TCS230CN 颜色传感器中文手册

合集下载

TCS230颜色传感器的中英文翻译

TCS230颜色传感器的中英文翻译

基于TAOS公司的TCS230的颜色感应TAOS公司的TCS230是一个小的、高度集成、8引脚、SOIC封装的色彩传感装置。

它以模拟频率的方式输出短波(蓝色)、中波(绿色)、长波(红色)、宽带(白)光功率的事件数量。

它可用于各种色彩感应应用领域。

该设备的详细资料中可以找到它的数据表。

我们将使用一个光学刺激方案的ColorChecker图表工作,通过检测的色彩数值例子。

下图,在图1所示,是由GretagMacbeth生产和分配。

图表长约13英寸,9英寸(330毫米×230毫米),它包含了64阵列安排24色斑。

到5背面图2显示了在图表的每一行四个补丁的光谱反射-即入射光被反射的那部分(相对于一个理想的漫反射)作为波长从350功能,纳米到750纳米。

图1 ColorChecker色补丁包含18个和6步灰色系列图2 ColorChecker谱,第一行图3 ColorChecker谱,第二排图4 ColorChecker光谱,第三行图5 ColorChecker谱,底排(中性系列)图6锥锥光感受器敏感性所示。

短波敏感的感光细胞远远低于其他两种类型的敏感。

中波和长波的感光细胞的反应有很大的重叠。

视觉是不敏感,准确的刺激波长:什么是光功率下atters每个响应曲线综合。

1. 色觉简介所谓感光细胞在视网膜视锥细胞是人类色彩视觉负责。

内有电磁频谱三种类型的视锥细胞,敏感的长波,中波,短波辐射及约400纳米之间和700纳米。

由于锥敏感性在频谱的部分出现红色,绿色和蓝色的很粗糙,色彩科学家记为ρ,γ,以及希腊字母为R,G细胞的类型,和b (为了表示对传感器的R,G,和B将错误建议更密切的对应关系。

)的圆锥体的谱反应的估计是在上面绘制图6。

在物理世界的光,其特征是光谱功率分布(结构化产品说明)。

彩色对象,其特征是反射光谱曲线,如在的ColorChecker的。

然而,视觉不敏感,对刺激精确波长:根据现代色彩科学理论,最重要的事情是在每个响应曲线光功率积分。

TCS230的功能

TCS230的功能

颜色识别是模式识别领域的一个重要研究方向,利用颜色识别技术能使传统依靠人眼进行颜色判别的方法发生根本变革。

这种新型技术采用颜色传感器获取外界的颜色信息,进而通过基于计算机的信号处理技术实现颜色的精确识别。

颜色识别技术经历了传统模拟识别方法和现代数字化识别两个阶段。

传统的颜色识别方法采用模拟颜色探测器件来进行外界颜色获取,这种探测器件通常是在独立的光电二极管上覆盖经过修正的红、绿、蓝滤光片,经过光电转换产生对应的模拟信号;如果用微控制器对这些模拟信号进行处理,就必须采用额外的AD转换电路才能实现和微控制器的接口,而AD转换电路的引入增加了信号的处理时间,对整个系统的速度有很大的影响;此外,由于一般的AD转换存在量化误差,系统的精度受到很大的限制,这些使得传统的颜色识别方法逐渐被现在的数字式化的颜色识别技术所替代。

随着半导体技术的发展,数字式的颜色传感器逐步取代了传统的光电二极管传感器,这种技术把颜色传感器所需的光学、机械、电子等信号处理集成在很小的芯片上极大地缩小了颜色传感器的体积。

由于这种传感器输出的是数字量,因此可以通过数字处理技术来提高探测速度并保持检测器输出信号的精度。

例如采用改进的动态检测方法来提高颜色探测的速度,采用数字电路来处理颜色数据等。

虽然数字传感器已经取得了一些成功,但其应用于市场的技术还不够成熟,随着美国TAOS(Texas Advanced Optoelectronic Solutions)公司最新推出的颜色传感器TCS230的面世,数字传感器才真正被工程师们采用。

这种颜色传感器具有分辨率高、可编程的颜色选择、数字输出等特点。

本文采用TCS230来作为系统的探测部分,基于该器件设计的颜色识别系统可以应用于军事领域,也可以应用于电致变色材料的变色研究以便获得材料的变色参数。

1 TCS230简介1.1 主要特性TCS230是美国TAOS公司推出的可编程光到频率的转换器。

它把可配置的硅光电二极管与电流频率转换器集成在一个单一的CMOS(Comple-mentary Metal Oxide Semiconductor)电路上,同时在单一芯片上还集成了红、绿、蓝(RGB)3种滤光器,是业界第一个有数字兼容接口的RGB颜色传感器。

基于tcs230传感器的颜色检测系统

基于tcs230传感器的颜色检测系统

卢JIl英1,于浩成2,孙敬辉3,孟 中3
(1.吉林交通职业技术学院电子工程系,长春130012;2.吉林大学机械科学与工程学院,长春130022; 3.中国科学院长春光学精密机械与物理研究所,长春130033)
摘要:为了提高传统颜色传感器颜色识别的效果与速度,减少识别误差,简化电路,将美国TAOS公司的
构设计,5 V整流器被安置于散热片中心的原孔中,从而保证由5 V整流器产生的2—3 w热量及时被
散出。
3 颜色检测系统硬件设计
颜色检测系统的硬件主要包括:稳压电路、A/D转换和白平衡按键。其控制器采用一片8位或16 位的单片机。 3.1 外围电路设计
颜色检测系统的电源必须是稳定的直流电源,并对电源的稳定性要求很高。这是因为:1)电源电 压的波动可造成照明灯亮度的变化;2)尽管TCS230颜色传感器的抗电源扰动能力很强,但其内部单 片机对电源稳定性的要求较高,电压的波动可造成A/D转换的不准确。
收稿日期:2008-09-23 基金项目:科技型中小企业创新基金资助项目(04C26212201072;07C262122000169) 作者简介:卢川英(1975一).女.长春人,吉林交通职业技术学院讲师,硕士,主要从事计算机应用与自动控制研究。(Tel)86·
13843192000(E-mail)chuanying—lu@sin&corno


100%


绿色
程颜色光强检测模块,TCS230EVM为其代表产品。其包含采用白LED(Light Emitting Diode)照明光源
的光学镜头模块、编程器(BOE:Board of Education)、BASIC通讯模块以及PC端应用软件。其中BAS— IC通讯模块提供了TCS230与PC之间的串行通讯接口。通过使用BASIC通讯模块和PC端应用软件,

tcs230颜色传感器文档

tcs230颜色传感器文档

TCS230D SOP8 颜色传感器1概述TCS230是TAOS公司最新推出的业界首款带数字兼容接口的RGB彩色光/频率转换器,它内部集成了可配置的硅光电二极管阵列和一个电流/频率转换器,其结构框图如图1所示。

TCS230输出为占空比50%的方波,且输出频率与光强度成线性关系。

该转换器对光响应范围为250 000~1,典型输出频率范围为2Hz~500kHz,用户可通过两个可编程引脚来选择100%、20%或2%的输出比例因子。

TCS230的输入输出引脚可直接与微处理器或其他逻辑电路连接。

通过输出使能端OE将输出置于高阻状态可使多个器件共享一条微处理器输入线。

TCS230可编程彩色光/频率转换器将红、绿和蓝滤波器集成在单芯片上,因此无需ADC就可实现每彩色信道10位以上的分辨率。

芯片内含一个交叉连接的8×8光电二极管阵列,其中每16个二极管提供一种色彩类型,共有红、蓝、绿和清除全部光信息四种类型,可最大限度地降低入射光幅射的不均匀性。

所有同颜色的16个光电二极管都是并联连接,工作时通过可编程的引脚来动态选择色彩,以此来增加精确度和简化光学电路。

该芯片采用8引脚SOIC表面贴封装,适用于色度计的测量应用。

TCS230的主要特点如下:●可完成高分辨率的光照度/频率转换;●色彩和满度输出频率可编程调整;●可直接与微处理器通讯;●单电源工作,工作电压范围:2.7V~5.5V;●具备掉电恢复功能;●50kHz时非线性误差的典型值为0.2%;●稳定的200ppm/℃的温度系数。

2TCS230的引脚功能TCS230的引脚排列如图2所示,各管脚的功能描述见表1所列。

表1TCS230管脚功能引脚号符号类型功能说明1S0I输出频率分频系数选择输入端2S1I3OE I输入频率使能端。

低电平有效4GND电源地5VDD电源电压6OUT O输出频率(fo)7S2I光电二极管类型选择输入端8S3I3TCS230的主要参数3.1电学特性参数TCS230在TA=25℃ VDD=5V条件下的电学特性如表2所列。

基于TCS230颜色传感器的色彩识别器的设计-外文翻译

基于TCS230颜色传感器的色彩识别器的设计-外文翻译

Sensing color with the TAOS TCS230The TAOS TCS230 is a small, highly integrated color sensing device packaged in a clear plastic 8-pin SOIC. It reports, as analog frequency, the amount of shortwave (blue), mediumwave (green), longwave (red), and wideband (white) optical power incident onto the device. It can be used in a variety of color sensing applications. Details of the device can be found in its datasheet. This white paper details the concepts and calculations involved in color sensing using the TCS230.We will use the ColorChecker chart as an optical stimulus to work through a numerical example of color sensing. The chart, depicted in Figure 1, is manufactured and distributed by GretagMacbeth. The chart measures approximately 13 inches by 9 inches (330 mm by 230 mm); it contains 24 colored patches arranged in a 6 by 4 array. Figures 2 through 5 overleaf show the spectral reflectance of the patches in each of the four rows of the chart – that is, the fraction of incident light that is reflected (with respect to an ideal diffuse reflector), as a function of wavelength from 350 nm to 750 nm.Figure 1 The ColorChecker contains 18 colored patches and a 6-step gray series.Figure 2 ColorChecker spectra, top row.Figure 3 ColorChecker spectra, second row.Figure 4 ColorChecker spectra, third row.Figure 5 ColorChecker spectra, bottom row (neutral series)Figure 6 Cone sensitivities of cone photoreceptors are shown. The shortwave-sensitivephotoreceptors are much less sensitive than the other two types. The responses of the mediumwave and longwave photoreceptors have a great deal of overlap. Vision is not sensitive to the precise wavelength of the stimulus: What atters is optical power integrated under eachresponse curve.Introduction to color visionPhotoreceptor cells called cones in the retina are responsible for human color vision. There are three types of cone cells, sensitive to longwave, mediumwave, and shortwave radiation within the electro-magnetic spectrum between about 400 nm and 700 nm. Because the cone sensitivities are very roughly in the parts of the spectrum that appear red, green, and blue, color scientists denote the cell types as ρ,γ, and, the Greek letters for r, g, and b. (To denote the sensors R, G, and B would wrongly suggest a closer correspondence.) Estimates of the spectral response of the cone types are graphed in Figure 6 above.Light in the physical world can be characterized by spectral power distributions (SPDs). Colored objects can be characterized by spectral reflectance curves, such as those of the ColorChecker. However, vision is insensitive to the exact wavelength of a stimulus: According to the modern theory of color science, all that matters is the integral of optical power underneath each response curve. That there are exactly three types of cone cells leads to the property of trichromaticity: Three components are necessary and sufficient to characterize color. Some people might use the phrase “color as sensed by the eye,” but I con-sider that qualifier to be redundant at best, and misleading at worst: Color is defined by vision, so there is no need to use the qualifying phrase “as sensed by the eye,”or to use the adjective visible whenreferring to color.Overview of CIE ColorimetryThe spectral responses of the cone cells that I graphed in Figure 6 were unavailable to researchers in the 1920s. Researchers at the time used psychophysical experiments, such as the famous color matching experiment, to tease out the data. The CIE is the international body responsible for color standards. In1931, that organization adopted the color matching functions denoted x (λ), y (λ), and z (λ), graphed in Figure 7.Figure 7 CIE 1931, 2° color-matching functions. A camera with 3 sensors must have these spectral response curves, or linear combinations of them, in order to capture all colors. However, practical considerations make this difficult. These analysis functions are not comparable to spectral power distributions!Weighting a physical SPD under each of these three curves (that is, forming the wavelength-by-wavelength product), and summing the results, forms a triple of three numbers, denoted X, Y, and Z. In continuous mathematics, three integrals need to be computed; in discrete math, a matrix product is sufficient. The X, Y, and Z tristim-ulus values characterize color. They are linear-light quantities, propor-tional to optical power, that incorporate the wavelength sensitivity of human vision. The Y value is luminance, which is ordinarily expressed in units of candela per meter squared (cd·m-2). If you are measuring reflectance, the reflected tristimulus values depend upon the spectral characteristics of the illuminant, and their amplitudes scale with the power of the illumination. Relative luminance is the ratio of reflectedluminance to the luminance of the illumination; it is also known as the luminance factor.Figure 8 SPDs of various illuminants are graphed here. Illuminant A, shown in orange, is representative of tungsten light sources; it is deficient in shortwave power, and may cause errors in sensing blue colors. The blue line graphs the SPD of a Nichia white LED. There is a peak in the blue portion of the spectrum: Uncorrected, the sensor would report excessive blue values. The other four lines represent CIE standard illuminants C, D50, D55, and D65.In many applications, tristimulus signals (including luminance) scale with the illumination, and are otherwise uninteresting in themselves. What is more interesting is the ratios among them, which characterize color disregarding luminance. The CIE has standardized the projective transformation of Equation 1, in the margin, to transform [X, Y, Z] values into a pair of [x, y] chromaticity coordinates that represent color disregarding luminance. These coordinates are suitable for plotting in two dimensions on a chromaticity diagram.x=X/(X+Y+Z)y=Y/(X+Y+Z)Eq 1 Chromaticity coordinatesIlluminationA nonemissive object must be illuminated in order to be visible. The SPD reflected from an illuminated object is the wavelength-by-wave-length product of the illuminant’s SPD and the spectral reflectance of the object. Before light reaches the eye, the interaction among light sources and materials takes place in the spectral domain, not in the domain of trichromaticity. To accurately model these interactions requires spectral computations. When applying the TCS230, attention must be paid to the spectral content of the illumination and topoten-tial interaction between the illumination and the samples to be sensed. Generally, the less spiky the spectra, the better. Figure 8 graphs several illuminants.Your application may involve sensing color, in which case the preceding description applies. However, some applications of the TCS230 involve not so much estimating color as seen by the eye but rather sensing physical parameters associated with optical power in the visible range. In such applications, to approximate the visual response may not be the best approach: It may be more effective to take a more direct approach to estimating the parameters of the underlying physical process.The Color CheckerEquipped with knowledge of how spectra are related to colors, the plotting of chromaticity coordinates, and the dependence of colors upon illumination, we can return to the ColorChecker. GretagMac-beth doesn’t publish or guarantee the spectral composition of the patches of the ColorChecker. However, nominal CIE [X, Y, Z] values are published. The patches in the bottom row of the ColorChecker contain neutral colors; the numeric notations in the legends of Figure 5 reflect one tenth of the lightness (L*) values of those patches.The spectra graphed on pages 2 and 3 represent the physical wave-length-by-wavelength reflectance of the patches. These spectral reflec-tances have been measured by color measurement instrument called a spectrophotometer. If you had access to a light source having perfectly even distribution of power across the visible spectrum, then the reflectance curves graphed here could simply be scaled to repre-sent the reflectance in your application. Practical light sources do not have perfectly even spectral distributions, so compensation is neces-sary: You must compute the wavelength-by-wavelength product of the illuminant’s SPD with the spectral reflectance of the chart.We will first calculate the CIE [X, Y, Z] values from the chart. (These values should agree with the figures provided by Gretag.) Then we will calculate the [R, G, B] values that will be detected by a TCS230.To calculate CIE [X, Y, Z], we take the 31×3 matrix representing the color matching functions (CMFs) of the CIE Standard Observer, and perform a matrix product with 31 spectral response values as corrected for illumination. This produces the [X, Y, Z] tristimulus values. When chromaticity coordinates [x, y] are computed from [X, Y, Z] through the projective transform in Equation 1, then plotted, the chromaticity diagram in Figure 9 results. The horseshoe-shaped figure, closed at thebottom, contains all colors: Every non-negative spectral distribution produces an [x, y] pair that plots within this region. The lightly-shaded triangle shows the region containing all colors that can be produced by an additive RGB system usingsRGB (Rec. 709) primary colors. This region typifies video and desktop computing (sRGB). The points plotted in Figure 9 are the colors of the ColorChecker. White and gray values are clustered near the center of the chart.Figure 9 Coordinates of ColorChecker patches are graphed on the CIE [x, y] chromaticitydiagram. The horseshoe encloses all colors; the triangle encloses the colors that can be representedin video (Rec. 709) and in desktop computing (sRGB).The TCS230Figure 10 shows the responses of the four channels of the TCS230. The black curve shows the response of the unfiltered sensor elements. The red, green, and blue curves show the responses of the longwave-sensitive, mediumwave-sensitive, and shortwave-sensitive elements respectively.As I mentioned on page 5, the CIE model of color vision involves inte-grating an SPD under the X(λ), Y(λ), and Z(λ) color matching func-tions (graphed in Figure 7), producing X, Y, and Z values. To use the TCS230 to estimate color we perform an analogous calculation, but using the TCS230 sensitivity functions instead of the CIE CMFs: We integrate the SPD under the TCS230’s sensitivity curves, and produce R, G, and B values. The device R, G, and B values will depend upon several factors: the spectral content of the illuminant, the spectral reflectance of the sample, the spectral attenuation of any intervening optical components (such as the lens), and finally, the spectral response functions of the TCS230. The various spectral phenomena aremodelled by computing wavelength-by-wavelength products.Figure 10 TCS230 spectral sensitivities are graphed here. The red, green, and blue channels are graphed in the corresponding colors; the gray line reflects the sensitivity of the clear (unfiltered) channel. Because these responses are different from the CIE standard observer, the values reported by the TCS230 are not colorimetric. However, suitable signal processing yields color information that is sufficiently accurate for many industrial applications.Owing to the fact that the TCS230 is sensitive to infrared light (having wavelengths above 700 nm), and the fact that most light sources produce power in the infrared region, typical applications include an IR cut filter in front of the TCS230. Figure 11 overleaf shows the response of a typical IR cut filter.To form a more accurate estimate of color requires processing the raw TCS230 R, G, and B values through a linear 3×3 matrix whose coeffi-cients are optimized with respect to the spectrum of the illuminant, the spectral response of intervening optical components, and the response curves of the TCS230. The data processing operation can be represented in matrix form as follows:x=M•t Eq 2 The symbol t represents a three-element vector containing the device values captured from a color patch. M represents the 3×3 color correction matrix that we will apply to these values through matrix multiplication, denoted by the • symbol. The symbol x represents the resulting vector of estimated [X, Y, Z] values.We can use matrix notation to symbolize processing a set of three color patches at once, by arranging the three sets of device values into successive columns of a 3×3 matrix T. Successive rows of T contain red, green, and blue data respectively. Upon matrix multiplication by M, the columns of the resulting matrix X contain XYZ values of the successive samples; the rows of X contain X, Y, and Z values respec-tively. One equation expresses the mapping of three patches at once: X=M•T Eq 3 Given a matrix T whose columns contain three sets of device samples, and a matrix X containing the corresponding set of three ideal XYZ triples, there is a unique matrix M that maps from T to X. It is found by computing the matrix inverse of T, then computing the matrix product (by premultiplication) with X:M=X • T−1Eq 4 The resulting 3×3 color correction matrix M exactly maps the each of the chosen three sets of device values to the corresponding set of tris-timulus values. It is not necessary to invert matrices at the time of sensing! The matrix M can be computed in advance, based upon the samples that are expected to be presented to the sensor in the intended application. To process three device values upon sensing a sample, all that is necessary is computation of the matrix product of Equation 3.A color correction matrix that produces good results across more than three samples can be computed through a numerical optimization procedure. When this is done, no particular sample is likely to map exactly to its ideal tristimulus set, but a linear matrix can be constructed that minimizes the error across a range of samples (where the error is measured in a least-squares sense). The color correction operation is still accomplished exactly as in Equation 2.基于TAOS公司的TCS230的颜色感应TAOS公司的TCS230是一个小的、高度集成、8引脚、SOIC封装的色彩传感装置。

颜色识别程序

颜色识别程序

1./*==========TCS230颜色识别传感器管脚说明===========================================2.引脚号符号功能说明3. 1 S0 输出频率分频系数选择输入端4. 2 S1 输出频率分频系数选择输入端5. 3 OE 输入频率使能端。

低电平有效6. 4 GND 电源地7. 5 VDD 电源电压8. 6 OUT 输出频率(fo)9. 7 S2 光电二极管类型选择输入端10. 8 S3 光电二极管类型选择输入端11.12.===============================程序接口========================================*/13./*----S0,S1输出频率分频比例选择----*/14./* S0 S1 输出频率分频比例 */15./* L L 掉电 0 */16./* L H 2% 1 */17./* H L 20% 2 */18./* H H 100% 3 *///硬件接口已经下拉19.20.21.//使能E低电平有效22.23./*------S2,S3光电二极管类型选择-----*/24./* S2 S3 光电二极管类型 */25./* L L 红色 0 */26./* L H 蓝色 1 */27./* H L 清除(无滤波器) 2 */28./* H H 绿色 3 */29./* PB6 PB7 */30./*==============================================================================*/31.32.#define uchar unsigned char33.#define uint unsigned int34.#include<util/delay.h>35.#define S2_S3_R {DDRB|=(1<<6);DDRB|=(1<<7); PORTB &=~(1<<6);PORTB &=~(1<<7);} //红色 red36.#define S2_S3_B {DDRB|=(1<<6);DDRB|=(1<<7); PORTB &=~(1<<6);PORTB |= (1<<7);} //蓝色 blue37.#define S2_S3_0 {DDRB|=(1<<6);DDRB|=(1<<7); PORTB |= (1<<6);PORTB &=~(1<<7);} //清除38.#define S2_S3_G {DDRB|=(1<<6);DDRB|=(1<<7); PORTB |= (1<<6);PORTB |= (1<<7);} //绿色 green39.40./*-----1602显示用到的字符串--------*/41.unsigned char data_[]="0123456789";42.uchar black[] ="黑色 ";43.uchar white[] ="白色 ";44.uchar red[] ="红色 ";45.uchar green[] ="绿色 ";46.uchar blue[] ="蓝色 ";47.48.49.uchar TCS230_count=0; //外部中断计数50.volatile uchar TCS230_flag=0; //RGB中断计数51.uchar count_rgb; //通道选择计数52.53.54.55./*---GB数值存储--*/56.uchar R_count=0;57.uchar G_count=0;58.uchar B_count=0;59.60./*****************************************************61. * 函数名:Init_TCS230(uchar way)62. * 功能:TCS230通道选择63. * 说明:0--R,3--G,1--B64. * 子函数:无65. * 变量:无66.******************************************************/67.void Init_TCS230(uchar way)68.{69./*switch(fre) //硬件接口已经下拉70. {71. case 0: {S0_S1_0; break;}72. case 1: {S0_S1_2; break;}73. case 2: {S0_S1_20; break;}74. case 3: {S0_S1_100; break;}75. }*/76.77.switch(way)78. {79.case 0: {S2_S3_R; break;} //红色通道80.case 1: {S2_S3_B; break;} //蓝色通道81.case 2: {S2_S3_0; break;} //清除通道82.case 3: {S2_S3_G; break;} //绿色通道83. }84.85. TCCR2 = 0x0F;//启动定时器86. GIFR |= (1<<INTF2);//清中断标志87. GICR |= 0x20; //开颜色中断88.}89.90.91.92./*****************************************************93. * 函数名:display(uchar i1,uchar i2,uchar i3,uchar a)94. * 功能:颜色RGB读取,1602显示95. * 说明:96. * 子函数:Displaychar_160297. * 变量:无98.******************************************************/99.void display(uchar i1,uchar i2,uchar i3,uchar a)100.{101. distwochar_12864(i1,0,data_[a/100],data_[a/10%10]);102. distwochar_12864(1,0,data_[a%10],' ');103.}104.105.//1602显示106./*107.{108. Displaychar(i1,0,data_[a/100]); //显示百位109. Displaychar(i2,0,data_[a/10%10]); //显示十位110. Displaychar(i3,0,data_[a%10]); //显示个位111.}*/112.113.114.115./********************************************************************* 116. * 函数名:find_colour(uchar r,uchar g,uchar b)117. * 功能:颜色识别显示118. * 说明:通过读取R\G\B判断是什么颜色119. * 子函数:Displaystr_1602120. * 变量:无121.*********************************************************************/ 122.void find_colour(uchar r,uchar g,uchar b)123.{124.if( ((r>3)&&(r<10)) && ((g>3)&&(g<20)) && ((b>5)&&(b<13)) )125. {126. dispstr_12864(0,1,black);127. }128.129.if( ((r>9)&&(r<20)) && ((g>22)&&(g<42)) && ((b>34)&&(b<65)) ) 130. {131. dispstr_12864(0,1,blue);132. }133.134.if( ((r>11)&&(r<23)) && ((g>26)&&(g<49)) && ((b>24)&&(b<46)) ) 135. {136. dispstr_12864(0,1,green);137. }138.139.if( ((r>20)&&(r<40)) && ((g>5)&&(g<13)) && ((b>5)&&(b<13)) ) 140. {141. dispstr_12864(0,1,red);142. }143.144.if( ((r>33)&&(r<63)) && ((g>42)&&(g<90)) && ((b>56)&&(b<103)) ) 145. {146. dispstr_12864(0,1,white);147. }148.149.if( ((r>8)&&(r<15)) && ((g>13)&&(g<24)) && ((b>11)&&(b<20)) ) 150. {151. dispstr_12864(0,1,"深绿色");152. }153.154.if( ((r>8)&&(r<14)) && ((g>11)&&(g<22)) && ((b>26)&&(b<49)) ) 155. {156. dispstr_12864(0,1,"深蓝色");157. }158.159.if( ((r>18)&&(r<34)) && ((g>18)&&(g<33)) && ((b>12)&&(b<23)) ) 160. {161. dispstr_12864(0,1,"橙色 ");162. }163.}164.165.166./************************************************************** 167. * 函数名:TCS230_task(void)V168. * 功能:TCS230颜色处理169. * 说明:分别读取不同颜色的RGB值,判断显示颜色及其RGB数值170. * 子函数:find_colour,Init_TCS230171. * 变量:无172.**************************************************************/173.void TCS230_task(void)174.{175.176.for(count_rgb=0;count_rgb<3;) //读三个通道的值但因为不是连续的读177. {178. Init_TCS230(0);//选择R通道179.while(TCS230_flag==0) //等待读数180. {181.//1602显示函数182.//display(0,1,2,R_count);183.//display(5,6,7,G_count);184.//display(10,11,12,B_count);185. distwochar_12864(0,0,data_[R_count/100],data_[R_count/10%10]);186. distwochar_12864(1,0,data_[R_count%10],' ');187.188. distwochar_12864(2,0,data_[G_count/100],data_[G_count/10%10]);189. distwochar_12864(3,0,data_[G_count%10],' ');190.191. distwochar_12864(4,0,data_[B_count/100],data_[B_count/10%10]);192. distwochar_12864(5,0,data_[B_count%10],' ');193.194.195. find_colour(R_count,G_count,B_count); //对颜色进行判断并显示196.197. }198.199.if(TCS230_flag==1) //读取R通道数据200. {201. R_count=TCS230_count; //读取R值202. distwochar_12864(0,0,data_[R_count/100],data_[R_count/10%10]);/ /更新显示R值203. distwochar_12864(1,0,data_[R_count%10],' ');204. find_colour(R_count,G_count,B_count);//颜色判断205. TCS230_flag=1;206. TCS230_count=0; //清零207. TCNT2 = 0x00;//重新给T2初始值208. Init_TCS230(3);//G通道选择209. count_rgb++; //通道计数++210. }211.212.while(TCS230_flag==1) //等待读取G值213. {214.//display(0,1,2,R_count);215.//display(5,6,7,G_count);216.//display(10,11,12,B_count);217. distwochar_12864(0,0,data_[R_count/100],data_[R_count/10%10]);218. distwochar_12864(1,0,data_[R_count%10],' ');219.220. distwochar_12864(2,0,data_[G_count/100],data_[G_count/10%10]);221. distwochar_12864(3,0,data_[G_count%10],' ');222.223. distwochar_12864(4,0,data_[B_count/100],data_[B_count/10%10]);224. distwochar_12864(5,0,data_[B_count%10],' ');225.226. find_colour(R_count,G_count,B_count);//颜色识别显示227. }228.229.230.if(TCS230_flag==2)231. {232. G_count=TCS230_count; //读取G值233.234. distwochar_12864(2,0,data_[G_count/100],data_[G_count/10%10]);235. distwochar_12864(3,0,data_[G_count%10],' ');236.237. find_colour(R_count,G_count,B_count);238. TCS230_flag=2;239. TCS230_count=0; //清零240. TCNT2 = 0x00; //T2初始值241. Init_TCS230(1); //B通道选择242. count_rgb++;243. }244.245.while(TCS230_flag==2)246. {247.248. distwochar_12864(0,0,data_[R_count/100],data_[R_count/10%10]);249. distwochar_12864(1,0,data_[R_count%10],' ');250.251. distwochar_12864(2,0,data_[G_count/100],data_[G_count/10%10]);252. distwochar_12864(3,0,data_[G_count%10],' ');253.254. distwochar_12864(4,0,data_[B_count/100],data_[B_count/10%10]);255. distwochar_12864(5,0,data_[B_count%10],' ');256.257. find_colour(R_count,G_count,B_count);//颜色识别显示258. _delay_ms(1);259. }260.261.if(TCS230_flag==3)262. {263. B_count=TCS230_count; //读取B值264.265. distwochar_12864(4,0,data_[B_count/100],data_[B_count/10%10]);266. distwochar_12864(5,0,data_[B_count%10],' ');267.268. find_colour(R_count,G_count,B_count);269. TCS230_flag=0;270. TCS230_count=0;271. count_rgb++;272. }273. }274.275. find_colour(R_count,G_count,B_count); //颜色识别显示276.}。

TCS230颜色识别—原理—程序

TCS230颜色识别—原理—程序
*函数名称: main()
/********************************************/
void main(void)
{
port_init();
int2_init();
timer1_init();
Init_12864();
LcmClearTXT(); //文本区清RAM函数
Display_x_y_data(0,0,"颜色识别:");
Display_x_y_data(1,0,"红色成分:");
Display_x_y_data(2,0,"蓝色成分:");
Display_x_y_data(3,0,"绿色成分:");
S2=0;//先检测红色(S2,S3=0,0)
S3=0;
SEI();
void timer1_init()
{
TCCR1B = 0X02;//设置分频数为8
TCNT1H = 0x63;//设置计数初值,定时20ms
TCNT1L = 0xC0;
}
/*******************************************
*函数名称: port_init()
*函数功能:端口初始化Fra bibliotekEIMSK |= BIT(2); //打开外部中断
TIMSK |= BIT(2);//打开溢出中断
while(1);
}
/*******************************************
*函数名称: interrupt_int2()
*函数功能:
*入口参数:无
*出口参数:无

色标传感器使用说明书

色标传感器使用说明书

色标传感器使用说明书产品部件说明:输出电路:NPN 型号PNP 型号安装方法:* 安装在DIN 轨道上1、将主机底部的卡槽与轨道对齐。

按箭头 1 的方向推动主机的同时使其往箭头 2 的方向倾斜。

2、拆卸传感器的方法是,在朝箭头 1 的方向推动主机的同时,朝箭头 3 的方向提升主机。

* 安装到墙壁上(仅适用于主模块)将模块放到选配的安装架上,将其安装到一起,并使用两个 M3 螺钉固定住,连接光纤模块1, 按箭头 1 所示的方向开启防尘盖。

2, 按箭头 2 所示的方向往下移光纤锁杆。

3, 将光纤模块记号上标记的长度插入光纤孔。

4, 按箭头 4 所示的方向往下移光纤锁杆。

5, 如果使用较薄的光纤模块,则需要使用随其提供的转接器。

6, 如果没有连接正确的转接器,则薄型光纤模块将不能正确地检测目标物。

(转接器随光纤模块提供。

)7, 若将同轴反光型光纤模块连接到放大器上,应将单芯光纤连接到发射器侧而将多芯光纤连接到接收器侧。

设置灵敏度* MARK 模式下两点校准:1,在光纤头前方没有放置任何工件时,按 SET(设置)按钮(按键时间不超过 2 秒).2,将一个工件放置在光纤前方,按 SET(设置)按钮(按键时间不超过 2 秒).两个步骤测出的数值以及 RGB 检测通道会显示在屏幕上并自动记忆储存.* C 或 CI 模式下的校准自学习:把光纤对准需要检测的颜色,按下一次 SET 就可以了,传感器会自动记录当前的颜色匹配值及光亮值,作为正常工作时的判断标准.MATK 是普通的色标检测模式,放大器会选择 RGB 通道中的一个作为判断通道。

C 模式时通用的颜色匹配检测模式,千分之一千表示颜色完全相同,一般认为千分之 900 就是一种颜色。

CI 是颜色+光亮值模式,用来精确检测物体的颜色以及物体的光亮值。

千分之 1000 表示完全相同。

C 模式下物体在光纤前面晃动也可以正常检测,CI 模式下,物体在光纤前面有任何晃动都会造成信号值急剧减小,从而传感器认为 CI 不匹配。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Dawmoon整理1 2 3 4 5 6 7 8 9 10 11 12 下一页rrTCS230可编程彩色L I G H T -T O -F R E Q U E N C Y 变换器TAOS046Q − JULY 2008D 高分辨率光转换D D D D D D D强度,频率可编程颜色和满量程输出频率直接与微控制器单电源供电(2.7 V 到5.5 V )掉电功能非线性误差通常在0.2%千赫50温度系数稳定200 p p m /°C 低调铅(P b )免费R o H S符合表面贴装包装包装 D 8-LEAD SOIC(顶视图)S0 1S1 2OE 3GND 48 S37 S26输出5 V DD说明该T C S 230可编程颜色l i g h t -t o -f r e q u e n c y 转换器可配置的硅光电二极管和结合上一个单片集成电路c u r r e n t -t o -f r e q u e n c y C M O S 转换器.输出为方波(50%占空比)与频率成正比的光强度(辐射).满量程输出频率可通过三种规模预设值通过两个控制输入p i n s .数字输入和数字输出允许直接连接到微控制器或其它逻辑电路.输出使能(O E )地方在输出高阻抗状态的多单元的微控制器输入行共享.该l i g h t -t o -f r e q u e n c y 转换器读取8 x 光电二极管8阵列.十六个光电二极管有蓝过滤器,16光电二极管是绿色过滤器,过滤器有红色16光电二极管,光电二极管和16过滤器是没有明确.这四种类型的光电二极管(颜色)叉,以尽量减少非均匀性对入射辐射.同一颜色的所有16光电二极管并联连接,哪些类型的光电二极管设备运行过程中u s e s 是引脚可选.光电二极管120μm x 120μm 在大小和144-μm 是中心.功能框图输出光光电二极管阵列Current-to-Frequency转换器S2S3S0S1OE该LUMENOLOGYr 公司得克萨斯高级光电解决方案I n c .1001克莱恩路S 套房300S 普莱诺,T X 75074S (972) 673-0759r1rCopyrightE 2008, TAOS Inc.TCS230可编程彩色L I G H T-T O-F R E Q U E N C Y变换器TAOS046Q − JULY 2008终端功能终端名称GND OE输出S0, S1 S2, S3 V DD 没有.4361, 27, 85IOIII / O描述电源地.所有电压都参考G N D.启用f o(低电平有效).输出频率(f o).选择输入输出频率调整.光电二极管类型选择输入.电源电压可选择的选项表1.S0LLHHS1LHLH输出频率调节(f o)掉电2%20%100%S2LLHHS3LHLH光电二极管型红蓝清除(不过滤)绿可用选项装置TCS230T A−40°C到85°C包装 −引线SOIC−8包装指示符D订购号TCS230D绝对最大额定值(除非另有说明)在操作自由空气的温度范围†电源电压,V DD(见注1)............................................输入电压范围,所有投入,V I.........................................DD+ 0.3 V 经营自由空气的温度范围内,T A(见注2).................................存储温度范围(见注2) (40)在最高温度与J E D E C J−S T D−020A,按照焊锡条件(见注3)...260°C†超越“绝对最大额定值”,就可能造成永久性损坏设备.这些压力额定值只,该设备的功能操作下,在这些或超出“推荐工作条件”所标明的任何其它条件不暗示.暴露于a b s o l u t e-m a x i m u m-r a t e d长时间条件下可能影响器件的可靠性.注:1.所有电压值与尊重是G N D.2.长期储存或以上70°C操作可能导致包装泛黄,这将降低灵敏度波长<500n m.3.装置可能是手工焊接提供的热量是只适用于没有接触焊焊垫和尖端之间所作焊锡铁和设备领先.热的最长时间应适用于该设备是5秒.推荐工作条件最小电源电压,V DD高电平输入电压,V IH低电平输入电压,V IL经营自由空气的温度范围内,T A V DD=2.7V到5.5VV DD=2.7V到5.5V2.72−40NOM5最大5.5V DD0.870单位VVV°CCopyright E2008, TAOS Inc.rr该LUMENOLOGY r公司上一页 1 2 3 4 5 6 7 8 9 10 11 12 下一页TCS230可编程彩色L I G H T-T O-F R E Q U E N C Y变换器TAOS046Q − JULY 2008在T电气特性A= 25°C, V DD=5V(除非另有说明)参数V OH V OL I IH I ILI DD 高电平输出电压低电平输出电压高电平输入电流低电平输入电流上电模式电源电流掉电模式S0 = H, S1 = H 满量程满量程频率(见注4)温度响应系数k SVS供电电压灵敏度S0 = H, S1 = LS0 = L, S1 = Hλ ≤600 nm, −25°C≤TA≤70°CV DD= 5 V±10%500100102760012012±200±0.5测试条件I OH= − 4 mAI OL= 4 mH最小4TYP4.50.250.4055315最大单位VVμAμAmAμA千赫千赫千赫ppm/°C%/ V注4:满量程频率是未饱和的设备的最大工作频率.该LUMENOLOGY r公司rr Copyright E2008, TAOS Inc.3上一页 1 2 3 4 5 6 7 8 9 10 11 12 下一页TCS230可编程彩色L I G H T-T O-F R E Q U E N C Y变换器TAOS046Q − JULY 2008在V工作特性DD= 5 V, T A= 25°C,S0=H,S1=H(除非另有说明)(见注5,6,7,8,和9).参数试验条件E e= 47.2μW/cm2,λp= 470 nmf O 输出频率q yE e= 40.4μW/cm2,λp= 524 nmE e= 34.6μW/cm2,λp= 640 nmf D 黑暗频率E e= 0λp= 470 nmR e 发光λp= 524 nm 响应λp= 565 nm (注10)λp= 640 nmλp= 470 nm 饱和辐照(注11)λp= 524 nmλp= 565 nmλp= 640 nmλp= 470 nmR v 照度λp= 524 nm响应λp= 565 nm(注12)λp= 640 nmf O=0到5千赫非线性f=0到50千赫O(注13)f O=0到500千赫恢复从电源向下响应时间到了,将启用(OE)清除光电二极管S2 = H, S3 = L最小161616TYP202020242449553257814101210113010405659589373±0.1%±0.2%±0.5%10046431620±0.1%±0.2%±0.5%100108655219±0.1%±0.2%±0.5%100最大2424241223481633731172017801940109035715355±0.1%±0.2%±0.5%100% F.S.% F.S.% F.S.μsHz/lxμW/cm2122813373092912蓝光电二极管S2 = L, S3 = H最小11.2TYP16.4最大21.6813.619.214192263591550Hz/(μW/( W/cm2)2412绿色光电二极管S2 = H, S3 = H最小TYP最大红光电二极管S2 = L, S3 = L最小TYP最大千赫千赫千赫Hz单位100100100100ns注:5.光学测量是使用一个发光二极管(L E D)光源小角度入射辐射.6.的470n m输入辐照基本上是由供应氮化铟镓发光二极管具有以下特点:峰值波长λp=470n m,光谱半宽度Δλ½=35n m,和发光效率=75l m/W7.的524n m输入辐照基本上是由供应氮化铟镓发光二极管具有以下特点:峰值波长λp=524n m,光谱半宽度Δλ½=47n m,和发光效率=520l m/W8.的565n m输入辐照是由一个具有以下特征的磷化镓发光二极管:峰值波长λp=565n m,光谱半宽度Δλ½=28n m,和发光效率=595l m/W9.的640n m输入辐照是由一个具有以下特征的A l I n G a P发光二极管:峰值波长λp=640n m,光谱半宽度Δλ½=17n m,和发光效率=155l m/W10.辐照响应R e特点是在由0到5千赫.11.饱和光照=(满量程频率)/(辐照响应).12.照度响应R v从辐照响应计算采用了L E D发光效率值列账于附注6,7,8,和9,和使用1l x=1l m/米2.13.非线性是指在f偏差O从零和满量程之间的直线,作为全面百分比来表示.Copyright E2008, TAOS Inc.rr该LUMENOLOGY r公司上一页 1 2 3 4 5 6 7 8 9 10 11 12 下一页上一页 1 2 3 4 5 6 7 8 9 10 11 12 下一页TCS230可编程彩色L I G H T -T O -F R E Q U E N C Y 变换器TAOS046Q − JULY 2008典型特征光电二极管的光谱响应10.90.8RedClear光电二极管的光谱响应与外部红外过滤器阻塞†1归清除@ 540 nm T A = 25°CBlueGreen归清除@ 715 nmT A = 25°C相对响应度0.9Clear0.80.70.60.50.4Red相对响应度0.7Green0.6Blue0.50.40.30.20.10300Blue0.30.2Green0.10300500700900λ−波长 −n m1100500700900λ−波长 −n m1100†典型的例子包括IR 过滤肖特B G 18,和肖特B G 39,Hoya CM500.图1归一化输出频率对比角位移1fO—输出频率—归图2光电二极管的响应度温度系数对比光波长入射11k 10k温度系数— p p m /d e g C900.8光轴9k 8k7k6k 5k4k 3k2k1k060065070075080085090095010000.60.40.2角位移是这两方面的平等0−90−60−303060Q −角位移−°λ−光波长入射 −n m图3图4该LUMENOLOGYr 公司rrCopyrightE 2008, TAOS Inc.5TCS230可编程彩色L I G H T-T O-F R E Q U E N C Y变换器TAOS046Q − JULY 2008应用信息供电思考电源线必须由0.01-μF分离到0.1-μF短引线电容式接近设备包装.输入接口低阻抗的器件引脚和O E引脚电气连接设备G N D需要提高抗干扰能力.输出接口该装置的输出设计在短距离驱动标准T T L或C M O S逻辑输入.如果线条大于12英寸是在输出,缓冲或行驱动器使用的建议.对产出启用高状态(O E)置于高阻抗状态多单位共享的输出微控制器的输入行.断电传感器使用S0/S1(午/L)的将导致在一个较低的状态进行输出.因为输出为低,传感器不能断电在一个有公共输出引脚多单元配置.光电二极管型(彩色)的选择类型的光电二极管(蓝色,绿色,红色,或清除)设备使用是由两个逻辑输入,S2和控制S3(见表1).输出频率调节输出频率调整是由两个逻辑输入,S0和S1.内部l i g h t-t o-f r e q u e n c y转换器生成一个固定脉宽脉冲序列.缩放是通过内部连接脉冲串输出一频器系列变频器.除以输出方波周期50%-d u t y相对对100%,20%,和2%.频率值,因为输出的分频是通过计数主体内部频率脉冲,最终输出的时期是一个多时期的平均这一原则的频率.输出缩放计数器寄存器清零后,下一个脉冲的主频率在任何转型期S0,S1,S2,S3,和O E线.输出g o e s在下次随后的脉冲式高主频率,开始了新的有效的时期.这最大限度地减小了对输入之间的时间延迟变化由此产生的新线和输出周期.响应时间的输入编程改变或一个发光阶跃变化是一种新的频率加1期μs.缩放的输出变化都满量程频率与被选中的比例因子黑暗的频率.频率缩放功能允许输出范围为各种优化的测量技术.在规模较小的输出可以用在一个较低的频率计数器只可用,如低成本的微控制器,或周期测量技术的使用.该LUMENOLOGY r公司Copyright E2008, TAOS Inc.rr上一页 1 2 3 4 5 6 7 8 9 10 11 12 下一页TCS230可编程彩色L I G H T-T O-F R E Q U E N C Y变换器TAOS046Q − JULY 2008应用信息测量频率该接口和测量技术的选择取决于期望分解和数据采集率.为了获得最大的数据采集速率,周期测量技术的使用.输出数据可在输出频率的两倍或一个点收集的数据速率为每微秒满量程输出.周期测量需要一个快速参考时钟直接使用与现有分解相关的参考时钟频率.输出比例可用于提高给定的时钟速率分解或最大限度地随着光线的变化分解输入.周期测量用于测量快变轻水平或做一个恒定光源非常快的测量.最大分解和准确性可能获得使用频率测量,脉冲积累,或集成技术.频率测量提供了额外的好处的平均随机或高频率的变化(抖动)从光信号噪音.分解是有限的,主要受可用计数寄存器和允许测量时间.频率测量是非常适合于慢变或常亮水平和读数在很短的时间周期平均光水平.整合(即在积累了很长一段时间的脉冲),可用于测量曝光,光量目前在一个地区在给定的时间段.P C B焊垫布局建议P C B焊垫的D包装布局准则如图5.4.65 6.901.270.502.25注:是A.所有的线性尺寸以毫米为单位.B.本图如有变更,恕不另行通知.图5.建议D包装 P C B布局该LUMENOLOGY r公司rr Copyright E2008, TAOS Inc.7上一页 1 2 3 4 5 6 7 8 9 10 11 12 下一页TCS230可编程彩色L I G H T-T O-F R E Q U E N C Y变换器TAOS046Q − JULY 2008机械信息T h i s S O I C包装由安装在一个封装用引线框架和一个电动的集成电路不导电的透明塑料复合.该T C S230有8×8光电二极管阵列和一个总规模的1.15m m 由1.15m m.光电二极管是120μm×120μm在大小和位置上144μm中心.包装 D注B2.12 +0.2503.00+0.250塑料小外形顶视图底视图PIN 1PIN 16y1.278y0.5100.330侧视图j 2.8 TYP清除窗口终结时0.500.255.004.805.3最大4550.88T Y P顶部传感器电路小片A1.751.354.003.806.205.80一个细节0.250.19 Pb注:A.B.C.D.1.270.410.250.10所有的线性尺寸以毫米为单位.The center of the 1.15-mm by 1.15-mm photo-active area is referenced to the upper left corner tip of the lead frame (Pin 1).包装是塑造具有不导电的透明塑料有一对1.55.折射率化合物这幅画如有变更,恕不另行通知.图6.包装 D—塑料小包装配置外形 I CCopyright E2008, TAOS Inc.rr该LUMENOLOGY r公司上一页 1 2 3 4 5 6 7 8 9 10 11 12 下一页TCS230可编程彩色L I G H T-T O-F R E Q U E N C Y变换器TAOS046Q − JULY 2008机械信息侧视图K o 2.11+0.10 [0.083+0.004]0.292+0.013[0.0115+0.0005]顶视图j 1.508+0.1[0.315+0.004]4+0.1[0.157+0.004]2+0.05[0.079+0.002]1.75+0.10[0.069+0.004]终结时B5.50+0.05[0.217+0.002]12 + 0.3 − 0.1[0.472 + 0.12 − 0.004]A AB一个细节详细BA o注:A.B.C.D.E.F.6.45+0.10[0.254+0.004]B o5.13+0.10[0.202+0.004]所有的线性尺寸以毫米[英寸].在此画的尺寸仅供参考.一个实际载波尺寸可能稍有不同.画上的符号o, B o,和K o定义在A N S I E I A标准481−B2001.每卷的直径178毫米,包含1000部分.T A O S包装带和卷轴符合E I A标准481−B.的要求这幅画如有变更,恕不另行通知.图7.包装 D载波胶带该LUMENOLOGY r公司rr Copyright E2008, TAOS Inc.9上一页 1 2 3 4 5 6 7 8 9 10 11 12 下一页TCS230可编程彩色L I G H T-T O-F R E Q U E N C Y变换器TAOS046Q − JULY 2008制造业信息化这种塑料小外形 I C包装 (D)已经过测试,并显示了有能力将回流焊到P C B基板.焊料回流曲线描述了在焊接元件预计最高热暴露回流焊温度对一P C B.产品过程是根据构件的顶部.该组件应被限制在这三个经过焊接回流温度曲线的最大值.表2.T C S230回流焊简介参数预热的平均温度梯度浸泡时间时间超过217°C时间超过230°C时间超过T peak−10°C 峰值回流温度冷却温度梯度t soakt1t2t3T peak参考TCS2302.5°C/sec2到3分钟最大 60秒最大 50秒最大 10秒260° C (−0°C/+5°C)最大 -5°C/s e cT峰值不按比例仅作参考—T3T2T1温度(5C)时间(秒)t浸泡图8.T C S230回流焊曲线图t3 t2 t1Copyright E2008, TAOS Inc.rr该LUMENOLOGY r公司上一页 1 2 3 4 5 6 7 8 9 10 11 12 下一页TCS230可编程彩色L I G H T-T O-F R E Q U E N C Y变换器TAOS046Q − JULY 2008潮湿敏感度其光学特性,可产生不利影响的释放和在焊接过程中水分蒸发以前已吸收到包装成型化合物.为了防止这些不利的条件下,载波磁带出货的所有设备已被预焙并装入密封运防潮袋.没有进一步的行动是必要的,如果这些设备都是通过回流焊内处理小时的密封24被打破的防潮袋.不过,在管或如果在防潮袋密封出货的所有设备已被打破的24小时或更长的时间,我们建议使用下列程序,以确保包装塑封料含有水分的吸收量可能最小.对于运管设备:1.删除管设备2.烘烤装置4小时,90°C3.冷却后成管,负载设备回4.小时内执行24回流焊后烘烤只有数量,可以通过在24小时回流焊接加工设备.设备可以再烤4小时90°C,如需12小时(3烤的4小时累计在90°C).对于载波磁带运设备:1.烘烤装置4小时,在磁带90°C2.小时内执行24回流焊后烘烤只有数量,可以通过在24小时回流焊接加工设备.设备可以r e−b a k e d在磁带4小时90°C,如需12小时累计总(3小时4烧烤在90°C).该LUMENOLOGY r公司rr Copyright E2008, TAOS Inc.11上一页 1 2 3 4 5 6 7 8 9 10 11 12 下一页TCS230可编程彩色L I G H T-T O-F R E Q U E N C Y变换器TAOS046Q − JULY 2008生产数据—本文件的信息,出版日期电流.产品符合按照规格与得克萨斯高级光电解决方案,I n c.标准的条款保修.生产加工不一定包括所有参数测试.无铅(P b-F R E E)及绿色声明Pb-Free (RoHS)T A O S'条款无铅或Pb-Free半导体产品,与当前的兼容R o H S要求所有6物质,包括要求领导不得超过重量均匀0.1%材料.凡设计为在高温焊接,T A O S P b-F r e e产品是适合使用在指定无铅工艺.绿色(R o H S和N O S b/B r)T A O S定义绿指P b-F r e e(R o H S兼容),溴(B r)和自由锑(S b)系阻燃剂(B r或S b不超过在均质材料重量0.1%).重要信息和免责声明The information provided in this statement represents TAOS' knowledge and 作为信仰的日期,这是规定.T A O S基地由第三方提供的信息的知识和信念,并不会就这些资料的准确性作出任何陈述或保证.目前正在努力,以更好地整合信息来自第三方.T A O S已经采取并将继续采取合理的步骤,以提供有代表性的而准确的信息,但可能没有进行无损检测和来料或化学分析化学品.T A O S和T A O S供应商认为某些信息是专有的,因此C A S数字和其他有限的信息可能不发布.公告得克萨斯高级光电解决方案,I n c.(T A O S)保留权利,在这一变化中包含的产品文件,以提高性能或用于任何其他目的,或终止,恕不另行通知他们.建议客户联系T A O S在下订单前取得,或设计成系统T A O S产品的最新产品信息.T A O S不承担任何责任的产品或电路使用本文档或客户的产品描述设计,传达没有牌照,任何专利或其他权利任何明示或暗示,并没有表示该电路是免费的专利侵权.T A O S更使得以它的产品适合没有任何特别要求目的,也不承担任何法律责任T A O S所产生的任何产品或电路使用了,并明确否认任何和所有责任,包括但不限于间接或附带损失.得克萨斯高级光电解决方案,I N C.产品是没有设计或设计用于在关键应用中使用,其中故障或T A O S产品故障可能造成人身伤害或死亡.广泛运用寿命支持系统的产品是明确T A O S未经授权,任何由客户此种使用是完全可根据客户的风险.L U M E N O L O G Y,T A O S,的T A O S标志和得克萨斯高级光电解决方案的注册商标得克萨斯高级光电解决方案公司.该LUMENOLOGY r公司Copyright E2008, TAOS Inc.rr上一页 1 2 3 4 5 6 7 8 9 10 11 12。

相关文档
最新文档