蛋白质提取、纯化、鉴定的方法(二)

合集下载

蛋白质复合物的分离纯化及结构鉴定

蛋白质复合物的分离纯化及结构鉴定

蛋白质复合物的分离纯化及结构鉴定蛋白质是一个关键的生物分子,是所有生命活动的重要组成部分。

它们由氨基酸组成,在细胞内负责许多生物功能,如构建细胞结构、代谢、信号传递和基因表达调节。

正因为如此,对蛋白质复合物的研究和分析,对于广泛的生物医学领域都有着极其重要的意义。

蛋白质复合物是由两个或多个蛋白质相互结合而成的复合物。

在生物系统中,不同的蛋白质通过相互作用或结合形成复合物,然后再与其他生物大分子分子(如核酸,碳水化合物等)进一步相互作用。

因此,蛋白质复合物的功能相对于单独的蛋白质单元,具有更高的特异性和活性。

然而,要研究和分析这种复杂的物质,需要提取、分离、纯化和鉴定它们的化学结构。

这里我们来介绍蛋白质复合物的分离纯化及结构鉴定方法。

蛋白质复合物分离纯化的方法分离纯化蛋白质复合物需要采取一系列方法,这些方法包括离心、柱层析、电泳、质谱等。

这些方法不仅能对蛋白复合物进行有效的分离纯化,而且能够提供关于蛋白复合物结构和功能的详细信息。

离心离心是利用重力作用将不同大小的颗粒分离开的一种方法。

这个原理也可以用于分离不同大小的蛋白质复合物。

采取极高速度离心的形式,离心能够快速分离出高度纯化的复合物,以便进行后续分析。

然而,该方法的限制在于它仅能分离基于大小差异的蛋白质复合物。

柱层析柱层析是一种利用化学性质或大小/形状差异区分蛋白质的方法。

常用的柱层析包括凝胶层析、离子交换层析、亲和层析和尺寸排斥层析等。

其中凝胶层析是一种分离蛋白质的最常用方法。

它是通过将样品在列有多种聚合物(如凝胶、聚丙烯酰胺等)的柱上运行,使蛋白质基于他们的大小差异,以一定的速率向下流动,根据质量、形状、电荷或亲和力进行分离。

电泳电泳是一种通过在电场中将分子带动移动,根据它们的电荷和分子重量分开的方法。

离子电泳和凝胶电泳是最常用的两种电泳方法。

离子电泳利用离子的运动在不同的pH值下移动的速度承载的差异来分离分子。

凝胶电泳则是将样品分离到高聚合物凝胶上,并使用电场将它们从凝胶带到电极上的一种分离方法。

第二章 蛋白质分离纯化技术(2)

第二章 蛋白质分离纯化技术(2)
28
几种盐在不同温度下的溶解度(克/100毫升水)
温度
0℃ 20℃ 80℃ 100℃
(NH4)2SO4 70.6 75.4
95.3
103
Na2SO4 4.9 18.9
43.3
42.2
NaH2PO4 1.6
7.8 93.8
101
1)硫酸铵在0℃时的溶解度,远远高于其它盐类
29
2) 分离效果好:有的提取液加入适量硫 酸铵盐析,一步就可以除去75%的杂 蛋白,纯度提高了四倍。
3) 温度:为防止变性和降解,制备具有活性的蛋白 质和酶,提取时一般在0℃~5℃的低温操作。
4) 防止蛋白酶的降解作用:加入抑制剂或调节提 取液的pH、离子强度或极性等方法使相应的水解 酶失去活性,防止它们对欲提纯的蛋白质、酶的降 解作用。
15
5) 搅拌与氧化:搅拌能促使被提取物的溶解, 一般采用温和搅拌为宜,速度太快容易产生大 量泡沫,增大了与空气的接触面,会引起酶等 物质的变性失活。因为一般蛋白质都含有相当 数量的巯基,有些巯基常常是活性部位的必需 基团,若提取液中有氧化剂或与空气中的氧气 接触过多都会使巯基氧化为分子内或分子间的 二硫键,导致酶活性的丧失。在提取液中加入 少量巯基乙醇或二硫苏糖醇以防止巯基氧化。
1) 盐浓度(即离子强度):
离子强度对生物大分子的溶解度有极大的影响,绝大多数蛋 白质和酶,在低离子强度的溶液中都有较大的溶解度,如在 纯水中加入少量中性盐,蛋白质的溶解度比在纯水时大大增 加,称为“盐溶”现象。盐溶现象的产生主要是少量离子的 活动,减少了偶极分子之间极性基团的静电吸引力,增加了 溶质和溶剂分子间相互作用力的结果。
带正电荷蛋白质
(疏水胶体)
阴离子
不稳定蛋白颗粒

蛋白质复合物的提取与鉴定方法综述

蛋白质复合物的提取与鉴定方法综述

蛋白质复合物的提取与鉴定方法综述蛋白质复合物是由两个或多个蛋白质相互作用形成的具有特定功能的非共价结构。

在细胞中,蛋白质复合物扮演着关键的结构和功能角色,它们通过与其他分子相互作用,调节各种生物进程,如代谢、信号传递和运动等。

因此,提取和鉴定蛋白质复合物的方法对于了解其生物学功能、研究相关疾病以及开发新的治疗方法具有重要意义。

本文将从提取和鉴定两个方面对蛋白质复合物的研究方法进行综述。

一、蛋白质复合物的提取方法1. 离心法离心法是一种最常见的蛋白质复合物提取方法。

它通过高速离心来分离不同分子量的蛋白质和蛋白质复合物。

和单个蛋白质不同,蛋白质复合物由于其分子量较大,相对分子量大于100 kDa,通常需要较高的离心速度和长时间离心以保持完整性。

此外,离心法还可以通过在梯度离心中分离不同组分的形式提取蛋白质复合物。

2. 亲和层析法亲和层析法是一种利用某些化学分子与蛋白质复合物特定结构的相互作用来分离和纯化蛋白质复合物的方法。

例如,抗体与相应的抗原结合,亲和树脂与诱导因子相互作用等。

这种方法通常需要先进行预处理,将所需的组分(例如诱导因子)与标记(例如荧光染料)相结合,以便在后续层析过程中进行检测。

3. 摩擦法摩擦法通常用于大量提取蛋白质复合物。

该方法基于蛋白质复合物在特定条件下的高亲和力,如酶和血红蛋白的相互作用。

摩擦法在样品中添加专门的摩擦液,并通过重复离心和平衡来分离蛋白质复合物。

二、蛋白质复合物的鉴定方法1. 常规SDS-PAGE和蛋白质标记法常规SDS-PAGE通常用于鉴定蛋白质复合物的组成,SDS-PAGE将蛋白质分离成单个蛋白质単体,这样便于通过其他方法确认特定的蛋白质。

使用蛋白质标记法可以在蛋白质上标记某个特定分子(如荧光染料)来检测其存在和定位。

2. 其他电泳技术在常规SDS-PAGE之外,电泳技术有很多变形,如双向电泳和脂肪酸-乙酰化。

一般而言,这些技术都可以用于鉴定蛋白质复合物的组成和酶活性。

提取蛋白质的具体步骤

提取蛋白质的具体步骤

提取蛋白质的具体步骤全文共四篇示例,供读者参考第一篇示例:提取蛋白质是生物科学研究中非常重要的一个步骤,它能够帮助研究人员深入了解蛋白质的结构和功能。

下面将为您介绍一些常用的提取蛋白质的具体步骤,希望能对您有所帮助。

1. 选择样本:在进行蛋白质提取前,首先需要选择合适的样本。

样本可以是动植物组织、微生物、细胞等。

在选择样本时,需要考虑到所需提取的蛋白质种类和含量。

2. 细胞破碎:将样本破碎是提取蛋白质的第一步。

通过机械或化学方法破碎细胞壁,释放出蛋白质。

常用的方法包括超声波破碎、研钵研磨、高压破碎等。

3. 细胞裂解:将破碎后的细胞溶液进行裂解是提取蛋白质的下一步。

裂解可使蛋白质从细胞内释放出来。

常用的裂解方法包括离心、温度变化、酸碱处理等。

4. 蛋白质沉淀:裂解后的细胞溶液含有大量的蛋白质和其他杂质,需要进行沉淀分离。

常用的方法包括盐析、醇沉、酸沉淀等。

5. 蛋白质纯化:通过进一步的分离和纯化步骤,可以得到纯度较高的蛋白质。

常用的方法包括柱层析、凝胶电泳、亲和纯化等。

6. 蛋白质鉴定:最后一步是对提取得到的蛋白质进行鉴定和分析。

常用的鉴定方法包括质谱分析、Western blotting等。

以上就是提取蛋白质的具体步骤。

通过这些步骤,研究人员可以有效地提取并纯化蛋白质,为后续的实验和研究提供重要的支持。

希望以上内容对您有所帮助,谢谢!第二篇示例:蛋白质是生物体中重要的基本分子,具有多种生物学功能,包括结构支持、酶催化、信号传导等。

提取蛋白质是生物学研究中常用的实验方法之一。

下面我将介绍提取蛋白质的具体步骤。

1. 样品的制备首先要准备待提取的生物样品,可以是细胞、组织或者生物体。

样品的制备包括收集、洗涤、离心等步骤,确保样品的纯度和完整性。

2. 细胞破碎对于细胞样品,需要先将细胞破碎以释放蛋白质。

常用的细胞破碎方法包括超声波破碎、高压破碎、冻融破碎等,选择适合样品的方法进行破碎。

3. 蛋白质溶解破碎后的细胞溶液需要进行蛋白质溶解,这可以通过添加盐溶液、表面活性剂或有机溶剂等方法来实现。

实验二蛋白质的分离与鉴定

实验二蛋白质的分离与鉴定

四、操作步骤
4.1 植物组织蛋白质提取方法 1)根据样品重量(1g样品加入3.5ml提取 液,可根据材料不同适当加入),准备提 取液放在冰上。 2)把样品放在研钵中用液氮研磨,研磨后 加入提取液中在冰上静置(2-3小时)。 3)用离心机离心8000rpm 40min 4℃ 或 11100rpm 20min 4℃ 4)提取上清液,样品制备完成。
生物技术综合实验
实验二 蛋白质的分离与鉴定
一、目的和要求
1、掌握细胞蛋白质分 离的方法。 2、了解蛋白质的性质。
二、实验原理
1.
蛋白质的提取与纯化
蛋白质是两性电解质,在不同的pH条 件下所带电荷不同。在一定的电场条件下 蛋白质将向与其所带电荷相反的电极方向 移动,移动速率取决于蛋白质表面电荷 的 数量,电压越强或电荷越多则蛋白质移动 的越远。
通过本试验,熟悉蛋白质的提取及检测 方法,尤其可以结合生物化学的方法进行 定性检测。
七、思考题,完成实验报告
1.如果蛋白质水解作用一直进行到双缩脲
反应呈阴性结果,此时可对水解程度作出 什么结论? 2.能否用茚三酮反应可靠地鉴定蛋白质的主要试剂 1、 蛋白质提取液:300mL (1) 1M Tris-HCl(PH8)45mL (2)甘油(Glycerol)75mL (3)聚乙烯吡咯烷酮(Polyvinylpolypyrrordone)6g 2、 10%NaOH溶液。 3、 1%CuSO4。 4、考马斯亮蓝染液300mL
双缩脲(NH3CONHCONH3)是两个分子
脲经180℃左右加热,放出一个分子氨后得 到的产物。在强碱性溶液中,双缩脲与 CuSO4形成紫色络合物,称为双缩脲反应。 凡具有两个酰胺基或两个直接连接的肽键, 或能过一个中间碳原子相连的肽键,这类 化合物都有双缩脲反应。

分离纯化蛋白质的方法及原理

分离纯化蛋白质的方法及原理

体育委员述职报告合集七篇体育委员述职报告篇1尊敬的老师、同学们:我是法学__班体育委员__,今天在这里向大家述职。

大一上学期转瞬即逝,担任法学__班体育委员一个多学期以来确实学到了不少东西。

在辅导员的带领、其他班委的协助还有全班同学的支持下,我能够成功的搞好班级的各项体育活动,帮助同学们进行适当地锻炼,让大家以积极地心态、饱满的热情投入到工作和学习中。

下面汇报我担任体育委员以来开展的工作:第一,组织班级同学积极备战学校举办的运动会。

为了我们进入大学的第一个运动会也是进入大学以来的第一个校级活动,首先,我积极向同学们宣传参加体育活动的益处,号召大家踊跃报名参加。

其次,及时向同学们下达院内对备战运动会的各项通知,做好同学与院内的沟通桥梁。

另外,带领同学们进行赛前训练。

通过20多天的努力,由于一些客观因素虽然虽然我们无法在一些单项上获得荣誉,但是我们的团体项目成绩喜人;虽然我们不能取得第一,但是这段日子让我们的友谊更加坚固。

这项活动不仅增强了同学们的身体素质而且还增强了班级同学之间的凝聚力,而且使同学们的眼界开阔了许多,认识到了许多东西比如团队合作精神,如何使一个团队走向成功。

第二,配合院学生会,以班级为单位开展“法学杯”篮球联赛。

通过这次活动不仅激发了同学们的篮球热情,使我们的班级更加团结,还使我们和我们的对手即我们的学长们就建立了不错的友谊。

第三,协助其他班委开展其他班级活动。

本学期以来,我们班举行了两次班级聚会,即一次班级聚餐和还有一次“庆圣诞,包饺子”活动,这两次聚会让同学们深刻体会到法学1103班如家般的温暖。

另外,我们班在院里举行的“魅力班级“评比活动中也获得了不错的奖项,让我们充满了集体荣誉感。

当然在以上开展的工作中我也有很多不足的地方。

首先号召力还不强,比如在各项活动的报名中,不能激发同学们的参加热情,有的同学还是对参加集体活动不感兴趣。

其次,工作中存在一些失误,例如第一次运动会赛前训练时,没把人员及时通知到位,造成训练延误。

trna结合蛋白质的分离,纯化和鉴定

trna结合蛋白质的分离,纯化和鉴定

trna结合蛋白质的分离,纯化和鉴定
TRNA结合蛋白质的分离、纯化和鉴定是一个复杂的过程,需要涉及许多技术和实验步骤。

以下是一般的实验流程:
1. 细胞培养和TRNA结合蛋白质提取:首先,需要选择一种可供TRNA结合蛋白表达的细胞。

表达TRNA结合蛋白的细胞可以通过病毒转染、质粒转染或基因编辑等方法获得。

然后,需要经过一系列的细胞培养、细胞裂解和蛋白质提取的步骤,获得含有TRNA结合蛋白的蛋白提取物。

2. 蛋白质组学分析:使用蛋白质组学技术如SDS-PAGE、2D-PAGE等,可以对提取物进行蛋白质分析,并定位TRNA结合蛋白的位置。

3. 亲和层析纯化:从蛋白提取物中纯化TRNA结合蛋白,可以使用亲和柱层析技术。

通常,这种方法是基于TRNA分子与TRNA结合蛋白具有特异性相互作用的原理,通过对纯化物进行一系列精简的层析、洗脱和再结晶等步骤,纯化出TRNA结合蛋白。

4. 电泳分离和氨基酸测定:用聚丙烯酰胺凝胶电泳法对纯化的TRNA结合蛋白进行分离。

分离出的蛋白质可以通过氨基酸测定,获得每个氨基酸残基的位置和序列。

5. 质谱分析:使用质谱技术,可以用于分析TRNA结合蛋白的完整的序列和特
定结构。

通过使用MALDI-TOF质谱、毒蕈碱胶板电泳或其他质谱技术,可以得到蛋白质的分子质量、残基序列等信息。

6. 功能分析:最后,通过功能实验,可以确定TRNA结合蛋白通过哪些方式与其靶标mRNA或其他蛋白分子相互作用,并参与哪些细胞生物学或生物化学过程中。

蛋白质的提取、分离纯化及定量

蛋白质的提取、分离纯化及定量

实验一氨基酸的别离鉴定——纸层析法实验目的1.学习氨基酸纸层析的根本原理。

2.掌握氨基酸纸层析的操作技术。

实验原理纸层析法是用滤纸作为惰性支持物的分配层析法。

层析溶剂由有机溶剂和水组成,滤纸和水的亲和力强,与有机溶剂的亲和和弱,因此在展层时,水是固定相,有机溶剂是流动相。

将样品点在滤纸上〔原点〕,进展展层,样品中的各种AA在两相溶剂中不断进展分配,由于它们的分配系数不同,不同AA随流动相移动速率就不同,于是将这些AA别离开来,形成距原点距离不等的层析点。

溶质在滤纸上的移动速率用比移〔rate of flow ,Rf〕来表示Rf= 原点到层析点中心的距离〔*〕/原点到溶剂前沿的距离(Y)只要条件〔如温度、展层剂的组成〕不变,*种物质的Rf值是常数。

可根据R f 作为定性依据。

Rf值的大小与物质的构造、性质、溶剂系统、层析滤纸的质量和层析温度等因素有关。

样品中如有多种AA,其中有些AA的Rf值一样或相近,此时只用一种溶剂展层,就不能将它们分开,为此,当用一种溶剂展层后,将滤纸转90度再用另一种溶剂展层,从而到达别离的目的,这种方法叫双向层析。

仪器、试剂1、扩展剂:是水饱和的正丁醇和醋酸以体积比4:1进展混合得混合液。

将20 ml正丁醇和5 ml冰醋酸放入分液漏斗中,与15 ml水混合,充分振荡,静置后分层,放出下层水层,漏斗内即为扩展剂。

取漏斗内的扩展剂约5 ml置于小烧杯中做平衡溶剂,其余的倒入培养皿中备用。

2、氨基酸溶液⑴.单一氨基酸:5%赖氨酸、脯氨酸、苯丙氨酸、⑵.混合氨基酸:各5 ml混合。

3、显色剂:0.1%水合茚三酮正丁醇溶液。

4、层析缸、滤纸〔14*17〕、喷雾器、电吹风实验步骤1.放置平衡溶剂:用量筒量取约5 ml平衡溶剂,放入培养皿中,然后置于密闭的层析缸中。

2.准备滤纸:取层析滤纸〔长17㎝、宽14㎝〕一*。

在纸的一端距边缘2㎝处用铅笔划一条直线,在此直线上每间隔1.5㎝作一记号——点样线。

蛋白质的提取和分离实验操作

蛋白质的提取和分离实验操作

蛋白质的提取和分离实验操作蛋白质的提取和分离一样分为四步:样品处理、粗分离、纯化和纯度鉴定。

(1)样品处理①红细胞的洗涤洗涤红细胞的目的:去除杂蛋白,以利于后续步骤的分离纯化。

采集的血样要及时分离红细胞,分离时采纳低速短时刻离心,如500r/min离心2min,然后用胶头吸管吸出上层透亮的黄色血浆,将下层暗红色的红细胞液体倒入烧杯,再加入五倍体积的生理盐水,缓慢搅拌10min,低速短时刻离心,如此重复洗涤三次,直至上清液中没有黄色,说明红细胞已洗涤洁净。

洗涤次数、离心速度与离心时刻十分重要。

洗涤次数过少,无法除去血浆蛋白;离心速度过高和时刻过长会使白细胞等一同沉淀,达不到分离的成效。

②血红蛋白的开释将洗涤好的红细胞倒人烧杯中,加蒸馏水到原血液的体积,再加40%体积的甲苯,置于磁力搅拌器上充分搅拌10min。

蒸馏水和甲苯作用:使红细胞破裂开释出血红蛋白。

③分离血红蛋白溶液将搅拌好的混合液转移到离心管中,以2000r/min的速度离心10min后,能够明显看到试管中的液体分为4层。

第1层为无色透亮的甲苯层,第2层为白色薄层固体,是脂溶性物质的沉淀层,第3层是红色透亮液体,这是血红蛋白的水溶液,第4层是其他杂质的暗红色沉淀物。

将试管中的液体用滤纸过滤,除去脂溶性沉淀层,于分液漏斗中静置片刻后,分出下层的红色透亮液体。

④透析取lmL的血红蛋白溶液装入透析袋中,将透析袋故交盛有300mL的物质的量浓度为20mmol/L的磷酸缓冲液中(pH为7.0),透析12h。

(2)凝胶色谱操作①凝胶色谱柱的制作②凝胶色谱柱的装填将色谱柱垂直固定在支架上。

运算所用凝胶量,并称量。

凝胶用蒸馏水充分溶胀后,配成凝胶悬浮液,在与色谱柱下端连接的尼龙臂打开的情形下,一次性缓慢倒入色谱柱内,装填时可轻轻敲动色谱柱,使凝胶装填平均。

色谱柱内不能有气泡存在,一旦发觉有气泡,必须重装。

装填完后,赶忙连接缓冲液洗脱瓶,在约50cm高的操作压下,用300ml的物质的量浓度为20mmol/L的磷酸缓冲液充分洗涤平稳凝胶12h,使凝胶装填紧密。

蛋白质的分离纯化方法

蛋白质的分离纯化方法

蛋白质的分离纯化方法2.1根据分子大小不同进行分离纯化蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白质和小分子物质分开,并使蛋白质混合物也得到分离。

根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。

透析和超滤是分离蛋白质时常用的方法。

透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。

超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。

这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。

它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。

由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。

所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。

当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。

例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3]。

使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。

常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。

可以根据所需密度和渗透压的范围选择合适的密度梯度。

密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。

蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。

凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。

凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。

蛋白质的分析实训报告

蛋白质的分析实训报告

一、实训背景蛋白质是生命活动的基本物质之一,广泛存在于生物体内,具有多种生物学功能。

蛋白质分析是生物化学、分子生物学和生物工程等领域的重要研究内容。

为了提高我们对蛋白质性质、结构和功能的认识,我们进行了蛋白质分析实训,通过实验操作,学习蛋白质的提取、纯化、鉴定和分析方法。

二、实训目的1. 掌握蛋白质提取和纯化的基本原理和操作技术。

2. 学习蛋白质的鉴定和分析方法。

3. 培养实验操作能力和科学思维。

三、实训内容1. 蛋白质提取(1)材料:鸡蛋清、磷酸盐缓冲液、硫酸铵、离心机等。

(2)方法:将鸡蛋清加入磷酸盐缓冲液,加入硫酸铵,搅拌均匀,静置离心,收集沉淀。

(3)结果:得到白色沉淀,即为提取的蛋白质。

2. 蛋白质纯化(1)材料:上述提取的蛋白质、离子交换层析柱、缓冲液等。

(2)方法:将提取的蛋白质加入离子交换层析柱,用不同浓度的缓冲液进行洗脱,收集各洗脱峰。

(3)结果:得到纯化的蛋白质。

3. 蛋白质鉴定(1)方法:采用SDS-PAGE电泳技术对纯化的蛋白质进行鉴定。

(2)结果:观察到目的蛋白在特定位置出现条带,证明蛋白质鉴定成功。

4. 蛋白质分析(1)方法:采用Western blot技术对纯化的蛋白质进行定量分析。

(2)结果:通过比较目的蛋白与标准蛋白的条带强度,计算出目的蛋白的含量。

四、实训结果与分析1. 蛋白质提取通过实验,我们成功从鸡蛋清中提取出蛋白质。

实验过程中,我们学会了如何根据蛋白质的性质选择合适的提取方法,以及如何处理提取过程中的各种问题。

2. 蛋白质纯化在蛋白质纯化实验中,我们掌握了离子交换层析技术,成功地将目的蛋白从混合物中分离出来。

实验过程中,我们学会了如何选择合适的缓冲液和洗脱条件,以及如何判断蛋白质的纯度。

3. 蛋白质鉴定通过SDS-PAGE电泳技术,我们成功鉴定出目的蛋白。

实验过程中,我们学会了如何制备电泳样品、操作电泳仪以及观察电泳结果。

4. 蛋白质分析通过Western blot技术,我们对纯化的蛋白质进行了定量分析。

蛋白质纯度鉴定

蛋白质纯度鉴定

蛋白质纯度鉴定蛋白质是生命体中必不可少的大分子有机化合物,其结构和功能各不相同,因此在研究生物学、制药学等领域中,对蛋白质的纯度鉴定十分关键。

蛋白质的纯度指的是蛋白质分子在样品中占有的总比例,它不仅关系到后续的实验和理论研究,也影响到药品的安全性和有效性。

下面,我们将针对蛋白质纯度鉴定的方法和技术展开讨论。

一、理化方法1. 聚丙烯酰胺凝胶电泳(SDS-PAGE)SDS-PAGE是一种广泛应用于蛋白质纯度鉴定的方法,该方法将样品中的蛋白质分子加入一定量的阴离子表面活性剂(SDS)并使之电泳,通过分子量大小的差别将蛋白质分离出来,并用Coomassie蓝染色或银染色进行可视化。

该方法有较高的分辨率和可重复性,但需要较高的设备和试剂成本,并且只能检测到存在亚精度的杂质。

2. 高效液相色谱(HPLC)HPLC是一种高效、高精度、高灵敏度的液相色谱检测技术,能够对蛋白质样品中的杂质进行分离和检测,从而判定蛋白质的纯度。

根据不同的分离模式,HPLC可以分为离子交换、逆相、凝胶过滤、亲和层析等几种,应用范围广泛。

该方法需要专业的仪器设备和专业操作技术,但是其结果具有准确性高和可重复性强的特点。

二、免疫学方法1. ELISA法ELISA(酶联免疫吸附试验)常被应用于纯度较高的蛋白质样品的鉴定,该方法通过特异性抗体的识别并与抗原结合,从而判断蛋白质在样品中的含量。

当然,根据样品中抗原含量的不同,可以将该方法分为直接ELISA、间接ELISA、Sandwich ELISA等类型。

该法操作简便,对较小分子量蛋白质也有很好的检测效果,但是需要一定的抗体或者蛋白质结构信息。

2. Western Blotting法Western Blotting是一种通过蛋白质电泳分离,将成像膜上的蛋白质与蛋白质特异性抗体结合并进行检测的方法。

该方法常被用于验证蛋白质纯度和鉴定蛋白质的蛋白质伴侣分子等应用。

在实验操作过程中,需要较高的专业熟练程度和精准操作技巧,且耗时较长,但是其结果准确性高,能够监测低含量的蛋白质。

蛋白质分离纯化与鉴定

蛋白质分离纯化与鉴定

蛋白质分离纯化与鉴定蛋白质分离纯化与鉴定是蛋白质的关键步骤,它包括从蛋白质样品中分离出蛋白质和去除剩余的其他杂质,从而确保得到高纯度的蛋白质,同时也可以利用这一步骤对蛋白质进行识别和定量。

蛋白质分离纯化和鉴定依赖于特定的结合机制来对蛋白质样品和它们之间的干扰进行分离,纯化和定量,重要的是选择合适的结合机制,包括静电结合、磁性结合和生物类比结合。

静电结合是利用离子的电荷来实现蛋白质的结合的一种方法,如逆流苯胺凝胶电泳(IEX)、硼滤膜萃取(BFE)、凝胶乳液沉淀(GFC)等。

其优势是有效的提取蛋白质,不会分离出太多的杂质,因此可用于纯化以及分离同种蛋白质,但存在着选择性不高和操作复杂的问题。

磁性分离是利用磁性粒子将蛋白质(如金蛋白)从样品中分离出来的一种技术,主要应用于从生物体或细胞内筛选靶向蛋白质,如免疫磁珠筛选和快速免疫磁珠筛选等。

优势是极好的选择性和高回收率,缺点是不能太多的纯化和定量。

生物类比结合是指使用小分子有机分子的氢键与蛋白质聚合体的氢键形成竞争,使蛋白质结构发生变化、表面可溶性结构发生变化,以达到蛋白质分离纯化和鉴定的目的。

生物类比结合技术同时具有高分辨率、高效率、低毒性及可控性优点。

如两亲聚酰胺模型(TCA)技术、新型聚乙二醇活性纤维素(PEG)技术等。

优势在于可同时提取多种蛋白质,经纯化后的蛋白质也能保留蛋白质的完整性,但缺点是技术操作比较复杂,耗时较久。

蛋白质分离纯化与鉴定是一个综合技术,因此在蛋白质分离纯化及鉴定过程中应根据蛋白质特性,选择最适合自身情况的结合机制,进行一系列的步骤,以得到最纯净的蛋白质分离纯化,识别和定量的目的。

蛋白质的提取和分离一般分为四步样品处理11

蛋白质的提取和分离一般分为四步样品处理11

蛋白质的提取和分离一般分为四步样品处理——粗分离——纯化——纯度鉴定1.样品处理(1)红细胞的洗涤①目的去除②方法离心(速度越高和时间越长会使白细胞和淋巴细胞等一同沉淀达不到分离的效果),然后用胶头吸管吸出上层透明的,将下层的红细胞液体倒入再加入用的质量分数为0.9%的氯化钠溶液洗涤⑤低速离心(低速短时间)⑥重复4、5步骤次,直至上清液中已没有,表明洗涤干净。

利于后续血红蛋白的分离纯化,不可洗涤次数过少。

(2)血红蛋白的释放加到体积,再加40%体积的溶解细胞膜),置于上充分搅拌10分钟(加速细胞破裂), 细胞破裂释放出血红蛋白.(3) 分离血红蛋白溶液将搅拌好混合液转移到离心管内,以2000r/min的速度离心10 min ,试管中的溶液分为4层第1层(最上层)甲苯层第2层(中上层)的沉淀层,色薄层固体第3层(中下层)的水溶液层,的液体第4层(最下层)其它杂质的沉淀层(4)透析2.凝胶色谱制作1)凝胶色谱柱的制作①取长40厘米,内径1.6厘米的玻璃管,两端需用砂纸磨平。

②底塞的制作打孔→挖出凹穴→安装移液管头部→覆盖尼龙网,再用100目尼龙纱包好。

a、选择合适的的橡皮塞,中间打孔;b、在橡皮塞顶部切出锅底状的,在0.5ml的头部切下长的一段,插入橡皮塞孔内,上部不得超过橡皮塞的凹穴底面。

c.剪尼龙网小圆片覆盖在上,用的尼龙纱将橡皮塞包好,插到玻璃管一端。

d、色谱柱下端用移液头部做,连接一细的,并用螺旋夹控制尼龙管的,另一端放入收集的收集器内③顶塞的制作插入安装了玻璃管的橡皮塞④组装将上述三者按相应位置组装成一个整体。

⑤安装其他附属结构。

2)凝胶色谱柱填料的处理(1)凝胶的选择。

(2)方法配置凝胶悬浮液计算并称取一定量的凝胶浸泡于中充分溶胀后,配成。

(3)凝胶色谱柱的装填方法①固定将色谱柱处置固定在支架上②装填将一次性的缓慢倒入内,装填时轻轻敲动色谱柱,使凝胶填装均匀。

③洗涤平衡装填完毕后,立即用缓冲液洗脱瓶,在高的操作压下,用300ml的20mmol/l的磷酸缓冲液(pH为7.0)充分12小时。

蛋白质提取常用试剂及操作方法

蛋白质提取常用试剂及操作方法

蛋白质提取常用试剂及操作方法一、原料选择和前处理(一)原料的选择早年为了研究的方便,尽量寻找含某种蛋白质丰富的器官从中提取蛋白质。

但至目前经常遇到的多是含量低的器官或组织且量也很小,如下丘脑、松果体、细胞膜或内膜等原材料,因而对提取要求更复杂一些。

原料的选择主要依据实验目的定。

从工业生产角度考虑,注意选含量高、来源丰富及成本低的原料。

尽量要新鲜原料。

但有时这几方面不同时具备。

含量丰富但来源困难,或含量来源均理想,但分离纯化操作繁琐,反而不如含量略低些易于获得纯品者。

一般要注意种属的关系,如鲣的心肌细胞色素C 较马的易结晶,马的血红蛋白较牛的易结晶。

要事前调查制备的难易情况。

若利用蛋白质的活性,对原料的种属应几乎无影响。

如利用胰蛋白酶水解蛋白质的活性,用猪或牛胰脏均可。

但若研究蛋白质自身的性质及结构时,原料的来源种属必须一定。

研究由于病态引起的特殊蛋白质(本斯.琼斯氏蛋白、贫血血红蛋白)时,不但使用种属一定的原料,而且要取自同一个体的原料。

可能时尽量用全年均可采到的原料。

对动物生理状态间的差异(如饥饿时脂肪和糖类相对减少),采收期及产地等因素也要注意。

(二)前处理1.细胞的破碎材料选定通常要进行处理。

要剔除结缔组织及脂肪组织。

如不能立即进行实验,则应冷冻保存。

除了提取及胞细外成分,对细胞内及多细胞生物组织中的蛋白质的分离提取均须先将细胞破碎,使其充分释放到溶液中。

不同生物体或同一生物体不同的组织,其细胞破坏难易不一,使用方法也不完全相同。

如动物胰、肝、脑组织一般较柔软,作普通匀浆器磨研即可,肌肉及心组织较韧,需预先绞碎再制成匀桨。

⑴机械方法主要通过机械切力的作用使组织细胞破坏。

常用器械有:①高速组织捣碎机(转速可达10000rpm,具高速转动的锋利的刀片),宜用于动物内脏组织的破碎;②玻璃匀浆器(用两个磨砂面相互摩擦,将细胞磨碎),适用于少量材料,也可用不锈钢或硬质塑料等,两面间隔只有十分之几毫米,对细胞破碎程度较高速捣碎机高,机械切力对分子破坏较小。

血清免疫球蛋白的提取分离、纯化及鉴定-2

血清免疫球蛋白的提取分离、纯化及鉴定-2

血清免疫球蛋白的提取分离、纯化及鉴定-2二、组织样品在生化实验中,经常利用离体组织研究各种物质代谢途径和酶系的作用。

或者从组织中分离、纯化核酸、酶以及某些有意义的代谢物质进行研究。

但是,在生物组织中,因含有大量的催化活性物质,离体组织的采集必需在冰冷条件下进行,并日需尽快完成测定。

否则其所含物质的量和生物活性都将发生变化。

一般采用断头法处死动物,放出血液,立即取出所需脏器或组织,除去脂肪和结缔组织,用冰冷生理盐水洗去血液,再用滤纸吸干,称重后,按试验要求制成匀浆或者组织糜。

组织糜:迅速将组织剪碎,用捣碎机绞成糜状,或加入少量砂于乳钵中,研磨至糊状。

组织匀浆:取一定量新鲜组织剪碎,加入适量匀浆制备液,用高速电动匀浆器或者玻璃匀浆器磨碎组织。

由于匀浆器的柞头在高速运转中会产生热量,因此在制备匀浆时,需将匀浆器置于冰水中。

常用的匀浆制备液有生理盐水、缓冲液和0 .25mol/L 的蔗糖液等,可根据实验的要求,加以选择。

组织浸出液:上述组织匀浆液再经过离心分离出的上清液就是组织浸出液。

II 蛋白质的沉淀反应1.实验原理在水溶液中,蛋白质分子表面结合大量的水分子,形成水化膜,同时蛋白质分子本身带有电荷,与溶液的反离子作用,形成双电层,因而每个蛋白质分子可形成一个稳定的胶粒。

整个蛋白质溶液就形成稳定的亲水溶胶体系。

当某些物理化学因素导致蛋白质分子失去水化膜或失去电荷,甚至变性时,它就丧失了稳定因素,以固态形式从溶液中析出,这就是蛋白质的沉淀作用。

蛋白质的沉淀作用分为两类:1)可逆沉淀作用在发生沉淀作用时,虽然蛋白质已经沉淀析出,然而其分子内部结构并没发生明显的改变,仍保持原有的结构和性质。

如除去沉淀因素,蛋白质可重新溶解在原来的溶剂中。

因此,这种沉淀作用称为可逆沉淀作用。

属于此类的有盐析作用,低温下丙酮、乙醇使蛋白质沉淀的作用,以及利用等电点的沉淀。

盐析作用:用大量中性盐使蛋白质从溶液中析出的过程。

在高浓度的中性盐影响下,蛋白质分子的水化膜被剥夺。

蛋白质分离纯化的步骤

蛋白质分离纯化的步骤

蛋白质分离纯化的一般程序可分为以下几个步骤:(一)材料的预处理及细胞破碎分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。

所以要采用适当的方法将组织和细胞破碎。

常用的破碎组织细胞的方法有:1. 机械破碎法这种方法是利用机械力的剪切作用,使细胞破碎。

常用设备有,高速组织捣碎机、匀浆器、研钵等。

2. 渗透破碎法这种方法是在低渗条件使细胞溶胀而破碎。

3. 反复冻融法生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。

这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。

4. 超声波法使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。

5. 酶法如用溶菌酶破坏微生物细胞等。

(二) 蛋白质的抽提通常选择适当的缓冲液溶剂把蛋白质提取出来。

抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。

如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100等),使膜结构破坏,利于蛋白质与膜分离。

在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。

(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。

比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。

常用的有下列几种方法:1. 等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。

2. 盐析法不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。

被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。

3. 有机溶剂沉淀法中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。

能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。

此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。

由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。

细胞蛋白质组学样品制备和质谱测试-概述说明以及解释

细胞蛋白质组学样品制备和质谱测试-概述说明以及解释

细胞蛋白质组学样品制备和质谱测试-概述说明以及解释1.引言1.1 概述细胞蛋白质组学是研究细胞内蛋白质组成和功能的重要手段,它在生命科学研究中扮演着十分重要的角色。

通过分析细胞内的蛋白质组成,我们可以揭示细胞功能、信号传导、疾病发生等方面的重要信息。

然而,由于细胞蛋白质组中蛋白质的复杂性和多样性,研究人员在样品制备和质谱测试方面面临着许多挑战。

在细胞蛋白质组学研究中,样品制备是关键的步骤之一。

样品的选择、收集和处理方法直接影响到研究结果的准确性和可靠性。

在样品收集方面,我们需要根据研究需要选择适当的组织、细胞类型,并且确保样品的来源和处理过程符合科学规范。

在样品处理过程中,需要采取一系列的方法和步骤,如蛋白质的提取和纯化,以确保样品中的蛋白质能够被有效地分离、浓集和纯化。

同时,为了避免样品在样品制备过程中的蛋白质降解和修饰的改变,需要在样品处理过程中采取适当的保护措施。

与样品制备相对应的是质谱测试,质谱测试是细胞蛋白质组学研究的核心技术之一。

质谱仪器的原理和类型决定了质谱测试的灵敏度和分辨率。

根据不同的研究需求,我们可以选择不同类型的质谱仪器进行蛋白质组学分析,如质谱仪器可以分为飞行时间质谱仪、四极杆质谱仪、离子阱质谱仪等等。

在质谱测试方法和流程方面,需要结合样品的特点和研究的目的,选择适当的质谱方法进行分析。

质谱测试的流程一般包括样品的预处理、质谱仪的参数设置、质谱数据的采集和分析等步骤。

总之,细胞蛋白质组学样品制备和质谱测试是细胞蛋白质组学研究中不可或缺的环节。

在研究中,我们需要关注样品的选择和处理方法,以及质谱仪器的类型和质谱测试的方法和流程。

通过合理的样品制备和质谱测试,我们可以获得可靠的蛋白质组学数据,为细胞功能研究和疾病治疗提供有力支持。

文章结构部分的内容可以按照以下方式编写:1.2 文章结构本文将按照以下结构来展开对细胞蛋白质组学样品制备和质谱测试的介绍和讨论。

1. 引言:首先概述细胞蛋白质组学的重要性和研究背景,引出对样品制备和质谱测试的需求和意义。

蛋白质分离纯化主要方法

蛋白质分离纯化主要方法

离子互换树脂 、纤维素、
葡聚糖
带配基旳sepharose
或sephadex
多缓冲互换剂(与带有多种电
荷基团旳配体相偶联旳
sepharose 6B)
15
吸附层析(absorption chromatography)
原理: 以吸附剂作为固定相,选择合适旳溶剂作流
动相。因为多种物质旳极性不同,被吸附剂吸附 旳程度和在流动相中旳溶解度不同。层析时,当 流动相从固定相上流过时,各组分也就不同程度 地被溶解(解吸),然后又再被吸附、再溶解再 吸附,从而以不同速度随流动相向前移动。
液),这些基质能与待分离旳化合物进行可逆
旳吸附,溶解,互换等作用。它对层析旳效果
起着关键旳作用。
12/1/2023
10
2.流动相: 在层析过程中,推动固定相上待分离旳
物质朝着一种方向移动旳液体、气体或超 临界体等,都称为流动相。柱层析中一般 称为洗脱剂,薄层层析时称为展层剂。它 也是层析分离中旳主要影响原因之一。
12/1/2023
2
沉淀法
盐析法、有机溶剂沉淀法、重金属盐
沉淀法、生物碱或酸类沉淀法、加热 变性沉淀法

离子互换层析 吸附层析

层析法
凝胶过滤(分子筛)

亲和层析

等电汇集层析

电学法
电泳法

等电聚焦
离心法
透析
膜分离技术 超滤
12/1/2023
3
纯度鉴定 分子量测定
层析法:凝胶过滤; 高效液相色谱法(HPLC) 电泳法:PAGE、梯度凝胶电泳、等电聚焦电泳等 免疫化学法:专一旳沉淀线
12/1/2023
42
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质提取、纯化、鉴定的方法(二)
一、层析技术
1.离子交换层析的亲和洗脱这种技术结合了离子交换与亲和层析。

如在某一pH时,目的蛋白质带正(负)电荷,用阳(阴)离子交换剂吸附,这一过程去除了很大一部分不吸附的杂蛋自。

然后用该目的蛋白质的配体来洗脱,该配体特异性地结合目的蛋白质并使之洗脱,但不洗脱其他吸附的蛋白质,达到纯化的目的。

注意,该配体需带有一定量的阴(阳)电荷,有效降低目的蛋白质与阳(阴)离子交换剂之间的电荷相互作用。

2.固相金属亲和层析重组蛋白质可在C-或N-端引入组氨酸标签,一般为6个组氨酸残基(His-tag)。

这些组氨酸残基与过渡金属(transitionalmetals)Ni2+或Co2+形成配位键。

用固相化的Ni2+或Co2+(如商品化的树脂,Ni-NTA)可吸附带有His-tag的重组蛋白质,用含有咪唑(imidazole)的缓冲液可洗脱重组蛋白质。

注意,有些含有较多组氨酸的蛋白质也可与吸附剂结台,但较弱,因此可用低浓度的咪唑洗脱;在层析过程中不能引入金属螯合剂如EDTA;避免使用还原剂如DTT或DTE,但可用低浓度的巯基乙醇。

该技术也用于提取磷酸化的蛋白质。

将螫合剂交联到树脂,螯合三价铁或三价镓,该亲和吸附剂可吸附混合物中的磷酸化的蛋白质。

洗去不吸附的非磷酸化蛋白质后,用磷酸缓冲液即可将磷酸化蛋白质从该亲和吸附剂上洗脱。

要注意的是酸性蛋白质也可被不同程度地吸附。

3.凝胶过滤该技术过去也被称为分子筛。

构成凝胶的小珠(bead)中有大小不一的孔,分子量大的分子能进入较大的孔而不能进入小的孔,分子量小的则不仅能进入较大的孔也能进入小的孔,因此在层析过程中,小分子经过的路程较长而大分子经过的路程较短,如此就可分离分子量不同的蛋白质。

然而,分子量相近的蛋白质非常多,因此,用这种技术得到的蛋白质是分子量相近的混合蛋白质。

然而这种技术在某些研究中很有用,如丙酮酸激酶M2(PKM2)由四个相同的亚基组成,PKM2在细胞中以三种形式存在——单体、二聚体、四聚体,这三种形式的功能不同,若要鉴定细胞中PKM2的各种形式的量,先用凝胶过滤技术分离细胞裂解液中的PKM2的三种形式,之后用Western blot对每一种形式的PKM2做相对定量。

4.反相层析该技术是指用疏水固相的一种层析技术。

“反相”是相对“正相”而言,正相是指亲水的固相如硅胶表面带有硅羟基(silanol group),硅羟基可与被分离的化台物相互作用,被分离的化合物的亲水性越强,则滞留在正相
柱上的时间越长。

反相层析则在固相表面引入不同长度的烷基(C4,C8,C12,C18),使固相表面呈疏水性,烷基与被分离的化合物表面的疏水基团相互作用。

不同的蛋白质分子表面的疏水基团量和空间分布不同,因此不同蛋白质的疏水性不同,疏水性越强,在反相柱上的滞留时间越长,疏水性越弱,在反相柱上的滞留时间越短。

用反相层析技术可将疏水性不同的蛋白质分开。

反相层析的分辨率非常高,若不考虑蛋白质的活性,反相层析是非常有效的分离和纯化的手段。

反相层析技术也可用于鉴定蛋白质纯度。

反相层析技术串联质谱是当今鉴定蛋白质分子的重要手段。

要注意的是,该技术对样品的制备要求非常高,样品必须是纯净无颗粒物,样品制各的质量直接影响分离,若样品制备差,会直接损毁柱子;要考虑反相柱的孔径(pore size),选择适合分离蛋白质的反相柱。

二、电泳分离技术
1.SDS-PAGE常用于鉴定蛋白质的纯度和分子量,也可用于蛋白质的纯化。

SDS-PAGE凝胶分为两层,上层为浓缩胶,下层为分离胶。

浓缩胶的作用是将样品中的蛋白质压成个薄层,分离胶将各种分子量不同的蛋白质分开。

SDS带负电,当SDS与蛋白质混合后,SDS与蛋白质分子结合形成复合物,复合物中SDS 所带的负电荷大大超过了蛋白质分子所带的电荷,因此在电泳时,蛋白质电泳速率与蛋白质分子量的对数成反比,而蛋白质所带电荷对电泳速率的影响可忽略不计。

SDS-PAGE的分辨率非常高。

该技术要注意4点:
①配胶时,所有溶液都要脱气。

丙烯酰胺和交联剂亚甲基双丙烯酰胺的交联需要自由基的催化,自由基由过硫酸铵和TEMED(四甲基乙二胺)产生。

空气中的氧气可有效清除由过硫酸铵和TEMED产生的自由基,因此抑制丙烯酰胺-亚甲基双丙烯酰胺的多聚化(polymerization)。

不脱气也将导致凝胶质量的批次间差异。

②SDS的质量非常重要,SDS中的不纯物(C10,C14,C16 alkyl sulfate)可导致一个蛋白质形成多个条带。

③SDS不要过量,如30~50μl样品中SDS量不要多于200μg,不然蛋白质的条带会变宽,影响分辨率。

④过硫酸铵不稳定,需在使用前配制。

2.等电聚焦蛋白质是两性电解质,当某个蛋白质在某一pH值时,其所带正电荷和负电荷数相等,净电荷为零,这一pH值就是该蛋白质的等电点。

各种蛋
白质的碱性和酸性氨基酸残基的量存在差异,这种差异导致蛋白质的等电点不同。

根据这一特性可将等电点不同的蛋白质用等电聚焦方法分离。

IEF也可用于分离修饰与否的蛋白质,如蛋白质可被磷酸化(加入电荷)、乙酰化(中和电荷),IEF可将修饰与否的蛋白质分离开(反相层析法也可以)。

IEF对样品的制备要求是,要预防同种或不同种蛋白质形成蛋白复合物,尽可能去除样品中的非蛋白质离子。

在分离和鉴定复杂的蛋白质成分时(如细胞裂解液),常常用双向电泳,第一向是IEF,将不同等电点的蛋白质分离,与之垂直的第二向是SDS-PAGE,按分子量将蛋白质分离。

双向电泳可以将细胞中的蛋白质分离成数千个组分,对分离到的蛋白质组分做质谱分析,可快速鉴定蛋白质的身份。

注意,分离到的组分不。

定代表单个蛋白质。

相关文档
最新文档