设卫星绕地球做圆周运动
专题提升(五) 天体运动中的三类典型问题
专题提升(五) 天体运动中的三类典型问题基础必备1.两个靠近的天体称为双星,它们以两者连线上某点O为圆心做匀速圆周运动,其质量分别为m1,m2,如图所示,以下说法正确的是( A )A.线速度与质量成反比B.线速度与质量成正比C.向心力与质量的乘积成反比D.轨道半径与质量成正比解析:设两星之间的距离为L,轨道半径分别为r1,r2,根据万有引力提供向心力得,G=m 1ω2r1,G=m2ω2r2,则m1r1=m2r2,即轨道半径和质量成反比,故D错误;根据v=ωr可知,线速度与轨道半径成正比,则线速度与质量成反比,故A正确,B错误;由万有引力公式F 向=G,向心力与质量的乘积成正比,故C错误.2.(多选)2017年4月20日19时41分,“天舟一号”货运飞船在文昌航天发射场成功发射,后与“天宫二号”空间实验室成功对接.假设对接前“天舟一号”与“天宫二号”都围绕地球做匀速圆周运动,下列说法正确的是( AC )A.“天舟一号”货运飞船发射加速上升时,里面的货物处于超重状态B.“天舟一号”货运飞船在整个发射过程中,里面的货物始终处于完全失重状态C.为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向后喷气加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向前喷气减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接解析:“天舟一号”货运飞船发射加速上升时,加速度向上,则里面的货物处于超重状态,选项A正确,B错误;为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向后喷气加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接,选项C正确,D错误.3.某同学学习了天体运动的知识后,假想宇宙中存在着由四颗星组成的孤立星系.如图所示,一颗母星处在正三角形的中心,三角形的顶点各有一颗质量相等的小星围绕母星做圆周运动.如果两颗小星间的万有引力为F,母星与任意一颗小星间的万有引力为9F.则( A )A.每颗小星受到的万有引力为(+9)FB.每颗小星受到的万有引力为(+9)FC.母星的质量是每颗小星质量的2倍D.母星的质量是每颗小星质量的3倍解析:每颗小星受到的万有引力的合力为9F+2F·cos 30°=(+9)F,选项A正确,B错误;由F=G和9F=得=3,选项C,D错误.4.如图所示,A是静止在赤道上随地球自转的物体;B,C是同在赤道平面内的两颗人造卫星,B位于离地高度等于地球半径的圆形轨道上,C 是地球同步卫星.则下列关系正确的是( B )A.物体A随地球自转的角速度大于卫星B的角速度B.卫星B的线速度大于卫星C的线速度C.物体A随地球自转的加速度大于卫星C的加速度D.物体A随地球自转的周期大于卫星C的周期解析:由于A是静止在赤道上随地球自转的物体,C是地球同步卫星,所以两者角速度大小相等,周期大小相等,故C,D错误;由ω=可知,ωB>ωC,则ωB>ωA,故A错误;由v=可知,v B>v C,故B正确.5.(多选)如图所示,A是地球的同步卫星,B是位于赤道平面内的近地卫星,C为地面赤道上的物体,已知地球半径为R,同步卫星离地面的高度为h,则( BD )A.A,B加速度的大小之比为()2B.A,C加速度的大小之比为1+C.A,B,C速度的大小关系为v A>v B>v CD.要将B卫星转移到A卫星的轨道上运行至少需要对B卫星进行两次加速解析:根据万有引力提供向心力可知G=ma,得a A=G,a B=G,故=()2,选项A错误;A,C角速度相同,根据a=ω2r得a A=ω2(R+h),a C=ω2R,故=1+,选项B正确;根据G=m得v=,可知轨道半径越大线速度越小,所以v B>v A,又A,C角速度相同,根据v=ωr可知v A>v C,故v B>v A>v C,选项C错误;要将B卫星转移到A卫星的轨道上,先要加速到椭圆轨道上,再由椭圆轨道加速到A卫星的轨道上,选项D正确. 6.(多选)宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m,半径均为R,四颗星稳定分布在边长为L的正方形的四个顶点上,其中L远大于R.已知万有引力常量为G,忽略星体的自转,则关于四星系统,下列说法正确的是( CD )A.四颗星做圆周运动的轨道半径为B.四颗星做圆周运动的线速度均为C.四颗星做圆周运动的周期均为2πD.四颗星表面的重力加速度均为G解析:如图所示,四颗星均围绕正方形对角线的交点做匀速圆周运动,轨道半径r=L.取任一顶点上的星体为研究对象,它受到其他三个星体的万有引力的合力为F 合=G+G.由F合=F向=m=m,解得v=,T=2π,故A,B项错误,C项正确;对于在星体表面质量为m0的物体,受到的重力等于万有引力,则有m 0g=G,故g=G,D项正确.7.(多选)我国计划将“嫦娥五号”送上38万千米远的月球,采回月壤,实现航天工程绕、落、回的收关阶段.到时着陆器将自动从月面取样后从月表起飞,并在近月轨道实现自动交会对接后和返回舱一起返回地面,供科学家分析.了解这则新闻后物理兴趣小组进行了热烈讨论,绘制出了“嫦娥五号”奔向月球和返回地球的示意图,图中对接为取样后的对接点,实线圆为绕行器在半径为r的圆轨道绕月等待着陆器返回的轨道,设着陆器取样并返回到绕行器的时间t内绕行器飞行N圈,全过程不考虑空气阻力的影响.已知引力常量为G,月球的半径为R,则兴趣小组提出了下列有关结论,其中表示正确的是( BC )A.从地表发射后的“嫦娥五号”需要进行多次变轨,当其速度达到第二宇宙速度时才能飞抵月球B.“嫦娥五号”沿椭圆轨道向38万千米远的月球飞行时,只有月球也运动到椭圆轨道的远地点附近时才能将“嫦娥五号”捕获,否则还要沿椭圆轨道返回C.结合题中信息可知月球的质量为,二者在对接过程中有一定的机械能损失D.绕行器携带样品沿椭圆轨道返回地球时,虽然引力做功,动能增大,但系统的机械能不变解析:从地表发射后的“嫦娥五号”需要进行多次变轨,以提高其绕行速度,但由于月球在地月系内,因此“嫦娥五号”不需要达到逃离地球的第二宇宙速度,A项错误;由于月球也在绕地运行,只有当“嫦娥五号”沿椭圆轨道运动到远地点时,刚好月球也运动到这一位置,才能减速被月球捕获,若月球尚未到达目的地,地球的引力还会使“嫦娥五号”沿椭圆轨道返回,等待月球的下次到来,因此发射时还要通过计算选择合适时间,以便“嫦娥五号”一去就被月球捕获,B项正确;着陆器取样返回后与绕行器对接过程是合二为一的过程,一定有机械能损失,绕行器由月球引力提供向心力,G=mr,又T=,故M=,C项正确;绕行器携带样品沿椭圆轨道返回时,需加速离开绕月轨道,外力做正功,系统的机械能增大,故D项错误.8.(2019·山西太原模拟)(多选)已知某卫星在赤道上空轨道半径为r1的圆形轨道上绕地球运行的周期为T,卫星运动方向与地球自转方向相同,赤道上某城市的人每两天恰好三次看到卫星掠过其正上方.假设某时刻,该卫星如图在A点变轨进入椭圆轨道,近地点B到地心距离为r2.设卫星由A到B运动的时间为t,地球自转周期为T0,不计空气阻力.则( ABC )A.T=T0B.T=C.卫星在图中椭圆轨道由A到B时,机械能不变D.卫星由图中A点变轨进入椭圆轨道,机械能增大解析:赤道上某城市的人每两天恰好三次看到卫星掠过其正上方,有·-·=2π,解得T=T0,故选项A正确;根据开普勒第三定律有=,解得T=,故选项B正确;卫星在图中椭圆轨道由A 到B时,只有万有引力做功,所以机械能不变,故选项C正确;卫星由图中A点变轨进入椭圆轨道,从高轨道变到低轨道,卫星在A点要减速,所以机械能减小,故选项D错误.能力培养9.(多选)如图,甲、乙、丙是位于同一直线上的离其他恒星较远的三颗恒星,甲、丙围绕乙在半径为R的圆轨道上运行,若三颗星质量均为M,引力常量为G,则( AD )A.甲星所受合外力为B.乙星所受合外力为C.甲星和丙星的线速度相同D.甲星和丙星的角速度相同解析:由万有引力定律可知,甲、乙和乙、丙之间的万有引力为F1=G,甲、丙之间的万有引力为F2=G=,甲星所受两个引力的方向相同,故合力为F1+F2=,A项正确;乙星所受两个引力等大、反向,合力为零,B项错误;甲、丙两星线速度方向始终不同,C项错误;由题知甲、丙两星周期相同,由角速度定义可知,两星角速度相同,D项正确. 10.(多选)2017年4月,我国第一艘货运飞船天舟一号顺利升空,随后与天宫二号交会对接.假设天舟一号从B点发射经过椭圆轨道运动到天宫二号的圆轨道上完成交会,如图所示.已知天宫二号的轨道半径为r,天舟一号沿椭圆轨道运动的周期为T,A,B两点分别为椭圆轨道的远地点和近地点,地球半径为R,引力常量为G.则( AC )A.天宫二号的运行速度小于7.9 km/sB.天舟一号的发射速度大于11.2 km/sC.根据题中信息可以求出地球的质量D.天舟一号在A点的速度大于天宫二号的运行速度解析:由G=m可得线速度与半径的关系v=,轨道半径r越大,速率v越小.第一宇宙速度7.9 km/s是近地面卫星(轨道半径等于地球半径)的运行速度,而天宫二号轨道半径大于地球半径,所以天宫二号的运行速度小于7.9 km/s,选项A正确;11.2 km/s(第二宇宙速度)是发射脱离地球引力范围围绕太阳运动的人造行星的速度,而天舟一号是围绕地球运动的,所以天舟一号的发射速度小于11.2 km/s,选项B 错误;根据题中信息可知,天舟一号沿椭圆轨道运动的轨道半长轴为a=(R+r),利用开普勒第三定律=,可得天宫二号绕地球运动的周期T′,再由G=mr()2,可以求出地球的质量M,选项C正确;天舟一号在A点的速度小于天宫二号的运行速度,选项D错误.11.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为( B )A.TB.TC.TD.T解析:设两恒星中一颗恒星的质量原来为m,围绕其连线上的某一点做匀速圆周运动的半径为r,两星总质量为M,两星之间的距离为R,圆周运动的周期为T,由G=mr,G=(M-m)(R-r),联立解得T= 2π.经过一段时间演化后,两星总质量变为原来的k倍,即为kM,两恒星中一颗恒星的质量变为m′,围绕其连线上的某一点做匀速圆周运动的半径为r′,两星之间的距离变为原来的n倍,即为nR.此时圆周运动的周期为T′.则有=m′r′,G=(k M- m′)(nR-r′),联立解得T′=2π=T,选项B正确.12.我国自1970年4月24日发射第一颗人造地球卫星——“东方红1号”以来,为了满足通讯、导航、气象预报和其他领域科学研究的不同需要,又发射了许多距离地面不同高度的人造地球卫星.卫星A 为近地卫星,卫星B为地球同步卫星,它们都绕地球做匀速圆周运动.已知地球半径为R,卫星A距地面高度可忽略不计,卫星B距地面高度为h,不计卫星间的相互作用力.求:(1)卫星A与卫星B运行速度大小之比;(2)卫星A与卫星B运行周期之比;(3)卫星A与卫星B运行的加速度大小之比.解析:(1)卫星绕地球做匀速圆周运动,设地球质量为M,卫星质量为m,轨道半径为r,运行速度大小为v由万有引力定律和牛顿运动定律得G=m解得v=卫星A与卫星B运行速度大小之比=.(2)由万有引力定律和牛顿运动定律得G=m r可知卫星运行周期T=卫星A与卫星B运行周期之比=.(3)由万有引力定律和牛顿运动定律得卫星运行的加速度大小a==卫星A与卫星B运行的加速度大小之比=.答案:见解析13.两个天体(包括人造天体)间存在万有引力,并具有由相对位置决定的引力势能.如果两个天体的质量分别为m1和m2,当它们相距无穷远时势能为零,则它们距离为r时,引力势能为E p=-G.发射地球同步卫星时一般是把它先送入较低的圆形轨道,如图中Ⅰ轨道,再经过两次“点火”,即先在图中a点处启动发动机,向后喷出高压气体,卫星得到加速,进入图中的椭圆轨道Ⅱ,在轨道Ⅱ的远地点b处第二次“点火”,卫星再次被加速,此后,沿图中的圆形轨道Ⅲ(即同步轨道)运动.设某同步卫星的质量为m,地球半径为R,轨道Ⅰ距地面非常近,轨道Ⅲ距地面的距离近似为6R,地面处的重力加速度为g,并且每次点火经历的时间都很短,点火过程中卫星质量的减少可以忽略.求:(1)从轨道Ⅰ转移到轨道Ⅲ的过程中,合力对卫星所做的总功是多大?(2)两次“点火”过程中高压气体对卫星所做的总功是多少?解析:(1)卫星沿轨道Ⅰ做圆周运动,满足G=m=mg,故E k1=m==mgR,卫星沿轨道Ⅲ做圆周运动,则G=m,E k2=m=,合力做的功W=E k2-E k1=mgR(-)=-.(2)卫星在轨道Ⅰ上的引力势能E p1=-=-mgR,卫星在轨道Ⅲ上的引力势能E p2=-=-,高压气体所做的总功W′=(E p2+E k2)-(E p1+E k1)=(-+)-(-mgR+mgR) =.答案:(1)-(2)。
卫星圆周运动公式
卫星圆周运动公式卫星圆周运动公式描述了卫星在绕地球运动中所遵循的轨迹和速度变化规律。
本文将从地球卫星的概念入手,介绍卫星圆周运动的特征和公式推导,并探讨卫星圆周运动的应用。
地球卫星的概念地球卫星是指绕地球运动的天体,包括自然卫星和人造卫星。
自然卫星指的是月球,而人造卫星则是人类发射到太空中,绕地球运动的人造天体。
卫星可以以不同的轨道运动,常见的轨道有圆形轨道、椭圆轨道和同步轨道等。
圆周运动的特征圆周运动是指物体在绕着一个固定点或轴旋转时所遵循的运动轨迹为圆形的运动方式。
卫星圆周运动的特征主要有以下几点:1.轨道半径:卫星绕地球运动的轨道半径是一个恒定值,即圆心到卫星的距离。
轨道半径决定了卫星绕地球运动的圆周的尺寸大小。
2.周期:卫星圆周运动的周期是其绕地球一周所花费的时间,即卫星绕地球一圈的时间。
周期也是一个恒定值,与轨道半径相关。
周期长短会影响卫星的运动轨迹。
3.线速度:卫星绕地球运动的速度是线速度,它是指卫星在圆周运动中单位时间内通过的路程,为圆周长与周期之比。
在圆周运动中,线速度是恒定的。
卫星圆周运动公式的推导卫星圆周运动公式是通过对卫星运动轨迹和速度变化规律的分析,得出的描述卫星圆周运动的数学模型。
根据牛顿第二定律和万有引力定律可推导出以下卫星圆周运动公式:F = maF = GmM/r²由上述公式可得到以下公式:a = GM/r²v = 2πr/TF:受力,单位为牛。
m:卫星质量,单位为千克。
a:卫星圆周运动的加速度,单位为米/秒²。
G:万有引力常量,单位为牛•米²/千克²。
M:地球质量,单位为千克。
r:卫星绕地运动的轨道半径,单位为米。
T:卫星圆周运动的周期,单位为秒。
v:卫星圆周运动的线速度,单位为米/秒。
卫星圆周运动公式的应用卫星圆周运动公式在许多领域都有应用,以下是其中的几个方面:1.卫星通讯:卫星通讯是指通过卫星传输信号进行通讯,圆周运动公式可用于计算卫星通讯的时间和速度。
高二物理 宇宙航行
二、宇宙速度 1.第一宇宙速度: 7.9km/s 2.第二宇宙速度:11.2km/s 3.第三宇宙速度:16.7km/s
三、发射速度与环绕速度
三、发射速度与环绕速度
GM v r
7.9km/s为最小发射速度,最大环绕 速度。 轨道越高,卫星运行速度越小。 讨论: 角速度和周期与轨道半径的关系呢?
五、梦想成真
宇宙航行
一、牛顿设想
建立模型: 卫星绕地球做匀速圆周运动 设:地球质量为M,地球半径为R, 卫星距地球中心距离为r,卫星质 量为m,试求卫星运动的线速度v?
Mm v G 2 m r r
2
v
GM r
r≈R=6.4×106m M=5.98×1024Kg
v
令
GM r
r≈R=6.4×106m
M=5.98×1024Kg
求得v=7.9×103m/s=7.9km/s
二、宇宙速度 1.第一宇宙速度: 7.9km/s
GM v R
gR
物体在地面附近绕地球做匀速 圆周运动的速度。
思考:若M未知,而告诉你地球表面的 重力加速度g,则第一宇宙速度如何求?
例. 我国将要发射一颗绕月运行的探月卫 星“嫦娥1号”。设该卫星的轨道是圆 形的,且贴近月球表面。已知月球的 质量约为地球质量的1/81,月球的半径 约为地球半径的1/4,地球上的第一宇宙 速度约为7.9km/s,则该探月卫星绕月 运行的速率约为 A.0.4km/s B.1.8km/s C.11km/s D.36km/s
结论:
Mm v 4 2 根据G 2 m m r m 2 r r r T
2 2
1、线速率:v
GM r
GM 2、角速度: 3 r
3、周期: T 2 r
长沙市高中物理必修二第七章《万有引力与宇宙航行》测试题(含答案解析)
一、选择题1.我国的“神舟”系列航天飞船的成功发射和顺利返回,显示了我国航天事业取得的巨大成就。
已知地球的质量为M ,引力常量为G ,飞船的质量为m ,设飞船绕地球做匀速圆周运动的轨道半径为r ,则( )ABC .飞船在此圆轨道上运行的周期为 2D 2.2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心发射成功,这颗卫星为地球静止轨道卫星,距地面高度为H 。
已知地球半径为R ,自转周期为T ,引力常量为G 。
下列相关说法正确的是( ) A .该卫星的观测范围能覆盖整个地球赤道线B .该卫星绕地球做圆周运动的线速度大于第一宇宙速度C .可以算出地球的质量为2324πH GTD .可以算出地球的平均密度为3233π)R H GT R +(3.“神舟十一号”飞船于2016年10月17日发射,对接“天宫二号”。
若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为( ) A .0B .()2GMR h + C .()2GMmR h + D .2GMh 4.通过观察冥王星的卫星,可以推算出冥王星的质量。
假设卫星绕冥王星做匀速圆周运动,除了引力常量外,至少还需要两个物理量才能计算出冥王星的质量。
这两个物理量可以是( )A .卫星的质量和线速度B .卫星的质量和轨道半径C .卫星的质量和角速度D .卫星的运行周期和轨道半径5.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球和太阳之间的平均距离。
已知哈雷彗星近日距离大约为0.6个天文单位,其周期为76年,只考虑太阳对其引力,而忽略其它星体对其影响,则其远日距离约为( 4.2≈)A.4.2个天文单位B.18个天文单位C.35个天文单位D.42个天文单位6.电影《流浪地球》深受观众喜爱,地球最后找到了新的家园,是一颗质量比太阳大一倍的恒星。
假设地球绕该恒星做匀速圆周运动,地球中心到这颗恒星中心的距离是地球中心到太阳中心的距离的2倍,则现在地球绕新的恒星与原来绕太阳运动相比,说法正确的是()A.线速度大小是原来的2倍B.角速度大小是原来的2倍C.周期是原来的2倍D.向心加速度大小是原来的2倍7.地球赤道上有一物体随地球的自转,所受的向心力为F1,向心加速度为a1,线速度为v1,角速度为ω1;绕地球表面附近做圆周运动的人造卫星(高度忽略),所受的向心力为F2,向心加速度为a2,线速度为v2,角速度为ω2;地球的同步卫星所受的向心力为F3,向心加速度为a3,线速度为v3,角速度为ω3;地球表面的重力加速度为g,第一宇宙速度为v,假设三者质量相等,则()A.F1=F2>F3B.a1=a2=g>a3C.v1=v2=v>v3D.ω1=ω3<ω28.我国首次火星探测任务被命名为“天问一号”,图为探测任务的标识。
高考物理计算题复习《卫星变轨问题》(解析版)
《卫星变轨问题》一、计算题1.轨道进入停泊轨道,在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道。
已知卫星在停泊轨道和工作轨道的运行半径分别为a和b,地球半径为R,月球半径为r,地球表面重力加速度为g,月球表面重力加速度为。
求:地球与月球质量之比;卫星在停泊轨道上运行的线速度;卫星在工作轨道上运行的周期。
2.2班做“神舟六号”载人飞船于2005年10月12日上午9点整在酒泉航天发射场发射升空由长征运载火箭将飞船送入近地点为A、远地点为B的椭圆轨道上,A 点距地面的高度为,飞船飞行五圈后进行变轨,进入预定圆轨道,如图所示在预定圆轨道上飞行N圈所用时间为t,于10月17日凌晨在内蒙古草原成功返回已知地球表面重力加速度为g,地球半径为求:飞船在A点的加速度大小.远地点B距地面的高度.沿着椭圆轨道从A到B的时间.3.如图为某飞船先在轨道Ⅰ上绕地球做圆周运动,然后在A点变轨进入返回地球的椭圆轨道Ⅱ运动,已知飞船在轨道Ⅰ上做圆周运动的周期为T,轨道半径为r,椭圆轨道的近地点B离地心的距离为,引力常量为G,飞船的质量为m,求:地球的质量及飞船在轨道Ⅰ上的线速度大小;若规定两质点相距无限远时引力势能为零,则质量分别为M、m的两个质点相距为r时的引力势能,式中G为引力常量求飞船在A点变轨时发动机对飞船做的功.4.如图所示,“嫦娥一号”卫星在飞向月球的过程中,经“地月转移轨道”到达近月点Q,为了被月球捕获成为月球的卫星,需要在Q点进行制动减速制动之后进入轨道Ⅲ,随后在Q点再经过两次制动,最终进入环绕月球的圆形轨道Ⅰ已知“嫦娥一号卫星”在轨道Ⅰ上运动时,卫星距离月球的高度为h,月球的质量月,月球的半径为月,万有引力恒量为忽略月球自转,求:“嫦娥一号”在Q点的加速度a.“嫦娥一号”在轨道Ⅰ上绕月球做圆周运动的线速度.若规定两质点相距无际远时引力势能为零,则质量分别为M、m的两个质点相距为r时的引力势能 —,式中G为引力常量.为使“嫦娥一号”卫星在Q 点进行第一次制动后能成为月球的卫星,同时在随后的运动过程其高度都不小于轨道Ⅰ的高度h,试计算卫星第一次制动后的速度大小应满足什么条件.5.如图是发射地球同步卫星的简化轨道示意图,先将卫星发射至距地面高度为的近地轨道Ⅰ上在卫星经过A点时点火实施变轨,进入远地点为B的椭圆轨道Ⅱ上,最后在B点再次点火,将卫星送入同步轨道Ⅲ已知地球表面的重力加速度为g,地球自转周期为T,地球的半径为R,求:卫星在近地轨道Ⅰ上的速度大小;点距地面的高度.6.为了探测X星球,载着登陆舱的探测飞船在该星球中心为圆心,半径为的圆轨道上运动,周期为,总质量为。
人造地球卫星运行问题的几个原则
人造地球卫星运行问题的几个原则人造地球卫星的运行问题的分析和求解,需综合运用万有引力定律、牛顿第二定律等力学规律及方法,分析与求解人造地球卫星运行类问题遵从以下几个原则。
1.轨道球心同面原则轨道球心同面原则,是说人造地球卫星的运行轨道平面必通过地球球心。
设想有一人造地球卫星的运行轨道不通过地心,而仅垂直于地轴,如图1所示。
则卫星将在地球对其的万有引力F的分量F2作用下绕地轴做圆周运动;同时在F的分量F1的作用下在地球赤道平面上下振动。
这样,这个卫星的运行轨道将成为螺旋线,而不是圆形轨道了,这样的轨道显然是不存在的。
各种人造地球卫星的运行轨道,不论是圆还是椭圆,其轨道平面一定通过地球球心,不存在轨道平面不通过地球球心的运行轨道。
但轨道平面不一定都要与赤道平面重合,目前常见的有与赤道平面重合的赤道轨道,若轨道上运行的卫星的周期与地球自转周期相同,卫星相对地面静止,这种卫星主要用于通讯;有轨道平面与赤道平面垂直且经过两极的极地轨道,卫星在绕地球圆周运行的同时还沿地球自转方向从西向东转动,其周期等于地球公转周期,所以这种轨道也称太阳同步轨道;还有轨道平面既不与赤道平面重合也不垂直的轨道的倾斜轨道。
2.轨道决定一切原则设地球质量为M、半径为R,一质量为m的人造地球卫星在距地面h高度的轨道上做圆周运动,向心加速度为A、线速度为v、角速度为ω、周期为T。
由牛顿第二定律和万有引力定律有:或,而、。
解以上几式得:,,,。
由此结果可以看出,影响卫星运动情况的与卫星有关的参数中仅仅是卫星的轨道半径。
3.速度影响轨道原则在某确定轨道(半径一定)上圆周运动的卫星,由于某种原因的影响,若速度为生了变化,由基本关系式可以得出:。
由此知,轨道半径随卫星运行速度的增大而减小,这一过程中引力对卫星做正功,又使卫星的速度增大;随卫星运行速度的减小而增大,这一过程中引力对卫星做负功,又使卫星速度减小,直到在新的轨道上以新的速度运行,此时又有。
高中物理力学经典的题库(含答案)
高中物理力学计算题汇总经典精解(50题)1.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m·s2)图1-732.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算:(1)飞机在竖直方向上产生的加速度多大?方向怎样?(2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2)(3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人体的什么部位?(注:飞机上乘客所系的安全带是固定连结在飞机座椅和乘客腰部的较宽的带子,它使乘客与飞机座椅连为一体)3.宇航员在月球上自高h处以初速度v0水平抛出一小球,测出水平射程为L(地面平坦),已知月球半径为R,若在月球上发射一颗月球的卫星,它在月球表面附近环绕月球运行的周期是多少?4.把一个质量是2kg的物块放在水平面上,用12N的水平拉力使物体从静止开始运动,物块与水平面的动摩擦因数为0.2,物块运动2秒末撤去拉力,g取10m/s2.求(1)2秒末物块的即时速度.(2)此后物块在水平面上还能滑行的最大距离.5.如图1-74所示,一个人用与水平方向成θ=30°角的斜向下的推力F推一个重G=200N的箱子匀速前进,箱子与地面间的动摩擦因数为μ=0.40(g=10m/s2).求图1-74(1)推力F的大小.(2)若人不改变推力F的大小,只把力的方向变为水平去推这个静止的箱子,推力作用时间t=3.0s后撤去,箱子最远运动多长距离?6.一网球运动员在离开网的距离为12m处沿水平方向发球,发球高度为2.4m,网的高度为0.9m.(1)若网球在网上0.1m处越过,求网球的初速度.(2)若按上述初速度发球,求该网球落地点到网的距离.取g=10/m·s2,不考虑空气阻力.7.在光滑的水平面内,一质量m=1kg的质点以速度v0=10m/s沿x轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求:图1-70(1)如果质点的运动轨迹与直线OA相交于P点,则质点从O点到P点所经历的时间以及P的坐标;(2)质点经过P点时的速度.8.如图1-71甲所示,质量为1kg的物体置于固定斜面上,对物体施以平行于斜面向上的拉力F,1s末后将拉力撤去.物体运动的v-t图象如图1-71乙,试求拉力F.图1-719.一平直的传送带以速率v=2m/s匀速运行,在A处把物体轻轻地放到传送带上,经过时间t=6s,物体到达B处.A、B相距L=10m.则物体在传送带上匀加速运动的时间是多少?如果提高传送带的运行速率,物体能较快地传送到B处.要让物体以最短的时间从A处传送到B处,说明并计算传送带的运行速率至少应为多大?若使传送带的运行速率在此基础上再增大1倍,则物体从A传送到B的时间又是多少?10.如图1-72所示,火箭内平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的17/18,已知地球半径为R,求火箭此时离地面的高度.(g为地面附近的重力加速度)图1-7211.地球质量为M,半径为R,万有引力常量为G,发射一颗绕地球表面附近做圆周运动的人造卫星,卫星的速度称为第一宇宙速度.(1)试推导由上述各量表达的第一宇宙速度的计算式,要求写出推导依据.(2)若已知第一宇宙速度的大小为v=7.9km/s,地球半径R=6.4×103km,万有引力常量G=(2/3)×10-10N·m2/kg2,求地球质量(结果要求保留二位有效数字).12.如图1-75所示,质量2.0kg的小车放在光滑水平面上,在小车右端放一质量为1.0kg的物块,物块与小车之间的动摩擦因数为0.5,当物块与小车同时分别受到水平向左F1=6.0N的拉力和水平向右F2=9.0N的拉力,经0.4s同时撤去两力,为使物块不从小车上滑下,求小车最少要多长.(g取10m/s2)图1-7513.如图1-76所示,带弧形轨道的小车放在上表面光滑的静止浮于水面的船上,车左端被固定在船上的物体挡住,小车的弧形轨道和水平部分在B点相切,且AB段光滑,BC段粗糙.现有一个离车的BC面高为h的木块由A点自静止滑下,最终停在车面上BC段的某处.已知木块、车、船的质量分别为m1=m,m2=2m,m3=3m;木块与车表面间的动摩擦因数μ=0.4,水对船的阻力不计,求木块在BC面上滑行的距离s是多少?(设船足够长)图1-7614.如图1-77所示,一条不可伸长的轻绳长为L,一端用手握住,另一端系一质量为m的小球,今使手握的一端在水平桌面上做半径为R、角速度为ω的匀速圆周运动,且使绳始终与半径R的圆相切,小球也将在同一水平面内做匀速圆周运动,若人手做功的功率为P,求:图1-77(1)小球做匀速圆周运动的线速度大小.(2)小球在运动过程中所受到的摩擦阻力的大小.15.如图1-78所示,长为L=0.50m的木板AB静止、固定在水平面上,在AB的左端面有一质量为M=0.48kg的小木块C(可视为质点),现有一质量为m=20g的子弹以v0=75m/s的速度射向小木块C并留在小木块中.已知小木块C与木板AB之间的动摩擦因数为μ=0.1.(g取10m/s2)图1-78(1)求小木块C运动至AB右端面时的速度大小v2.(2)若将木板AB固定在以u=1.0m/s恒定速度向右运动的小车上(小车质量远大于小木块C的质量),小木块C仍放在木板AB的A端,子弹以v0′=76m/s的速度射向小木块C并留在小木块中,求小木块C运动至AB右端面的过程中小车向右运动的距离s.16.如图1-79所示,一质量M=2kg的长木板B静止于光滑水平面上,B的右边放有竖直挡板.现有一小物体A(可视为质点)质量m=1kg,以速度v0=6m/s从B的左端水平滑上B,已知A和B间的动摩擦因数μ=0.2,B与竖直挡板的碰撞时间极短,且碰撞时无机械能损失.图1-79(1)若B的右端距挡板s=4m,要使A最终不脱离B,则木板B的长度至少多长?(2)若B的右端距挡板s=0.5m,要使A最终不脱离B,则木板B的长度至少多长?17.如图1-80所示,长木板A右边固定着一个挡板,包括挡板在内的总质量为1.5M,静止在光滑的水平地面上.小木块B质量为M,从A的左端开始以初速度v0在A上滑动,滑到右端与挡板发生碰撞,已知碰撞过程时间极短,碰后木块B恰好滑到A的左端就停止滑动.已知B与A间的动摩擦因数为μ,B在A板上单程滑行长度为l.求:图1-80(1)若μl=3v02/160g,在B与挡板碰撞后的运动过程中,摩擦力对木板A做正功还是负功?做多少功?(2)讨论A和B在整个运动过程中,是否有可能在某一段时间里运动方向是向左的.如果不可能,说明理由;如果可能,求出发生这种情况的条件.18.在某市区内,一辆小汽车在平直的公路上以速度vA向东匀速行驶,一位观光游客正由南向北从班马线上横过马路.汽车司机发现前方有危险(游客正在D处)经0.7s作出反应,紧急刹车,但仍将正步行至B处的游客撞伤,该汽车最终在C处停下.为了清晰了解事故现场.现以图1-81示之:为了判断汽车司机是否超速行驶,警方派一警车以法定最高速度vm=14.0m/s行驶在同一马路的同一地段,在肇事汽车的起始制动点A紧急刹车,经31.5m后停下来.在事故现场测得AB=17.5m、BC=14.0m、BD=2.6m.问图1-81①该肇事汽车的初速度vA是多大?②游客横过马路的速度大小?(g取10m/s2)19.如图1-82所示,质量mA=10kg的物块A与质量mB=2kg的物块B放在倾角θ=30°的光滑斜面上处于静止状态,轻质弹簧一端与物块B连接,另一端与固定挡板连接,弹簧的劲度系数k=400N/m.现给物块A施加一个平行于斜面向上的力F,使物块A沿斜面向上做匀加速运动,已知力F在前0.2s内为变力,0.2s后为恒力,求(g取10m/s2)图1-82(1)力F的最大值与最小值;(2)力F由最小值达到最大值的过程中,物块A所增加的重力势能.20.如图1-83所示,滑块A、B的质量分别为m1与m2,m1<m2,由轻质弹簧相连接,置于水平的气垫导轨上.用一轻绳把两滑块拉至最近,使弹簧处于最大压缩状态后绑紧.两滑块一起以恒定的速度v0向右滑动.突然,轻绳断开.当弹簧伸长至本身的自然长度时,滑块A的速度正好为零.问在以后的运动过程中,滑块B是否会有速度等于零的时刻?试通过定量分析,证明你的结论.图1-8321.如图1-84所示,表面粗糙的圆盘以恒定角速度ω匀速转动,质量为m的物体与转轴间系有一轻质弹簧,已知弹簧的原长大于圆盘半径.弹簧的劲度系数为k,物体在距转轴R处恰好能随圆盘一起转动而无相对滑动,现将物体沿半径方向移动一小段距离,若移动后,物体仍能与圆盘一起转动,且保持相对静止,则需要的条件是什么?图1-8422.设人造地球卫星绕地球作匀速圆周运动,根据万有引力定律、牛顿运动定律及周期的概念,论述人造地球卫星随着轨道半径的增加,它的线速度变小,周期变大.23.一质点做匀加速直线运动,其加速度为a,某时刻通过A点,经时间T通过B点,发生的位移为s1,再经过时间T通过C点,又经过第三个时间T通过D点,在第三个时间T内发生的位移为s3,试利用匀变速直线运动公式证明:a=(s3-s1)/2T2.24.小车拖着纸带做直线运动,打点计时器在纸带上打下了一系列的点.如何根据纸带上的点证明小车在做匀变速运动?说出判断依据并作出相应的证明.25.如图1-80所示,质量为1kg的小物块以5m/s的初速度滑上一块原来静止在水平面上的木板,木板的质量为4kg.经过时间2s以后,物块从木板的另一端以1m/s相对地的速度滑出,在这一过程中木板的位移为0.5m,求木板与水平面间的动摩擦因数.图1-80图1-8126.如图1-81所示,在光滑地面上并排放两个相同的木块,长度皆为l=1.00m,在左边木块的最左端放一小金属块,它的质量等于一个木块的质量,开始小金属块以初速度v0=2.00m/s向右滑动,金属块与木块之间的滑动摩擦因数μ=0.10,g取10m/s2,求:木块的最后速度.27.如图1-82所示,A、B两个物体靠在一起,放在光滑水平面上,它们的质量分别为mA=3kg、mB=6kg,今用水平力FA推A,用水平力FB拉B,FA和FB随时间变化的关系是FA=9-2t(N),FB=3+2t(N).求从t=0到A、B脱离,它们的位移是多少?图1-82图1-8328.如图1-83所示,木块A、B靠拢置于光滑的水平地面上.A、B的质量分别是2kg、3kg,A的长度是0.5m,另一质量是1kg、可视为质点的滑块C以速度v0=3m/s沿水平方向滑到A上,C与A、B间的动摩擦因数都相等,已知C由A滑向B的速度是v=2m/s,求:(1)C与A、B之间的动摩擦因数;(2)C在B上相对B滑行多大距离?(3)C在B上滑行过程中,B滑行了多远?(4)C在A、B上共滑行了多长时间?29.如图1-84所示,一质量为m的滑块能在倾角为θ的斜面上以a=(gsinθ)/2匀加速下滑,若用一水平推力F作用于滑块,使之能静止在斜面上.求推力F的大小.图1-84图1-8530.如图1-85所示,AB和CD为两个对称斜面,其上部足够长,下部分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为120°,半径R=2.0m,一个质量为m=1kg的物体在离弧高度为h=3.0m处,以初速度4.0m/s沿斜面运动,若物体与两斜面间的动摩擦因数μ=0.2,重力加速度g=10m/s2,则(1)物体在斜面上(不包括圆弧部分)走过路程的最大值为多少?(2)试描述物体最终的运动情况.(3)物体对圆弧最低点的最大压力和最小压力分别为多少?31.如图1-86所示,一质量为500kg的木箱放在质量为2000kg的平板车的后部,木箱到驾驶室的距离L=1.6m,已知木箱与车板间的动摩擦因数μ=0.484,平板车在运动过程中所受阻力是车和箱总重的0.20倍,平板车以v0=22.0m/s恒定速度行驶,突然驾驶员刹车使车做匀减速运动,为使木箱不撞击驾驶室.g取1m/s2,试求:(1)从刹车开始到平板车完全停止至少要经过多长时间.(2)驾驶员刹车时的制动力不能超过多大.图1-86图1-8732.如图1-87所示,1、2两木块用绷直的细绳连接,放在水平面上,其质量分别为m1=1.0kg、m2=2.0kg,它们与水平面间的动摩擦因数均为μ=0.10.在t=0时开始用向右的水平拉力F=6.0N拉木块2和木块1同时开始运动,过一段时间细绳断开,到t=6.0s时1、2两木块相距Δs=22.0m(细绳长度可忽略),木块1早已停止.求此时木块2的动能.(g取10m/s2)33.如图1-88甲所示,质量为M、长L=1.0m、右端带有竖直挡板的木板B静止在光滑水平面上,一个质量为m的小木块(可视为质点)A以水平速度v0=4.0m/s滑上B的左端,之后与右端挡板碰撞,最后恰好滑到木板B的左端,已知M/m=3,并设A与挡板碰撞时无机械能损失,碰撞时间可以忽略不计,g取10m/s2.求(1)A、B最后速度;(2)木块A与木板B之间的动摩擦因数.(3)木块A与木板B相碰前后木板B的速度,再在图1-88乙所给坐标中画出此过程中B相对地的v-t图线.图1-8834.两个物体质量分别为m1和m2,m1原来静止,m2以速度v0向右运动,如图1-89所示,它们同时开始受到大小相等、方向与v0相同的恒力F的作用,它们能不能在某一时刻达到相同的速度?说明判断的理由.图1-89图1-90图1-9135.如图1-90所示,ABC是光滑半圆形轨道,其直径AOC处于竖直方向,长为0.8m.半径OB处于水平方向.质量为m的小球自A点以初速度v水平射入,求:(1)欲使小球沿轨道运动,其水平初速度v的最小值是多少?(2)若小球的水平初速度v小于(1)中的最小值,小球有无可能经过B点?若能,求出水平初速度大小满足的条件,若不能,请说明理由.(g取10m/s2,小球和轨道相碰时无能量损失而不反弹)36.试证明太空中任何天体表面附近卫星的运动周期与该天体密度的平方根成反比.37.在光滑水平面上有一质量为0.2kg的小球,以5.0m/s的速度向前运动,与一个质量为0.3kg的静止的木块发生碰撞,假设碰撞后木块的速度为4.2m/s,试论证这种假设是否合理.38.如图1-91所示在光滑水平地面上,停着一辆玩具汽车,小车上的平台A是粗糙的,并靠在光滑的水平桌面旁,现有一质量为m的小物体C以速度v0沿水平桌面自左向右运动,滑过平台A后,恰能落在小车底面的前端B处,并粘合在一起,已知小车的质量为M,平台A离车底平面的高度OA=h,又OB=s,求:(1)物体C刚离开平台时,小车获得的速度;(2)物体与小车相互作用的过程中,系统损失的机械能.39.一质量M=2kg的长木板B静止于光滑水平面上,B的右端离竖直挡板0.5m,现有一小物体A(可视为质点)质量m=1kg,以一定速度v0从B的左端水平滑上B,如图1-92所示,已知A和B间的动摩擦因数μ=0.2,B与竖直挡板的碰撞时间极短,且碰撞前后速度大小不变.①若v0=2m/s,要使A最终不脱离B,则木板B的长度至少多长?②若v0=4m/s,要使A最终不脱离B,则木板B又至少有多长?(g取10m/s2)图1-92图1-9340.在光滑水平面上静置有质量均为m的木板AB和滑块CD,木板AB上表面粗糙,动摩擦因数为μ,滑块CD上表面为光滑的1/4圆弧,它们紧靠在一起,如图1-93所示.一可视为质点的物块P质量也为m,它从木板AB右端以初速v0滑入,过B点时速度为v0/2,后又滑上滑块,最终恰好滑到最高点C处,求:(1)物块滑到B处时,木板的速度vAB;(2)木板的长度L;(3)物块滑到C处时滑块CD的动能.41.一平直长木板C静止在光滑水平面上,今有两小物块A和B分别以2v0和v0的初速度沿同一直线从长木板C两端相向水平地滑上长木板,如图1-94所示.设A、B两小物块与长木板C间的动摩擦因数均为μ,A、B、C三者质量相等.①若A、B两小物块不发生碰撞,则由开始滑上C到静止在C上止,B通过的总路程是多大?经过的时间多长?②为使A、B两小物块不发生碰撞,长木板C的长度至少多大?图1-94图1-9542.在光滑的水平面上停放着一辆质量为M的小车,质量为m的物体与一轻弹簧固定相连,弹簧的另一端与小车左端固定连接,将弹簧压缩后用细线将m栓住,m静止在小车上的A点,如图1-95所示.设m与M间的动摩擦因数为μ,O点为弹簧原长位置,将细线烧断后,m、M开始运动.(1)当物体m位于O点左侧还是右侧,物体m的速度最大?简要说明理由.(2)若物体m达到最大速度v1时,物体m已相对小车移动了距离s.求此时M的速度v2和这一过程中弹簧释放的弹性势能Ep?(3)判断m与M的最终运动状态是静止、匀速运动还是相对往复运动?并简要说明理由.43.如图1-96所示,AOB是光滑水平轨道,BC是半径为R的光滑1/4圆弧轨道,两轨道恰好相切.质量为M的小木块静止在O点,一质量为m的小子弹以某一初速度水平向右射入小木块内,并留在其中和小木块一起运动,恰能到达圆弧最高点C(小木块和子弹均可看成质点).问:(1)子弹入射前的速度?(2)若每当小木块返回或停止在O点时,立即有相同的子弹射入小木块,并留在其中,则当第9颗子弹射入小木块后,小木块沿圆弧能上升的最大高度为多少?图1-96图1-9744.如图1-97所示,一辆质量m=2kg的平板车左端放有质量M=3kg的小滑块,滑块与平板车间的动摩擦因数μ=0.4.开始时平板车和滑块共同以v0=2m/s的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短且碰撞后平板车速度大小保持不变,但方向与原来相反,平板车足够长,以至滑块不会滑到平板车右端.(取g=10m/s2)求:(1)平板车第一次与墙壁碰撞后向左运动的最大距离.(2)平板车第二次与墙壁碰撞前瞬间的速度v.(3)为使滑块始终不会从平板车右端滑下,平板车至少多长?(M可当作质点处理)45.如图1-98所示,质量为0.3kg的小车静止在光滑轨道上,在它的下面挂一个质量为0.1kg的小球B,车旁有一支架被固定在轨道上,支架上O点悬挂一个质量仍为0.1kg的小球A,两球的球心至悬挂点的距离均为0.2m.当两球静止时刚好相切,两球心位于同一水平线上,两条悬线竖直并相互平行.若将A球向左拉到图中的虚线所示的位置后从静止释放,与B球发生碰撞,如果碰撞过程中无机械能损失,求碰撞后B球上升的最大高度和小车所能获得的最大速度.图1-98图1-9946.如图1-99所示,一条不可伸缩的轻绳长为l,一端用手握着,另一端系一个小球,今使手握的一端在水平桌面上做半径为r、角速度为ω的匀速圆周运动,且使绳始终与半径为r的圆相切,小球也将在同一水平面内做匀速圆周运动.若人手提供的功率恒为P,求:(1)小球做圆周运动的线速度大小;(2)小球在运动过程中所受到的摩擦阻力的大小.47.如图1-100所示,一个框架质量m1=200g,通过定滑轮用绳子挂在轻弹簧的一端,弹簧的另一端固定在墙上,当系统静止时,弹簧伸长了10cm,另有一粘性物体质量m2=200g,从距框架底板H=30cm的上方由静止开始自由下落,并用很短时间粘在底板上.g取10m/s2,设弹簧右端一直没有碰到滑轮,不计滑轮摩擦,求框架向下移动的最大距离h多大?图1-100图1-101图1-10248.如图1-101所示,在光滑的水平面上,有两个质量都是M的小车A和B,两车之间用轻质弹簧相连,它们以共同的速度v0向右运动,另有一质量为m=M/2的粘性物体,从高处自由落下,正好落在A车上,并与之粘合在一起,求这以后的运动过程中,弹簧获得的最大弹性势能E.49.一轻弹簧直立在地面上,其劲度系数为k=400N/m,在弹簧的上端与盒子A连接在一起,盒子内装物体B,B的上下表面恰与盒子接触,如图1-102所示,A和B的质量mA=mB=1kg,g=10m/s2,不计阻力,先将A向上抬高使弹簧伸长5cm后从静止释放,A和B一起做上下方向的简谐运动,已知弹簧的弹性势能决定于弹簧的形变大小.(1)试求A的振幅;(2)试求B的最大速率;(3)试求在最高点和最低点A对B的作用力.参考解题过程与答案1.解:由匀加速运动的公式v2=v02+2as得物块沿斜面下滑的加速度为a=v2/2s=1.42/(2×1.4)=0.7ms-2,由于a<gsinθ=5ms-2,可知物块受到摩擦力的作用.图3分析物块受力,它受3个力,如图3.对于沿斜面的方向和垂直于斜面的方向,由牛顿定律有mgsinθ-f1=ma,mgcosθ-N1=0,分析木楔受力,它受5个力作用,如图3所示.对于水平方向,由牛顿定律有f2+f1cosθ-N1sinθ=0,由此可解得地面的作用于木楔的摩擦力f2=mgcosθsinθ-(mgsinθ-ma)cosθ=macosθ=1×0.7×(/2)=0.61N.此力的方向与图中所设的一致(由指向).2.解:(1)飞机原先是水平飞行的,由于垂直气流的作用,飞机在竖直方向上的运动可看成初速度为零的匀加速直线运动,根据h=(1/2)at2,得a=2h/t2,代入h=1700m,t=10s,得a=(2×1700/102)(m/s2)=34m/s2,方向竖直向下.(2)飞机在向下做加速运动的过程中,若乘客已系好安全带,使机上乘客产生加速度的力是向下重力和安全带拉力的合力.设乘客质量为m,安全带提供的竖直向下拉力为F,根据牛顿第二定律F+mg=ma,得安全带拉力F=m(a-g)=m(34-10)N=24m(N),∴安全带提供的拉力相当于乘客体重的倍数n=F/mg=24mN/m·10N=2.4(倍).(3)若乘客未系安全带,飞机向下的加速度为34m/s2,人向下加速度为10m/s2,飞机向下的加速度大于人的加速度,所以人对飞机将向上运动,会使头部受到严重伤害.3.解:设月球表面重力加速度为g,根据平抛运动规律,有h=(1/2)gt2,①水平射程为L=v0t,②联立①②得g=2hv02/L2.③根据牛顿第二定律,得mg=m(2π/T)2R,④联立③④得T=(πL/v0h).⑤4.解:前2秒内,有F-f=ma1,f=μN,N=mg,则a1=(F-μmg)/m=4m/s2,vt=a1t=8m/s,撤去F以后a2=f/m=2m/s,s=v12/2a2=16m.5.解:(1)用力斜向下推时,箱子匀速运动,则有Fcosθ=f,f=μN,N=G+Fsinθ,联立以上三式代数据,得F=1.2×102N.(2)若水平用力推箱子时,据牛顿第二定律,得F合=ma,则有F-μN=ma,N=G,联立解得a=2.0m/s2.v=at=2.0×3.0m/s=6.0m/s,s=(1/2)at2=(1/2)×2.0×3.02m/s=9.0m,推力停止作用后a′=f/m=4.0m/s2(方向向左),s′=v2/2a′=4.5m,则s总=s+s′=13.5m.6.解:根据题中说明,该运动员发球后,网球做平抛运动.以v表示初速度,H表示网球开始运动时离地面的高度(即发球高度),s1表示网球开始运动时与网的水平距离(即运动员离开网的距离),t1表示网球通过网上的时刻,h表示网球通过网上时离地面的高度,由平抛运动规律得到s1=vt1,H-h=(1/2)gt12,消去t1,得v=m/s,v≈23m/s.以t2表示网球落地的时刻,s2表示网球开始运动的地点与落地点的水平距离,s表示网球落地点与网的水平距离,由平抛运动规律得到H=(1/2)gt22,s2=vt2,消去t2,得s2=v2Hg≈16m,网球落地点到网的距离s=s2-s1≈4m. 7.解:设经过时间t,物体到达P点(1)xP=v0t,yP=(1/2)(F/m)t2,xP/yP=ctg37°,联解得t=3s,x=30m,y=22.5m,坐标(30m,22.5m)(2)vy=(F/m)t=15m/s,∴v=220yv v += 513m/s,tgα=vy/v0=15/10=3/2,∴α=arctg(3/2),α为v与水平方向的夹角. 8.解:在0~1s内,由v-t图象,知a1=12m/s2,由牛顿第二定律,得F-μmgcosθ-mgsinθ=ma1,①在0~2s内,由v-t图象,知a2=-6m/s2,因为此时物体具有斜向上的初速度,故由牛顿第二定律,得 -μmgcosθ-mgsinθ=ma2,②②式代入①式,得F=18N.9.解:在传送带的运行速率较小、传送时间较长时,物体从A到B需经历匀加速运动和匀速运动两个过程,设物体匀加速运动的时间为t1,则(v/2)t1+v(t-t1)=L,所以t1=2(vt-L)/v=(2×(2×6-10)/2)s=2s.为使物体从A至B所用时间最短,物体必须始终处于加速状态,由于物体与传送带之间的滑动摩擦力不变,所以其加速度也不变.而a=v/t=1m/s2.设物体从A至B所用最短的时间为t2,则 (1/2)at22=L,t2=2L a =2101⨯=25s.vmin=at2=1×25m/s=25m/s. 传送带速度再增大1倍,物体仍做加速度为1m/s2的匀加速运动,从A至B的传送时间为4.5.10.解:启动前N1=mg,升到某高度时N2=(17/18)N1=(17/18)mg,对测试仪N2-mg′=ma=m(g/2), ∴g′=(8/18)g=(4/9)g,GmM/R2=mg,GmM/(R+h)2=mg′,解得:h=(1/2)R.11.解:(1)设卫星质量为m,它在地球附近做圆周运动,半径可取为地球半径R,运动速度为v,有 GMm/R2=mv2/R得v=GM R.(2)由(1)得:M=v2R/G==6.0×1024kg. 12.解:对物块:F1-μmg=ma1,6-0.5×1×10=1·a1,a1=1.0m/s2,s1=(1/2)a1t2=(1/2)×1×0.42=0.08m,v1=a1t=1×0.4=0.4m/s,对小车:F2-μmg=Ma2,9-0.5×1×10=2a2,a2=2.0m/s2,s2=(1/2)a2t2=(1/2)×2×0.42=0.16m,v2=a2t=2×0.4=0.8m/s,撤去两力后,动量守恒,有Mv2-mv1=(M+m)v,v=0.4m/s(向右), ∵((1/2)mv12+(1/2)Mv22)-(1/2)(m+M)v2=μmgs3,s3=0.096m,∴l=s1+s2+s3=0.336m.13.解:设木块到B时速度为v0,车与船的速度为v1,对木块、车、船系统,有 m1gh=(m1v02/2)+((m2+m3)v12/2),m1v0=(m2+m3)v1, 解得v0=5gh 15,v1=gh15. 木块到B后,船以v1继续向左匀速运动,木块和车最终以共同速度v2向右运动,对木块和车系统,有 m1v0-m2v1=(m1+m2)v2,μm1gs=((m1v02/2)+(m2v12/2))-((m1+m2)v22/2), 得v2=v1gh152h. 14.解:(1)小球的角速度与手转动的角速度必定相等均为ω.设小球做圆周运动的半径为r,线速度为v.由几何关系得r=22L R +,v=ω·r,解得v=ω22L R +.(2)设手对绳的拉力为F,手的线速度为v,由功率公式得P=Fv=F·ωR,∴F=P/ωR.小球的受力情况如图4所示,因为小球做匀速圆周运动,所以切向合力为零,即 Fsinθ=f,其中sinθ=R/22L R +,联立解得f=P/ω22L R +.15.解:(1)用v1表示子弹射入木块C后两者的共同速度,由于子弹射入木块C时间极短,系统动量守恒,有 mv0=(m+M)v1,∴v1=mv0/(m+M)=3m/s,子弹和木块C在AB木板上滑动,由动能定理得:(1/2)(m+M)v22-(1/2)(m+M)v12=-μ(m+M)gL,解得v2=21v 2gL -μ=22m/s.(2)用v′表示子弹射入木块C后两者的共同速度,由动量守恒定律,得mv0′+Mu=(m+M)v1′,解得v1′=4m/s.木块C及子弹在AB木板表面上做匀减速运动a=μg.设木块C和子弹滑至AB板右端的时间为t,则木块C和子弹的位移s1=v1′t-(1/2)at2,由于m车≥(m+M),故小车及木块AB仍做匀速直线运动,小车及木板AB的位移s=ut,由图5可知:s1=s+L, 联立以上四式并代入数据得:t2-6t+1=0,解得:t=(3-22)s,(t=(3+22)s不合题意舍去),(11)∴s=ut=0.18m.16.解:(1)设A滑上B后达到共同速度前并未碰到档板,则根据动量守恒定律得它们的共同速度为v,有图5mv0=(M+m)v,解得v=2m/s,在这一过程中,B的位移为sB=vB2/2aB且aB=μmg/M,解得sB=Mv2/2μmg=2×22/2×0.2×1×10=2m.设这一过程中,A、B的相对位移为s1,根据系统的动能定理,得μmgs1=(1/2)mv02-(1/2)(M+m)v2,解得s1=6m.当s=4m时,A、B达到共同速度v=2m/s后再匀速向前运动2m碰到挡板,B碰到竖直挡板后,根据动量守恒定律得A、B最后相对静止时的速度为v′,则Mv-mv=(M+m)v′,解得v′=(2/3)m/s. 在这一过程中,A、B的相对位移为s2,根据系统的动能定理,得 μmgs2=(1/2)(M+m)v2-(1/2)(M+m)v′2, 解得s2=2.67m.因此,A、B最终不脱离的木板最小长度为s1+s2=8.67m(2)因B离竖直档板的距离s=0.5m<2m,所以碰到档板时,A、B未达到相对静止,此时B的速度vB为 vB2=2aBs=(2μmg/M)s,解得vB=1m/s, 设此时A的速度为vA,根据动量守恒定律,得mv0=MvB+mvA,解得vA=4m/s,设在这一过程中,A、B发生的相对位移为s1′,根据动能定理得:。
卫星做圆周运动的向心力必须指向地心
二、宇宙速度
建立模型:卫星绕地球做匀速圆周运动 基本思路:卫星绕地球做圆周运动的向心力由地 球对卫星的万有引力提供。 Mm v2
G
r2
=m
r
v=
GM r
请同学们计算:已知地球半径R=6400km,地球质量 M=6.0×1024kg,卫星在地面附近环绕地球作匀速圆 周运动所必须具有的速度有多大?
思考与讨论:
人造卫星在地球表面做圆周运动的周期最小是多少?
Mm 4 π G 2 = m 2 R R T
2
Mm mg = G 2 R
R =84.6min T= 2 π g
2 πR 或: T = =84.6min v
思考:人造卫星的周期能否为24小时?
三、梦想成真
1、所谓地球同步卫星是指 相对于地心静止的人造卫星, 它在轨道上跟着地球自转, 同步地做匀速圆周运动,它 的周期:T=24h 2、所有的同步卫星只能分布在赤道上方的一个 确定轨道上 ,即同步卫星轨道平面与地球赤道 平面重合,卫星离地面高度为定值。
根据:卫星做圆周运动的 向心力必须指向地心。
卫星运动轨道特点: 万有引力提供向心力,所以 轨道平面一定经过地球中心, 卫星围绕地球的中心做匀速圆 周运动。
同步卫星发射过程
卫星的变轨问题
四、梦想成真
世界航天史
思考:卫星运动的线速度、角速度 和周期与轨道半径的关系呢? 即:人造卫星的运动有何规律?
F
M 地m卫 GM 地 v2 (1) 由 G m卫 得:v 2 r r r
M 地m卫 GM 地 2 (2) 由 G m卫 r得: 2 3 r r 2 3 M 地 m卫 4 r (3) 由 G m卫 2 r得:T 2 2 r T GM 地
专题08 万有引力定律与航天——历年高考物理真题精选之黄金30题(解析版)
历年高考物理真题精选之黄金30题专题08 万有引力定律与航天一、单选题1.(2021·江苏·高考真题)我国航天人发扬“两弹一星”精神砥砺前行,从“东方红一号”到“北斗”不断创造奇迹。
“北斗”第49颗卫星的发射迈出组网的关键一步。
该卫星绕地球做圆周运动,运动周期与地球自转周期相同,轨道平面与地球赤道平面成一定夹角。
该卫星( )A .运动速度大于第一宇宙速度B .运动速度小于第一宇宙速度C .轨道半径大于“静止”在赤道上空的同步卫星D .轨道半径小于“静止”在赤道上空的同步卫星【答案】 B【解析】AB .第一宇宙速度是指绕地球表面做圆周运动的速度,是环绕地球做圆周运动的所有卫星的最大环绕速度,该卫星的运转半径远大于地球的半径,可知运行线速度小于第一宇宙速度,选项A 错误B 正确;CD .根据2224Mm G m r r T π=可知r 因为该卫星的运动周期与地球自转周期相同,等于“静止”在赤道上空的同步卫星的周期,可知该卫星的轨道半径等于“静止”在赤道上空的同步卫星的轨道半径,选项CD 错误。
故选B 。
2.(2021·山东·高考真题)从“玉兔”登月到“祝融”探火,我国星际探测事业实现了由地月系到行星际的跨越。
已知火星质量约为月球的9倍,半径约为月球的2倍,“祝融”火星车的质量约为“玉兔”月球车的2倍。
在着陆前,“祝融”和“玉兔”都会经历一个由着陆平台支撑的悬停过程。
悬停时,“祝融”与“玉兔”所受陆平台的作用力大小之比为( )A .9∶1B .9∶2C .36∶1D .72∶1【答案】 B【解析】悬停时所受平台的作用力等于万有引力,根据2mMF G R = 可得22299=:=2=22M m M m F G G F R R ⨯月祝融祝融火玉兔月玉兔火故选B 。
3.(2021·广东·高考真题)2021年4月,我国自主研发的空间站“天和”核心舱成功发射并入轨运行,若核心舱绕地球的运行可视为匀速圆周运动,已知引力常量,由下列物理量能计算出地球质量的是( )A .核心舱的质量和绕地半径B .核心舱的质量和绕地周期C .核心舱的绕地角速度和绕地周期D .核心舱的绕地线速度和绕地半径【答案】 D【解析】根据核心舱做圆周运动的向心力由地球的万有引力提供,可得222224Mm v πG m m ωr m r r r T ===可得2232324v r r r M G G GT ωπ===可知已知核心舱的质量和绕地半径、已知核心舱的质量和绕地周期以及已知核心舱的角速度和绕地周期,都不能求解地球的质量;若已知核心舱的绕地线速度和绕地半径可求解地球的质量。
高三物理天体运动试题
高三物理天体运动试题1.己知地球半径为R,地面处的重力加速度为g,一颗距离地面高度为2R的人造地球卫星绕地球做匀速圆周运动,下列关于卫星运动的说法正确的是()A.线速度大小为B.角速度为C.加速度大小为g D.周期为6π【答案】AB【解析】根据,可得线速度,所以A正确;可得角速度,所以B正确;得:,所以C错误;,得周期,故D错误。
【考点】本题考查天体运动2.某仪器在地面上受到的重力为160N,将它置于宇宙飞船中,当宇宙飞船以a=0.5g的加速度竖直上升到某高度时仪器所受的支持力为90N,取地球表面处重力加速度g=10m∕s2,地球半径R=6400km。
求:(1)此处的重力加速度的大小g’;(2)此处离地面的高度H;(3)在此高度处运行的卫星速度v.【答案】(1)(2)(3)【解析】(1)由在地表仪器重160N,可知仪器质量①根据牛顿第二定律,有②(3分)代入数据,得③(1分)(2)设此时飞船离地高度为H,地球质量为M,该高度处重力加速度④(2分)地表重力加速度⑤(1分)联立各式得⑥(1分)(3)设该高度有人造卫星速度为v,其向心力由万有引力来提供,有⑦(3分)由⑤⑦式得(1分)【考点】万有引力定律及其应用、牛顿运动定律3. 2013年12月11日,“嫦娥三号”从距月面高度为100km的环月圆轨道Ⅰ上的P点实施变轨,进入近月点为15km的椭圆轨道Ⅱ,由近月点Q成功落月,如图所示。
关于“嫦娥三号”,下列说法正确的是( )A.沿轨道Ⅰ运动至P时,需制动减速才能进入轨道ⅡB.沿轨道Ⅱ运行的周期大于沿轨道Ⅰ运行的周期C.沿轨道Ⅱ运行时,在P点的加速度大于在Q点的加速度D.在轨道Ⅱ上由P点运行到Q点的过程中,万有引力对其做负功【答案】A【解析】由图知,嫦娥三号在轨道Ⅰ上P点做圆周运动,在轨道Ⅱ上P点开始做近心运动,故在轨道Ⅱ上P点速度小于轨道Ⅰ上P点的速度,所以A正确;根据开普勒的周期定律知沿轨道Ⅱ运动的周期小于沿轨道Ⅰ运行的周期,故B错误;P点是远月点,Q点是近月点,根据万有引力,知在P点的加速度小于在Q点的加速度,所以C错误;从P到Q万有引力做正功,所以D错误。
高一上学期期中考试物理检测试题
高一上学期期中考试物理试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.关于静摩擦力的下列说法中正确的是( )A .静摩擦力的方向总是与物体运动方向相反B .受静摩擦力作用的物体一定是静止的C .静摩擦力大小与压力成正比D .静摩擦力不一定是阻力2.2021年10 月我国将首领太阳探测科学技术试验卫星“羲和号”成功发射进入预定轨道。
假设卫星绕地球做圆周运动,如图所示。
卫星轨迹是以O 为圆心。
半径等于R 的圆周。
P 、Q 为轨迹上两点,且OP ⊥OQ 。
则关于卫星从P 沿逆时针方向运动到Q 的过程中,下列说法正确的是( )A .路程先增大后减小,最终为2R πB .位移大小先增大后减小, 最终为 RC .若运动时间为t ,则平均速度大小为32R tπD .若运动时间为t , 3.如图所示为物体做直线运动的图像,下列说法错误的是( )A .甲图像中物体在0=t 到0t 这段时间内的平均速度小于02v B .乙图像中,阴影面积表示1t 到2t 时间内物体的速度变化量C .丙图像中,物体的加速度大小为0.5m/s 2D .丁图像中,5s =t 时物体的速度为5m/s4.如图所示,地面上固定一个斜面,上面叠放着A 、B 两个物块并均处于静止状态。
现对物块A 施加一斜向上的力F ,A 、B 两个物块始终处于静止状态。
则物块B 的受力个数可能是( )A .3个或4个B .4个或5个C .3个或5个D .5个或6个5.如图所示,一个物体以某一初速度沿固定的粗糙斜面向上沿直线滑行,到达最高点后,又自行向下滑行,不计空气阻力,物体与斜面间的摩擦因数处处相同。
下列图像能正确表示这一过程中速率与时间关系的是( )A .B .C .D .6.如图所示,杂技演员表演抛球游戏。
他一共有4个球,每隔相等的时间竖直向上抛出一个小球(不计一切阻力,小球间互不影响),若每个球上升的最大高度都是1.8米,忽略每个球在手中的停留的时间,重力加速度g 取10m/s 2,则杂技演员刚抛出第4个球时,第1个球和第2个球之间的距离与第3个球和第4个球之间的距离之比为( )A .1:1B .1:4C .1:3D .1:27.如图所示,小球质量为m ,被3根质量不计的相同弹簧a 、b 、c 拉住,其中c 在竖直方向,a 、b 、c 之间的夹角均为120°,小球平衡时,a 、b 、c 的弹力大小之比为3⊥3⊥1,当剪断c 的瞬间,小球的加速度及方向可能为( ) ⊥2g ,竖直向下;⊥2g ,竖直向上;⊥4g ,竖直向下;⊥4g ,竖直向上A .⊥⊥B .⊥⊥C .⊥⊥D .⊥⊥8.如图所示:光滑竖直墙壁与光滑水平地面交于B 点,质量为M 的光滑半圆柱体,紧靠竖直墙壁暨于水平地面上,O 为半圆柱体横截面的圆心。
2010高教社杯全国大学生数学建模竞赛论文之:三级火箭发射人造卫星分析
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):29所属学校(请填写完整的全名):山东理工大学参赛队员(打印并签名) :1. 魏业2. 陈军3. 郭凤娇指导教师或指导教师组负责人(打印并签名):丁树江日期: 2010 年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):三级火箭发射人造卫星分析分析摘 要发射人造卫星是一个复杂的系统工程,我们从中抽出几个问题,忽略一些次要因素将问题简化得到几个简单的数学模型。
首先通过天体物理学知识求解得到发人造卫星的在轨速度。
又通过动力守恒定律求解出火箭的飞行速度与其喷气推动力、火箭初始质量和飞行过程中的质量有关,进而分析得出提高火箭的飞行速度的简单措施。
问题一:由万有引力定律及牛顿第三定律推理得到rgR v =,当s km r 600=时,带入(5-1-3)式得:s km v 58.7=末问题二:由)(ln)(0t m m u t v =式得火箭的末速度有喷气速度及火箭在飞行中的质量决定,为了提高火箭的末速度可以通过提高喷气速度和减少火箭在飞行过程中的质量。
具体地说就是加大火箭推力,抛掉已经没用的结构,以此来加大火箭末速度。
高考物理计算题复习《卫星的运行规律》(解析版)
《卫星的运行规律》一、计算题1.高空遥感探测卫星在距地球表面高为R处绕地球转动,人造卫星质量为m,地球半径为R,地球表面重力加速度为g,万有引力常量为G。
求:人造地球卫星的运行速度大小v人造地球卫星绕地球转动的周期T;人造卫星的向心加速度a。
2.一颗卫星以轨道半径r绕地球做匀速圆周运动.已知引力常量为C,地球半径R,地球表面的重力加速度g,求:地球的质量M;该卫星绕地球运动的线速度大小v.3.两颗人造地球卫星,在同一平面上沿相同绕行方向绕地球做匀速圆周运动,它们的轨道半径分别为2R、8R,R为地球半径,地面重力加速度为g,如果我们把两卫星相距最近称为两卫星相遇,求这两颗卫星每隔多长时间相遇一次?4.人造地球卫星P绕地球球心作匀速圆周运动,已知P卫星的质量为m,距地球球心的距离为r,地球的质量为M,引力恒量为G,求:卫星P与地球间的万有引力;卫星P的运动周期;现有另一地球卫星Q,Q绕地球运行的周期是卫星P绕地球运行周期的8倍,且P、Q的运行轨迹位于同一平面内,如图所示,求卫星P、Q在绕地球运行过程中,两星间相距最近时的距离多大.5.“嫦娥四号”卫星计划在2018年底发射升空已知月球的半径为R,月球表面的重力加速度为月,引力常量为G,若嫦娥四号离月球中心的距离为求:月球的质量M;嫦娥四号的运行周期T;月球上的第一宇宙速度v.6.在圆轨道上运动的质量为m的人造地球卫星,它到地面的距离等于地球半径R,地面上的重力加速度为g,求:卫星运动的线速度;卫星运动的周期.7.由三颗星体构成的系统,忽略其它星体对它们的作用,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O在三角形所在的平面内做相同角速度的圆周运动图示为A、B、C三颗星体质量不相同时的一般情况若A星体质量为2m,B、C两星体的质量均为m,三角形的边长为a,求:星体所受合力大小;星体所受合力大小;星体的轨道半径;三星体做圆周运动的周期T.8.如图所示,A是地球的同步卫星。
万有引力与航天习题(含答案)
1-4-1 万有引力与航天43个必须掌握的习题模型1.若人造卫星绕地球做匀速圆周运动,则下列说法中正确的是( )A .卫星的轨道半径越大,它的运行速度越大B .卫星的轨道半径越大,它的运行速度越小C .卫星的质量一定时,轨道半径越大,它需要的向心力越大D .卫星的质量一定时,轨道半径越大,它需要的向心力越小2.甲、乙两颗人造地球卫星,质量相等,它们的轨道都是圆,若甲的运动周期比乙小,则( )A .甲距地面的高度比乙小B .甲的加速度一定比乙小C .甲的加速度一定比乙大D .甲的速度一定比乙大 3根据以上信息,关于地球及地球的两个邻居金星和火星(行星的运动可看作圆周运动),下列判断正 确的是( )A .金星运行的线速度最小,火星运行的线速度最大B .金星公转的向心加速度大于地球公转的向心加速度C .金星的公转周期一定比地球的公转周期小D .金星的主要大气成分是由CO 2组成的,所以可以判断气压一定很大4.如图1-4-1所示,在同一轨道平面上,有绕地球做匀速圆周运动的卫星A 、B 、C 某时刻在同一条直线上,则( )A.经过一段时间,它们将同时回到原位置B.卫星C 受到的向心力最小C.卫星B 的周期比C 小D.卫星A 的角速度最大5.某天体半径是地球半径的K 倍,密度是地球的P 倍,则该天体表面的重力加速度是地球表面重力加速度的( )A .2P K 倍B .PK倍 C .KP 倍 D .K P 2倍6.A 、B 两颗行星,质量之比p M M BA =,半径之比q R RB A =,则两行星表面的重力加速度之比为( )A. qp B. 2pq C. 2qpD.pq7.人造卫星离地球表面距离等于地球半径R ,卫星以速度v 沿圆轨道运动,设地面上的重力加速度为g ,则( )A. gR v 4=B. gR v 2=C. gR v =D. 2gR v =8.已知地球半径为R ,地面重力加速度为g . 假设地球的自转加快,则赤道上的物体就可能克服地球引力而飘浮起来,则此时地球的自转周期为( )A.g R B. g R π2 C. Rgπ2 D. gRπ21 9.组成星球的物质是靠引力吸引在一起的,这样的星球有一个最大的自转速率.如果超过了该速率,星球的万有引力将不足以维持其赤道附近的物体做圆周运动.由此能得到半径为R 、密度为ρ、质量为M 且均匀分布的星球的最小自转周期T .下列表达式中正确的是( )A .T =2πGM R /3B .T =2πGM R /33C .T =ρπG /D .T =ρπG /310.若有一艘宇宙飞船在某一行星表面做匀速圆周运动,设其周期为T ,引力常数为G ,那么该行星的平均密度为( )A. π32GTB. 23GT πC. π42GT D. 24GT π 11.地球公转的轨道半径是R 1,周期是T 1,月球绕地球运转的轨道半径是R 2,周期是T 2,则太阳质量与地球质量之比是 ( )A.22322131T R T R B.21322231T R T R C.21222221T R T R D.32223121T R T R12.地球表面重力加速度g 地、地球的半径R 地,地球的质量M 地,某飞船飞到火星上测得火星表面的重力加速度g 火、火星的半径R 火、由此可得火星的质量为( )A.地地地火火M R g R g 22B.地火火地地M R g R g 22C.地地地火火M R g R g 22 D.地地地火火M R g R g13.设在地球上和某天体上以相同的初速度竖直上抛一物体的最大高度比为k(均不计阻力),且已知地球与该天体的半径之比也为k ,则地球与此天体的质量之比为 ( )A. 1B. kC. k 2D. 1/ k14.某星球的质量约为地球的9倍,半径约为地球的一半,若从地球上高h 处平抛一物体,射程为60m ,则在该星球上,从同样高度以同样的初速度平抛同一物体,射程应为 A .10m B .15m C .90m D .360m 15以下说法正确的是( )A 、第一宇宙速度是物体在地面附近绕地球做匀速圆周运的速度B 、第一宇宙速度是使物体成为一颗人造卫星理论上最小发射速度C 、在地面附近发射卫星,如果发射速度大于7.9km/s ,而小于11.2km/s ,它绕地球运行的轨迹就是椭圆D 、紫金山天文台发现的“吴健雄星”直径为32km ,密度与地球相同,则该小行星的第一宇宙速度大小约为20m/s16土星外层上有一个环。
高一物理简答题练习试题集
高一物理简答题练习试题答案及解析1.一种厕所便桶水箱结构如图(图中略去了向水箱中注水的装置).出水口上的橡胶盖是空心的,放水时它漂浮在水面上,水从出水口流出,如图(a).随着水的流出,水面降低,直到橡胶盖盖住出水口,放水过程结束. 注水过程中和注满水后,橡胶盖都盖住出水口如图b,(1)请你判断,图(a)中空心橡胶盖所受的重力与它所受的浮力大小有什么关系.(2)请你说明,图(b)中为什么橡胶盖能紧紧地盖在出水口而不浮起.(3)这种装置的一个重要缺点是,每次冲便桶都要用掉一箱水.为节约用水,请你对橡胶盖作些改造,使得按下手柄时橡胶盖抬起放水,放开手柄后橡胶盖能立即盖上出水口,停止放水.【答案】(1) 相等(2) 在其自身重力和上部水向下压力的作用下会盖住出水口而不浮起.(3) 配重物,或在橡胶盖内心部分注入沙粒等【解析】(1)因为放水时它漂浮在水面上,所以重力和浮力相等(2)橡胶盖受到竖直向下的重力和上表面受到竖直向下的压力,故能盖在出水口而不浮起(3)若要使放开手柄后橡胶盖就立即盖上出水口,橡胶盖就要下沉,重力要大于浮力,因此要将橡胶盖适当加重,如配重物,或在橡胶盖内心部分注入沙粒等.【考点】物体的浮沉条件及其应用.2.一个质量为4kg的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数μ=0.1。
从t=0开始,物体受到一个大小和方向呈周期性变化的水平力F作用,力F随时间的变化规律如图所示。
求(1)物体在整个运动过程中的最大速度(2)79s内物体的位移大小。
g取10m/s2。
【答案】(1)4m/s (2)159m【解析】由力F随时间的变化规律图和牛顿第二定律可求出物体在前半周期和后半周期的加速度,进而判断物体的运动状态,然后根据速度时间公式求出物体在整个运动过程中的最大速度;由力F随时间的变化规律图可知,力的变化具有周期性,周期为4s,可以根据牛顿第二定律求出一个周期内的位移,79秒为20个周期少一秒,我们可以算出80s总位移再减去最后一秒的位移,即为79秒位移.(1)当物体在前半周期时由牛顿第二定律,得:解得在前半周期做匀加速运动,当物体在后半周期内,由牛顿第二定律,得:解得在后半周期内做匀减速运动,在2秒末的速度最大,最大速度为v=at=4m/s(2)前半周期和后半周期位移相等:解得所以物体每4s的运动情况相同,物体每4s(即一个周期)的位移为,考虑第80s物体运动情况:第80s初、即79s末的速度=2m/s第80s的位移所以79秒内物体的位移大小为:3.一辆值勤的警车停在公路边,当警员发现从他旁边以10m/s的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5s 后警车发动起来,并以2.5m/s2的加速度做匀加速运动,但警车的行驶速度必须控制在90km/h 以内.问:(1)警车在追赶货车的过程中,两车间的最大距离是多少?(2)判定警车在加速阶段能否追上货车?(要求通过计算说明) (3)警车发动后要多长时间才能追上货车?【答案】(1)75m ;(2)警车尚未赶上货车;(3)12s【解析】当两车的速度相等时,两车的距离最大,设经过时间t 1两车速度相等, ∵v=at ,∴ ∵,∴货车的路程s 货=v 货(t 0+t 1)=10m/s×(5.5s+4s )=95m警车的路程两车间的最大距离△s=s 货-s 警=95m-20m=75m ; (2)警车的最大速度v 警最大=90km/h=25m/s ,∵v=at ∴警车达到最大速度需要的时间 此时货车的路程s 货′=v 货(t 0+t 2)=10m/s×(5.5s+10s )=155m 警车的路程∵s 货′>s 警′,∴警车尚未追上货车;(3)警车刚达到最大速度时,两车间的距离 △s′=s 货′-s 警′=155m -125m=30m然后两车都做匀速直线运动,设再经时间△t 警车追上货车 ∵,∴警车发动后追上货车需要的时间t=t 2+△t=10s+2s=12s4. 如图所示,物块A 、木板B 的质量均为m =1kg ,不计A 的大小,B 板长L =3m 。
2023年河南省洛平许济高考物理第一次质检联考试卷+答案解析(附后)
2023年河南省洛平许济高考物理第一次质检联考试卷1. 如图所示,某运动员在200米单程50米蝶泳比赛中,成绩是03秒86,则下列说法正确的是( )A. 若运动员夺冠,则该运动员平均速度最大B. 200m是路程,03秒86是时间间隔C. 研究运动员技术动作时,运动员可被视为质点D. 运动员向后划水加速时,水对运动员的作用力大于运动员对水的作用力2. 第24届北京“冬奥会”于2022年2月4日由北京市和张家口市联合举办。
在“冬奥会”冰上项目中,冰壶比赛是极具观赏性的一个项目。
如图所示,在一次训练中,冰壶可视为质点以某一速度沿虚线做匀减速直线运动,垂直进入四个完全相同的矩形区域,到达第四个矩形区域边缘的E点时速度恰好为零。
冰壶从A点运动到D点和从B点运动到E点的平均速度大小分别为和,则与之比为( )A. :1B. :1C. :1D. :13. 如图所示,质量为的物体2放在正沿平直轨道行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为的物体1,某时刻观察到与物体1相连接的细绳与竖直方向成角,重力加速度为g,则下列说法正确的是( )A. 车厢向右减速运动B. 物体2所受底板的摩擦力大小为,方向向右C. 车厢向左加速运动D.物体2对底板的压力大小为4. 某物体从静止开始在水平恒力作用下沿光滑水平面做直线运动,经时间t立即撤去力,同时在反方向施加恒力,物体在作用下继续做直线运动,又经时间t后恰好回到出发点。
则下列关系式正确的是( )A. B. C. D.5. 明朝的《天工开物》记载了我国古代劳动人民的智慧。
如图所示,可转动的把手上a点到转轴的距离为2R,辘轳边缘b点到转轴的距离为R。
人甲转动把手,把井底的人乙拉上来,则下列判断正确的是( )A. a点的角速度大于b点的角速度B. a点的向心加速度小于b点的向心加速度C. 绳对乙拉力的冲量等于乙的动量的变化量D. 绳对乙做的功等于乙机械能的变化量6. 水平桌面上,长6m的轻绳一端固定于O点,如图所示俯视图,另一端系一质量的小球。
2019-2020学年教科版(2019)必修第二册3.4人造卫星宇宙达标作业(解析版)
3.4 人造卫星宇宙达标作业(解析版 )1.2019年 10月 5日 2时51分,我国在太原卫星发射中心用 “长征四号丙 ”运载火箭,成功 将 “高分十号 ”卫星发射升空, 卫星顺利进入略低于地球同步轨道的圆轨道, 任务获得圆满成 功。
下列关于 “高分十号 ”卫星的描述正确的是A . “高分十号 ”卫星在轨运行周期可能大于 24 小时B . “高分十号 ”卫星在轨运行速度在第一宇宙速度与第二宇宙速度之间C . “高分十号 ”卫星在轨运行的机械能一定小于同步卫星的机械能D .“高分十号 ”卫星在轨运行的向心加速度大于地球赤道上的物体随地球自转的向心加速度 2.四颗地球卫星 a 、b 、 c 、 d 的排列位置如图所示,其中, a 是静止在地球赤道上还未发射的卫星,b 是近地轨道卫星, c 是地球同步卫星, d 是高空探测卫星, 四颗卫星相比较 ( )B .相同时间内 b 转过的弧长最长C . c 相对于 b 静止D .d 的运动周期可能是 23h3.某空间站绕地球做匀速圆周运动,在空间站中不能正常使用的仪器是( )4.某卫星绕地球做圆周运动时,其动能为 E k ,该卫星做圆周运动的心加速度为近地卫星做圆周运动向心加速度的1,已知地球的半径为 R ,则该卫星在轨运行时受到地球引力的大小9为2E KEK2E KEKAKCKD K3R 3R 9R9R5. 下列说法正确的是( )A .由公式 v =ωr 可知,圆形轨道人造地球卫星的轨道半径越大则其速度越大D .地球同步卫星在其圆形轨道上运行时的角速度小于地球自转的角速度 6.如图所示, a 、b 、c 为三颗绕地球做圆周运动的人造卫星,轨迹如图。
这三颗卫星的质A .电子表B .杆秤C .电子温度计D .电压表B .由公式 v= GM可知,所有人造地球卫星离地球越远则其线速度越小C .地球同步卫星在其圆形轨道上运行时的线速度小于 7.9km/sA .a 的向心加速度最量相同,下列说法正确的是(A .三颗卫星做圆周运动的圆心相同B .三颗卫星受到地球的万有引力相同C.a、b 两颗卫星做圆周运动的角速度大小相等D.a、c 两颗卫星做圆周运动的周期相等7.2019年10月11日,中国火星探测器首次公开亮相,暂命名为“火星一号”,并计划于2020 年发射。
2023《 万有引力与航天》单元测试题(解析版)
万有引力与航天测试题一、单选题(每小题只有一个正确答案)1.物理学发展历史中,在前人研究基础上经过多年的尝试性计算,首先发表行星运动的三个定律的科学家是()A.哥白尼B.第谷C.伽利略D.开普勒2.通过一个加速装置对电子加一很大的恒力,使电子从静止开始加速,则对这个加速过程,下列描述正确的是()A.根据牛顿第二定律,电子将不断做匀加速直线运动B.电子先做匀加速直线运动,后以光速做匀速直线运动C.电子开始近似于匀加速直线运动,后来质量增大,牛顿运动定律不再适用D.电子是微观粒子,整个加速过程根本就不能用牛顿运动定律解释3.卫星绕某一行星的运动轨道可近似看成是圆轨道,观察发现每经过时间t,卫星运动所通过的弧长为L,该弧长对应的圆心角为θ弧度,如图所示.已知万有引力常量为G,由此可计算出太阳的质量为()A.M=B.M=C.D.4.宇宙中有这样一种三星系统,系统由两个质量为m的小星体和一个质量为M的大星体组成,两个小星体围绕大星体在同一圆形轨道上运行,轨道半径为r.关于该三星系统的说法中正确的是( )①在稳定运行情况下,大星体提供两小星体做圆周运动的向心力②在稳定运行情况下,大星体应在小星体轨道中心,两小星体在大星体相对的两侧③小星体运行的周期为T=④大星体运行的周期为T=A.①③ B.②③ C.①④ D.②④5.设在地球上和某天体上以相同的初速度竖直上抛一物体的最大高度比为k(均不计阻力),且已知地球与该天体的半径之比也为k,则地球与此天体的质量之比为()A. 1B.k2C.k D.6.我国绕月探测工程的预先研究和工程实施已取得重要进展.设地球、月球的质量分别为m1、m2,半径分别为R1、R2,人造地球卫星的第一宇宙速度为v,对应的环绕周期为T,则环绕月球表面附近圆轨道飞行的探测器的速度和周期分别为()A.v,T B.v,TC.v,T D.v,T7.土星周围有美丽壮观的“光环”,组成环的颗粒是大小不等、线度从1 μm到10 m的岩石、尘埃,类似于卫星,它们与土星中心的距离从7.3×104km延伸到1.4×105km.已知环的外缘颗粒绕土星做圆周运动的周期约为14 h,引力常量为6.67×10-11N·m2/kg2,则土星的质量约为(估算时不考虑环中颗粒间的相互作用)()A. 9.0×1016kg B. 6.4×1017kg C. 9.0×1025kg D. 6.4×1026kg8.一艘宇宙飞船绕一个不知名的行星表面飞行,要测定该行星的密度,仅仅需要()A.测定飞船的运行周期B.测定飞船的环绕半径C.测定行星的体积D.测定飞船的运行速度9.甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是()A.乙的周期大于甲的周期B.乙的速度大于第一宇宙速度C.甲的加速度小于乙的加速度D.甲在运行时能经过北极的正上方10.冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动.由此可知,冥王星绕O点运动的().A.轨道半径约为卡戎的B.角速度大小约为卡戎的C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍11.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A.火星与木星公转周期相等B.火星和木星绕太阳运行速度的大小始终不变C.太阳位于木星运行椭圆轨道的某焦点上D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积12.某星球的半径为R,在其表面上方高度为aR的位置,以初速度v0水平抛出一个金属小球,水平射程为bR,a,b均为数值极小的常数,则这个星球的第一宇宙速度为()A.v0B.v0C.v0D.v013.关于我国发射的“亚洲一号”地球同步通讯卫星的说法,正确的是()A.若其质量加倍,则轨道半径也要加倍B.它在北京上空运行,故可用于我国的电视广播C.它以第一宇宙速度运行D.它运行的角速度与地球自转角速度相同14.人造卫星环绕地球运行的速率v=,其中g为地面处的重力加速度,R为地球半径,r为卫星离地球中心的距离.下列说法正确的是()A.从公式可见,环绕速度与轨道半径成反比B.从公式可见,环绕速度与轨道半径的平方根成反比C.从公式可见,把人造卫星发射到越远的地方越容易D.以上答案都不对15.如图所示,A为地球赤道上的物体,B为地球同步卫星,C为地球表面上北纬60°的物体.已知A、B的质量相同.则下列关于A、B和C三个物体的说法中,正确的是()A.A物体受到的万有引力小于B物体受到的万有引力B.B物体的向心加速度小于A物体的向心加速度C.A、B两物体的轨道半径的三次方与周期的二次方的比值相同D.A和B线速度的比值比C和B线速度的比值大,都小于1二、多选题(每小题至少有两个正确答案)16.(多选)2013年12月2日,我国探月卫星“嫦娥三号”在西昌卫星发射中心成功发射升空,飞行轨道示意图如图所示.“嫦娥三号”从地面发射后奔向月球,先在轨道∶上运行,在P点从圆形轨道∶进入椭圆轨道∶,Q为轨道∶上的近月点,则“嫦娥三号”在轨道∶上()“嫦娥三号”飞行轨道示意图A.运行的周期小于在轨道∶上运行的周期B.从P到Q的过程中速率不断增大C.经过P的速度小于在轨道∶上经过P的速度D.经过P的加速度小于在轨道∶上经过P的加速度17.(多选)假如地球自转角速度增大,关于物体所受的重力,下列说法正确的是()A.放在赤道地面上的物体的万有引力不变B.放在两极地面上的物体的重力不变C.放在赤道地面上的物体的重力减小D.放在两极地面上的物体的重力增加18.(多选)“嫦娥一号”探月卫星发动机关闭,轨道控制结束,卫星进入地月转移轨道,图中MN之间的一段曲线表示转移轨道的一部分,P是轨道上的一点,直线AB过P点且和两边轨道相切,下列说法中正确的是()A.卫星在此段轨道上,动能不变B.卫星经过P点时动能最小C.卫星经过P点时速度方向由P指向BD.卫星经过P点时加速度为019.2016年中国将发射“天宫二号”空间实验室,并发射“神舟十一号”载人飞船和“天舟一号”货运飞船,与“天宫二号”交会对接.“天宫二号”预计由“长征二号F”改进型无人运载火箭或“长征七号”运载火箭从酒泉卫星发射中心发射升空,由长征运载火箭将飞船送入近地点为A、远地点为B的椭圆轨道上,B点距离地面的高度为h,地球的中心位于椭圆的一个焦点上.“天宫二号”飞行几周后进行变轨进人预定圆轨道,如图所示.已知“天宫二号”在预定圆轨道上飞行n圈所用时间为t,引力常量为G,地球半径为R.则下列说法正确的是()A. “天宫二号”从B点沿椭圆轨道向A点运行的过程中,引力为动力B. “天宫二号”在椭圆轨道的B点的向心加速度大于在预定圆轨道上B点的向心加速度C. “天宫二号”在椭圆轨道的B点的速度大于在预定圆轨道上B点的速度D.根据题目所给信息,可以计算出地球质量20.(多选)在中国航天骄人的业绩中有这些记载:“天宫一号”在离地面343 km的圆形轨道上飞行;“嫦娥一号”在距月球表面高度为200 km的圆形轨道上飞行;“北斗”卫星导航系统由“同步卫星”(地球静止轨道卫星,在赤道平面,距赤道的高度约为 36 000千米)和“倾斜同步卫星”(周期与地球自转周期相等,但不定点于某地上空)等组成.则以下分析正确的是()A.设“天宫一号”绕地球运动的周期为T,用G表示引力常量,则用表达式求得的地球平均密度比真实值要小B. “天宫一号”的飞行速度比“同步卫星”的飞行速度要小C. “同步卫星”和“倾斜同步卫星”同周期、同轨道半径,但两者的轨道平面不在同一平面内D. “嫦娥一号”与地球的距离比“同步卫星”与地球的距离小三、填空题21.已知地球半径为R,质量为M,自转周期为T.一个质量为m的物体放在赤道处的海平面上,则物体受到的万有引力F=______,重力G=______.22.对太阳系的行星,由公式=,F=,=k可以得到F=________,这个公式表明太阳对不同行星的引力,与________成正比,与________成反比.23.地球赤道上的物体A,近地卫星B(轨道半径等于地球半径),同步卫星C,若用TA、TB、TC;v A、v B、v C;分别表示三者周期,线速度,则满足________,________.24.据报道,美国计划2021年开始每年送15 000名游客上太空旅游.如图所示,当航天器围绕地球做椭圆运行时,近地点A的速率________(填“大于”“小于”或“等于”)远地点B的速率.25.如图所示是某行星围绕太阳运行的示意图,则行星在A点的速率________在B点的速率.四、计算题26.假设几年后,你作为航天员登上了月球表面,如果你已知月球半径R,那么你用一个弹簧测力计和一个已知质量的砝码m,能否测出月球的质量M?怎样测定?27.宇宙中两个相距较近的天体称为“双星”,它们以两者连线上的某一点为圆心做匀速圆周运动,但两者不会因万有引力的作用而吸引到一起.设两者的质量分别为m1和m2,两者相距为L.求:(1)双星的轨道半径之比;(2)双星的线速度之比;(3)双星的角速度.答案解析1.【答案】D【解析】哥白尼提出了日心说,第谷对行星进行了大量的观察和记录,开普勒在第谷的观察记录的基础上提出了行星运动的三个定律,选项D正确,A、B、C错误.2.【答案】C【解析】电子在加速装置中由静止开始加速,开始阶段速度较低,远低于光速,此时牛顿运动定律基本适用,可以认为在它被加速的最初阶段,它做匀加速直线运动.随着电子的速度越来越大,接近光速时,相对论效应越来越大,质量加大,它不再做匀加速直线运动,牛顿运动定律不再适用.3.【答案】B【解析】线速度为v=∶角速度为ω=∶根据线速度和角速度的关系公式,有v=ωr∶卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律,有G=mvω∶联立解得M=,故选项B正确.4.【答案】B【解析】三星应该在同一直线上,并且两小星体在大星体相对的两侧,只有这样才能使某一小星体受到大星体和另一小星体的引力的合力提供向心力.由G+G=mr2,解得小星体的周期T=,所以选项B正确.5.【答案】C【解析】在地球上:h=某天体上;h′=因为=k所以=k根据G=mg,G=mg′可知=又因为=k联立得:=k6.【答案】A【解析】由向心力公式=,=,两式联立,得v2=v;由T2=,T=,两式联立,得T2=T,故A项正确.7.【答案】D【解析】环的外缘颗粒绕土星做圆周运动,根据万有引力提供向心力,列出等式:G=mR()2M=,其中R为轨道半径,大小为1.4×105km,T为周期,约为14 h.代入数据得:M≈6.4×1026kg.8.【答案】A【解析】取飞船为研究对象,由G=mR及M=πR3ρ,知ρ=,故选A.9.【答案】C【解析】人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m、轨道半径为r、地球质量为M,有:G=m=mω2r=m()2r=ma解得:v=∶T=2π∶a=∶由∶∶∶式可以知道,人造卫星的轨道半径越大,线速度越小、周期越大、加速度越小,由于甲卫星的高度大,轨道半径大,故甲卫星的线速度小、周期大,加速度小;第一宇宙速度是近地圆轨道的环绕速度,也是圆轨道运行的最大速度;则C正确;甲只能在赤道上空,则D错误,故选C.10.【答案】A【解析】设冥王星和卡戎的质量分别为m1和m2,轨道半径分别为r1和r2,它们之间的距离为L.冥王星和卡戎绕它们连线上的某点做匀速圆周运动,转动周期和角速度相同,选项B错误;对于冥王星有=m1ω2r1,对于卡戎有=m2ω2r2,可知m1ω2r1=m2ω2r2,故==,选项A正确;又线速度v=ωr,故线速度大小之比==,选项C错误;因两星的向心力均由它们之间的万有引力提供,故大小相等,选项D错误.11.【答案】C【解析】根据开普勒第三定律,=k,k为常量,火星与木星公转的半径不等,所以火星与木星公转周期不相等,故A错误;开普勒第二定律:对每一个行星而言,太阳与行星的连线在相同时间内扫过的面积相等.行星在此椭圆轨道上运动的速度大小不断变化,故B错误;相同时间内,太阳行星的连线在相同时间内扫过的面积相等是对同一个行星而言,故D错误;开普勒第一定律的内容为所有行星分别沿不同大小的椭圆轨道绕太阳运动,太阳处于椭圆的一个焦点上,故C正确.12.【答案】A【解析】设该星球表面重力加速度为g,小球落地时间为t,抛出的金属小球做平抛运动,根据平抛运动规律得aR=gt2,bR=v0t,联立以上两式解得g=,第一宇宙速度即为该星球地表卫星线速度,根据地表卫星重力充当向心力得mg=m,所以第一宇宙速度v===v0,故选项A正确.13.【答案】D【解析】由G=m得r=,可知轨道半径与卫星质量无关,A错.同步卫星的轨道平面必须与赤道平面重合,即在赤道上空运行,不能在北京上空运行,B错.第一宇宙速度是卫星在最低圆轨道上运行的速度,而同步卫星在高轨道上运行,其运行速度小于第一宇宙速度,C错.所谓“同步”就是卫星保持与地面赤道上某一点相对静止,所以同步卫星的角速度与地球自转角速度相同,D对.14.【答案】B【解析】由于g是地球表面处的重力加速度,R是地球半径,都是定值,根据v=可得环绕速度与轨道半径的平方根成反比,B正确,A、D错误;虽然r越大,v越小,但把卫星发射到越远的地方火箭会有更多的动能转化为重力势能,需要的发射速度就越大,C错误.15.【答案】D【解析】根据万有引力定律F=G,且A、B的质量相同,可知,间距越大的,引力越小,因此A物体受到的万有引力大于B物体受到的万有引力,故A错误;由an=ω2r,因A与B的角速度相同,当半径越大时,则向心加速度越大,故B错误;A在地球表面,不是环绕地球做匀速圆周运动,因此不满足开普勒第三定律,故C错误;根据v=ωr,可知,B点线速度最大,而C的线速度最小,因此A与B的线速度之比,C与B的线速度之比,均小于1,再根据同步卫星轨道半径约是地球半径的5.7倍,则=,C为地球表面上北纬60°的物体,那C轨道半径为地球半径的一半,则=,因此=,故D正确.16.【答案】ABC【解析】根据开普勒第三定律=k,可判断嫦娥三号卫星在轨道∶上的运行周期小于在轨道∶上的运行周期,A正确;因为P点是远地点,Q点是近地点,故从P点到Q点的过程中速率不断增大,B正确;根据卫星变轨特点可知,卫星在P点从圆形轨道∶进入椭圆轨道∶要减速,C正确;根据牛顿第二定律和万有引力定律可判断在P点,卫星的加速度是相同的,D错误.17.【答案】ABC【解析】地球自转角速度增大,物体受到的万有引力不变,选项A正确;在两极,物体受到的万有引力等于其重力,则其重力不变,选项B正确,D错误;而对放在赤道地面上的物体,F万=G重+mω2R,由于ω增大,则G重减小,选项C正确.18.【答案】BCD19.【答案】AD【解析】“天宫二号”从B点沿椭圆轨道向A点运行的过程中,速度是变大的,故受到的地球引力为动力,所以A正确;在B点“天宫二号”产生的加速度都是由万有引力产生的,因为同在B点万有引力大小相等,故不管在哪个轨道上运动,在B点时万有引力产生的加速度大小相等,故B错误;“天宫二号”在椭圆轨道的B点的加速后做离心运动才能进入预定圆轨道,故“天宫二号”在椭圆轨道的B点的速度小于在预定圆轨道的B点的速度,故C错误;“天宫二号”在预定圆轨道上飞行n 圈所用时间为t,故周期为T=,根据万有引力提供向心力G=m,得地球的质量M==,故D正确.20.【答案】AC【解析】设地球轨道半径为R,“天宫一号”的轨道半径为r,运行周期为T,地球密度为ρ,则有=m()2r,M=ρ·,解得ρ=,A正确;轨道半径小,运动速度大,B错误;“同步卫星”和“倾斜同步卫星”周期相同,则轨道半径相同,轨道平面不同,C正确;“嫦娥一号”绕月球运动,与地球距离大于同步卫星与地球距离,D错误.21.【答案】-【解析】根据万有引力定律的计算公式,得F万=.物体的重力等于万有引力减去向心力,即mg=F万-F向=-.22.【答案】行星的质量行星和太阳间距离的二次方【解析】=k与F=得F=,再与=k联立消去T可以得到F=,这个公式表明太阳对不同行星的引力与行星的质量成正比,与行星和太阳间距离的二次方成反比.23.【答案】TA=TC>TB v B>v C>v A【解析】卫星A为同步卫星,周期与C物体周期相等,根据卫星绕地球做圆周运动,万有引力提供向心力得周期T=2π,所以TA=TC>TB;AC比较,角速度相等,由v=ωr,可知v A<v C;BC比较,同为卫星,由人造卫星的速度公式v=,可知v B>v C,故TA=TC>TB,v B>v C>v A.24.【答案】大于【解析】25.【答案】大于【解析】26.【答案】将砝码挂在弹簧测力计上,测出弹簧测力计的读数F,由F=mg月,得g月=①在月球表面,砝码的重力应等于月球的引力,mg月=G,则M=,②将①代入②,解得M==.故能测出月球的质量,用弹簧测力计测出砝码的重力F,依据表达式M=求出月球质量.【解析】将砝码挂在弹簧测力计上,测出弹簧测力计的读数F,由F=mg月,得g月=①在月球表面,砝码的重力应等于月球的引力,mg月=G,则M=,②将①代入②,解得M==.故能测出月球的质量,用弹簧测力计测出砝码的重力F,依据表达式M=求出月球质量.27.【答案】(1)(2)(3)【解析】这两颗星必须各自以一定的速度绕某一中心转动才不至于因万有引力而被吸引在一起,从而保持两星间距离L不变,且两者做匀速圆周运动的角速度ω必须相同.如图所示,两者轨迹圆的圆心为O,圆半径分别为R1和R2.由万有引力提供向心力,有G=m1ω2R1①G=m2ω2R2②(1)由,得=.(2)因为v=ωR,所以==.(3)由几何关系知R1+R2=L③联立①②③式解得ω=.。
2021年高中物理人教版(新教材)必修第二册同步练习:第7章 第4节 宇宙航行 (含解析)
第七章第四节请同学们认真完成[练案12]合格考训练(25分钟·满分60分)一、选择题(本题共7小题,每题7分,共49分)1.2013年6月20日上午10时,我国首次太空授课在神舟十号飞船中由女航天员王亚平执教,在太空中王亚平演示了一些奇特的物理现象,授课内容主要是使青少年了解微重力环境下物体运动的特点。
如图所示是王亚平在太空舱中演示的悬浮的水滴。
关于悬浮的水滴,下列说法正确的是(D)A.环绕地球运行时的线速度一定大于7.9 km/sB.水滴处于平衡状态C.水滴处于超重状态D.水滴处于失重状态解析:7.9 km/s是卫星环绕地球做匀速圆周运动的最大速度,所以神舟十号飞船的线速度要小于7.9km/s,故A错误;水滴随飞船绕地球做匀速圆周运动,水滴的万有引力完全用来提供向心加速度,所以水滴与飞船一起处于完全的失重状态,故B、C错误,D正确。
2.“奋进”号宇航员斯蒂法尼斯海恩·派帕在一次太空行走时丢失了一个工具包,关于工具包丢失的原因可能是(B)A.宇航员松开了拿工具包的手,在万有引力作用下工具包“掉”了下去B.宇航员不小心碰了一下“浮”在空中的工具包,使其速度发生了变化C.工具包太重,因此宇航员一松手,工具包就“掉”了下去D.由于惯性,工具包做直线运动而离开了圆轨道解析:工具包在太空中,万有引力提供向心力处于完全失重状态,当有其他外力作用于工具包时才会离开宇航员,B 选项正确。
3.国务院批复,自2016年起将4月24日设立为“中国航天日”。
1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km ,远地点高度约为2 060 km ;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km 的地球同步轨道上。
设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为( D )A .a 2>a 1>a 3B .a 3>a 2>a 1C .a 3>a 1>a 2D .a 1>a 2>a 3解析:地球赤道上的物体和东方红二号同步卫星做圆周运动的周期相同,两者的角速度相同,即ω3=ω2,由a =ω2R 得半径大的向心加速度大,即得a 3<a 2;东方红二号和东方红一号的远地点相比,由GMm R 2=ma 得a =GMR 2,即离地面越近,加速度越大,即a 2<a 1,选项D正确。
【期末提升】必刷03 圆周运动-2019-2020学年下学期高一物理期末限时特训(人教版新教材)(解析版)
必刷03 圆周运动(解析版)一、选择题:本题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求。
全部选对的得4分,选对但不全的得2分,有选错的得0分。
1.关于物体做匀速圆周运动,下列说法正确的是( )A.匀速圆周运动就是匀速运动B.匀速圆周运动就是匀加速运动C.匀速圆周运动是变加速运动D.做匀速圆周运动的物体处于平衡状态【答案】C【解析】匀速圆周运动加速度大小不变,方向时刻指向圆心,是变加速运动,C 正确。
2.2013年6月20日,航天员王亚平在运行中的“天宫一号”内做了如图所示实验:细线的一端固定,另一端系一小球,在最低点给小球一个初速度,小球能在竖直平面内绕定点做匀速圆周运动.若将此装置带回地球,仍在最低点给小球相同初速度,则在竖直平面内()A.小球一定能做匀速圆周运动B.小球不可能做匀速圆周运动C.小球不可能做完整的圆周运动D.小球一定能做完整的圆周运动【答案】B【解析】把此装置带回地球表面,在最低点给小球相同初速度,小球在运动过程中,只有重力做功,机械能守恒,则动能和重力势能相互转化,速度的大小发生改变,不可能做匀速圆周运动,故A错误,B正确;若小球到达最高点的速度gR,则小球可以做完整的圆周运动,若小于此速度,则不能达到最高点,则不能做完整的圆周运动,故CD错误.故选B.3.如图所示两个内壁光滑的倒立圆锥,底角不同,两个完全相同的小球A、B在两个圆锥内壁相同高度处分别做匀速圆周运动。
关于小球A、B的运动情况,下列说法正确的是 ( )A .两小球做匀速圆周运动的角速度大小相同B .两小球做匀速圆周运动的向心加速度大小相同C .两小球做匀速圆周运动的线速度大小相同D .两小球做匀速圆周运动的向心力大小相同 【答案】C【解析】对任意一球研究,斜面的倾角为θ,受力分析,如图。
由图可知 F 合=mgtanθ=ma,a=gtanθ,则θ不同,向心加速度和向心力都不等;根据向心力公式有 mgtanθ=mω2R=m ,其中R=,解得:ω=,v =,h 相等,θ不等,则角速度不等,线速度相等,故ABD 错误,C 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说明 (1)同步卫星运行的轨道均在赤道平面内的同一轨道上, 相对地面静止,且是正圆周运动 (2)周期和地球自转周期相同,约24小时;
(3)距离地面的高度一定;
(4)环绕速度大小一定,角速度一定;
(5)向心加速度一定。
1、同步卫星主要用于通讯。要实现全球通讯, 需多少颗? 2、为了同步卫星之间不互相干扰,大约3°左右才能
物体怎样才能真正离开地面,围绕地球旋转? 最早研究人造卫星问题的是牛顿, 他设想了这样一个问题,在地面某处平 抛一个物体,物体将沿一条抛物线落回 地面,物体初速度越大,飞行距离越 远.考虑到地球是圆形的,如果初速度 很大,抛出的物体总也落不到地面就成 了人造地球卫星了。
从刚才的分析我们知道,要想使物体成为地球的 卫星,物体需要一个最小的发射速度,物体以这个速 度发射时,能够刚好贴着地面绕地球飞行,此时万有 引力提供了卫星运动的向心力,即:
Mm v2 G m 2 r r
11
――――(1)
GM 6.6710 5.9810 3 V m / s 7.9 10 m / s 6 r 6.4010
24
v 7.9km / s
这个速度称为第一宇宙速度
(1)第一宇宙速度是发射一个物体,使其成为地球卫 星的最小速度。 (2)若以第一宇宙速度发射一个物体,物体将 贴着地 球表面的轨道上做匀速圆周运动。 (3)若发射速度大于第一宇宙速度,物体将在椭圆轨 道上离心运动 (4)若物体发射的速度达到或超过11.2km/s时,物 体将能够摆脱地球引力的束缚,成为绕太阳运动 的行星或飞到其他行星上。 11.2km/s称为第二宇宙速度。 (5)若物体的发射速度再大,达到或超过16.7km/s 时,物体将会摆脱太阳引力束缚,飞到太阳系外
放置1颗,这样地球的同步卫星只能有多少颗?
44页问题与练习: 第2题 第3题
―――(2)
Mm G 2 ma r
―――-
M a)从公式(1)、(2)、(3)式中可以看出, 地球卫星的运动情况(速度、周期、加速度)是由r 惟一决定的。 (2)轨道半径越大,卫星运行速度越小,周期越大, 加速度越 小; 轨道半径越小,运行速度越大,周期 越小,加速度越大.
16.7km/s称为第三宇宙速度。
卫星是用什么发射升空的?
卫星脱离助推火箭后,获得了一定的速度v,设 卫星绕地球做圆周运动,其运行半径为r,根据万有 引力等于向心力可得:
Mm v2 G 2 m r r
―――--
v
T
GM r
4 r GM
2 3
――――(1)
Mm 2 2 G 2 m( ) r ――― T r