初中数学分类讨论问题专题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题复习——分类讨论问题
一、教学目标
使学生养成分类讨论思想,并掌握一定的分类技巧,以及常见题型的分类方法。形成一定的分类体系,对待问题能有更严谨、缜密的思维。
二、教学重点
对常见题型分类方法的掌握;能够灵活运用一般的分类技巧。
三、教学难点
对于分类的“界点”、“标准”把握不准确,容易出现重复解、漏解等现象。
四、板书设计
1:分式方程无解的分类讨论问题;
2:“一元二次”方程系数的分类讨论问题;
3:三角形、圆等几何图形相关量求解的分类讨论问题;
4:分类问题在动点问题中的应用;
4.1常见平面问题中动点问题的分类讨论;
4.2组合图形(二次函数、一次函数、平面图形等组合)中动点问题的分类。
1:分式方程无解的分类讨论问题
例题1:(2011武汉) =+=-+-a 3
49332无解,求x x ax x 解:去分母,得: 1
.6,801a 31
-a 21-31-a 21-211-a )3(4)3(3=-==∴=-=-=-=⇒-=++a a a x x ax x 或者或或由已知)(猜想:把“无解”改为“有增根”如何解? 6
8-==a a 或例题2:(2011郴州) ==--+a 21
12无解,求x a x 2:“一元二次”方程系数的分类讨论问题
例题3:(2010上海)已知方程有实数根,求m 的取值范围。
01)12(22=+++x m x m (1)当时,即m=0时,方程为一元一次方程x+1=0,有实数根x=02
=m 1-
(2)当时,方程为一元二次方程,根据有实数根的条件得:02
≠m ,且4
1-m ,0144)12(22≥≥+=-+=∆即m m m 02≠m 综(1)(2)得, 4
1-≥m 常见病症:(很多同学会从(2)直接开始而且会忽略的条件)
02≠m 总结:字母系数的取值范围是否要讨论,要看清题目的条件。一般设置问题的方式有两种(1)前置式,即“二次方程”;(2)后置式,即“两实数根”。这都是表明是二次方程,不需要讨论,但切不可忽视二
次项系数不为零的要求,本题是根据二次项系数是否为零进行讨论的。
例题4:(2011益阳)当m 是什么整数时,关于x 的一元二次方程与
0442=+-x mx 的根都是整数。
0544422=--+-m m mx x 解:因为是一元二次方程,所以二次项系数不为0,即,,02≠m 0≠m 1.
m ,01≤≥∆解得同理,且,又因为m 为整数.45
m ,02-≥≥∆解得1m 4
5≤≤-∴0≠m .11或取-∴m (1)当m=—1时,第一个方程的根为不是整数,所以m=—1舍去。
222±-=x (2)当m=1时,方程1、2的根均为整数,所以m=1.
练习:已知关于x的一元二次方程有实数根,则m的取值范围是:01)1(2
=++-x x m 1m 45001≠≤⇒⎩
⎨⎧≥∆≠-且m m 3:三角形、圆等几何图形相关量求解的分类讨论问题
例题:5:(2011青海)方程的两个根是等腰三角形的底和腰,则这个三角
01892=+-x x 形的周长为( )
A 12 B 12或15 C 15 D 不能确定
例题6:(2011武汉)三角形一边长AB 为13cm ,另一边AC 为15cm ,BC 上的高为
12cm,求此三角形的面积。(54或84)
A C
2p 例题8:(2011四校联考)一条绳子对折后成右图A 、B, A.B 上一点C ,且有BC=2AC,将
其从C 点剪断,得到的线段中最长的一段为40cm,请问这条绳子的长度为:60cm 或120cm 4:动点问题的分类分类讨论问题
4.1:常见平面问题中动点问题的分类讨论;
例题9:(2011永州)正方形ABCD 的边长为10cm ,一动点P 从点A 出发,以2cm/秒的速
度沿正方形的边逆时针匀速运动。如图,回到A 点停止,求点P 运动t 秒时, P ,D 两点间的距离。
解:点P 从A 点出发,分别走到B ,C ,D ,A 所用时间是
秒, 秒, 秒, 秒,即5秒,10秒,15秒,20秒。
∴(
1)当0≤t<5时,点P 在线段AB 上,|PD|=|P 1D|=
(cm)
(2)当5≤t<10时,点P 在线段BC 上,|PD|=|P 2D|= (3
)当10≤t<15时,点P 在线段CD 上,|PD|=|P 3D|=30-2t
(4)当15≤t ≤20时,点P 在线段DA 上,|PD|=|P 4D|=2t-30
综上得:|PD|=
总结:本题从运动的观点,考查了动点P 与定点D 之间的距离,应根据P 点的不同位置构造出不同的几何图形,将线段PD 放在直角三角形中求解或直接观察图形求解。
4.2:组合图形(一次函数、二次函数与平面图形等组合)中动点问题的分类。
例题10:(2010福建)已知一次函数与x 轴、y 轴的交点分别为A 、B ,试333
3+-=x y 在x 轴上找一点P ,使△PAB 为等腰三角形。
分析:本题中△PAB 由于P 点位置不确定而没有确定,而且等腰三角形中哪两条是腰也没
有确定。△PAB 是等腰三角形有几种可能?我们可以按腰的可能情况加以分类:(1)
PA=PB ;(2)PA=AB ;(3)PB=AB 。先可以求出B 点坐标,A 点坐标(9,0)。()033,设P 点坐标为,利用两点间距离公式可对三种分类情况分别列出方程,求出P 点坐标有)0(,x 四解,分别为。(不适合条件的解已舍去)
)0369()0369()03()09(,、,、,、,-+- 总结:解答本题极易漏解。解答此类问题要分析清楚符合条件的图形的各种可能位置,紧