第二十章数据的分析复习教案

合集下载

人教版八年级数学下册优秀教案第二十章数据的分析复习

人教版八年级数学下册优秀教案第二十章数据的分析复习

第二十章数据的分析教学目标【知识与技能】:了解总体、个体、样本等概念,理解统计的基本思想是用样本的特征去估计总体的特征,会用平均数、中位数、众数、极差、方差进行数据处理。

【过程与方法】:经历探索数据的收集、整理、分析过程,在活动中发展学生的统计意识和数据处理的方法与能力。

【情感态度与价值观】:培养合作交流的意识与能力,提高解决简单的实际问题能力,形成一定的数据意识和解决问题的能力,体会特征数据的应用价值。

教学重点与难点【重点】:应用样本数字特征估计总体的相应特征,处理实际问题中的统计内容。

【难点】:方差概念的理解和应用。

教学过程第一步:回顾交流、系统跃进知识线索:平均数中位数众数极差方差集中趋势波动大小数字特征应用本章思想:平均数是衡量样本(求一组数据)和总体平均水平的特征数,通常用样本的平均数去估计总体的平均数。

(定义法)且f 1+f 2+……+f k =n (加权法)当一组数据中个别数据与其它数据差异较大时,可求出其中位数来观察集中趋势;理解当一组数据中不少数据多次重复出现时,可通过众数观察其集中趋势,理解另一类是反映数据波动大小(即离散趋势)的特征数——极差、方差。

设有n 个数据n x x x ,,, 21,各数据与它们的平均数的差的平方分别是2221)()(x x x x --,,…,,, 2)(x x n -我们用它们的平均数,即用])()()[(1222212x x x x x x nx n -++-+-=第二步:联系实际 主动探索问题1、已知;某学校六年级学生的身高的一个样本如下(单位:cm ) 158 162 146 151 153 168 159 154 167 159 167 166 159 154 160 162 164 160 157 149 (1)试填写下面的频数分布表,并绘制相应的频数颁布直方图(2)估算这个年段学生的平均身高。

(3)求出这个年段学生的身高的极差。

问题2:在一次中学生田径运动会上,参加男子跳高的23名运动员的成绩如下表所示:(单位:米)求出它们的跳高成绩的平均数、众数、中位数。

初中数学 第20章数据的分析 全章教案

初中数学 第20章数据的分析 全章教案

第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值第二十章数据的分析课题20.1 数据的代表课时:六课时第一课时20.1.1 平均数【学习目标】1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

【重点难点】重点:会求加权平均数难点:对“权”的理解【导学指导】学习教材P124-P127相关内容,思考、讨论、合作交流后完成下列问题:1.你认为P124“思考”中小明的做法有道理吗?为什么?2.正确的解法应是怎样的?请谈谈你的看法。

3.什么是加权平均数?4.P125“例1”中,所求的结果已不再是各人听说读写成绩的简单平均,而是听说读写成绩的加权平均数,它们的权分别是多少?5.P126“例2”中,两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?谈谈你对权的作用的体会。

【课堂练习】1.教材P127练习第1,2题。

2、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为.3、某人打靶,有a次打中x环,b次打中y环,则这个人平均每次中靶环。

4、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:试判断谁会被公司录取,为什么?5、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。

人教版八年级下册第二十章数据的分析(教案)

人教版八年级下册第二十章数据的分析(教案)
7.解决实际问题,运用数据分析方法。
二、核心素养目标
1.培养学生运用数学语言表达现实问题的能力,增强数据意识,提高数据分析素养;
2.培养学生掌握数据处理的基本方法,提高解决问题的能力,增强数学应用意识;
3.培养学生通过合作探究,发展逻辑思维和批判性思维,提高数学推理和论证能力;
4.培养学生运用数学知识和方法解决实际问题,增强数学建模和数据分析能力;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平均数、中位数、众数的基本概念。平均数是所有数值加总后除以数值的个数,它能够反映数据的集中趋势;中位数是将一组数据从小到大排列后位于中间的数,它对极端值的影响较小;众数是一组数据中出现次数最多的数,它适用于描述分类数据。这些统计量在描述数据时各有优势,是数据分析的重要工具。
-统计图、表的绘制和应用:通过直观的图形和表格展示数据,提高学生的数据分析能力。
举例:在讲解平均数时,强调其受极端值影响较大的特点;在介绍中位数和众数时,通过实例说明它们在描述数据集中趋势时的优势。
2.教学难点
-平均数、中位数、众数在实际问题中的应用:学生需要学会根据数据特点选择合适的描述指标;
-极差、方差的计算及其在数据分析中的应用:理解这些统计量的含义,并能正确应用于实际问题;
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过计算平均数、中位数和众数来分析一组考试成绩,以及这些统计量如何帮助我们更全面地理解数据。
3.重点难点解析:在讲授过程中,我会特别强调平均数受极端值影响较大,而中位数和众数则相对稳健这一特点。对于极差和方差的计算及应用,我会通过具体数据和图表来帮助大家理解它们在描述数据离散程度方面的作用。
人教版八年级下册第二十章数据的分析(教案)

人教版八年级下册第二十章数据的分析全章复习优秀教学案例

人教版八年级下册第二十章数据的分析全章复习优秀教学案例
3.鼓励学生相互评价和反馈,培养学生的评价能力和自我反思能力。例如,在小组活动结束后,让学生相互评价对方的表现,并提出改进建议。
(四)反思与评价
1.引导学生对学习过程进行反思,总结自己在数据分析和统计方法应用方面的优点和不足。例如,可以让学生回顾自己在解决问题时的思考过程,总结运用所学知识的方法和技巧。
(二)过程与方法
1.通过生活实2.引导学生运用图表和统计方法对数据进行分析,培养学生解决实际问题的能力。
3.鼓励学生参与小组讨论和合作,培养学生的团队协作能力和沟通表达能力。
4.指导学生进行课后练习和自主学习,培养学生自主探索和解决问题的能力。
3.鼓励与激励:对学生的努力和进步给予肯定和鼓励,激发学生的学习兴趣和自信心。例如:“你们在讨论和解决问题时表现出了很好的团队协作能力和数据分析能力,继续加油!”
五、案例亮点
1.生活情境的引入:通过引入实际生活中的数据问题,激发学生的学习兴趣和好奇心,使学生感受到数据分析在生活中的重要性。例如,以国家人口普查数据为例,引发学生对数据分析的思考,让学生了解数据分析在了解我国人口状况方面的作用。
2.设计一系列有针对性的问题,引导学生逐步深入地探讨数据分析和统计方法的应用。例如,在分析成绩分布时,可以提出以下问题:“成绩分布呈现出怎样的形态?如何用统计量来描述这种分布?”
3.鼓励学生自主探究和解决问题,培养学生的独立思考和解决问题的能力。在学生解决问题的过程中,给予适当的指导和帮助,引导学生运用所学知识。
(三)情感态度与价值观
1.培养学生对数据分析的兴趣和好奇心,使学生感受到数据分析在生活中的重要性。
2.培养学生尊重数据、实事求是的态度,学会从数据中寻找答案和解决问题。
3.培养学生敢于面对困难和挑战的勇气,培养坚持不懈、积极进取的精神。

第二十章 数据的分析教案全章(精品)

第二十章 数据的分析教案全章(精品)

八年级(下)数学教案《数据的分析》马娟单元教案(一)学习目标1.进一步理解平均数、中位数和众数等统计量的统计意义;2.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势;3.会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况;4.能用计算器的统计功能进行统计计算,进一步体会计算器的优越性;5.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想;6.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度。

(二)重、难点分析统计中常用的平均数有算数平均数(简单算数平均数和加权算数平均数)、调和平均数、几何平均数等。

根据《标准》的要求,本章着重研究了加权平均数。

(三)内容分析本章主要研究平均数(主要是加权平均数)、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。

下面是本章知识展开的结构框图。

本章知识的展开顺序如下图:(四)课时分配全章教学约需15课时(不包括选学内容的课时数),具体内容和课时分配如下:18.1 数据的代表约6课时18.2 数据的波动约5课时18.3 课题学习约2课时数学活动小结约2课时18.1数据的代表18.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

二、重点、难点分析: 1、重点:会求加权平均数 2、难点:对“权”的理解 三、课程类型:新授课 方法手段:启发式教学法 四、课堂引入:1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。

人教版初中数学八年级下册第二十章数据的分析 复习课教案

人教版初中数学八年级下册第二十章数据的分析 复习课教案

第二十章数学的分析一、教学目标1.知识与能力:了解平均数、众数、中位数、极差、方差有关概念,探索并掌握平均数、方差的计算公式会找一组数据的中位数、众数、极差,能进行计算和解决生产、生活中的有关问题。

2. 过程与方法:会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势。

会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况。

会用样本平均数、方差估计总体的平均数、方差。

3.情感态度价值观:进一步感受抽样的必要性,体会用样本估计总体的的思想。

通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。

二、教学重、难点重点:平均数、众数、中位数、极差、方差的归纳及其应用。

难点:应用所学的知识解决实际问题。

三、教学过程:(一).知识回顾:(1)数据的处理一般分哪些步骤进行?(2)本章我们学习了哪些统计的量?这些统计的量各有什么特点?怎样用它们做数据分析?(3)在数据分析时,我们是怎样运用样本估计总体的?(二)知识梳理数据收集—数据整理—数据描述—数据分析设计意图:通过简洁的表格整理本章的知识点学习顺序,既能够让学生清晰地回顾本章知识点,又能明确知识点的内在联系。

练一练: 1.数学期末总评成绩由作业分数、课堂表现分数、期末考分数三部分组成,并按3︰3︰4的比例确定.已知小 明的作业分数90 分,课堂表现分数85 分,期末考分数80 分,则他的总评成绩为__84.5______.2. 一组数据中的一个数大小发生了变化,一定会影响这组数据的平均数、众数、中位数中的( A )A .1个B .2个C .3个D .0个 3.在某样本方差的计算公式 ])8(...)8()8[(10121022212-++-+-=x x x s 中,数据个数有 10 个,样本平均数为 8 .4.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计如下表:分析上表后得出如下结论正确的是( A )①甲、乙两班学生成绩平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.A.①②③B.①②C.①③D.②③5.甲、乙两人在相同的条件下各射靶10次, 每次射靶的成绩如下表:(1)请填写下表:(2) 分别从下列角度对测试结果进行分析:①从平均数和中位数相结合看;②从平均数和众数相结合看;③从平均数和方差相结合看;④从平均数和命中9环以上(包括9环)次数相结合看;⑤从10次射击两人命中环数的走势看.6.观察下表,你能从中发现平均数、方差随数据变化的规律吗?请你用发现的结论来解决以下的问题:已知数据a,2a,…,n a的平均数为X,方差为Y, 则1①数据1a+3,2a+ 3,…,n a+3的平均数为,方差为;②数据1a-3,2a-3,…,n a-3的平均数为,方差为;③数据3a,32a,…,3n a的平均数为,方差为;1④数据2a-3,22a-3,…,2n a-3的平均数为,方差为。

人教版初中数学第20章 数据的分析复习课教案

人教版初中数学第20章 数据的分析复习课教案

第二十章复习课一、内容和内容解析1.内容通过统计量(平均数、中位数、众数及方差)的计算分析数据的集中趋势和波动程度,用样本估计总体.2.内容解析由于本章是本套教科书统计部分的最后一章,因此在复习时要在统计分析的大环境下进行,让学生经历统计的基本过程,但又要侧重于通过统计量分析数据的集中趋势和波动程度.样本估计总体是统计的基本思想,而集中趋势和波动程度是数据的两大基本特征,为了分析数据的特征,选择适当的样本,选择适当的统计量分析数据的特征(集中趋势和波动程度),是本章的核心所在.因此,本节课的重点是:用抽样方法分析数据的集中趋势和波动程度,体会样本估计总体的思想.二、目标和目标解析1.目标(1)会计算平均数、中位数、众数和方差.(2)进一步理解平均数、中位数、众数和方差等统计量的统计意义,能根据问题的实际需要选择合适的统计量表示数据的集中趋势和波动情况.(3)经历数据处理的基本过程,体会用样本估计总体的思想,感受统计在生活和生产中的作用.2.目标解析目标(1)要求学生要学会各个统计量的计算方法.目标(2)能结合问题情境和数据特征,理解各个统计量的统计意义,并能选择适当的统计量分析数据.目标(3)是通过对数据收集、整理、描述和分析等各个环节所学的方法和策略的整理和归纳,使学生对统计调查有一个整体的认识.三、教学问题诊断分析通过以前及本章内容的学习,学生已经学会各个统计量的计算,对统计的基本过程、基本思想和方法有了一定的认识,但是要在具体问题情境中灵活运用各个统计量解决问题的能力还需进一步加强,因此在复习中要通过对实际问题的分析和解决,提高学生灵活运用统计知识解决问题的能力.本节课的教学难点是:灵活运用平均数、中位数、众数和方差分析数据特征,解决实际问题.四、教学过程设计1.知识回顾1、举例说明用样本估计总体是统计的基本思想:在生活和生产中,为了解总体的情况,我们经常采用从总体中抽取样本,通过对样本的调查,获得关于样本的数据和结论,再利用样本的结论对总体进行估计。

人教版八年级下册第二十章:数据的分析全章复习优秀教学案例

人教版八年级下册第二十章:数据的分析全章复习优秀教学案例
二、教学目标
(一)知识与技能
1.学生能够理解数据的收集、整理、描述和分析的基本方法,掌握频数、频率、众数、中位数、平均数等统计量的计算和应用。
2.学生能够运用图表和统计量对数据进行合理的展示和分析,从而解决实际问题,提高数据处理和分析能力。
3.学生能够熟练运用列表、图表、统计量等工具,对数据的分布特征、集中趋势和离散程度进行描述,提升数据解读和分析能力。
在八年级下册第二十章的教学中,学生需要掌握数据的收集、整理、描述和分析等基本方法,并能运用这些方法解决实际问题。基于此,我将以课程标准为导向,充分考虑学生的认知水平和生活经验,设计富有挑战性和趣味性的教学活动,激发学生的学习兴趣,提高他们的主动参与度。
为了确保教学案例的实用性和有效性,我将结合教材内容,突出重点和难点,注重知识点的相互联系和实际应用。同时,通过合理的教学安排和课堂管理,确保学生能够在复习过程中充分巩固所学知识,提高数据分析能力。
人教版八年级下册第二十章:数据的分析全章复习优秀教学案例
一、案例背景
本教学案例以人教版八年级下册第二十章“数据的分析”全章复习为主题,旨在通过具有针对性的教学方法和策略,帮助学生巩固和提升对数据分析知识的理解和应用能力。在案例中,我将结合学科特点和课程内容,设计一系列实用性强的教学活动,以适应学生的知识深度和兴趣需求。
2.学生能够在解决问题的过程中,体验到合作、交流、分享的乐趣,培养团队协作和沟通能力。
3.学生能够理解到学习数据分析不仅能够提高自己的思维能力,还能够为将来的生活和工作中解决问题提供有力的支持,培养学习的自信心。
4.学生能够在学习过程中,遵循规则、尊重事实,培养诚实守信、勇于担当的品质。
三、教学策略
(一)情景创设
1.教师可以通过引入真实的生活情境,如商场打折、考试分数统计等,激发学生的学习兴趣,引导学生主动参与到数据分析的学习中。

人教版八下数学第20章《数据的分析》复习教案+学案

人教版八下数学第20章《数据的分析》复习教案+学案

人教版八下数学第20章《数据的分析》复习教案【思维导图】【教学目标】知识与技能目标了解平均数、众数、中位数、极差、方差有关概念,掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,能进行计算和解决生产、生活中的有关问题.过程与方法目标能结合具体情境发现并提出问题,逐步具有观察、猜想、推理、归纳和合作学习能力.情感、态度与价值观目标通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质.【教学重点】掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,能进行计算和解决生产、生活中的有关问题.【教学难点】选择合适的统计量表示数据的集中趋势.【教学准备】教师准备:教学中出示的例题和图片.学生准备:复习平均数、中位数、众数,并完成本节学案中的自主学习内容. 【知识梳理与建构】专题一平均数【专题分析】平均数的计算考查频率较高,题型以选择题、填空题为主,也涉及解答题,考查形式有:①直接给一组数据或表格中的数据求平均数;②一组数据中含有未知数,已知某个数据代表求其他数据代表.例1若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是()A.44B.45C.46D.47解析:这组数据共有7个,可以采用简化公式进行计算.将这组数据的每一个数都减去40,得到一组新数据:0,2,3,5,7,7,18,这组新数据的平均数为6,所以原数据的平均数为40+6=46.故选C.[归纳总结]对于由n个数据x1,x2,…,x n组成的一组数据,如果将这组数据中的每一个数据都减去同一个常数a,这组新数据的平均数为',那么原数据的平均数为='+a.对于由n个数据x1,x2,…,x n组成的一组数据,如果x1出现了f1次,x2出现了f2次,…,x k出现了f k次,其中f1+f2+…+f k=n,那么,这组数据的平均数可用加权平均数公式=(f1x1+f2x2+…+f k x k)进行计算.【跟踪训练1】如图所示的是小芹6月1日~7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()A.1小时B.1.5小时C.2小时D.3小时解析:先从折线统计图中获取数据信息,然后用这组数据的和除以数据的个数.(2+1+1+1+1+1.5+3)÷7=1.5.故选B.专题二中位数和众数【专题分析】中位数和众数的计算考查频率较高,题型大多以选择题、填空题为主,考查形式有:①直接给出一组数据或表格中的数据求中位数和众数;②一组数据中含有未知数,已知某个数据代表求其他数据代表.例2数据1,2,4,0,5,3,5,中位数和众数分别是()A.3 和2B.3和3C.0和5D.3和5解析:这7个数据按从小到大的顺序排列,位于第4个的是3,故中位数是3;这7个数据中出现次数最多的数据是5,一共出现了2次,所以众数是5.故选D.[规律方法]找中位数要把数据按从小到大(或从大到小)的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,当数据个数为奇数时,中位数即为中间的一个,当数据个数为偶数时,中位数就是中间两个数的平均数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【跟踪训练2】空气质量状况已引起全社会的广泛关注,某市统计了2013年每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.某市2013年每月空气质量良好以上天数折线统计图某市2013年每月空气质量良好以上天数扇形统计图根据以上信息解答下列问题:(1)该市2013年每月空气质量达到良好以上天数的中位数是天,众数是天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况.(字数不超过30字)解析:(1)将这组数据按照一定的顺序排列,取中间两个数的平均数就是中位数;取次数出现最多的那个数就是众数;(2)20天以上的一共有两个数据,360°×=60°,就是扇形A的圆心角的度数;(3)根据题意只要回答正确就可以.解:(1)由题意可得数据为8,9,12,13,13,13,15,16,17,19,21,21,最中间的是13,15,故该市2013年每月空气质量达到良好以上天数的中位数是14天,众数是13天. (2)360°×=60°,答:扇形A的圆心角的度数是60°.(3)答案不唯一,合理即可.月空气质量良好以上的天数在10~20天的占了多数.专题三方差【专题分析】方差是从不同层面反映一组数据的特征数,在解决问题时,准确掌握这些特征数的概念、对应公式,以及灵活运用公式是关键.题型以选择题、填空题为主,考查形式有:①直接给出一组数据或表格中的数据求方差;②根据比较方差值的大小,判定稳定性,解决实际问题.例1一组数据3,4,5,x,7,8的平均数为6,则这组数据的方差是.解析:可以先根据平均数求出x的值,然后根据方差公式求解.∵3,4,5,x,7,8的平均数为6,∴x=9.∴方差为s2=×[(3-6)2+(4-6)2+(5-6)2+(7-6)2+(8-6)2+(9-6)2]=.故填.[归纳总结]数据中有未知数时,一般先求出这个未知数,再根据方差公式计算即可.若一组数据是由另一组数据逐个加几或减几得到的,则这两组数据的方差相同.【跟踪训练3】我市射击队为了从甲、乙两名运动员中选出一名运动员参加省运会比赛,组织了选拔测试,两人分别进行了五次射击,成绩(单位:环)如下:甲10 9 8 9 9乙10 8 9 8 10则应选派运动员参加省运会比赛.〔解析〕甲的平均数是×(10+9+8+9+9)=9,乙的平均数是×(10+8+9+8+10)=9,甲的方差是=×[(10-9)2+(9-9)2+(8-9)2+(9-9)2+(9-9)2]=0.4,乙的方差是=×[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2]=0.8,∵<,∴甲的成绩稳定,∴应选择甲运动员参加省运会比赛.故填甲.专题四用样本估计总体【专题知识】一般情况下,如果总体的容量较大,不便分析其数据特征,我们可以通过随机抽取一定的样本,通过样本的数据特征来对总体的数据特征进行估计,但难免有一定误差.本章主要利用平均数、方差的公式,通过计算样本的平均数、方差,估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想.【专题分析】考查用样本估计总体的题目,选择题、填空题或解答题的形式均有可能出现,一般在3~5分.例4杨静在承包的果园里种植了100棵樱桃树,今年已经进入收获期,从中任意采摘了6棵树上的樱桃,分别称得每棵树的产量(单位:千克)如下表:序号 1 2 3 4 5 6产量17 21 19 18 20 19设这组数据的中位数为m,樱桃的总产量为n,则m,n分别为()A.18,2000B.19,1900C.18.5,1900D.19,1850解析:把数据17,21,19,18,20,19按从小到大的顺序排列为17,18,19,19,20,21,∴中位数为19,平均数为==19,即每棵樱桃树的产量约为19千克,∴樱桃的总产量约为19×100=1900千克.故选B.[易错点津]在求中位数时容易出现的错误是没有把数据按大小顺序排列,而是直接求了表格中从左到右中间两个数的平均数.【跟踪训练4】据省环保网发布的消息,吉首市空气质量评价连续两年居全省14个省辖市城市之首,下表是吉首市2014年5月份前10天的空气质量指数统计表.2014年5月1日~10日空气质量指数(AQI)情况(表一)日期1日2日3日4日5日6日7日8日9日10日空气质量指数(AQI) 28 38 94 53 63 149 53 90 84 35空气质量污染指数标准(AQI)(表二)污染指数等级0~50 优51~100 良101~150 轻微污染151~200 轻度污染(1)请你计算这10天吉首市空气质量指数的平均数,并据此判断这10天吉首市空气质量平均状况属于哪个等级;(用科学计算器计算或笔算,结果保留整数)(2)按规定,当空气质量指数AQI≤100时,空气质量才算“达标”,请你根据表(一)和表(二)所提供的信息,估计今年(365天)吉首市空气质量“达标”的天数.(结果保留整数)解析:(1)算出10天空气质量指数的平均数并根据对应表作出判断即可;(2)先统计出样本中“达标”的天数并算出达标率,再算出今年(365天)吉首市空气质量“达标”的天数即可.解:(1)=×(28+38+94+53+63+149+53+90+84+35)=68.7≈69,这10天空气质量平均状况属于良.(2)∵这10天中“达标”的天数为9天,∴365×=328.5≈329,∴今年吉首市空气质量“达标”的天数为329天.专题五统计思想【专题知识】统计学是用方法论科学,在所有涉及实质性现象的领域中,统计方法都发挥着越来越重要的作用.这些统计方法具有内在的联系和逻辑关系,在认识事物时存在比较通用的模式,这些认识模式是统计学的基本思想.本章中,统计思想就是通过数据收集、数据处理和数据分析,更合理地解决实际问题.【专题分析】统计学是与数据打交道的一门学科,研究如何搜集、整理、计算和分析数据,然后从中找出一些规律,统计思想是用统计知识解决现实生活中涉及数据的问题.题型可以以多种形式出现.例5 某工厂有220名员工,财务科要了解员工收入情况.现在抽测了10名员工的本月收入,结果如下:(单位:元)166001540015100167001620015800158001600016200 16200(1)这组数据的中位数和众数分别是多少?(2)员工的月平均收入是多少?(3)估算一下财务科本月应准备多少钱发工资.解:(1)将这组数据按照从小到大的顺序排列为15100,15400,15800,15800,16000, 16200,16200,16200,16600,16700,处于中间位置的两个数为16000和16200,故中位数为16100.该组数据中,出现次数最多的数为16200,故众数是16200.(2)员工的月平均收入为(15100×1+15400×1+15800×2+16000×1+16200×3+16600×1+16700×1)÷10=16000(元).(3)从(2)得到员工的月平均收入为16000元,工厂共有220名员工,所以估计财务科本月应准备16000×220=3520000(元).【针对训练5】请根据所给信息,帮助小颖同学完成她的调查报告.2013年4月叶邑八年级学生每天干家务活平均时间的调查报告调查目的了解八年级学生每天干家务活的平均时间调查内容叶邑中学八年级学生干家务活的平均时间调查方式抽样调查调查步骤1.数据的收集:(1)在回龙八年级每班随机调查5名学生(2)统计这些学生2013年4月每天干家务活的平均时间(单位: min),结果如下(其中A表示10 min,B表示20 min,C表示30 min)B A A B B B B AC B B A B B CA B A A C A B B C B A B B A C2.数据的处理:以统计图的形式呈现上述统计结果,请补全统计图3.数据的分析:列式计算随机调查的学生每天干家务活平均时间的平均数(结果保留整数)调查结论叶邑中学八年级共有240名学生,其中大约有名学生每天干家务活的平均时间是20 min解析:先从表格中得出平均每天干家务活的时间为30 min的有5名学生,从而补全统计图,再根据A表示10 min,B表示20 min,C表示30 min和学生数即可求出随机调查的学生每天干家务活的平均时间的平均数,最后根据每天干家务活的平均时间是20 min所占的百分比乘240,即可得出大约每天干家务活的平均时间是20 min的学生数.解:从表中可以看出C的学生数是5人,如图所示,每天干家务活平均时间的平均数是(10×10+15×20+5×30)÷30≈18(min),根据题意得240×=120(人),回龙八年级共有240名学生,其中大约有120名学生每天干家务活的平均时间是20 min.专题六方程思想【专题分析】本章中运用方程思想主要是将一组数据中的未知数据用x,y表示,然后根据已知条件列出方程或方程组求解.例6 八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表:参赛同学答对题数答错题数未答题数A19 0 1B17 2 1C15 2 3D17 1 2E//7(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知A,B,C,D,E五位同学的成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况.请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).解析:本题考查了统计知识及二元一次方程(组)的综合应用,解题的关键是能根据题目的条件建立方程或方程组求解实际问题.(1)根据得分规则分别求得4名学生的成绩,再求平均数.(2)①根据E同学的总分和得分规则利用方程组或方程求得E同学的答对题数和答错题数;②根据题目中出现的表格计算A,B,C,D四位同学的得分,与最后获知的A,B,C,D四位同学的成绩进行比较确定记错答题情况的同学,最后求得他的实际答对题数和答错题数.解:(1)A同学的成绩为5×19-2×0+0×1=95(分),B同学的成绩为5×17-2×2+0×1=81(分),C同学的成绩为5×15-2×2+0×3=71(分),D同学的成绩为5×17-2×1+0×2=83(分).A,B,C,D四位同学成绩的平均分为=82.5(分).答:A,B,C,D四位同学成绩的平均分为82.5分.(2)①设E同学答对x题,答错y题.由题意,得解得答:E同学答对12题,答错1题.②C同学,他实际答对14题,答错3题,未答3题.[归纳总结]根据得分规则及学生答题情况建立方程或方程组解决问题.【跟踪训练6】下表是某校九年级(1)班30名学生期末考试的数学成绩表(已污损):成绩/分50 60 70 80 90 100人数/人 2 5 7 3已知该班学生期末考试的数学成绩的平均分是76分.(1)求该班成绩为80分和90分的各有多少人;(2)设该班30名学生数学成绩的众数为a,中位数为b,求a+b的值.解析:(1)根据已知条件,利用平均数的计算公式列出方程组求解即可.(2)根据众数和中位数的概念确定这组数据的众数和中位数,即可求出a +b 的值. 解:(1)设该班有x 人得80分,有y 人得90分,根据题意和平均数的意义,可列出方程组为:⎪⎩⎪⎨⎧----=+=⨯+++⨯+⨯+⨯375230763031009080770560250y x y x , 整理得⎩⎨⎧=+=+1310998y x y x ,解得⎩⎨⎧==58y x 因此该班成绩为80分的学生有8人,成绩为90分的学生有5人.(2)分析表格中的数据可知该班30名学生数学成绩的众数为80分,中位数(按从小到大排序后第15个数和第16个数的平均数)为80分,所以a +b =80+80=160.专题七 数形结合思想【专题知识】数形结合是指将数(或量)与形(图形)结合起来对问题进行研究,本章中许多题目的信息都是通过统计图给出的,有些问题将数据表现在图上,更能直观地反映数据的特点,解决此类题目我们要把抽象的数据和直观的图形结合起来,使问题达到“化难为易、化抽象为直观”.【专题分析】统计中的题目大部分都是以图表形式提供信息,所以涉及运用数形结合思想较广泛.可以以选择题、填空题或解答题的形式出现.例7 某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如下两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型号校服的学生有多少?(2)在条形统计图中,请把空缺的部分补充完整;(3)在扇形统计图中,请计算185型号校服所对应扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.解析: (1)由条形统计图确定165型号的人数,由扇形统计图确定165型号占的百分比,得出总人数,再用总人数乘175型号占的百分比求出穿175型号校服的学生人数;(2)根据人数把条形统计图补充完整;(3)由条形统计图得出穿185型号校服的人数,再计算出百分比,用360°乘百分比求出圆心角的度数;(4)观察各个数据,出现次数最多的是众数,排序后中间的两个数据的平均数是中位数.解:(1)15÷30%=50(人),50×20%=10(人),即该班共有50名学生,其中穿175型号校服的学生有10人.(2)补充如下:(3)圆心角的度数为360°×=14.4°.(4)165和170出现的次数最多,都是15次,故众数是165和170;共50个数据,第25个和第26个数据都是170,故中位数是170.[解题策略]本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,此题还需要准确掌握平均数、中位数、众数的概念及计算方法.【跟踪训练7】在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是() A.众数是90 B.中位数是90 C.平均数是90 D.极差是15解析:根据折线统计图,可以发现数据80出现次数是1,数据85出现次数是2,数据90 出现次数是5,数据95 出现次数是2,按照数据由小到大的次数累加确定中位数,根据次数出现多少判断众数,结合平均数计算方法确定平均数,极差用最大数据减去最小数据即可.易于看出众数是90,A正确,中位数是90,B正确,极差是95-80=15,D正确,运用排除法C错误,也可进一步计算平均数为(80×1+85×2+90×5+95×2)÷10=89,C错误.故选C.人教版八下数学第20章《数据的分析》复习学案【学习目标】知识与技能了解总体、个体、样本等概念,理解统计的基本思想是用样本的特征去估计总体的特征,会用平均数、中位数、众数、极差、方差进行数据处理.过程与方法经历探索数据的收集、整理、分析过程,在活动中发展学生的统计意识和数据处理的方法与能力.情感态度与价值观培养合作交流的意识与能力,提高解决简单的实际问题能力,形成一定的数据意识和解决问题的能力,体会特征数据的应用价值.【学习重点】应用样本数字特征估计总体的相应特征,处理实际问题中的统计内容.【学习难点】方差概念的理解和应用.【自主学习】Step 1:梳理知识夯实基础知识线索:平均数中位数众数极差方差集中趋势波动大小数字特征应用本章思想:平均数是衡量样本(求一组数据)和总体平均水平的特征数,通常用样本的平均数去估计总体的平均数。

八年级下数学第二十章(数据的分析)教案

八年级下数学第二十章(数据的分析)教案

第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解3、难点的突破方法:首先应该复习平均数的概念:把一组数据的总和除以这组数据的个数所得的商,叫做这组数据的平均数。

复习这个概念的好处有两个:一则可以将小学阶段的关于平均数的概念加以巩固,二则便于学生理解用数据与其权数乘积后求和作为加权平均数的分子。

在教材P136“讨论”栏目中要讨论充分、得当,排除学生常见的思维障碍。

讨论问题中的错误做法是学生常见错误,尤其是中差生往往按小学学过的平均数计算公式生搬硬套。

在讨论过程中教师应注意提问学生平均数计算公式中分子是什么、分母又是什么?学生由前面复习平均数定义可答出分子是数据的总和、分母是数据的个数,这时教师可递进设疑:那么,题目中涉及的每个数据是每个占有耕地面积还是人均占有耕地面积呢?数据个数是指A、B、C三个县还是三个县的总人数呢?这样看来小明的做法有道理吗,为什么?通过以上几个问题的设计为学生充分思考和相互讨论交流就铺好了台阶。

要使学生更好的去理解权的意义,可以再举一些生活、学习中的例子。

比如:初二.五班有4个小组,在一次测验中第一组有7名同学得了99分,1名同学得了61分,第二组有1名同学得到了100分、7名同学得62分。

能否由26210026199+<+得出第二小组平均成绩这样的结论?为什么?这个例子简单明了又便于学生想象理解,能够让学生从中体会到得99分的7个人比1个得61分的学生对平均成绩影响更大,从而理解权的意义。

在讨论栏目过后,引出加权平均数。

最好让学生将公式与小学学过的平均数计算公式作比较看看意义上是否一致,这样做利于学生把新旧知识联系起来,利于对加权平均数公式的理解,也利于理解“权”的意义。

八年级数学下册第二十章数据的分析数学活动教案(新版)新人教版(共5篇)

八年级数学下册第二十章数据的分析数学活动教案(新版)新人教版(共5篇)

八年级数学下册第二十章数据的分析数学活动教案(新版)新人教版(共5篇)第一篇:八年级数学下册第二十章数据的分析数学活动教案 (新版)新人教版第二十章数据的分析【教学目标】知识与技能进一步理解平均数、中位数、众数、方差等统计量的意义,会用适当的统计量进行数据分析;过程与方法经历提出问题,数据收集、整理、描述、分析等统计过程,体会样本估计总体的思想,发展数据分析观念;情感、态度与价值观体会统计的实际应用价值.【教学重难点】重点:结合身边素材提出统计问题,开展统计活动.难点:结合身边素材提出统计问题,开展统计活动.【导学过程】【情景导入】我们已经学习了数据的收集、整理、描述、分析等统计活动,统计与生活实际紧密联系,其实,我们身边就有大量的统计问题.请大家分组讨论,每一小组提出一个可以在课内调查的统计问题.【新知探究】活动1、请同学们合作完成下面的活动:1.全班同学一起讨论,提出5个问题对全班同学进行调查,例如全班同学的平均身高是多少?全班同学的平均体重是多少?等等;2.全班同学分成五个小组,每个小组选择一个问题进行调查,并将调查过程和结果在全班展示;3.将各组的结果汇总到一起,得到全班同学的一个“平均情况”,找出一个最能代表全班“平均情况”的同学.活动2、请全班同学分成几个小组,合作完成下面的活动:1.每个小组分别测量本组同学的每分脉搏次数,得到几组数据;2.求出本组数据的平均数、中位数、众数、方差等;3.与其他小组进行交流,估计一颗“正常”心脏的每分跳动次数;4.查找资料,看看一颗“正常”心脏的每分跳动次数,与你们的调查结果进行对照,谈谈你们对用样本估计总体的感受.以“每分脉搏次数问题” 为例,进行现场调查分析.统计调查的基本步骤是哪些?(1)你的小组准备采用什么方法收集数据?是全面调查方式还是抽样调查方式?(2)你的小组准备怎样整理数据和描述数据?(3)你的小组准备怎样分析数据?请各组介绍和展示统计分析过程及得到的结论:(1)介绍你所在小组的数据收集与分析过程;(2)你得出了哪些结论?依据分别是什么?【知识梳理】1.本次统计活动中,你经历了哪些环节?2.各个统计环节你是怎样做的?3.经历这次调查活动,你有什么体会?第二篇:新人教八年级下册数学期末考试知识点归纳新人教八年级下册数学期末考试知识点归纳二次根式知识回顾1.二次根式:式子(ge;0)叫做二次根式。

人教版八年级数学下册 第二十章 数据的分析(复习课)教案设计

人教版八年级数学下册 第二十章 数据的分析(复习课)教案设计

集体备课教案
主备人备课组成员:八年级数学组
课题第二十章数据的分析(复习课)授课时间月日
教学目标1、理解并会计算加权平均数、众数、中位数,能选择合适的量描述数
据的集中程度
2、理解并会计算方差并会用它描述数据的离散程度
3、体会用样本估计总体的思想,会用样本平均数,方差估计总体平均
数,方差
教学重点理解并会计算加权平均数、众数、中位数,能选择合适的量描述数据的集中程度
教学难点能在实际问题中熟练在选择合适的量进行解决问题教学用具多媒体
教学方法
(学习方
法)
自主学习与点拨相结合
教学过程一、知识要点:
数据的代表:平均数、中位数、众数
数据的波动:极差、方差
二、基础练习
1、一个样本的数据按从小到大的顺序排列为:
13,14,19,x,23,27,28,31。

若其中位
数为22,则x等于()
A、20
B、21
C、22
D、23
2、已知一组数据按从小到大的顺序排列为-1,
0,4,x,6,15。

且这组数据的中位数为5,
则这组数据的众数是()
A、5
B、6
C、4
D、5.5
3、某班一次语文测试成绩如下:得100分的
备注(补
充)。

八年级数学下册第二十章数据的分析教案

八年级数学下册第二十章数据的分析教案

课题:20.1.1平均数1知识与技术: 1、使学生理解数据的权和加权均匀数的观点2、使学生掌握加权均匀数的计算方法过程与方法: 3、经过本节课的学习,使学生理解均匀数在数据统计中的意义和作用:描绘一组数据集中趋向的特色数字,是反应一组数据均匀水平的特色数。

感情态度与价值观:能灵巧应用一组数据均匀水平解决实质问题教课要点:会求加权均匀数教课难点:对“权”的理解教课方法:创建情形--- 察看思虑 ----剖析议论---概括总结----得出结论教课过程:一讲堂导入:问题 1:一家公司打算招聘一名英文翻译。

对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩以下:应试者听闻读写甲乙1、假如这家公司想招一名综合能力较强的翻译,计算两名应试者均匀成绩,从他们的成绩看,应当录取谁?2、假如这家公司想招一名笔译能力较强的翻译,听、说、读、写的成绩依照2:1:3:4的比确立,计算两名应试者均匀成绩,从他们的成绩看,应当录取谁?学生思虑、议论解答,教师改正解: 1、甲的均匀成绩 =《 85+78+85+73>/4=乙的均匀成绩 =《73+80+82+83>/4=因为 .. 的均匀成绩比 .. 的高,所以应当录取...。

2、甲的均匀成绩 =.......................................乙的均匀成绩 =.....................................?因为 .. 的均匀成绩比 .. 的高,所以应当录取...。

二、合作研究:1、议一议:上叙问题 1 是利用均匀数的公式计算均匀成绩,此中每个数据同样重要。

问题 2 呢?学生思虑、分组议论,以后,看课本p112 面,理解“权”的意义,以及加权均匀数的公式。

三、沟通展现:例 1:课本 p112 面例题 1 学生疏组议论,小组讲话,学生演板小结: 1、解决例 1 要用到加权均匀数公式,所以说它最直接、最重要的目的是及时复习稳固公式,而且举例说了然公式用法和解题书写格式,给学生以示范和模拟。

人教新课标八年级下,第20章数据的分析复习教案,数据的收集、整理与描述导学案

人教新课标八年级下,第20章数据的分析复习教案,数据的收集、整理与描述导学案

人教新课标八年级下,第20章数据的分析复习教案,数据的收集、整理与描述导学案第十章数据的收集、整理与描述导学案(一)知识回顾1、数据处理的基本过程是:⑴(普查、抽样调查);⑵(作出统计表);(3)(作出统计图);(4)(根据统计表、统计图进行描述);(5)(分析原因、得出结论、作出判断)。

2.调查分为哪几种形式?各有什么优、缺点?3.几个名词概念总体:个体:样本:上面三个概念的共同点:;区别:样本容量:频数:4.抽样调查要注意的问题①样本容量不能太少,少了不能很好地代表总体的情况,②在数据较大,情况较复杂时,5.数据的整理和描述主要采取什么方法?整理数据,主要是通过表格来反映,根据不同情况制出不同形式的表格,来反映各组的状况.描述数据,主要采取绘图的方式。

条形图的特点及画法:扇形图的特点及画法:折线图的特点及画法:直方图的特点:6、画直方图的步骤是:(1)计算: - ;(2)决定和(近1法);(3)列:划记法;(4)画:小长方形的面积= × = 。

(二)例题与习题:一.填空题1. 为了了解某校七年级400名学生的期中数学成绩的情况,从中抽取了50名学生的数学成绩进行分析。

在这个问题中,总体是,个体是,样本是,样本容量是 .2. 在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是.3.扇形统计图中扇形占圆的30%,则扇形圆心角是4.某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,先抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为、、5.某市为了了解七年级学生的身体素质情况,随机抽取了500名学生进行检测,身体素质达标率为92%,请你估计该市6万名七年级学生中身体素质达标的大约有 万人。

6.在进行数据描述时,要显示每组中的具体数据,应采用 图;要显示部分在总体中所占的百分比,应采用 图;要显示数据的变化趋势,应采用 图;要显示数据的分布情况,应采用 图. 二.选择题7.下列调查工作需采用普查方式的是( )(A)对长江某段水域的水污染情况的调查;(B)电视台对正在播出的某电视节目收视率的调查; (C)对各厂家生产的电池使用寿命的调查;(D)企业在给职工做工作服前进行的尺寸大小的调查。

人教版八年级下册第二十章数据的分析全章复习教学设计

人教版八年级下册第二十章数据的分析全章复习教学设计
3.重点:培养学生的数据伦理观念,让他们认识到数据的重要性和敏感性。
难点:引导学生正确处理个人隐私和公共数据之间的关系,以及在数据分析过程中遵循法律法规。
(二)教学设想
1.创设情境:结合生活实际,设计具有趣味性、挑战性的问题情境,让学生在实际问题中感受数据分析的重要性,激发学习兴趣。
教学策略:案例教学法、问题驱动法、小组合作法。
2.运用案例教学法,让学生在实际问题中感受数据分析的过程和方法,提高学生的数据分析能力。
3.引导学生运用信息技术手段,如电子表格软件、统计软件等,辅助数据分析,提高数据处理和分析的效率。
4.设计丰富的实践活动,让学生在实践中掌握数据分析的方法,培养学生的动手操作能力和创新思维。
5.通过评价和反馈,帮助学生了解自己的学习进度和不足,激发学生的学习兴趣和自信心。
(三)情感态度与价值观
1.培养学生对数据的敏感性和好奇心,使他们对数据充满兴趣,愿意主动去发现和探索数据背后的规律。
2.培养学生严谨、客观、理性的数据分析态度,让他们认识到数据分析在决策、解决问题等方面的重要性。
3.培养学生的团队合作精神,使他们学会倾听、尊重、沟通、协作,共同完成数据分析任务。
4.培养学生的数据伦理观念,让他们明白数据的重要性和敏感性,遵循数据保护的法律法规,尊重个人隐私。
1.重点:培养学生熟练运用数据分析的基本方法,解决实际问题,并能够对数据进行合理的解释和分析。
难点:让学生理解数据分析在不同情境下的灵活运用,以及如何处理和分析大量复杂数据。
2.重点:提高学生对数据分析结果的评价和推断能力,使他们能够根据数据做出合理的预测。
难点:培养学生运用线性回归方程进行数据拟合和预测的能力,以及对方差、标准差等统计量的深入理解。

人教初中数学《第二十章《数据的分析》复习》教案(高效课堂)2022年人教版数学精品

人教初中数学《第二十章《数据的分析》复习》教案(高效课堂)2022年人教版数学精品

数据的分析课标解读与教材分析【课标要求】1、进一步理解平均数、中位数和众数等统计量的统计意义;2、会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势;3、会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况;4、能用计算器的统计功能进行统计计算,进一步体会计算器的优越性;5、会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想;6、从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度。

教学内容分析:1、平均数、中位数和众数2、极差和方差3、数据的波动情况教学目标知识与技能1、平均数、中位数和众数2、极差和方差3、4、极差和方差3、数据的波动情况过程与方法从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系情感态度价值观感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度教学重点与难点重点1、进一步理解平均数、中位数和众数等统计量的统计意义;2、会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势;3、会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况;难点1、进一步理解平均数、中位数和众数等统计量的统计意义;2、会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势;3、会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况;4、能用计算器的统计功能进行统计计算,进一步体会计算器的优越性;5、会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想;媒体教具课时1课时教学过程修改栏教学内容师生互动一、知识结构图二、知识点梳理1.解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。

第20章-数据的分析全章教案

第20章-数据的分析全章教案

第二十章数据的分析一、教材分析从《标准》看,本章属于“统计与概率”领域。

对于“统计与概率”领域的内容,本套教科书独立于“数与代数”和“空间与图形”领域编写,共有四章。

这四章内容采用统计和概率分开编排的方式,前三章是统计,最后一章是概率。

统计部分的三章内容按照数据处理的基本过程来安排。

我们在7年级上册和8年级上册分别学习了“数据的收集与整理”“数据的描述”,本章是统计部分的最后一章,主要学习分析数据的集中趋势和离散程度的常用方法。

在前两章中,我们学习了收集、整理和描述数据的常用方法,将收集到的数据进行分组、列表、绘图等处理工作后,数据分布的一些面貌和特征可以通过统计图表等反映出来。

为了进一步了解数据分布的特征和规律,还需要计算出一些代表数据一般水平(典型水平)或分布状况的特征量。

对于统计数据的分布的特征,可以从三个方面来分析:一是分析数据分布的集中趋势,反映数据向其中心值(平均数)靠拢或聚集的程度;二是分析数据分布的离散程度,反映数据远离其中心值(平均数)的趋势,三是分析数据分布的偏态和峰度,反映数据分布的形状。

这三个方面分别反映了数据分布特征的不同侧面。

根据《标准》的要求,本章从就前两个方面研究数据的分布特征。

二、重难点分析统计中常用的平均数有算数平均数(简单算数平均数和加权算数平均数)、调和平均数、几何平均数等。

根据《标准》的要求,本章着重研究了加权平均数。

三、教学目标1.进一步理解平均数、中位数和众数等统计量的统计意义;2.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势;3.会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况;4.能用计算器的统计功能进行统计计算,进一步体会计算器的优越性;5.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想;6.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十章数据的分析
教学目标
【知识与技能】:了解总体、个体、样本等概念,理解统计的基本思想是用样本的特征去估计总体的特征,会用平均数、中位数、众数、极差、方差进行数据处理。

【过程与方法】:经历探索数据的收集、整理、分析过程,在活动中发展学生的统计意识和数据处理的方法与能力。

【情感态度与价值观】:培养合作交流的意识与能力,提高解决简单的实际问题能力,形成一定的数据意识和解决问题的能力,体会特征数据的应用价值。

教学重点与难点
【重点】:应用样本数字特征估计总体的相应特征,处理实际问题中的统计内容。

【难点】:方差概念的理解和应用。

教学过程
第一步:回顾交流、系统跃进
知识线索:
平均数中位数众数极差方差
集中趋势波动大小
数字特征
应用
本章思想:
平均数是衡量样本(求一组数据)和总体平均水平的特征数,通常用样本的平均数去估计总体的平均数。

(定义法)
且f 1+f 2+……+f k =n (加权法)
当一组数据中个别数据与其它数据差异较大时,可求出其中位数来观察集中趋势;理解当一组数据中不少数据多次重复出现时,可通过众数观察其集中趋势,理解另一类是反映数据波动大小(即离散趋势)的特征数——极差、方差。

设有n 个数据n x x x ,,
, 21,各数据与它们的平均数的差的平方分别是2221)()(x x x x --,,…,,, 2)(x x n -我们用它们的平均数,即用
])()()[(1
222212x x x x x x n
x n -++-+-=
第二步:联系实际 主动探索
问题1、已知;某学校六年级学生的身高的一个样本如下(单位:cm ) 158 162 146 151 153 168 159 154 167 159 167 166 159 154 160 162 164 160 157 149 (1)试填写下面的频数分布表,并绘制相应的频数颁布直方图
分组 频数累计
频数 146 ~ 149 150 ~ 152 153 ~ 155 156 ~ 158 159 ~ 161 162 ~ 164 165 ~ 167 168 ~ 170
合计
(2)估算这个年段学生的平均身高。

(3)求出这个年段学生的身高的极差。

问题2:在一次中学生田径运动会上,参加男子跳高的23名运动员的成绩如下表所示:(单位:米)
成绩1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90
人数 1 2 4 5 7 2 1 1
求出它们的跳高成绩的平均数、众数、中位数。

(答案:1。

71、1。

75、1。

70)
第三步;复习巩固提高深化:
1、右图是一组数据的折线统计图,这组数据的极差
是,平均数是.
2.若样本数据1,2,3,2的平均数是a,中位数是
b,众数是c,则数据a、b、c的方差是.
3、某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个)经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考.请你回答下列问题:
(1)计算甲、乙两班的优分率;(2)求两班比赛数据的中位数。

(3)估计两个比赛数据的方差哪一个小?(4)根据以上信息,你认为应该把冠军奖状发给哪一个班级?简述理由.
1号2号3号4号5号总分
甲班100 98 110 89 103 500
乙班86 100 98 119 97 500
3、某市射击队甲、乙两位优秀队员在相同的条件
下各射靶10次,每次射靶的成绩情况如图所示:
(1)请填写下表:
(2)请从下列四个不同的角度对这次测试结果进行分析:
①从平均数和方差结合看;(分析谁的成绩好些);
②从平均数和中位数相结合看(分析谁的成绩好些);
③从平均数和命中9环以上的次数结合看(分析谁的成绩好些);
④如果省射击队到市射击队靠选拔苗子进行培养,你认为应该选谁?
4、某同学进行社会调查,随机抽查了某
个地区的20个家庭的年收人情况,并绘制了统计
图.请你根据统计图给出的信息回答:
(1)填写完成下表:这20个家庭的年平均收入为万元.
(2)样本中的中位数、众数分别是多少?
(3)在平均数、中位数两数中,哪个更能反映这个地区家庭的年收入水平.为什么?
5、甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表
班级参加人数中位数方差平均数
甲55 149 191 135
乙55 151 110 135
丙同学分析上表后得出如下结论:
①甲、乙两班学生成绩平均水平相同②乙班优秀的人数多于甲班优秀的人数(每分钟
输入汉字汉字≥150个为优秀)③甲班成绩的波动比乙班大。

上述结论正确是()
A、①②③
B、①②
C、①③
D、②③
6、某商场服务部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售目标,
根据目标的完成情况进行适当的奖惩。

为了确定一个合适的目标,商场统计了每个营业员在某月的销售额,数据如下(单位:万元):
17 18 16 13 24 15 28 26 18 19 22 17 16 19 32
30 16 14 15 26 15 32 23 17 15 15 28 28 16 19
(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均的月销售额是多少?(2)如果想确定一个较高的目标,你认为月销售额定多少合适?说明理由?
(3)如果想让一半左右的营业员都能达到目标,你认为月销售额定多少合适?说明理由?
7、某公司10名销售员,去年完成的销售额情况如下表:
(1)求销售额的平均数、众数、中位数;
(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?。

相关文档
最新文档