以找到使函数取得最优结果的变量取值。
习题2:一块长方形的地面上,以其一条边为底,作一个等腰直角梯形,使得梯形的上底与下底分别与已知两块木板的宽度相等。
问该等腰直角梯形的底边长度为多少,才能使梯形的面积最大。
解:设等腰直角梯形的底边长度为$x$,则梯形的上底和下底长度也都为$x$。
设梯形的高为$h$,根据勾股定理得到$h = \sqrt{2}x$。
梯形的面积$S(x) = \frac{1}{2}(x + x)(\sqrt{2}x)$。
微积分2答案完整版
知识点:积分收敛性,中。
4.
答案:C
学霸解析:
可微
可微
可微
知识点:二元函数可微性,中。
5.
答案:C
学霸解析
知识点:求原函数,中。
三、计算题(共8题,每题6分,满分48分)
1.答案:
学霸解析:令
则
知识点:求定积分,中。
2.答案:
学霸解析:
3.
解:
知识点:二重积分,中。
4.
答案:
学霸解析:
二 、
1答案:A
学霸解析: 为偶函数, 为奇函数,且 有意义,则 是偶函数。
知识点:组合函数,易。
2、
答案:B
学霸解析:若函数 在 处不可导,则 在 处一定不可微。
知识点:可导和可微积,易。
3、
答案:D
学霸解析:收益与成本的情况下,获得最大利润的必要条件是 .
知识点:二重求导,中。
4、
答案:B
学霸解析:
考查知识点:敛散性
(2)答案:
学霸解析:
考查知识点:级数收敛的函数
六、
答案:480
学霸解析:
考查知识点:求导运用
七、
答案:2/15
学霸解析:
考查知识点:双边求导
八、
1.答案:
右式
=左式
2.答案:
① 在(a,b)上恒成立
由于f(x)-x在(a,b)上连续
可知
故只能有f(x)=0
② 在(a,b)上恒成立
考查知识点:间断点
3.答案:B
学霸解析:可微的定义
考查知识点:可微的定义
4.答案:D
学霸解析:R(Q)导数减去C(Q)导数为0点为题目所求点
微积分 第六章练习题答案复习进程
微积分第六章练习题答案第六单练习题一、选择题1、在球x 2+y 2+z 2-2z =0内部的点是( C )A 、(0,0,0)B 、(0,0,-2)C 、111,,222⎛⎫ ⎪⎝⎭D 、111,,222⎛⎫-- ⎪⎝⎭2、点(1,1,1)关于xy 平面的对称点是( B )A 、(-1,1,1)B 、(1,1,-1)C 、(-1,-1,-1)D 、(1,-1,1)3、设函数z =f (x ,y )在点(x 0,y 0)处存在对x ,y 的偏导数,则00(,)x f x y '=( B ) A 、00000(2,)(,)lim x f x x y f x y x ∆→-∆-∆ B 、00000(,)(,)lim x f x y f x x y x∆→--∆∆C 、00000(,)(,)limx f x x y y f x y x∆→+∆+∆-∆ D 、0000(,)(,)lim x x f x y f x y x x →--4、函数z =f (x ,y )在点(x 0,y 0)处可微的充分条件是( D ) A 、f (x ,y )在点(x 0,y 0)处连续 B 、f (x ,y )在点(x 0,y 0)处存在偏导数 C 、00000lim (,)(,)0x y z f x y x f x y y ρ→''⎡⎤∆-∆-∆=⎣⎦D 、00000(,)(,)lim 0x y z f x y x f x y y ρρ→''∆-∆-∆⎡⎤=⎢⎥⎣⎦其中ρ=5、已知函数22(,)f x y x y x y +-=-,则(,)(,)f x y f x y x y∂∂+=∂∂( B ) A 、22x y - B 、x y + C 、22x y + D 、x y -6、平行于z 轴且过点(1,2,3)和(-1,4,5)的平面方程是( A ). A 、03=-+y x B 、03=++y x C 、01=+-z y D 、5=z7、二元函数224),(y x y x f z +==在点(0,0)处( D ) A 、连续、偏导数不存在 B 、不连续、偏导数存在C 、连续,偏导数存在但不可微D 、可微8、若可微函数),(y x f z =在点),(000y x P 有极值,则( C ). A 、两个偏导数都大于零 B 、两个偏导数都小于零C 、两个偏导数在点),(000y x P 的值都等于零D 、两个偏导数异号9、二重积分⎰⎰+=Ddxdy y x I )sin(1,⎰⎰+=Ddxdy y x I )(sin 22,其中D是由1,21,0,0=+=+==y x y x y x 围成,则( C ). A 、21I I = B 、21I I < C 、21I I > D 、以上都不对10、设方程xyz =z =z (x ,y ),则z =z (x ,y )在点 (1,0,-1)处的全微分dz =( D )A 、dx +B 、dx -+C 、dx --D 、dx - 11、二元函数3322339z x y x y x =-++-的极小值点是( A ) A 、(1,0) B 、(1,2) C 、(-3,0) D 、(-3,2) 12、点00(,)x y 使(,)0x f x y '=且(,)0y f x y '=成立,则( D )A 、00(,)x y 是(,)f x y 的极值点B 、00(,)x y 是(,)f x y 的最小值点C 、00(,)x y 是(,)f x y 的最大值点D 、00(,)x y 可能是(,)f x y 的极值点 13、设区域D 是单位圆221x y +≤在第一象限的部分,则二重积分Dxyd σ=⎰⎰( C )A 、xydy B 、1dx xydy ⎰C 、1dy xydx ⎰ D 、12201sin 22d r dr πθθ⎰⎰14、110(,)xdx f x y dy -=⎰⎰( D )A 、1100(,)xdy f x y dx -⎰⎰ B 、110(,)xdy f x y dx -⎰⎰C 、11(,)dy f x y dx ⎰⎰ D 、110(,)ydy f x y dx -⎰⎰15、若1Ddxdy =⎰⎰,则积分域D 可以是( C )A 、由x 轴,y 轴及20x y +-=所围成的区域B 、由x =1,x =2,及y =2,y =4所围成的区域C 、由11,22x y ==所围成的区域D 、由1,1x y x y +=-=所围成的区域 二、填空题1、设)ln(22y x z +=,则xz∂∂= .222y x x + 2、交换二次积分的次序⎰⎰101),(xdy y x f dx = .⎰⎰12),(y dx y x f dy3、若⎰⎰=--Ddxdy y x a π222,则=a ,其中D是由222a y x =+围成的区域.3234、⎰⎰Dd y x f σ),(在极坐标系下的二次积分为 ,其中D是由422=+y x 围成的区域.⎰⎰πθθθ202)sin ,cos (rdr r r f d四、计算题1、.求由方程xyz e z=所确定的函数),(y x f z =的偏导数x z ∂∂,yx z∂∂∂2解:设xyz e z y x F z -=),,(,则yz F x -=,xy e F z z -=xye yz F F x z z z x -=-=∂∂ 22)()())(()(xy e x yze yz xy e y z yz xye yzy x z z z z y z --∂∂--∂∂+='-=∂∂∂322322)(xy e e z y z xy z y e xyz e z e z zz z z ---+-= 2、设vuz arctan =,其中y x v y x u -=+=,23,求全微分dz解: xv v z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂ 22223vu uv u v +-+⋅+= 2222)()23(23)()23()(3y x y x yx y x y x y x -+++--++-=yv v z y u u z y z ∂∂∂∂+∂∂∂∂=∂∂ )1(22222-⋅+-+⋅+=vu uv u v 2222)()23(23)()23()(2y x y x yx y x y x y x -++++-++-=dy y zdx x z dz ∂∂+∂∂=dx y x y x y x y x y x y x ])()23(23)()23()(3[2222-+++--++-= dy y x y x yx y x y x y x ])()23(23)()23()(2[2222-++++-++-+3、设2z u v =,其中y x v y x u -=+=,23,求全微分dz 解:xvv z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂ 232u uv +⋅=2)23())(23(6y x y x y x ++-+=yv v z y u u z y z ∂∂∂∂+∂∂∂∂=∂∂ )1(222-⋅+⋅=u uv 2)23())(23(4y x y x y x +--+=dy yzdx x z dz ∂∂+∂∂=dx y x y x y x ])23())(23(6[2++-+= dy y x y x y x ])23())(23(4[2+--++ 4、求函数22(,)4()f x y x y x y =---的极值解:x f x 24-=,y f y 24--= 令0,0==y x f f 得2,2-==y x 由2,0,2-====-==yy xy xx f C f B f A 知0>-B AC 且0<A 故),(y x f 在点(2,-2)处有极大值, 极大值为8)2,2(=-f5、、计算二重积分⎰⎰+Ddxdy y x )23(,其中D是由X 轴、Y 轴及直线2=+y x 所围成的区域解:⎰⎰+Ddxdy y x )23( ⎰⎰-+=x dy y x dx 202)23(⎰++-=22)422(dx x x=320解法二:原式⎰⎰-+=y dx y x dy 202)23(⎰+--=202)6221(dy y y 320=6、、计算二重积分⎰⎰Ddxdy xxsin ,其中D是由直线x y =和曲线2x y =所围成的闭区域. 解:⎰⎰Ddxdy x xsin ⎰⎰=x x dy xx dx 2sin 10dx x x xx)(sin 210-=⎰dx x x x )sin (sin 10-=⎰1sin 1-=7、计算二重积分2Dx ydxdy ⎰⎰,其中D是由X 轴、Y 轴及直线2x y +=所围成的区域解:⎰⎰Dydxdy x 2 ⎰⎰-=x ydy x dx 2022⎰+-=20234)44(21dx x x x =158解法二:原式⎰⎰-=y ydx x dy 2022⎰-+-=20432)6128(31dy y y y y 158=8、计算二重积分2y De dxdy ⎰⎰,其中D是由直线,1,0y x y x ===所围成的闭区域解: 本题只能先对x 积分再对y 积分⎰⎰Dydxdy e 2⎰⎰=yy dx e dy 0102dy ye y 210⎰=)(212102y d e y ⎰= )1(21-=e 五、应用题1.求由曲线3x y =及直线0,2==y x 所围成的图形的面积以及由该图形绕y 轴旋转一周所产生的旋转体的体积(要求作出草图). 阴影部分面积⎰=203dx x S2414x == 4旋转体的体积⎰-=802312])(2[dy y V y π08)534(35y y -=ππ564=2、求由曲线2y x =和2x y =所围成的图形的面积以及由该图形绕Y轴旋转 一周所产生的旋转体的体积(要求作出草图).解:阴影部分面积⎰-=102)(dx x x S01)3132(323x x -== 31旋转体的体积⎰-=1222])()[(dy y y V y π01)5121(52y y -=π3 =π10。
微积分第六章习题答案
证明: ,而 ,恰好
5.不用求出函数 的导数,说明方程 有几个实根,并指出它们所在的区间。
解: ,分别在区间 上应用罗尔定理得 在 上都有根,而 为三次多项式,所以恰有三个实根。
6.证明恒等式
证明:在 上, ,所以 为常数,令 得此常数为 。又显然 ,所以结论成立。
4.求下列函数的极值点与极值:
(1)
解: , 上 上 所以 为极大值点,极大值为 。 上 上 所以 为极小值点,极小值为 。
(2)
解: , 上 上 所以 为极大值点,极大值为 。
(3)
解: , 上 上 上 所以 为极小值点,极小值为 。 为极大值点,极大值为
5.确定下列函数的单调区间:
(1)
解: 。在 上 , 上 , 上 ,所以 , 为单增区间, 为单减区间。
7.讨论方程 有几个实根。
解:设 , ,在 上 , 单增,在 上 , 单减。所以 为最大值。又有 所以当 时没有实根,当 时有一个实根,当 时有两个实根。
8.判定下列曲线的凹凸性:
(1)
解: 所以函数是凸的。
(2)
解: 所以 上函数是凸的, 上函数是凹的。
(3)
解: 所以函数是凹的。
(4)
解: 所以函数是凹的。
16.设函数 ,求证:当 时, 当 时,有
。
证明:当 时, 所以
即 ,在其中取 即得
6.4函数的单调性与曲线的凹凸性
习题6.4
1.判定函数 的单调性。
解: 只在 处为零,所以函数单调下降。
2.判定函数 的单调性。
解: ,只在 处为零,所以函数单调上升。
3.求下列函数的单调性区间与极值点:
《微积分》课后答案(复旦大学出版社(曹定华 李建平 毛志强 著))第六章 定积分
x
ar
1
1 (b3 a 3 ) (b a) 3
1+x.所以
4. 估计下列各积分值的范围:
1
天天learn()为您提供大学各个学科的课后答案、视频教程在线浏览及下载。
n.
2 3 1
x
n b 1 S ( x 2 1)dx lim f (i )Δxi (b a)[a 2 (b a) 2 a(b a) 1] a n 3 i 1
t
此文档由天天learn()为您收集整理。
(1)
4
1
( x 2 1)dx ; e x dx (a>0);
2
2
(2)
3 1 3 0
x arctan xdx ;
2
(3) 解
a
a
(4)
2
ex
x
dx .
(1)在区间[1,4]上,函数 f ( x) x 1 是增函数,故在[1,4]上的最大值 M f (4) 17 ,最
2
w.
f (a ) f ( a ) e a ,a>0 时, e a 1 ,故 f ( x) 在[-a,a]上的最大值 M=1,最小值
m e a ,所以
ww
2
tt
2
le
2
2ae a e x dx 2a .
2
ar
a
,令 f ( x) 0 得驻点 x=0,又 f (0) 1 ,
2
0
(1)
4
le
1
所以当 x=0 时,I(x)有极小值,且极小值为 I(0)=0. 5. 计算下列定积分:
微积分II课后答案详解
2 4 4 4 = + + = )1,1,1( | z u + y u + x u ∴ 3 3 2 1
3
z + y + x +1 = zu z3
2 2
3
z + y + x +1 = yu y2
2
3
z + y + x +1 = x u �解 1
2
z
u + y u + x u求处� � 1 � 11 �点在 ,) 3 z + 2 y + x + 1(nl = u 设�3
z2
) yx (nl y 2 yx 2 y∂ = x. . 2 ]) yx (nl[ = 1 1 1− 1 z∂ ) yx (nl x 2 yx 2 x∂ = y . . 2 ]) yx (nl[ = �解 1 1 1− 1 z∂ y∂ x∂ , 求 , ) yx (nl = z ② z∂ z∂
2
yx 3 − 3 x =
�y + x � )y + x ( 2 )y + x ( y + x � x∂ y∂ y∂x∂ 2 � y∂ + + = = + = y x = ) ( n l ) ( y x−0 z∂ ∂ z2 ∂ 1 � x � ∂
)y + x ( 2 )y + x ( y + x x∂ y +x x∂ x∂ x∂ 2 = + =) + ) y + x (nl( = ) ( = 2 y2 + x x−y +x x ∂ z∂ ∂ z2 ∂ 1 y +x x∂ .x + ) y + x (nl = �解 z∂ 1 y∂x∂ 2 x∂ 求 ,) y + x (nl x = z ③ , ∂ z2 ∂
《微积分》各章习题及详细答案
第一章 函数极限与连续一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sin lim 0=→xx kx 成立的k 为 。
5、=-∞→x e xx arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b .7、=+→xx x 6)13ln(lim 0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、lim ____________x →+∞=。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________.15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
微积分(二)课后题答案,复旦大学出版社_第七章
= a ⋅ a + a ⋅b + a ⋅c + b ⋅a + b ⋅b + b ⋅c + c ⋅ a + c ⋅b + c ⋅c =| a |2 + | b |2 + | c |2 +2( a ⋅ b + b ⋅ c + c ⋅ a) = 3 + 2(a ⋅ b + b ⋅ c + c ⋅ a )
5. 在 yOz 面上,求与三个已知点 A(3,1,2),B(4,-2,2)和 C(0,5,1)等距离的点. 解:设所求点 P (0, b, c) ,则 | PA |=| PB |=| PC | 即 9 + (b − 1) 2 + (c − 2) 2 = 16 + (b + 2)2 + (c − 2)2 = 解得 b = − , c = −
x 2 + y 2 = 16 + 9 + 25 = 10 2 ,即 x 2 + y 2 = 200 .
得⎨
⎧4 x − 3 y = 0 ⎩ x + y = 200
2 2
⎧x = 6 2 ⎪ ⎪ ⎩y = 8 2
或⎨
⎧ x = −6 2 ⎪ ⎪ ⎩ y = −8 2
所以所求向量 a 为 (6 2,8 2, 0) 或 ( −6 2, −8 2, 0) . 5. 求以 A(1,2,3),B(3,4,5),C(2,4,7)为顶点的△ABC 的面积 S. 解: AB = (2, 2, 2), AC = (1, 2, 4)
微积分_二_课后题答案,复旦大学出版社_第十章
c
1 1 2x y ,所以,原方程满足初始条件的特解为 e (e 1) . 2 2
2. 物体冷却速度与该物质和周围介质的温差成正比,具有温度为 T0 的物体放在保持常温 为的室内,求温度 T 与时间 t 的关系. 解: 设 t 时刻物体的温度为 T,由题意有
dT k (T ) dt
x2 y 2 1, xyy″x(y′)2yy′0. C1 C2
解: (1)
Q y e x ( x c)e x y y e x ( x c)e x ( x c )e x e x y ( x c )e x
是微分方程 y y e x 的解. (2) 在方程 xy c1e x c2e x 两边对 x 求导有 y xy c1e x c2e x 上方程两边对 x 求导 有 2 y xy c1e x c2e x ,即 2 y xy xy 即 xy 2 y xy 0 所以 xy c1e x c2e x 所确定的函数 y y ( x ) 是方程 xy 2 y xy 0 的解. (3)
即
ln ln u 1 ln x c1
将
ln u 1 cx
(c ec1 )
u e1 cx
ቤተ መጻሕፍቲ ባይዱ
u
y x
代入得
y xe1 cx
由初始条件 y (1) 1 得 c 1 故原方程满足初始条件的特解为
y xe1 x .
解方程组
(6) 原方程可化为
dy y x 2 dx x y 4
Q x 2sin 2t 3c1 sin 3t 3c2 cos 3t x 4 cos 2t 9c1 cos 3t 9c2 sin 3t x 9 x 4 cos 2t 9c1 cos 3t 9c2 sin 3t 9cos 2t 9c1 cos 3t 9c2 sin 3t 5cos 2t
微积分课后习题参考答案第六章
第六章 微分方程与差分方程§1微分方程的基本概念习 题 6 — 11.验证下列各题中函数是所给微分方程的解,并指出解的类型: ⑴03=+'y y x ,3-=Cx y ; 解:3-=Cx y 是03=+'y y x 的通解;⑵ax xyy +=',bx ax y +=2,其中a ,b 为常数; 解:bx ax y +=2是ax xy y +='的特解(因为b 不是任意常数);⑶()()022='-'+'+''-y y y y x y x xy ,()xy y ln =;解:()xy y ln =是()()022='-'+'+''-y y y y x y x xy 的特解;⑷0127=+'-''y y y ,x xe C e C y 4231+=;解:x xe C eC y 4231+=是0127=+'-''y y y 的通解;⑸x y y y 2103=-'+'',50355221--+=-x e C e C y x x. 解:50355221--+=-x e C eC y x x是x y y y 2103=-'+''的通解. 知识点:,定义6.2(若一个函数代入微分方程后,能使方程两端恒等,则称这个函数为微分方程的解)和若微分方程的解中含有独立的任意常数且个数与微分方程的阶数相同,这样的解叫做微分方程的通解,不含任意常数的解称为特解。
2.在曲线族()xex C C y 221+=中找出满足条件10==x y ,10='=x y 的曲线.解:由题意得:()xe x C C C y 222122++=',∵10==x y ,10='=x y , ∴解得11=C ,12-=C , 故所求曲线为()xex y 21-=(xxe y 2=)。
微积分II课后答案详解
2�计算下列各式的近似值�分析运用公式
f (x0 + ∆x1 y0 + ∆y) ≈ f (x0, y0 ) + f x′ ∆x + f ′y∆y � �1� (10.1)2.03 解�令 f (x, y) = x y , x0 = 10, ∆x = 0.1, y0 = 2, ∆y = 0.03
(10.1)2.03 = f (x0 + ∆x1 y0 + ∆y) ≈ f (x0 , y0 ) + f x′ ∆x + f ′y∆y = 102 + yx y−1 (10,2) ⋅ 0.1 + x y ln x (10,2) ⋅ 0.01 = 100 + 2 + 3ln10 ≈ 108.9
f (x, y) = x − kx = 1 − k ≠ 1(k ≠ 0) x + kx 1 + k
综合①②可知函数极限不存在。
练习 5.2
1.求下列函数的偏导数
① z = x3 y − xy3,求 ∂z , ∂z
∂x ∂y
解� ∂z = 3x 2 y − y 3 , ∂z = x3 − 3xy 2
x+ y
x→0
分析�由二元函数极限定义�我们只须找到沿不同路径 p → p0(0,0) 时�所得极限值不同即可。
证明� ① p(x, y) x ( x ≠ 0, y = 0)
f (x, y) = f (x,0) = 1, lim f (x, y) = 1 x →0 y→0
p0 (0, 0)
②当 p(x, y)沿直线y = kx(x ≠ 0)趋于�0�0�时�
练习 5.1
1.在空间直角坐标系下,下列方程的图形是什么形状?
微积分2习题答案
微积分2习题答案⼀、填空题 1.2. 设P(x)是x 的多项式,且lim 凡门⼆6 '—= 2, lim — = 3 ,则P(x) = 0 X7Tlim (arcsin(vx 2+x ⼀ x))= .YT4-X 6A 3 + 2x 2 + 3x t3. lim 1 ⼀ — .V —4. x )设lim ⼀ "" ⼀ * + 4= A ,则有"=5. 6. 7. 8. 9. j X — 1 .? “ \ ? 2 sinx 设 / (A ) = xsm — d -----X X ? 3.1L +sin x-sin — lim ------------ ------ - = t 3*函数v = ⼀上]⼀的间断点是(x-l)(x + 2)为使函数/(x) = - ? tanx 在点x = 0处连续,应补充左义/(0)= x 3设函数y = ^-x )xK则 lim f (x)=X->X%⼯°在兀=0处连续,则参数K =x = 0 x + ae x +\⼆、单项选择题 1 ?设x n >Q,且lim x 存在,则 lim x HTX n->x @>0 ② no ③=0 2?极限 lim e 7^ = XT I ①8 ②1 10.函数f(x)= < x < 0 在点x = 0处连续,则“=x>0④<03. 4. ③不存在 lim(1 + x) x + lim xsiii —= -V — ②": Jx 3 4, -2③ €+1: ④』+ly =-——-——-的连续区间是_ (x + lXx + 2)①(-s,-2)u (- 2,-l)U (- 1,T ③(-oo,-2)U (-2,400) ②[3,T④ co ⼚i)u(_l,+oo)函数『⼆⼆2X-l .Y+1 ①2个②3个 6.下列函数中,?当XT0时,与⽆穷⼩量x 相⽐是髙阶⽆穷⼩咼的是. 价⽆穷⼩量的是 ______________ ① l-cosxx + X 25. ④4个以上④ sin 2x__ ■⽦有①,②=24.7. 8. 9. 当x->0-时,sin 仮与Ixl 相⽐是_ ①髙阶⽆穷⼩咼③同阶但不等价的⽆穷⼩量当XT O 时,l —cos2x 与/相⽐是①髙阶⽆穷⼩量③低阶⽆穷⼩量(sin 3x 设 f(x) = ] x x = 0 ②⼀3 ②低阶⽆穷⼩量④等价⽆穷⼩量②同阶但不等价的⽆穷⼩量④等价⽆穷⼩量为连续函数,则k = ①1 10?函数/(x)在点勺处有⽴义是f(x)当x ->⼼时极限存在的. ①充分但⾮必要条件③充分必要条件 11?当JVT 0时,① x + sinx12.当XT0时, ?x + sin — x 13?当XT 8时,①x + sin 丄 x ②必要但⾮充分条件④既⾮充分⼜⾮必要条件下列函数中⽐x 髙阶的⽆穷⼩量是 ________ ② x-siiix ③ ln(l + x)下列函数中为⽆穷⼩量的是 ________②x ?sin 丄③丄+ sinx X X 下列函数中为⽆穷⼩量的是 _____ _ ② x-sin — ③—+ sinxX X14. 15. 16. ②④ hi(l-x)②④—?sin x x ③④—-siiix x 设在某个极限过程中函数/(X )与g(x)均是⽆穷⼤量,则下列函数中哪⼀个也必是⽆穷⼤量___________ ③④爲设/(x (J = c lim f(x) = b t lim f(x) = c ,则函数/(x)在点⼈)处连续的充分必要 .v —>.rj XfY :① /(Q+g(x) ② /(x)-g(x) ③/(Q ?g ⑴②a = c v 2 -1 4------ C E X-l 0 ④a=b=c②跳跃间断点①连续点三、求下列极限 lim (Jx 2 +1 - x) = lim ________ ⼀⼀⼛? + 1lim (Jx 2 +1 - x) = +xlini (J+ 2x + 2 - J③可去间断点④⽆穷间断点1.2. 3. =lim ,( ?— = = lim ⼀ y/x 2+2x + 2 + J ,—2x + 2 —1 lim arctanx-arcsin — =0 x)L r (x + l)2 +(2x + l)2 +(3x + l)2 + …+ (10x + l)2 z 7、 5. lim -- ----------- ------------- ---------------------------- -- (=—) — (10x-l)(lLv-l) 2 n n 、tr +n [解]记⽿=G+t+…+⽃ ir +1 ir +2 n +ne .. n n n n n n 因为——+ —— + …+ —n +n ir +n n +n n ir即—< x /2 < 1,由于lim — = 1,所以由夹逼定理,得lim 兀=1 n +1〃―30n +1“a7?设辄⼚2叽求〃由于极限存在,故a = {3 — \°—=2006p = —, a : P 2006四、分析题1 .讨论极限lim " "[解]因为lim 1!巴丄1 = 1, Um ⼔巴⼝ = ⼀1,故原极限不存在。
微积分II课程微积分2答案
I 10.令 x = asect第四章 不定积分答案2 24. I = sin x sinxdx = - 1-cosxdcosx 、填空题 2.F x |亠 C 3.1 二-cosx — \ 3 1 31 3 cos x J ■ C cos x-cosx C3 3x C 5.4. -C In 2 」x 335.一丄Cxxe (e x ) +1dx 二一de _2 二 arctang XC ’1+(e x ) 6. 6e x C 7.-3sin x C I 二 t 2—1 t 2tdt =2 t 4 -t 2 dt8. 3x x arcta n x C 39.x r 2 C1-In 3x + 2x +C 2 1 2 10. In 2x C 2 -cos2x C 12. le 7x C7114. 丄 In 1+2x+C 2 13. 7. 令 t = 6x11.15.1—2x C 1 316. 「cosx cos x C 3 8. 17. e" 1 x C 18. 6"dt t 123t 2—6t +6ln t +1 +C1 13x^ -6x® +6 In x令 x= si nt3I =1 - sin 2t 2costdt - I i cost dt二、 单项选择题 1 . C 2 . A 3 . D 4 7 . D 8 . D 9 . 12.B 三、 计算题 1 .A10.A.B11.Bx二 sec 2 tdt 二 tant CCTT79 .令 x =ta ntseC tdt (1+tan 2t j2 .■sec 4-dt二 costdt sec t2 -.2 -x 2d 2 -x2 -x 2 C2. 1 x 2 = l n 1 x 2 C-exd ;1 111 cos2t dt t —sin2t C2 2 4 11 1x t sintcost C arctanx 2 C 2 2 21 x 23.1-e" C.a2 sect -1 asectantdt =a tarn tdtasec=a lise^t -1 dt =a tant -t Cf'-2—2 、x -a aarccos a x4C=Jx2 217. a-a -aarccos Cx2x 2 _xI = - x de = x e_ 2xe*dx-x2e» -2 xde^-x2e» -2xe" 2 e^dx_x2 _2x_2 e」C11. I =dx2、厂1_ 1 sect tant3 ta nt22令x^sect secttantdt 18.=1J322Jsec t -1dt^1sectdt31=Tn sect +tant 3 C = 】ln33x站4219.12.1 d 3x-1 _J(3X-12+6 3=]| n j9x2-6x+7+3x-1+C13. 2 2I =xln 1 X - xdln 1 x2 =xln 1 x2 =xln 1 x -x^dx;_2x 2arctanx C20.14.xde x = xe x - e x dx =xe x-e x C15.I = x arccosx - xd arccosxx arccosx dx1-x21「1 ,2 .= xarccosx-—J ;2d(1-x )21.16.x arccosx - 1 - x2 CI = lnxdl 」一hx ^dx — Sx」C x x x x x4 4二(ln x)2d£4(ln x)2-4 41 3x ln xdx = — (ln x)21 4| 1x ln x8 81 4 1 4--x ln x x C8 324x 2(ln x)44=—(ln x)24x4 (ln x)4=sin xde xx41(2ln x)—dx44 x4、4 1 .x dxx=e x sin x - e x cosxdx=e x sin x - cosxde xX ・x x .=e sin x -e cosx e dcosx= e x(sin x-cosx) - ' e x sin xdxe x sin xdx = - e x(sin x -cosx) C2I = sec x secxdx = secxd tan x=secxtanx- 'tanx tanx secxdx=secxtanx- '(sec x-1)secxdx=secxtan x- sef xdx亠i secxdx3=secxtanx- Jsec xdx + In secx +31[sec xdx = —(secxtanx + ln secx +2x-8 ln xdx4tanxtanx C令t=, xI二.eStdt = 2 tdd =2td -2 ddt= 2td -2& C =2 =e x-2e x C22. l=Jlnlnxdlnx =(lnlnx)nx —J Inxd(lnlnx) 21.=lnlnx lnx- lnx —-dxlnx x =lnlnx lnx-lnx C 23.24.F b —F a1e --e22.5ln623.d cos2x = 4 xcos2x sin2xC4 825.1 26. JI227. e-2 28.4 29. 2,3-2arctan f 3 - arctan f 124. l = ln xd3 1 3x lnx x ——■C3 9第五章定积分及其应用答案32.5633.e 34. _135.<36. 1 37. 38. 12 2 3兀 139. 一2 _2二单项选择题30.0 31.0、填空题[f (x pxb a4.2.03.5.负6.正7. l1>l28. 1. A 2 . D 3 . B 4 . C 5 . A 6 . C7. C 8 . B9 . A 10.C 11.C 12.D 13.C 14.C 15.B 16.C17.A 18.B 19.B 20.A 21.B22.C 23.B 24.A 25.C 26.A三、证明题1冃2 9. l1>l2 证:令u=a, b-a,则10.- 11. 12. baf x dx du 二b-a dx,所以13. 2xe x14. sin xb - a ] I f || a b - a x dx =1 1f u du = 0 f x dx-x sin3fi x 16.10,1 2x1 cos2 x215.2.证:令u)]17.1 18.fx3f (x2=x2,则du = 2xdx ,所以1 a2.d^=- 0 uf udu=? 0 1 a220xf x dx19. f 12f0=03 20. 3.证:令u -二-x,则du - -dx,则IT- -2:xf sinxdx 二:】灵-u f sin u du 二負「x f sinx dx 23x2sin 1 x3 31 u 2所以 o xf sinx dx 二 o 2xf sinx dx - xf sin0 0 5fnxdx 飞2x -3-2x x-1x-2 e , x 二 = 二 02xf sinx ck 02 二-x f sinxck v 02得fin^dx 一1:: 0, f 2 二 e* 0, e JI 4.证:x 4令,有。
微积分二第六章课外练习题参考答案
《微积分二》第六章课外综合练习题(一)参考答案单项选择题:1.设2()()2x xF x f t dt x =-⎰,其中()f x 是连续函数,则2lim ()x F x →=( C )。
A .0B .(2)fC .2(2)fD .不存在提示:22222()()()lim ()limlim21xxx x x x f t dtf t dt xf x F x x →→→+==-⎰⎰22()2(2)2(2)f t dt f f =+=⎰。
2.设13201()()1f x x f x dx x =++⎰,则10()f x dx ⎰=( B )。
A.2π B. 3π C. π D. 4π提示:111320001()[()]1f x dx x f x dx dx x =++⎰⎰⎰111320001()1dx f x dx x dx x=+⋅+⎰⎰⎰ =11001arctan ()4x f x dx +⎰101()44f x dx π=+⎰所以10()3f x dx π=⎰3.设()(),()xaf x f t dt '⎰为连续函数则 为( C )。
A .)(t fB .)()(a f t f -C .)(x fD .)()(a f x f - 提示:利用积分上限的函数的性质。
4.设)(x f 为连续函数,则()()b baaf x dx f a b x dx -+-⎰⎰等于( A )A .0B .1C .b a +D .()b af x dx ⎰提示:()()()()t a b xba b babaaf a b x dx f t dt f t dt f x dx =+-+-=-==⎰⎰⎰⎰。
5.下列定积分中,其值为零的是( D )A .22sin x xdx -⎰ B .2cos x xdx ⎰ C .22()x e x dx -+⎰ D .22(sin )x x dx -+⎰提示:因为sin x x +是奇函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(x)
=
max{1,
x2}
=
⎪ ⎨
1
⎪ ⎩
x2
−2 ≤ x < −1 −1 ≤ x < 1 ,于是 1≤ x≤ 2
∫ ∫ ∫ ∫ 2 max{1, x2}dx = −2
−1 x2dx +
−2
1 1dx +
−1
2 1
x2dx
=
1 3
x3
−1 −2
+
x
1 −1
+
1 3
x3
2 1
=
20 3
∫ ∫ 6.
已知 f(x)连续,且 f(2)=3,求 lim x→2
a i)2
+1,
于是
∑ ∑ n
i=1
f (ξi )Δxi
=
n [(a + b − a i)2 +1] b − a
i=1
n
n
∑ =
(b
−
a)
n i=1
[a2
+
(b
−
a)2
i2 n2
+
2 a(b
−
a)
i n
+1]
1 n
= (b − a)[na2 + (b − a)2 ⋅ 1 ⋅ 1 n(n +1)(2n +1) + 2(b − a)a⋅ 1 ⋅ n(n + 1) + n]⋅ 1
x⎡ 2 ⎢⎣
2 t
f
(u)du
⎤ ⎥⎦
dt
(x − 2)2
.
解
∫ ∫ ∫ ∫ ∫ ∫ lim
x→2
x⎡ 2⎣
2 t
f
(u )du ⎤⎦dt
(x − 2)2
⎡ = lim ⎣⎢
x→2
x⎡ 2⎣
2 t
f
(u )du ⎤⎦dt
⎤′ ⎦⎥
⎡⎣(x − 2)2 ⎤⎦′
= lim x→2
x 2
f (u)du
= lim
∫1
(3)
1 dx ;
−1 5 − 4x
π
∫ (4) 2 sinϕ cos3 ϕdϕ ; 0
π
∫ (5)
2 π
cos2
udu
;
6
e2 dx
∫ (6)
;
1 x 1+ ln x
3 dx
∫ (7)
;
1 x2 1+ x2
∫ (8) 2 2 − x2 dx ; 0
ln3 dx
∫ (9)
;
ln 2 ex − e− x
n2 6
n2
n
∫ ∑ 故面积
S=
b (x2
a
+ 1)dx
=
n
lim
n→∞ i =1
f
(ξi )Δxi
= (b − a)[a2
+
1 (b − a)2 3
+ a(b − a) +1]
= 1 (b3 − a3) + (b − a) 3
2. 利用定积分的几何意义求定积分:
1
∫ (1) 2xdx ; 0
∫ (2) a a2 − x2 dx (a>0). 0
max
1, x2
dx .
−2
∫ 解
4
(1) 3
xdx
=
⎛ ⎜⎝
2 3
3
x2
⎞ ⎟⎠
4 3
=
2 3
3
(42
−
3
32
)
=
2 3
(8 − 3
3)
∫ ∫ ∫ ∫ (2) 2 x2 − x dx = 0 (x2 − x)dx + 1 (x − x2 )dx + 2 (x2 − x)dx
−1
−1
0
1
=
⎛ ⎜⎝
1 3
( x2 )′
x→0 2x
x→0 2
=−1 2
∫ ∫ (2) lim ∫ ∫ x→0
x2 sin 3tdt
0
x t3e−tdt
0
=
lim
x→0
⎡ ⎢⎣
x2 0
sin
3tdt
⎤′ ⎥⎦
⎡ ⎣
x 0
t
3e−t
dt
⎤′ ⎦
=
sin 3x2 ⋅ 2x
lim
x→0
x 3e− x
= lim 2 sin 3x2 ⋅ex = lim 6 ⋅ sin 3x2 ⋅ ex = 6
x x→0
2
x→0
3x2
3
(∫ ) (∫ ) ∫ ∫ (3)lim
∫ ∫ x→0
x et2dt 2
0
x te2t2dt
0
⎡
= lim ⎢⎣ x→0 ⎡ ⎣
x et2 dt
0
2 ⎤′ ⎥⎦
x 0
te2t
2
dt
⎤′ ⎦
2 = lim
x→0
x et2dt ⋅ex2
0
xe2 x2
2 = lim
x→0
x et 2dt
1+ x2
3
而 f (x) 在[ 1 ,
3] 上是增函数,从而 f(x)在 [ 1 ,
3] 上的最大值 M = f (
π 3) = ,最小
3
3
3
值 m = f ( 1 ) = π ,所以 3 63
∫ π π
=( 9 63
3− 1 )≤ 3
3
1 x arctan
xdx ≤
π
(
3
3
3 − 1 ) = 2π 33
∫ (2)
lim
x→0
0
x t 2e−tdt
;
∫0
(∫ ) (3) lim ∫ x→0
x et2 dt 2
0
x te2t2 dt .
0
解
∫ ∫ (1) lim x→0
0 arctan tdt
x
x2
=
lim
x→0
⎡ ⎣
0 x
arctan
tdt
⎤′ ⎦
= lim
− arctan
x
= lim
1 −1+ x2
习题 6-2
∫ (2) d x t e5 −3tdt ;
dx ln 2
∫ (3)
⎡ ⎢⎣
cos x sin x
cos(πt
2
)dt
⎤′ ⎥⎦
;
∫ (4)
d2 d2 x
π sint dt
xt
(x>0).
∫ 解
d (1)
x2 1+ t 2dt = 1+ x4 ⋅ (x2 )′ = 2x 1+ x4
dx 0
∫d
(2)
x t 5e−3tdt = x5e−3x
dx ln 2
∫ ∫ ∫ (3)
⎡ ⎣
cos x sin x
cos(πt 2
)dt
⎤′ ⎦
=
⎡ ⎣
cos x cos(πt2 )dt −
0
sin 0
x
cos(πt
2
)dt
⎤′ ⎦
∫ ∫ =
⎡ ⎣
cos 0
x
cos(πt
2
)dt
⎤′ ⎦
−
⎡ ⎣
sin 0
所以当 x=0 时,I(x)有极小值,且极小值为 I(0)=0. 5. 计算下列定积分:
4
∫ (1) xdx ; 3
∫ (2) 2 x2 − x dx ; −1
∫ (3)
π 0
f
(x)dx ,其中
f
(x)
=
⎧ ⎪⎪
x, 0 ≤
⎨ ⎪sin
x,
π
x≤ ≤x
π ,
2 ≤ π;
⎪⎩ 2
∫ { } (4)
2
0
0
4. 估计下列各积分值的范围:
1
∫ (1) 4 (x2 +1)dx ; 1
3
∫ (2) 1 x arctan xdx ; 3
∫ (3) a e−x2 dx (a>0); −a
∫ (4) 0 ex2 −xdx . 2
解 (1)在区间[1,4]上,函数 f (x) = x2 +1 是增函数,故在[1,4]上的最大值 M = f (4) = 17 ,最
∫ ∫ d2
(4) dx2
πsin xt
tdt
=
d dx
⎛ ⎜⎝
d dx
πsin xt
tdt
⎞ ⎟⎠
=
d dx
⎛ ⎜⎝
−
sin x
x
⎞ ⎟⎠
x cos x − sin x sin x − x cos x
=−
=
.
x2
x2
2. 求下列极限:
0
∫ arctan tdt
(1) lim x x→0
x2
;
x2
sin 3tdt
⎡ ⎣
x 2
f
(u)du
⎤′ ⎦
2(x − 2) x→2 [2(x − 2)]′
− f (x) 1
1
3
= lim
= − lim f (x) = − f (2) = − .
x→2 2
2 x→2
2
2
1. 计算下列积分:
π
π
∫ (1)
π 3
sin(x
+
)dx 3