第章气体动理论
气体动理论
![气体动理论](https://img.taocdn.com/s3/m/dd796cc02b160b4e767fcfb1.png)
2.两种不同种类的理想气体,压强相同,温度相同,体积不同, 试
问单位体积内的分子数是否相同?
(答案:相同)
3.两瓶不同种类的气体,分子平均平动动能相同,但气体的分 子数密度不同,试问他们的压强是否相同? (答案:不同)
4.两瓶不同种类的气体,体积不同,但温度和压强相同,问气体 分子的平均平动动能是否相同?单位体积中的分子的总平动 动能是否相同?方均根速率是否相同?(答案:相同,相同,不同)
2. 理想气体的内能包括哪些? 理想气体的内能=所有气体分子动能量的总和;
3. 内能与机械能有什么区别?
机械能可以为零,而内能永不为零。
一摩尔理想气体的内能:
Emol N
i KT i RT
2
2
M千克理想气体的内能: E M i RT i vRT
M mol 2
2
问题:
1.三个容器内分别储有1mol氦气(He),1mol氢气(H2),1mol氨 气(NH3)( 三种气体均 视为刚性分子的理想气体),若它们的 温度都升高 1K , 则三种气体内能的增加分别是多少? (答案:12.5J, 20.8J, 24.9J) 2.写出下列各量的表达式:
(2) 分子沿各个方向运动的机会是均等的,没有任何一个 方向上气体分子的运动比其它方向更占优势。即沿着各 个方向运动的平均分子数应该相等;
(3) 分子速度在各个方向的分量的各种平均值相等。
五、气体动理论的统计方法 (statistical metheds)
用对大量分子的平均性质的了解代替个别分子的 真实性质。对个别分子(或原子)运用牛顿定律求 出其微观量,如:质量、速度、能量等,再用统计的 方法,求出大量分子关于微观量的统计平均值,并 用来解释在实验中直接观测到的物体的宏观性质, 如:温度、压强、热容等。
气体动理论
![气体动理论](https://img.taocdn.com/s3/m/d30b5ce20c22590102029d28.png)
第十三章 气体动理论本章从理想气体的微观组成出发,假以统计性假设,推出理想气体的压强和温度公式,揭示了压强和温度的本质;提出了理想气体内能的概念,介绍了理想气体能量按自由度均分原理;阐述了理想气体的麦克斯韦速率分布率。
这称为气体动理论。
气体动理论的产生和发展凝聚了众多物理学家的智慧和心血。
早在1678年,胡克就提出了气体压强是由大量气体分子与器壁碰撞的结果的观点。
之后,在1738年,伯努利根据这一观点推导出压强公式,并且解释了玻意耳定律。
1744年,俄国的罗蒙诺索夫提出了热是分子运动表现的观点。
在19世纪中叶,气体动理论经克劳修斯、麦克斯韦和玻耳兹曼的努力而有了重大发展。
1858年,克劳修斯提出气体分子平均自由程的概念并导出相关公式。
1860年,麦克斯韦指出,气体分子的频繁碰撞并未使它们的速度趋于一致,而是达到稳定的分布,导出了平衡态气体分子的速率分布和速度分布。
之后,麦克斯韦又建立了输运过程的数学理论。
1868年,玻耳兹曼在麦克斯韦气体分子速率分布律中又引进重力场。
第一节理想气体状态方程一、状态参量1.状态参量概念如何描述系统的冷热变化规律,这就需要一些物理量。
假设气体的质量为 m ,其宏观状态一般可以用气体的压强p 、体积V 和温度T 三个物理量来描述。
如果在热力学过程中伴随着化学反应,还需要物质的量、摩尔质量 、物质各组分的质量等物理量来描述。
如果热力学系统处于磁场中,还需要电场强度E 、电极化矢量P 、磁场强度H 和磁化强度M 等物理量来描述。
选择几个描写系统状态的参量,称为状态参量。
2.状态参量分类按照不同的划分标准,状态参量可作如下划分:(1)按状态参量描写系统的性质划分可分为:V P E P H M几何参量:描述系统的空间广延性。
如体积 。
力学参量:描述系统的强度。
如压强 。
化学参量:描述系统的化学组分。
如各组分的质量,物质的量。
电磁参量:描述系统的电磁性质。
如电场强度 ,电极化强度 ,磁场强度 ,磁化强度 。
大学物理气体动理论
![大学物理气体动理论](https://img.taocdn.com/s3/m/0b049e662bf90242a8956bec0975f46527d3a707.png)
气体分子之间的相互作用力产生的势能, 由于气体分子之间的距离非常大,因此气 体分子的势能通常可以忽略不计。
分子动理论的基本假设
分子之间无相互作用力
气体分子之间不存在相互作用的力,它们之间只 存在微弱的范德华力。
分子运动速度服从麦克斯韦分布
气体分子的运动速度服从麦克斯韦分布,即它们 的速度大小和方向都是随机的。
分子碰撞的统计规律
分子碰撞的随机性
01
气体分子之间的碰撞是随机的,碰撞事件的发生和结果都是随
机的。
分子碰撞频率
02
单位时间内分子之间的碰撞次数与分子数密度、分子平均速度
和分子碰撞截面有关。
碰撞结果的统计规律
03
碰撞后分子的速度方向和大小的变化遵循一定的统计规律,可
以用概率密度函数来描述。
热现象的统计解释
大学物理气体动理论
• 引言 • 气体动理论的基本概念 • 气体动理论的基本定律 • 气体动理论的统计解释 • 气体动理论的应用 • 结论
01Biblioteka 引言主题简介气体动理论
气体动理论是通过微观角度研究气体 运动状态和变化的学科。它以分子运 动论为基础,探究气体分子运动的规 律和特性。
分子模型
气体动理论中,将气体分子视为弹性 小球,相互之间以及与器壁之间发生 弹性碰撞。通过建立分子模型,可以 更好地理解气体分子的运动特性。
对未来研究的展望
随着科学技术的发展,气体动理 论仍有很大的发展空间和应用前
景。
未来研究可以进一步探索气体分 子间的相互作用和气体在极端条 件下的行为,例如高温、高压或
低温等。
气体动理论与其他领域的交叉研 究也将成为未来的一个重要方向, 例如与计算机模拟、量子力学和
大学物理-气体动理论
![大学物理-气体动理论](https://img.taocdn.com/s3/m/165667bd9e31433239689376.png)
求: (1) 容器的容积,
(2) 漏去了多少氧气?
解: (1)
pv M RT
VM P RT8.21(升)
(2) 设漏气后的压力、温度、质量分别为 p' T' M'
p'V M' RT'
M' p'V0.06K 7 g
RT'
M 0 .1 0 0 .0 6 0 .0 7 K 3 3 g
平衡态: 在不受外界影响的条件下,一个系统的宏观性质不随时间
改变的状态。热动平衡
平衡过程:气体从一个状态变化到另一个状态,其间所经历的
过渡方式称为状态变化的过程.
如果过程所经历的所有中间状态都无限接近平衡状态,
该过程称为平衡过程.
2020/5/2
2
二、状态参量:
1、气体所占的体积 V: m 3
2、压强 P:
总的分子数密度为
n
n i
i
设 dA 法向为 x 轴
dA
一次碰撞单分子动量变化
vi dt
2 mvix
x 在 dt 时间内与dA碰撞的分子数
2020/5/2
ni vix dt dA 斜柱体体15积
dt 时间内传给 dA 的冲量为
dI = 2 mnivix2 dt dA
(vix>0)vx2= Nhomakorabeai
ni
vxi2
第三章 气体动理论
理想气体状态方程
麦克斯韦速率分布律
气体动理论的压强公式 玻耳兹曼分布律
气体动理论的温度公式
能量均分定理
2020/5/2
1
气体动理论
![气体动理论](https://img.taocdn.com/s3/m/8b676df2ec3a87c24028c4e4.png)
17
§2.1.3理想气体的温度
1.宏观意义:冷热程度,是决定某一系统 与另一系统是否处于热平衡的宏观标志。
2.微观意义:由状态方程可得
pV = N RT NA
状态方程:
p=
N V
R NA
T = nkBT
波尔兹曼常数:
kB
=
R NA
= 1.38 10-23 J
K -1
18
温度的统计意义
p = 2 nω 3
p = nkT
ω = 3 kT 2
此式称为理想气体分子温度公式. 温度的统计意义:
(1)温度是分子平均平动动能的量度,反映无 规则热运动的剧烈程度;
(2)温度是大量分子集体表现,对个别分子 温度没有意义。
相等。
2.气体分子沿各方向运动的概率相等 即分子速度在各方向上分量的各种平均值相
等。
在直角坐标系中有: vx2 = vy2 = vz2
vx2 + vy2 + vz2 = v2
vx2
=
vy2
=
vz2
=
1 v2 3
11
§2.1.2理想气体的压强
1.产生
固体、液体的 :重力原因 气体压强:大量分子不断碰撞的结果。
单个分子碰撞器壁的作用力是不 连续的、偶然的、不均匀的。从 总的效果上来看,分子碰撞对器 壁产生一个持续的平均作用力。
PA=F/SA
12
2 .理想气体压强公式的导出
公式导出 见图:
PA=F/SA
长方形容器内分子总数为N。
设分子质量为m,速率为vx、vy、vz;
第5章 气体动理论
![第5章 气体动理论](https://img.taocdn.com/s3/m/47fad33231126edb6f1a10f7.png)
17
x
5.3 气体分子热运动的速率分布规律
概率 wx = lim 统计分布的基本方法 分间隔 坐标分布 速率分布 能量分布
∆Nx dNx = N→∞ N N
dNx N
x − x + dx
υ −υ + dυ
ε − ε + dε
dNυ N dNε N
18
5.3 气体分子热运动的速率分布规律
20
υ 附近
Nf (υ )dυ = dN υ
5.3 气体分子热运动的速率分布规律
2)f (υ ) 的性质
∞
= ∫ f (υ)dυ= 1
0
(υ =∞)
∞
∫) (υ
(
=0)
dNυ N
归一性质
∫ f (υ)dυ =1 几何意义
0
∆ Nυ dNυ f (υ) = N∆ υ Ndυ
f (υ)dυ
曲线下面积恒为1 曲线下面积恒为1
7
Nmi NAkT → PV = NAmi
N → P = kT V
→ P = nkT
5.1 理想气体状态方程
热力学系统由大量粒子组成 1) 标况
T = 273K
P = 1atm = 1.013×105 Pa
1.013×105 P = 2.69×1025 / m3 = n= kT 1.38×10−23 × 273
19
速率分布函数
dNυ = f (υ) Ndυ
5.3 气体分子热运动的速率分布规律
1)f (υ) 的意义 分子速率在
dNυ f (υ) = Ndυ
f (υ)dυ
dNυ = N
单位速率间隔内的分子数 占总分子数的百分比 分子速率在 υ −υ +dυ 间隔内的分子数占 总分子数的百分比 分子速率在 υ −υ +dυ 间隔内的分子数 可以求平均值
气体动理论基础
![气体动理论基础](https://img.taocdn.com/s3/m/dfe205d5d1d233d4b14e852458fb770bf78a3b85.png)
dt
dt
•dt时间内能遇到dA上旳分子数为:
ni ixdtdA
•这些分子在dt时间内对dA总旳冲量:
dIi niixdtdA(2mix )
dA x
•全部分子对器壁旳总冲量:
dI 1 2
2mni
2 ix
dAdt
i
dF
mni
2 ix
dA
i
i dt ix dt
4.理想气体旳压强公式 p dF dA
A
C
若 A 和 B、B 和 C 分别热平衡,
则 A 和 C 一定热平衡。
B
(热力学第零定律)
处于相互热平衡状态旳多种系统拥有某一 共同旳宏观物理性质
——温度 温标:温度旳数值表达措施。
摄氏温标、热力学温标
T t 273.15
8-3 温度旳统计解释
一、温度旳统计解释
pV m RT M
p 1 N RT n R T
p
mni
2 ix
m
ni
2 ix
i
i
2 x
ni 2ix
n
p
nm
2 x
平衡态下
x2
y2
z2123源自p 1 nm 23
t
1 m 2
2
分子旳平均平动动能
p
2 3
n
t
温度旳宏观定义:
表征物体旳冷热程度
初
A
绝热板
A、B 两体系互不影响
态
B
各自到达平衡态
末
A
导热板
A、B 两体系到达共同
态
B
旳热平衡状态
v 8kT 8RT 1.60 RT
m M
气体动理论公式总结
![气体动理论公式总结](https://img.taocdn.com/s3/m/124b4e69daef5ef7bb0d3cb7.png)
1.自由度i=t+r
单原子分子 i=t=3
刚性双原子 i=t+r=3+2 刚性三原子i=t+r=3+3
2.分子平均平动动能
t
t 2
kT
3 2
kT
3.分子平均转动动能
r
r 2
kT
4.分子平均动能
k
i kT 2
5.气体内能
E
i RT
2
i pV 2
2
四、麦克斯韦速率分布律
1.速率分布函数: f (v) dN Ndv
3、均匀带电无限长直导线
E 2 0 r
4.半径为R的均匀带电球面
E外
q
4 0r 2
E内 0
q
q
U外 4 0r U内 40R
5.无限大均匀带电平面
E
2 0
15
七、静态平衡时的导体 1. 导体内部场强为0。导体表面附近场强方向与导
体表面垂直。 2.导体为等势体(电势处处相等)。
3. 导体内无电荷,所有电荷分布于表面。
(1)
D dS q0 电场的高斯定律
(2)
E dl
L
S
B
d
S
电 场 的
环路定理
t
(变化的磁场激发电场)
(3) B d S 0
磁场的高斯定律
(4)
S
H dl
L
Ic
d D
dt
Ic
D dS t
磁 场 的 环 路 定 理 (变化的电场激发磁场)
27
第13 章量子物理
一、黑体辐射
v2 b v2 f (v)dv / b f (v)dv
a
第四章 气体动理论
![第四章 气体动理论](https://img.taocdn.com/s3/m/8e75eb08f18583d04964595e.png)
§4-1
分子动理论的基本观点
一、物质微观结构的物理图象 1、物质是由大量的微观粒子——原子或分子组 成的; 2、分子在作永不停息的无规则运动; 3、分子之间有相互作用力。 综上所述,一切宏观物体(不论它是气体、 液体、还是固体)都是由大量的原子或分子组 成的;所有分子都在不停的、无规则运动中; 分子之间有相互作用力。这就是关于物质微观 结构的三个基本观点。
(s t )
C2 引力: f1 t , C2、t均 0 r 斥力: f C 1 , C 、s均 0 2 1 s r t:4 ~ 7 s : 9 ~ 13
2、图线
(f—r图线)
三、分子间的势能曲线(Ep—r图线)
1、分子间的势能: dE p fdr
C1 C2 E p fdr ( s t )dr r r C1 C2 s 1 t 1 ( s 1)r (t 1)r
N pV RT NA
p nkT
温度 T 的物理意义
1 2 3 平 m v kT 2 2
1) 温度是分子平均平动动能的量度 平 T (反映热运动的剧烈程度).
2)温度是大量分子的集体表现,个别分子无意义.
3)在同一温度下,各种气体分子平均平动动能均 相等。 注意 热运动与宏观运动的区别:温度所反 映的是分子的无规则运动,它和物体的整 体运动无关,物体的整体运动是其中所有 分子的一种有规则运动的表现.
由于热力学方法的局限性,我们对平衡态下系统内 部的情况不了解,从而对温度和理想 气体的理解 也很肤浅,对气体的压强更是一无所知,因此,为 了全面了解平衡态下的基本热学信息,我们必须用 分子物理学的方法从微观本质上加以认识。
• 气体动理论是统计物理学的基础; • 气体动理论是从微观的观点来研究气体的热学 性质; • 解释气体的温度、压强、热容、内能等的微观 本质; • 建立统计的概念。
气体动理论
![气体动理论](https://img.taocdn.com/s3/m/aac9468e7f1922791788e82f.png)
2 x
2 y
2 z
1 2
3
二、理想气体的压强公式
对压强的统计解释
气体的压强是由大量分子 在和器壁碰撞中不断给器 壁以力的作用所引起的, 压强是气体分子给容器壁 冲量的统计平均量。
例: 雨点对伞的持续作用。
压强公式的推导:
单位时间内分子a作用在A面上的作用力:
l3 l2 z
y
v a vx A
Fa 2mvx vx 2l
§1 气体的微观图像
一、原子(atom)
“假如在一次浩劫中所有的科学知识都被摧毁, 只剩下一句话留给后代,什么语句可用最少的 词包含最多的信息?我相信,这是原子假说,即 万物由原子(微小粒子)组成.”——费曼
道尔顿确立 了原子概念
原子是化学元素的基本单元
现代的仪器已可以观察和测量原子的大小 以及它们在物体中的排列情况, 例如 X 光 分析仪,电子显微镜, 扫描隧道显微镜等.
引言
气体动理论是从气体分子热运动的观点出发, 运用统计方法研究大量气体分子的宏观性质和统 计规律的科学,它是统计物理学最基本的内容。 本章将根据气体分子模型,研究气体的压强与温 度等宏观性质和分子速率分布规律与能量分布规 律等统计规律,从微观角度揭示这些性质和规律 的本质,同时穿插介绍这些理论的一些应用.
2 x
2 y
2 z
v y
o
vv x
2
2 x
2 y
2 z
v z
12
2 1x
12y
12z
22
2 2x
22y
2 2z
……
N112 N112x N112y N112z N222 N222x N222y N222z
……
第2章气体动理论
![第2章气体动理论](https://img.taocdn.com/s3/m/5e268f915a8102d276a22fe7.png)
第2章气体动理论◆本章学习目标了解:玻耳兹曼分布率;范德瓦耳斯方程和输运过程。
理解:理想气体的压强,温度的微观意义;能量均分定理,麦克斯韦速率分布律及其统计意义;麦克斯韦速率分布律的实验验证,实际气体等温线;气体分子的平均自由程的概念。
掌握:理想气体的压强,能量均分定理,麦克斯韦速率分布律及其统计意义;实际气体等温线;气体分子的平均自由程的概念。
◆本章教学内容1、理想气体压强公式2、温度的微观意义3、能量均分定理4、麦克斯韦速率分布律5、麦克斯韦速率分布律的实验验证*6、玻尔兹曼分布率◆本章重点压强和温度的微观实质和意义、理想气体的内能、速率分布函数以及理想气体平衡态的特征速率等。
◆本章难点压强和温度的微观实质和意义。
速率分布函数的物理意义以及相关的计算。
2.1 理想气体的压强一、理想气体模型1. 关于单个分子的力学性质的假设在宏观上我们知道,理想气体是一种在任何情况下都遵守玻意耳定律、盖-吕萨克定律和查理定律的气体。
但从微观上看什么样的分子组成的气体才具有这种宏观特性呢?气体分子的运动是肉眼看不见的,所以理想气体的微观模型是通过对宏观实验结果的分析和综合提出的一个假说。
通过这个假说得到的结论与宏观实验结果进行比较来判断模型的正确性。
通过前人多年的努力,我们现在知道理想气体的微观模型具有以下特征:(1)分子与容器壁和分子与分子之间只有在碰撞的瞬间才由相互作用,其它时候的相互作用可以忽略不计。
(2)分子本身的体积在气体中可以忽略不计,即对分子可采用质点模型。
(3)而分子与容器壁以及分子与分子之间的碰撞属于牛顿力学中的完全弹性碰撞。
实验证明,实际气体中分子本身占的体积约只占气体体积的千分之一,在气体中分子之间的平均距离远大于分子的几何尺寸,所以将分子看成质点是完全合理的。
从另一个方面看,对已达到平衡态的气体如果没有外界影响,其温度、压强等态参量都不会因分子与容器壁以及分子与分子之间的碰撞而发生改变,气体分子的速度分布也保持不变,因而分子与容器壁以及分子与分子之间的碰撞是完全弹性碰撞也是理所当然的。
气体动理论
![气体动理论](https://img.taocdn.com/s3/m/5ea00b8d69dc5022aaea0092.png)
三Hale Waihona Puke 、 压 强 推 导上一张 下一张
返回
具有速度 vi 的Ni 个分子作用:
上一张 下一张 返回
上一张 下一张 返回
压强公式的推导过程:
• 对象:理想气体的微观模型。
• 状态:平衡态。
• 方法:个别分子服从力学规律,
•
大量分子服从统计规律。
• 结论:P = n m v 2/ 3
即:
(1) f (v) dN Ndv
f (v)表示在速率v 附近 单位速率间隔内的分子数 占总分子数的比率.
(2) f (v)dv dN N
表示速率在 v~v+dv 区间 内的分子数占总分子数的比 率,即阴影1 面积。
(3) v2 f (v)dv N
v1
N
表示速率在 v1~ v2 区间 内的分子数占总分子数的 比率, 即阴影2 面积。
• Q:系统与外界的热交换。 Q>0表示系统从外界吸热;Q<0表示系统向外 界放热。
• E:系统内能的改变量。 E>0表示系统内能增加(若是理想气体,则 温度升高);E<0表示系统内能减少。
• A:系统对外界的做功情况。 A>0表示系统对外界作正功,如体积膨胀的过 程;A<0表示系统对外界作负功,亦即外界对 系统做功。
不可逆 可逆.
上一张 下一张 返回
有关物质结构与运动规律的 三条基本定理
• 宏观物体有大量微粒组成。 • 分子间存在相互作用力。 • 分子永不停息地无规运动。
上一张 下一张 返回
气体分子运动的特点:
• 看作是惯性支配下的自由运动。 • 分子间存在频繁碰撞。 • 服从统计规律。
气体分子动理论'
![气体分子动理论'](https://img.taocdn.com/s3/m/b9bf19651ed9ad51f01df288.png)
例. 扔硬币
单个小球落入位置 少量小球按位置的分布 大量小球按位置的分布 偶然事件 规律不明显 确定的规律 伽尔顿板实验
随机试验: 在相同条件下可重复进行; 每次试验有多种可能结果; 试验结果事先不可预测;
不同试验之间无关联。
(随机试验的每一个可能结果称为一个随机事件。) 伽耳顿板实验中粒子落入的位置 掷色子出现的点数 气体分子的速率、动量、动能等
y
vix
O
z
a
A1
c
I
i 1
N
t
a
v
2 ix
t
a
v
i 1
N
x
b
2 ix
F I t N 2 N 2 p vix V vix S A1 bc abc i 1 i 1
p
V
2 vix i 1
N
1 2 vx N
2 vix i 1
2
例 一容积为 V = 1.0 m3 的容器内装有 N1 = 1.0×1024 个氧分子 N2 = 3.0×1024 个氮分子的混合气体, 混合气体的压强 P = 2.58×104 Pa 。 求 解
(1) 分子的平均平动动能; (2) 混合气体的温度。
(1) 由压强公式 ,有
3 p 3 p 9.68 1021 J 2 n 2 ( N1 N 2 ) V
分子间有相互作用力 f
r0 10
10
m (
平衡位置 )
斥力
r r0 r r0
r0 结论
分子力表现为引力 分子力表现为斥力
合力
O
r0
引力
r
势能
分子有效直径
《应用物理》课件第2章
![《应用物理》课件第2章](https://img.taocdn.com/s3/m/786f215deef9aef8941ea76e58fafab069dc44e2.png)
力为
Fi
Pi t
2mix 2L ix
mi2x
L
(2-5)
第2章 气体动理论
容器内有大量分子,这些分子不断地与A1面碰撞,因 而使A1面受到一个持续的作用力。把容器中N个分子对器壁 的作用都考虑进去,则A1面受到各个分子的平均冲力之和 为
F F1 F2 FN
N
Fi
m12x
L
m22x
L
m
2 Nx
统是天文的、化学的、生物的或其它系统,也其涉及的现
象是力学的、电磁的、天体的或其它现象,只要与热运动
第2章 气体动理论
有关就应遵循热力学规律。然而,这种方法不能揭示宏观规 律的微观本质。所谓微观方法,也称分子运动理论方法或统 计力学方法,是指从系统由大量微观粒子组成的前提出发, 根据一些微观结构知识,把宏观性质视为微观粒子热运动的 统计平均效果,运用统计的方法,找出宏观量和微观量的关 系,确定宏观规律的本质。比较这两种研究方法可知,宏观 方法和微观方法分别从两个不同的角度研究物质的热运动性 质和规律,它们彼此密切联系,相辅相成,使热学成为联系
P
F S
1 L2
N L
m
2 x
nm
2 x
(2-9)
第2章 气体动理论
式中 n N 表示单位体积内的分子数,它也是统计平均值。
由于分子L速3 率的平方可表示为i2
2 ix
2 iy
2 iz
,所以,N
个分子的速率均方值为
N
N
N
N
2 i
2 ix
2 iy
2 iz
2 i1
N
i1 N
i1 N
i1 N
第2章 气体动理论
大学物理 第二章 气体动理论1
![大学物理 第二章 气体动理论1](https://img.taocdn.com/s3/m/a8d35617ddccda38366baf6d.png)
31
所谓自由度就是指 为了描述物体运动所需最多独立坐标的个数。
下面具体来讨论 (1) 单个质点自由度
z
P(x, y,z)
在一条固定直线上运动 1
o
y
在一条固定平面上运动 2 x
在空间中运动
必然沸腾
这类现象的 事先可以断定其结果
一个共同点是:
7
随机现象: 在一定条件下, 具有多种可能发生的结果现象
例如: 掷硬币 掷以一枚硬币,落下以后可能是正面朝上, 也可能是反面朝上; 掷一枚骰子,落下后可能是 1点, 也可能是2、3、4、5、6点朝上。
这类现象的
事先不可能预言多种可能结果中
一个共同点是: 究竟出现那一种结果
1
一.气体分子热运动的特征
看一组数字:
气体分子的线度(直径) ~ 10 -10 m (埃) 气体分子间距 ~ 10 -9 m (纳米) 室温下,气体分子运动的速率 10 2 ~ 10 3 m/s
分子在两次“碰撞”之间自由飞行的路程约为 10 - 7m分子自由飞行时间约10 -10 s
因而单个分子在 1s 内将会遇到约 1010 次碰撞
N = N = n 为一常数
V V
在容器内,气体的分子数密度 n 处处都相等
15
n = N V
说明:
ΔV
n 是对 V 内可能出现的分子数统计平均的结果
由于分子不停地无规则运动,不断有分子进进出出 V
这样各个时刻 V 的实际分子数 ni 可能大于 n 可能小于 n ,可能等于 n 。
ni n叫涨落,但取 V 得足够大时, Nhomakorabea3
第4章气体动理论
![第4章气体动理论](https://img.taocdn.com/s3/m/1e1613ca9b89680203d825b9.png)
小球每次落入哪个狭槽是不
完全相同的,这表明在一次
实验中小球落入哪个狭槽中 是偶然的。 尽管一个小球落入哪个槽中 是偶然的,但大量小球的分 布规律则是确定的,即遵从
统计分布规律。
7
统计规律:当小球数N 足够大时小球的分布具有统计规律。
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
子,如果分子有 t 个平动自由度,r 个转动自由度,则气体分 子的平均动能为
1 i ( t r ) kT kT 2 2
单原子分子
双原子分子
多原子分子
3 kT 2
5 kT 2
6 kT 2
27
★ 理想气体的内能 实际气体的内能 气体分子热运动的各种形式的动能和势能的总和。 平动动能 分子动能 转动动能 振动动能 分子振动势能
i i
于1,称为概率的归一化条件。
6
小球在伽尔顿板中的分布规律
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
单位: 8.31J · mol-1 · K-1
4
★ 统计规律
一定条件下,大量偶然随机事件的整体具有确定的规律
性,这种规律称为统计规律。
对单个分子运用力学规律,对大量分子求统计平均值, 从而建立大量分子微观量的统计平均值与系统宏观量之 间的关系。这种关系就是所要寻求的统计规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章 气体动理论题目无答案一、选择题1. 一理想气体样品, 总质量为M , 体积为V , 压强为p , 绝对温度为T , 密度为?, 总分子数为N ,k 为玻尔兹曼常数, R 为气体普适常数, 则其摩尔质量可表示为[ ] (A)MRTpV(B) pV MkT (C) p kT ρ (D) p RT ρ2. 如T10-1-2图所示,一个瓶内装有气体, 但有小孔与外界相通, 原来瓶内温度为300K .现在把瓶内的气体加热到400K (不计容积膨胀), 此时瓶内气体的质量为原来质量的______倍.[ ] (A) 27/127 (B) 2/3 (C) 3/4 (D) 1/103. 相等质量的氢气和氧气被密封在一粗细均匀的细玻璃管内, 并由一水银滴隔开, 当玻璃管平放时, 氢气柱和氧气柱的长度之比为 [ ] (A) 16:1 (B) 1:1(C) 1:16 (D) 32:14. 一容器中装有一定质量的某种气体, 下列所述中是平衡态的为 [ ] (A) 气体各部分压强相等 (B) 气体各部分温度相等(C) 气体各部分密度相等 (D) 气体各部分温度和密度都相等5. 一容器中装有一定质量的某种气体, 下面叙述中正确的是 [ ] (A) 容器中各处压强相等, 则各处温度也一定相等 (B) 容器中各处压强相等, 则各处密度也一定相等(C) 容器中各处压强相等, 且各处密度相等, 则各处温度也一定相等(D) 容器中各处压强相等, 则各处的分子平均平动动能一定相等 6. 理想气体能达到平衡态的原因是[ ] (A) 各处温度相同 (B) 各处压强相同(C) 分子永恒运动并不断相互碰撞 (D) 各处分子的碰撞次数相同7. 理想气体的压强公式k 32εn p =可理解为 [ ] (A) 是一个力学规律 (B) 是一个统计规律 (C) 仅是计算压强的公式 (D) 仅由实验得出8. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是:[ ] (A) p 1> p 2 (B) p 1< p 2 (C) p 1=p 2 (D)不确定的9. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态.A 种气体的分子数密度为n 1,它产生的压强为p 1;B 种气体的分子数密度为2n 1;C 种气体的分子数密度为3 n 1.则混合气体的压强p 为[ ] (A) 3 p 1 (B) 4 p 1 (C) 5 p 1 (D) 6 p 110. 若室内生起炉子后温度从15?C 升高到27?C, 而室内气压不变, 则此时室内的分子数减少了 [ ] (A) % (B) 4% (C) 9% (D) 21%11. 无法用实验来直接验证理想气体的压强公式, 是因为T10-1-2图T 10-1-3图[ ] (A) 在理论推导过程中作了某些假设(B) 现有实验仪器的测量误差达不到规定的要求 (C) 公式中的压强是统计量, 有涨落现象 (D) 公式中所涉及到的微观量无法用仪器测量12. 对于一定质量的理想气体, 以下说法中正确的是[ ] (A) 如果体积减小, 气体分子在单位时间内作用于器壁单位面积的总冲量一定增大(B) 如果压强增大, 气体分子在单位时间内作用于器壁单位面积上的总冲量一定增大 (C) 如果温度不变, 气体分子在单位时间内作用于器壁单位面积上的总冲量一定不变 (D) 如果压强增大, 气体分子在单位时间内作用于器壁单位面积上的总冲量一定减小 13. 对于kT 23k=ε中的平均平动动能k ε和温度T 可作如下理解 [ ] (A) k ε是某一分子的平均平动动能 (B) k ε是某一分子的能量长时间的平均值 (C) k ε是温度为T 的几个分子的平均平动动能(D) 气体的温度越高, 分子的平均平动动能越大 14. 根据气体动理论, 单原子分子理想气体的温度正比于[ ] (A) 气体的体积 (B) 气体分子的平均自由程(C) 气体分子的平均动量 (D) 气体分子的平均平动动能 15. 在刚性密闭容器中的气体, 当温度升高时, 将不会改变容器中 [ ] (A) 分子的动能 (B) 气体的密度(C) 分子的平均速率 (D) 气体的压强16. 在一固定容积的容器内, 理想气体温度提高为原来的两倍, 则 [ ] (A) 分子的平均动能和压强都提高为原来的两倍(B) 分子的平均动能提高为原来的两倍, 压强提高为原来的四倍 (C) 分子的平均动能提高为原来的四倍, 压强提高为原来的两倍 (D) 因为体积不变, 所以分子的动能和压强都不变17. 两种不同的气体, 一瓶是氦气, 另一瓶是氮气, 它们的压强相同, 温度相同, 但容积不同, 则[ ] (A) 单位体积内的分子数相等 (B) 单位体积内气体的质量相等 (C) 单位体积内气体的内能相等 (D) 单位体积内气体分子的动能相等18. 相同条件下, 氧原子的平均动能是氧分子平均动能的 [ ] (A)56倍 (B) 53倍 (C) 103倍 (D) 21倍 19. B如果氢气和氦气的温度相同, 摩尔数也相同, 则这两种气体的 [ ] (A) 平均动能相等 (B) 平均平动动能相等 (C) 内能相等 (D) 势能相等20. 某气体的分子具有t 个平动自由度, r 个转动自由度, s 个振动自由度, 根据能均分定理知气体分子的平均总动能为 [ ] (A) kT t21 (B) kT s r t 21)(++(C) kT r21 (D) kT s r t 21)2(++ 21. 平衡状态下, 刚性分子理想气体的内能是[ ] (A) 部分势能和部分动能之和 (B) 全部势能之和 (C) 全部转动动能之和 (D) 全部动能之和22. 在标准状态下, 体积比为V 1/V 2 = 1/2的氧气和氦气(均视为刚性分子理想气体)相混合, 则其混合气体中氧气和氦气的内能比为:[ ] (A) 1/2 (B) 5/3 (C) 5/6 (D) 3/1023. 水蒸汽分解成同温度的氢气和氧气(均视为刚性分子理想气体), 其内能的增加量为 [ ] (A) ? (B) 50? (C) 25? (D) 024. 压强为p 、体积为V 的氢气(视为理想气体)的内能为 [ ] (A)pV 25 (B) pV 23 (C) pV 21(D) p V 25. 理想气体分子的平均平动动能为 [ ] (A)221v m (B) 221v m (C) 12kT (D) 72kT 26. 某容积不变的容器中有理想气体, 若绝对温度提高为原来的两倍, 用p 和k ε分别表示气体的压强和气体分子的平均动能, 则[ ] (A) p 、k ε均提高一倍 (B) p 提高三倍, k ε提高一倍 (C) p 、k ε均提高三倍 (D) p 、k ε均不变27. 根据经典的能量均分原理, 在适当的正交坐标系中, 每个自由度的平均能量为 [ ] (A) kT (B)kT 31 (C) kT 23 (D) kT 2128. 温度和压强均相同的氦气和氢气, 它们分子的平均动能k ε和平均平动动能k ε有如下关系 [ ] (A) k ε和k ε相同 (B) k ε相等而k ε不相等 (C) k ε相等而k ε不相等 (D) k ε和k ε都不相等29. 在一定速率v 附近麦克斯韦速率分布函数f (v )的物理意义是: 一定量的理想气体在给定温度下处于平衡态时的[ ] (A) 速率为v 时的分子数 (B) 分子数随速率v 的变化(C) 速率为v 的分子数占总分子数的百分比(D) 速率在v 附近单位速率区间内的分子数占总分子数的百分比30. 关于麦克斯韦速率分布函数f (v )的适用条件, 下列说法中正确的说法是 [ ] (A) f (v )适用于各种气体(B) f (v )只适用于理想气体的各种状态 (C) 只要是理想气体,f (v )就一定适用 (D) f (v )适用于理想气体系统的平衡态31. A 和B 两容器均贮有气体, 使其麦氏速率分布函数相同的条件是 [ ] (A) A 、B 中气体的质量相等(B) A 、B 中气体的质量相等, 温度相同(C) A 、B 中为同种气体, 压强和密度相同 (D) A 、B 中气体的质量不同, 密度不同32. 关于麦氏速率分布曲线, 有下列说法, 其中正确的是 [ ] (A) 分布曲线与v 轴围成的面积表示分子总数(B) 以某一速率v 为界, 两边的面积相等时, 两边的分子数也相等(C) 麦氏速率分布曲线下的面积大小受气体的温度与分子质量的影响(D) 以上说法都不对33. 在平衡态下, 理想气体分子速率区间v 1 ~ v 2内的分子数为 [ ] (A) ⎰21d )(v vv v f (B) ⎰21d )(v v v v Nf(C)⎰21d )(v v v v v f (D) ⎰21d )(v v v v f34. 平衡态下, 理想气体分子在速率区间v ~ v ?d v 内的分子数密度为 [ ] (A) nf (v )d v (B) Nf (v ) d v (C)⎰21d )(v vv v f (D) ⎰21d )(v v v v Nf35. 在平衡态下, 理想气体分子速率在区间v 1 ~ v 2内的概率是 [ ] (A) ⎰21d )(v vv v f (B) ⎰21d )(v v v v Nf(C)⎰21d )(v v v v v f (D) ⎰21d )(v v v v f36. 在平衡态下, 理想气体分子速率区间v 1 ~ v 2内分子的平均速率是 [ ] (A)⎰21d )(v vv v v f (B) ⎰21d )(v v 2v v v f(C)⎰21d )(v vv v v f ?⎰21d )(v v v v f (D)⎰21d )(1v vv v v f N37. 在273K 时, 氧气分子热运动速率恰好等于100m.s -1的分子数占总分子数的百分比数为 [ ] (A) 10? (B) 50?(C) 0 (D) 应通过积分来计算, 但总不为零38. f (v )是理想气体分子在平衡状态下的速率分布函数, 物理式⎰21d )(v vv v Nf 的物理意义是[ ] (A) 速率在v 1 ~ v 2区间内的分子数(B) 速率在v 1 ~ v 2区间内的分子数占总分子数的百分比 (C) 速率在v 1 ~ v 2之间的分子的平均速率(D) 速率在v 1 ~ v 2区间内的分子的方均根速率39. 某气体分子的速率分布服从麦克斯韦速率分布律.现取相等的速率间隔?v 考察具有v ??v 速率的气体分子数?N .?N 为最大所对应的v 为[ ] (A) 平均速率 (B) 方均根速率 (C) 最概然速率 (D) 最大速率40. 设声波通过理想气体的速率正比于气体分子的热运动平均速率, 则声波通过具有相同温度的氧气和氢气的速率之比22H O /u u 为[ ] (A) 1 (B) 1/2 (C) 1/3 (D) 1/41O141. 设T10-1-41图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O p v 和()2H p v 分别表示氧气和氢气的最概然速率,则[ ] (A) 图中a 表示氧气分子的速率分布曲线,()2O p v /()2Hp v =4(B) 图中a 表示氧气分子的速率分布曲线,()2O p v /()2Hp v =1/4(C) 图中b 表示氧气分子的速率分布曲线,()2O p v /()2Hp v =1/4(D) 图中b 表示氧气分子的速率分布曲线;()2O p v /()2Hp v = 442. 温度为T 时,在方均根速率s /m 502±v 的速率区间内,氢、氨两种气体分子数占总分子数的百分率相比较:则有(附:麦克斯韦速率分布定律: 符号exp(a ),即e a.) [ ] (A) 22N H ⎪⎭⎫⎝⎛∆>⎪⎭⎫⎝⎛∆N N N N(B) 22N H ⎪⎭⎫⎝⎛∆=⎪⎭⎫⎝⎛∆N N N N(C) 22N H ⎪⎭⎫⎝⎛∆<⎪⎭⎫⎝⎛∆N N N N(D) 温度较低时22N H ⎪⎭⎫ ⎝⎛∆>⎪⎭⎫⎝⎛∆N N N N , 温度较高时22N H ⎪⎭⎫⎝⎛∆<⎪⎭⎫ ⎝⎛∆N N N N 43. 一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值[ ] (A) m kT x 32=v (B) mkT x 3312=v (C) m kT x 32=v (D) mkT x =2v44. 在一封闭容器中装有1mol 氮气(视为理想气体), 当温度一定时,分子无规则运动的平均自由程仅决定于[ ] (A) 压强p (B) 体积V(C) 温度T (D) 平均碰撞频率45. 理想气体经历一等压过程, 其分子的平均碰撞频率Z 与温度T 的关系是 [ ] (A) ZT ∝ (B) Z T ∝1(C) Z T ∝ (D) Z T∝1 46. 体积恒定时, 一定质量理想气体的温度升高, 其分子的 [ ] (A) 平均碰撞次数将增大 (B) 平均自由程将增大 (C) 平均碰撞次数将减小 (D) 平均自由程将减小47. 一定质量的理想气体等压膨胀时, 气体分子的[ ] (A) 平均自由程不变 (B) 平均碰撞频率不变 (C) 平均自由程变小 (D) 平均自由程变大48. 气缸内盛有一定量的氢气, 当温度不变而压强增大一倍时, 氢气分子的平均碰撞次数Z 和平均自由程λ的变化情况是 [ ] (A) Z 和λ都增大一倍 (B) Z 和λ都减为原来的一半(C) Z 增大一倍λ减为原来的一半 (D) Z 减为原来的一半而λ增大一倍49. 一定量的理想气体, 在容积不变的条件下, 当温度降低时, 分子的平均碰撞次数Z 和平均自由程λ的变化情况是[ ] (A) Z 减小λ不变 (B) Z 不变λ减小(C) Z 和λ都减小 (D) Z 和λ都不变50. 理想气体绝热地向真空自由膨胀, 体积增大为原来的两倍, 则始末两态的温度T 1、T 2和始末两态气体分子的平均自由程λ1、λ2的关系为[ ] (A) T T 1212==,λλ (B) T T 121212==,λλ (C) T T 12122==,λλ (D) T T 1212212==,λλ51. 在下列所给出的四个图象中,能够描述一定质量的理想气体,在可逆绝热过程中,密度随压强变化的图象是 [ ]倍53. 气体的热传导系数?和粘滞系数?与压强p 的关系[ ] (A) 在任何情况下, ?和?与 p 成正比 (B) 在常压情况下, ?和?与 p 成正比 (C) 在低压情况下, ?和?与 p 成正比 (D) 在低压情况下, ?和?与 p 无关54. 一定量理想气体分子的扩散情况与气体温度T 、压强p 的关系为 [ ] (A) T 越高p 越大, 则扩散越快 (B) T 越低p 越大, 则扩散越快 (C) T 越高p 越小, 则扩散越快 (D) T 越低p 越小, 则扩散越快55. 下列说法中正确的是[ ] (A) 为使单原子分子理想气体的温度升高, 外界所供给的能量的一部份 是用于克服分子间的引力使分子间距离拉大(B) 温度相同时, 不同分子量的各种气体分子都具有相同的平均平动动能 (C) 绝对零度时气体分子的线速度为零(D) 温度相同时, 不同分子量的气体分子内能不同56. 一年四季大气压强的差异可忽略不计, 下面说法中正确的是 [ ] (A) 冬天空气密度大 (B) 夏天空气密度大 (C) 冬、夏季空气密度相同 (D) 无法比较57. 把内能为U 的1mol 氢气与内能为E 的1mol 氦气相混合, 在混合过程中与外界不发生任何能量交换.若这两种气体均被视为理想气体, 则达平衡后混合气体的温度为(D)(C)(B)(A)[ ] (A)R E U 3+ (B) R EU 4+ (C) RE U 5+ (D) 条件不足, 难以判定58. 被密封的理想气体的温度从300K 起缓慢地上升, 直至其分子的方均根速率增加两倍, 则气体的最终温度为[ ] (A) 327K (B) 381K (C) 600K (D) 1200K59. 设有以下一些过程:(1) 两种不同气体在等温下互相混合. (2) 理想气体在定容下降温. (3) 液体在等温下汽化. (4) 理想气体在等温下压缩. (5) 理想气体绝热自由膨胀. 在这些过程中,使系统的熵增加的过程是:[ ] (A) (1)、(2)、(3) (B) (2)、(3)、(4)(C) (3)、(4)、(5) (D) (1)、(3)、(5)60. 一定量的理想气体向真空作绝热自由膨胀,体积由1V 增至2V ,在此过程中气体的 [ ] (A) 内能不变,熵增加 (B) 内能不变,熵减少(C) 内能不变,熵不变 (D) 内能增加,熵增加 61. 关于温度的意义,有下列几种说法: (1) 气体的温度是分子平均平动动能的量度.(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 上述说法中正确的是:[ ] (A) (1)、(2)、(4) (B) (1)、(2)、(3) (C) (2)、(3)、(4) (D) (1)、(3)、(4)二、填空题1. 设某理想气体体积为V , 压强为p , 温度为T , 每个分子的质量为m ,玻尔兹曼恒量为k , 则该气体的分子总数可表示为 .2. 氢分子的质量为 ×10?24g ,如果每秒有1023个氢分子沿着与容器器壁的法线成45°角的方向以105cm?s -1的速率撞击在 2.0 cm 2面积上(碰撞是完全弹性的),则此氢气的压强为____________.3. 在推导理想气体压强公式中,体现统计意义的两条假设是(1) ______________________________________________________; (2) ______________________________________________________.4. 有一个电子管,其真空度(即电子管内气体压强)为 ×10-5mmHg ,则27 ℃ 时管内单位体积的分子数为_________________ .5. 气体分子间的平均距离l 与压强p 、温度T 的关系为______________,在压强为1 atm 、温度为0℃的情况下,气体分子间的平均距离l =________________m .6. 若某容器内温度为 300 K 的二氧化碳气体(视为刚性分子理想气体)的内能为 ×103J ,则该容器内气体分子总数为___________________.7. 某容器内分子数密度为326m 10-,每个分子的质量为kg 10327-⨯,设其中1/6分子数以速率1s m 200-⋅=v 垂直地向容器的一壁运动,而其余5/6分子或者离开此壁、或者平行此壁方向运动,且分子与容器壁的碰撞为完全弹性.则(1) 每个分子作用于器壁的冲量=∆p ; (2) 每秒碰在器壁单位面积上的分子数=0n ; (3) 作用在器壁上的压强p = . 8. 容器中储有1 mol 的氮气,压强为 Pa ,温度为 7 ℃,则(1) 1 m 3中氮气的分子数为___________________; (2) 容器中的氮气的密度为____________________;(3) 1 m 3中氮分子的总平动动能为_________________.9. 体积和压强都相同的氦气和氢气(均视为刚性分子理想气体),在某一温度T 下混合,所有氢分子所具有的热运动动能在系统总热运动动能中所占的百分比为_________.10. 容积为10 l 的盒子以速率v = 200m?s -1匀速运动,容器中充有质量为50g ,温度为C 18ο的氢气,设盒子突然停止,全部定向运动的动能都变为气体分子热运动的动能,容器与外界没有热量交换,则达到热平衡后,氢气的温度增加了 K ;氢气的压强增加了 Pa .(摩尔气体常量11K mol 1J 3.8--⋅⋅=R ,氢气分子可视为刚性分子.)11. 一能量为1012eV 的宇宙射线粒子,射入一氖管中,氖管内充有 mol 的氖气,若宇宙射线粒子的能量全部被氖气分子所吸收,则氖气温度升高了________________K .(1 eV =×10?19J ,普适气体常量R = J/(mol?K))12. 一氧气瓶的容积为V ,充入氧气的压强为p 1,用了一段时间后压强降为p 2,则瓶中剩下的氧气的内能与未用前氧气的内能之比为__________.13. 如T10-2-13图所示,大气中有一绝热气缸,其中装有一定量的理想气体,然后用电炉徐徐供热,使活塞(无摩擦地)缓慢上升.在此过程中,以下物理量将如何变化? (选用“变大”、“变小”、“不变”填空)(1) 气体压强______________;(2) 气体分子平均动能______________; (3) 气体内能______________.14. 氧气和氦气(均视为理想气体)温度相同时, 它们的 相等. 15. 若某种理想气体分子的方均根速率12s m 450-⋅=v ,气体压强为Pa 1074⨯=p ,则该气体的密度为ρ= .16. 理想气体在平衡状态下,速率区间v ~ v ? d v 内的分子数为 .17. f (v )是理想气体分子在平衡状态下的速率分布函数, 则式⎰21d )(v vv v f 的物理意义是: .18. 在与最概然速率相差1%的速率区间内的分子数占总分子数的百分比为 .19. 图示氢气分子和氧气分子在相同温度下的麦克斯韦速率分布曲线.则氢气分子的最概然速率为______________,氧分子的最概然速率为____________.20. 当理想气体处于平衡态时,若气体分子速率分布函数为f (v ),则分子速率处于最概然速率v p 至∞范围内的概率△N/ N =________________.21. 已知f (v )为麦克斯韦速率分布函数,N 为总分子数,则(1) 速率v > 100 m ·s -1的分子数占总分子数的百分比的表达式为_________________;(2) 速率v > 100 m ·s -1的分子数的表达式为________________________. 22. 用总分子数N 、气体分子速率v 和速率分布函数f (v ) 表示下列各量: (1) 速率大于v 0的分子数=____________________; (2) 速率大于v 0的那些分子的平均速率=_____________________;(3) 多次观察某一分子的速率,发现其速率大于v 0的概率=___________________. 23. T10-2-23图示曲线为处于同一温度T 时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线.其中 曲线(a )是 气分子的速率分布曲线; 曲线(c )是 气分子的速率分布曲线.24. 处于重力场中的某种气体,在高度z 处单位体积内的分子数即分子数密度为n .若f (v )是分子的速率分布函数,则坐标介于x ~x +d x 、y ~y +d y 、z ~z +d z 区间内,速率介于v ~ v + d v 区间内的分子数 dN =____________________.25. 由玻尔兹曼分布律可知,在温度为T 的平衡态中,分布在某一状态区间的分子数d N 与该区间粒子的能量?有关,其关系为d N ∝____________.26. 已知大气压强随高度变化的规律为⎪⎭⎫⎝⎛-=RT gh M p p mol 0exp .拉萨海拔约为3600m ,设大气温度t =27℃,而且处处相同,则拉萨的气压p = .27. 已知大气中分子数密度n 随高度h 的变化规律n =n 0exp[-RTghμ],式中n 0为h =0处的分子数密度.若大气中空气的摩尔质量为μ,温度为T ,且处处相同,并设重力场是均匀的,则空气分子数密度减少到地面的一半时的高度为 .)s 1-⋅T10-2-23图28. 在一个容积不变的容器中,储有一定量的理想气体,温度为0T 时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ.当气体温度升高为04T 时,气体分子的平均速率为v = ;平均碰撞次数z = ;平均自由程λ= .29. 氮气在标准状态下的分子平均碰撞频率为×108 s -1,分子平均自由程为6×10-6cm ,若温度不变,气压降为 atm ,则分子的平均碰撞频率变为_______________;平均自由程变为_______________.30. 一定量的理想气体,经等压过程从体积V 0膨胀到2V 0,则描述分子运动的下列各量与原来的量值之比是(1) 平均自由程λλ=______________;(2) 平均速率v v=______________; (3) 平均动能k k εε=______________.31. 已知空气的摩尔质量是kg 109.23-⨯=m ,则空气中气体分子的平均质量为 ;成年人作一次深呼吸,约吸入3cm 450的空气,其相应的质量为 ;吸入的气体分子数约为 个.三、填空题1. 两个相同的容器装有氢气,以一细玻璃管相连通,管中用一滴水银作活塞,如图所示.当左边容器的温度为0℃,而右边容器的温度为20℃时,水银滴刚好在管的中央.试问,当左边容器温度由0℃增到5℃、而右边容器温度由20℃增到30℃时,水银滴是否会移动? 如何移动?2. 一超声波源发射声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,问氧气的温度升高了多少? (氧气分子视为刚性分子,摩尔气体常量R = (J ·mol1-·K1-))3. 质量m =×1014-g 的微粒悬浮在27℃的液体中,观察到悬浮粒子的方均根速率为1.4cm ·s1-.假设该粒子速率服从麦克斯韦速率分布,求阿伏加德罗常数.[ 摩尔气体常量R = (J ·mol 1-·K1-)]4. 许多星球的温度达到K 108.在这温度下原子已经不存在了,而氢核(质子)是存在的.若把氢核视为理想气体,求:(1) 氢核的方均根速率是多少?(2) 氢核的平均平动动能是多少电子伏特?(J 106.1eV 119-⨯=,玻尔兹曼常量123K J 1038.1--⋅⨯=k )5. 黄绿光的波长是500nm (1nm=10 ?9m).理想气体在标准状态下,以黄绿光的波长为边长的立方体内有多少个分子? (玻尔兹曼常量k =×10??23J ·K ?1)6. 一篮球充气后,其中有氮气8.5g ,温度为17℃,在空中以1h km 65-⋅的高速飞行.求:(1) 一个氮分子(设为刚性分子)的热运动平均平动动能,平均转动动能和平均总动能;(2) 球内氮气的内能;(3) 球内氮气的轨道动能.7. 一密封房间的体积为 5×3×3 m 3,室温为20℃,室内空气分子热运动的平均平动动能的总和是多少?如果气体的温度升高 K,而体积不变,则气体的内能变化多少?气体分子的方均根速率增加多少?已知空气的密度?=1.29 kg·m -3,摩尔质量M mol =29×10?3 kg·mol -1,且空气分子可认为是刚性双原子分子.(普适气体常量R = J·mol ?1·K ?1)8. 1 kg 某种理想气体,分子平动动能总和是×106 J ,已知每个分子的质量是kg 1034.327-⨯,试求气体的温度.9. 有 2×10?3 m 3刚性双原子分子理想气体,其内能为×102 J .(1) 试求气体的压强;(2) 设分子总数为 ×1022个,求分子的平均平动动能及气体的温度.10. 一氧气瓶的容积为V ,充了气未使用时压强为p 1,温度为T 1;使用后瓶内氧气的质量减少为原来的一半,其压强降为p 2,试求此时瓶内氧气的温度T 2.及使用前后分子热运动平均速率之比21/v v .11. 容器内混有二氧化碳和氧气两种气体,混合气体的温度是 290 K ,内能是×105 J ,总质量是5.4 kg ,试分别求二氧化碳和氧气的质量. (二氧化碳的M mol =44×10?3 kg·mol ?1,氧气的M mol =32×10?3 kg·mol ?1 ,普适气体常量 R = J·mol ?1·K ?1)12. 容器内有11kg 二氧化碳和2kg 氢气(两种气体均视为刚性分子的理想气体),已知混合气体的内能是×106 J .求:(1) 混合气体的温度;(2) 两种气体分子的平均动能.(二氧化碳的M mol =44×10?? kg ·mol ?? ,玻尔兹曼常量k =×10??? J ·K ??摩尔气体常量R = J ·mol ?1·K ?? )13. 容积V =1 m 3的容器内混有N 1=×1025个氧气分子和N 2=×1025个氮气分子,混合气体的压强是×105 Pa ,求:(1) 分子的平均平动动能;(2) 混合气体的温度.14. 当氢气和氦气的压强、体积和温度都相等时,求它们的质量比()()e H H 2M M 和内能比()()e H H 2E E .(将氢气视为刚性双原子分子气体)15. 在300K 时,空气中速率在(1)P v 附近;(2)10P v 附近,单位速率区间(1sm 1-⋅=∆v )的分子数占分子总数的百分比各是多少? 平均来讲,mol 105的空气中这区间的分子数又各是多少? 空气的摩尔质量按1mol g 29-⋅计.16. 设氢气的温度为300℃,求速率在1s m 1510~1500-⋅之间的分子数1N ∆;速率在1s m 2180~2170-⋅之间的分子数2N ∆;速率在1s m 3010~3000-⋅之间的分子数3N ∆之比321::N N N ∆∆∆.17. 氮分子的有效直径为×10-10m .求它在标准状态下的平均自由程和连续两次碰撞间的平均时间间隔.18. 今测得温度为C 151ο=t ,压强为m Hg 76.01=p 时,氩分子和氖分子的平均自由程分别为:m 107.68Ar -⨯=λ和m 102.138N -⨯=e λ,求:(1) 氖分子和氩分子有效直径之比=Ar Ne /d d ?(2) 温度为C 202ο=t ,压强为m Hg 15.02=p 时,氩分子的平均自由程Arλ'? 19. 真空管的线度为m 102-,其中真空度为Pa 1033.13-⨯,设空气分子的有效直径为m 10310-⨯,求27℃时单位体积内的空气分子数、平均自由程和平均碰撞频率.20. 人体一天大约向周围环境散发J 1086⨯ 热量,试估算由此产生的熵.设人体温度为C 36ο,忽略人进食时带进体内的熵,环境温度取为237K .12. 已知在C 0ο时,1mol 的冰溶解为1mol 的水需要吸收6000J 的热量,求(1) 在C 0ο时这些水化为冰的熵变;(2) 在C 0ο时水的微观状态数与冰的微观状态数之比.21. 我国某瀑布的落差是76m ,流量为900m 3?s -1. 当气温为27?C 时,此瀑布每秒产生的熵是多少?22. 已知一辆匀速行驶的汽车,消耗在各种摩擦上的功率约为20KW. 当环境温度为27?C 时,由此产生的熵的速率是多少?。