统计学06相关与回归分析
统计学中的回归分析与相关系数
回归分析是统计学中一种重要的分析方法,用于探索变量之间的关系和预测变量的变化。
相关系数是回归分析的一个重要指标,用于衡量变量之间的线性相关程度。
在统计学中,回归分析和相关系数常常一起使用,通过量化两个变量之间的关系,帮助我们更好地理解和解释数据。
回归分析通过建立一个数学模型来描述两个或多个变量之间的关系。
其中一个变量被称为因变量,它的值由其他变量的值决定。
其他变量被称为自变量,它们对因变量的值产生影响。
回归分析的目标是建立一个最佳拟合线,使得预测因变量的值最准确。
回归分析可以帮助我们了解哪些自变量对因变量的影响最大,预测因变量的值,以及控制其他自变量的情况下某个自变量对因变量的影响。
在回归分析中,相关系数是衡量变量之间线性相关程度的一个指标。
常见的相关系数有Pearson相关系数和Spearman等级相关系数。
Pearson相关系数适用于线性关系,其取值范围为-1到1,且0表示无线性关系。
当相关系数接近1时,表示变量之间的正向线性关系越强;当相关系数接近-1时,表示变量之间的反向线性关系越强。
Spearman等级相关系数适用于排名数据,无需考虑数据的分布。
相关系数可以帮助我们判断两个变量之间的关系是正向还是反向,以及关系的强度。
回归分析和相关系数在许多领域中都有广泛的应用。
在经济学领域,回归分析可以用来探索不同因素对经济指标的影响,如GDP和就业率。
在医学领域,相关系数可以帮助医生评估不同因素对疾病的风险或预后的影响。
在社会科学中,回归分析可以用来研究不同因素对人类行为的影响,如教育水平对就业机会的影响。
然而,需要注意的是,回归分析仅能描述变量之间的线性关系,非线性关系需要采用其他方法。
另外,相关系数只能衡量线性相关程度,无法确定因果关系。
因此,在使用回归分析和相关系数进行数据分析时,我们需要谨慎解读结果,并结合实际情况进行分析。
总之,回归分析和相关系数是统计学中重要的分析方法。
通过回归分析,我们可以探索变量之间的关系,预测因变量的变化;而相关系数可以帮助我们量化变量之间的线性相关程度。
统计学中的相关分析与回归分析的关系
统计学中的相关分析与回归分析的关系统计学是一门研究如何收集、整理、描述和解释数据的学科。
在统计学中,相关分析和回归分析是两个重要的方法,用于了解和探究变量之间的关系。
尽管相关分析和回归分析在某些方面有相似之处,但它们在目的、数据类型和结果解释方面存在一些差异。
相关分析是一种用于衡量和描述两个或多个变量之间关联关系的方法。
相关分析可以帮助我们确定变量之间的线性相关程度,即一个变量的变化伴随着另一个变量的变化。
通过计算相关系数,我们可以了解这种关系的强度和方向。
常用的相关系数包括皮尔逊相关系数和斯皮尔曼等级相关系数。
与此不同,回归分析旨在建立一个数学模型,以描述和预测因变量与自变量之间的关系。
回归分析可以通过拟合曲线或平面来表示变量之间的关系,并用方程式来描述这种关系。
回归分析使用的模型可以是线性回归、多项式回归、对数回归等。
通过回归分析,我们可以根据自变量的值来估计因变量的值,并评估自变量对因变量的影响程度。
虽然相关分析和回归分析在某些情况下可互相转化,但它们具有不同的目标和应用范围。
相关分析主要用于探索变量之间的关系,确定它们之间的关联强度和方向,但不提供因果关系。
而回归分析则旨在建立一个模型,通过这个模型可以对未知的因变量进行预测,并且可以评估自变量对因变量的影响。
此外,相关分析和回归分析适用于不同类型的数据。
相关分析通常用于分析连续变量之间的关系,而回归分析可以应用于连续变量、二分类变量和多分类变量之间的关系。
在实际应用中,相关分析和回归分析常常结合使用。
首先,我们可以通过相关分析来初步检验变量之间是否存在关系。
如果相关分析结果显示两个变量之间存在显著相关性,我们可以进一步使用回归分析来建立一个模型,以更好地理解和预测这种关系。
在总结中,统计学中的相关分析和回归分析是两个相互关联的方法。
相关分析用于探究变量之间的关系和相关性,而回归分析则用于建立一个数学模型,描述和预测因变量与自变量之间的关系。
心理统计学_06相关分析与回归分析
分析
2016年7月5日8时47分
多元线性回归方程
ˆ b0 b1 x1 b2 x2 bn xn y
式中: b0为常数项,b1、b2、…、bn称为y对应于x1、 x2、…、xn的偏回归系数。
2016年7月5日8时47分
线性回归模型的适用条件
线性趋势:自变量与因变量之间的关系是线性的,可 通过散点图来判断。 独立性:因变量y的取值相互独立,它们之间没有联系, 即残差之间要相互独立,不存在自相关,否则应采用 自回归模型来分析。 正态性:对自变量的任何一个线性组合,因变量y均服 从正态分布,也即残差要服从正态分布。 方差齐性:对自变量的任何一个线性组合,因变量y的 方差均相同,也即要求残差的方差齐性。
积距相关
积距相关 积距相关
2016年7月5日8时47分
相关分析概述
检验假设:
H0:ρ=0
H1:ρ≠0
相关类型:
积距相关: 等级相关: 质与量相关: 品质相关: 偏相关:
调用Bivariate过程 调用Bivariate过程 调用Crosstabs过程 调用Crosstabs过程 调用Partial过程
必须绘制散点图:
2016年7月5日8时47分
Pearson积距相关
计算公式:
rxy
X X Y Y X X
2
Y Y
2
检验统计量:
t r n2 1 r
2
~ t df n 2
SPSS数据文件结构 SPSS菜单操作 SPSS输出结果解读
统计学中的相关性和回归分析
统计学中的相关性和回归分析统计学中,相关性和回归分析是两个重要的概念和方法。
它们旨在揭示变量之间的关系,并可以用来预测和解释观察结果。
本文将介绍相关性和回归分析的基本原理、应用及其在实践中的意义。
一、相关性分析相关性是指一组变量之间的关联程度。
相关性分析可以帮助我们理解变量之间的关系,以及这种关系的强度和方向。
常用的相关性指标有皮尔逊相关系数、斯皮尔曼相关系数和判定系数等。
皮尔逊相关系数是最常见的衡量变量之间线性关系的指标。
它的取值范围在-1到1之间,其中-1表示完全负相关,1表示完全正相关,0表示无相关。
例如,在研究身高和体重之间的关系时,如果相关系数为0.8,则说明身高和体重呈现较强的正相关。
斯皮尔曼相关系数则不要求变量呈现线性关系,而是通过对变量的序列进行排序,从而找到它们之间的关联程度。
它的取值也在-1到1之间,含义与皮尔逊相关系数类似。
判定系数是用于衡量回归模型的拟合程度的指标。
它表示被解释变量的方差中可由回归模型解释的部分所占的比例。
判定系数的取值范围在0到1之间,越接近1表示模型对数据的拟合越好。
二、回归分析回归分析是一种用于建立变量之间关系的统计方法。
它通过建立一个数学模型来解释和预测依赖变量和自变量之间的关系。
回归模型可以是线性的,也可以是非线性的。
线性回归是最常见的回归分析方法之一。
它假设自变量和因变量之间存在着线性关系,并通过最小二乘法来估计模型中的参数。
线性回归模型通常表示为y = β0 + β1x1 + β2x2 + ... + βnxn,其中y为因变量,x1、x2等为自变量,β0、β1等为模型的参数。
非线性回归则适用于自变量和因变量之间存在非线性关系的情况。
非线性回归模型可以是多项式回归、指数回归、对数回归等。
回归分析在实践中有广泛的应用。
例如,在市场营销中,回归分析可以用来预测销售量与广告投入之间的关系;在医学研究中,回归分析可以用来探究疾病发展与遗传因素之间的联系。
统计学原理 相关与回归分析
粮食产量y 随机的
降雨量
土质
种子 耕作技术
X3
X4 X5
可 控 的
(二)相关的种类
完全相关 函数关系是相关关系的一种特例。 不完全相关 相关分析的基本内容
度相 关 密 切 程
y 完全由x的数值唯一确定,函数关系。
不相关
相 关 的 性 质
x、y值变化各自独立,变量间没有相关
关系
正相关 x 负相关
y
x
x2 26896 28900 31329 24336 25600 27556
y2
62540 73695 420857
70225 83521 463382
55696 65025 382469
合计
2114
从表上可以看出,随着个人收入的增加,消 费支出有明显的增长趋势,二者存在一定的依存 关系。正相关关系。 2、相关图(散点图) 直角坐标系第一象限
1、相关表
单变量分组相关表
分组相关表
双变量分组相关表
先做定性分析——相关资料排序——列在一张表上
个人收入x 164 170 177 182 192 207 225 243 265 289
消费支出y 156 160 166 170 178 188 202 218 236 255 1929
xy 25584 27200 29382
yc = 25.32 + 0.7927 300 = 263.13万元
(三)估计标准误差Syx P197
Syx = Syx =
=
(y - yc) 2 n-2 y2 - a y -b xy n-2
382469 -25.32 1929 -0.7927 420857
10 - 2
统计学各章练习——相关与回归分析
第八章 相关与回归分析一、名词1、相关关系:是现象间确实存在的,但是不完全确定的,一种非严格的依存关系。
2、回归分析:是对具有相关关系的两个或两个以上变量之间数量变化的一般关系进行测定,确定一个相应的数学表达式,以便从一个已知量来推测另一个未知量,这种处理具有相关关系变量之间的统计方法。
3、相关系数:是测定变量之间相关密切程度和相关方向的代表性指标。
4、估计标准误差:就是回归分析的估计值与观测值(实际值)之间的平均误差大小的指标。
二、填空1.在自然界和社会现象中,现象之间的相互依存关系可以分为两种,一种是(函数关系),一种是(相关关系)。
2.相关关系按相关程度可分为(完全相关)、(不完全相关)和(不相关);按相关性质可分为(正相关)和(负相关);按相关形式可分为(直线相关)和(曲线相关);按影响因素多少可分为(单相关)和(复相关)。
3.互为因果关系的两个变量x 和Y ,可编制两个回归方程,一个是(y 倚x 回归方程)回归方程;另一个是(x 倚y 回归方程)回归方程。
4.相关分析是(回归分析)的基础,回归分析是(相关分析)的继续。
5.在回归分析中,因变量是(随自变量而变化的量),自变量是(主动变化的量)。
6.建立一元直线回归方程的条件是:两个变量之间确实存在(相关关系),而且其(相关的密切程度)必须是显著的。
一元直线回归方程的基本形式为:(Yc =a+bx )。
7.估计标准误可以说明回归方程的(代表性大小);说明回归估计值的(准确程度);说明两个变量x 和Y 之间关系的(密切程度)。
8.当相关系数(r)越大时,估计标准误差S Y 就(越小),这时相关密切程度就(越高),回归直线的代表性就(大);当r 越小时,S Y 就(越大),这时相关密切程度就(越低),回归直线的代表性就(小)。
三、判断1.正相关是指两个变量之间的变化方向都是上升的趋势,而负相关是指两个变量之间的变化方向都是下降的趋势。
(×)2.负相关是指两个量之间的变化方向相反,即一个呈下降(上升)而另一个呈上升(下降)趋势。
统计学中直线相关与回归的区别与联系
统计学中直线相关与回归的区别与联系在统计学中,直线相关和回归是两个相关的概念,但又有一些区别和联系。
区别:
1. 定义:直线相关是指两个变量之间的线性关系,即随着一个变量的增加,另一个变量也以一定的比例增加或减少。
回归分析是一种统计方法,用于建立一个或多个自变量与因变量之间的关系模型。
2. 目的:直线相关主要关注变量之间的关系和相关程度,通过相关系数来衡量。
而回归分析旨在通过建立数学模型来预测或解释因变量的变化,以及评估自变量对因变量的影响。
3. 变量角色:在直线相关中,两个变量没有明确的自变量和因变量的区分,它们之间的关系是对称的。
而在回归分析中,通常有一个或多个自变量作为预测因变量的因素。
联系:
1. 线性关系:直线相关和回归分析都假设变量之间存在线性关系,即可以用直线或线性模型来描述它们之间的关系。
2. 相关系数:直线相关中使用相关系数来度量变量之间的相关程度。
回归分析中也使用相关系数,但更多地关注回归模型的参数估计和显著性检验。
3. 数据分析:直线相关和回归分析都是常用的数据分析方法,在实际应用中经常同时使用。
直线相关可以帮助我们了解变量之间的关系和趋势,而回归分析可以进一步建立模型和进行预测。
总之,直线相关和回归分析是统计学中两个相关但又有区别的概念。
直线相关关注变量之间的线性关系和相关程度,而回归分析则更关注建立模型和预测变量之间的关系。
在实际应用中,它们常常相互补充使用,以帮助我们理解和解释数据。
统计学中的相关系数与回归分析
统计学中的相关系数与回归分析统计学是一门研究数据收集、分析和解释的学科,其中包括相关系数和回归分析这两个重要的概念。
相关系数和回归分析都是用于了解变量之间的关系以及预测未来趋势的工具。
本文将介绍相关系数和回归分析的基本概念、计算方法和应用场景。
一、相关系数相关系数衡量了两个变量之间的相关程度。
它反映了两个变量的线性关系强度和方向。
常见的相关系数有皮尔逊相关系数(Pearson correlation coefficient)、斯皮尔曼等级相关系数(Spearman's rank correlation coefficient)和切比雪夫距离(Chebyshev distance)等。
皮尔逊相关系数是最常用的相关系数之一。
它通过计算两个变量之间的协方差除以它们各自的标准差的乘积来衡量它们的线性关系。
皮尔逊相关系数的取值范围在-1到1之间,其中1表示完全正相关,-1表示完全负相关,0表示没有线性关系。
通过计算相关系数,我们可以判断变量之间的关系以及预测一个变量的变化情况受到其他变量的程度。
斯皮尔曼等级相关系数是一种非参数相关系数,它不要求变量服从特定的分布。
它通过将原始数据转化为等级来计算变量之间的关系。
斯皮尔曼等级相关系数的取值范围也在-1到1之间,其含义与皮尔逊相关系数类似。
切比雪夫距离是一种度量两个变量之间差异的方法,它不仅考虑了线性关系,还考虑了其他类型的关系,如非线性关系。
切比雪夫距离通常用于分类问题和模式识别领域。
二、回归分析回归分析是一种用于建立因变量和自变量之间关系的统计方法。
它通过寻找最合适的拟合曲线来描述变量之间的函数关系,并用此拟合曲线来预测未来的结果。
简单线性回归是回归分析的一种基本形式,它适用于只有一个自变量和一个因变量的情况。
简单线性回归可以用一条直线来描述变量之间的关系,其中直线的斜率表示了自变量对因变量的影响程度。
多元线性回归是回归分析的一种扩展形式。
它适用于多个自变量和一个因变量的情况。
统计学中的相关分析与回归分析
统计学中的相关分析与回归分析统计学中的相关分析与回归分析是两种重要的数据分析方法。
它们帮助研究人员理解和解释变量之间的关系,并预测未来的趋势。
在本文中,我们将深入探讨相关分析和回归分析的定义、应用和原理。
第一部分:相关分析相关分析是用来衡量和评估两个或更多变量之间相互关系的统计方法。
通过相关系数来量化这种关系的强度和方向。
相关系数的取值范围在-1到+1之间,其中-1表示完全负相关,+1表示完全正相关,0表示没有相关性。
相关分析通常用于发现变量之间的线性关系。
例如,研究人员想要了解身高和体重之间的关系。
通过相关分析,他们可以确定是否存在正相关关系,即身高越高,体重越重。
相关分析还可以帮助确定不同变量对某一结果变量的影响程度。
第二部分:回归分析回归分析是一种通过建立数学模型来预测和解释变量之间关系的方法。
它可以用来预测因变量的值,并了解自变量对因变量的影响程度。
回归分析可分为简单回归和多元回归两种类型。
简单回归分析适用于只有一个自变量和一个因变量的情况。
例如,研究人员想要预测一个人的体重,他们可以使用身高作为自变量。
通过建立线性回归模型,他们可以得到身高对体重的影响,从而预测一个人的体重。
多元回归分析适用于有多个自变量和一个因变量的情况。
例如,研究人员想要了解影响一个城市房价的因素,他们可以考虑多个自变量,如房屋面积、地理位置、房龄等。
通过建立多元回归模型,他们可以确定每个因素对房价的影响程度,并进行预测。
第三部分:相关分析与回归分析的应用相关分析和回归分析在各个领域都有广泛的应用。
在医学研究中,相关分析可以帮助确定两个疾病之间的关联性,并为疾病的预防和治疗提供依据。
回归分析可以用来预测患者的生存率或疾病的发展趋势。
在经济学中,相关分析可以用来研究经济变量之间的关系,如GDP 与通货膨胀率之间的关系。
回归分析可以用来预测经济增长率,并评估政治和经济因素对经济发展的影响。
在市场营销中,相关分析可以帮助企业了解产品销售和广告投放之间的关系,并制定有效的市场推广策略。
统计学中的相关系数与回归分析
相关系数与回归分析是统计学中常用的两个工具,用于研究变量之间的关系和建立统计模型。
它们在实际应用中有着广泛的应用,不仅能够帮助我们理解变量之间的关系,还可以预测未知的数值。
本文将从基本概念、计算方法和应用角度介绍这两个重要的统计学工具。
相关系数是用来衡量两个变量之间关系的强度和方向。
它可以是正的,表示变量间呈正相关;也可以是负的,表示变量间呈负相关;还可以是零,表示变量间没有线性关系。
最常用的相关系数是皮尔逊相关系数,它基于变量的协方差和标准差计算。
皮尔逊相关系数的取值范围为-1到1,值为-1表示完全负相关,值为1表示完全正相关,值为0则表示无相关关系。
回归分析是一种建立统计模型的方法,用于预测和解释变量间的关系。
它通常用线性回归模型进行建模,假设变量之间的关系可以通过一条直线来表示。
线性回归分析的目标是找到最佳拟合直线,使得观测值和预测值之间的差异最小化。
回归分析可以用来研究单一变量对目标变量的影响,也可以通过多元回归来探索多个变量对目标变量的综合影响。
在实际应用中,相关系数和回归分析经常同时使用。
相关系数可以用来初步探索变量之间的关系,判断是否存在相关性。
如果相关系数较高,则可以进一步使用回归分析来建立模型,预测未知的数值。
回归分析可以提供更详细的信息,包括变量间的具体关系和系数的解释。
举一个实际的例子来说明相关系数和回归分析的应用。
假设我们想研究变量X (年龄)和变量Y(收入)之间的关系。
首先,我们可以计算X和Y的相关系数。
如果相关系数为正,并且接近1,则说明年龄和收入呈正相关关系,即年龄越大,收入越高。
接着,我们可以使用回归分析来建立一个线性模型,用年龄来预测收入。
通过回归分析,我们可以得到一个拟合直线,可以根据年龄来预测收入的数值。
例如,如果某个人的年龄为40岁,根据回归模型,我们可以预测他的收入大致在某个区间内。
这样的模型可以帮助我们预测未知的收入,并为相关决策提供参考。
综上所述,相关系数和回归分析是统计学中重要的工具。
统计学中的线性回归与相关系数
统计学中的线性回归与相关系数统计学是一门研究数据收集、分析和解释的学科,而线性回归和相关系数则是统计学中两个重要的概念与方法。
线性回归和相关系数可以帮助我们理解和解释数据之间的关系,从而作出准确的预测和结论。
本文将详细介绍统计学中的线性回归和相关系数,并讨论它们的应用和限制。
一、线性回归分析线性回归是一种用来建立两个变量之间关系的统计模型。
其中一个变量被称为“自变量”,另一个变量被称为“因变量”。
线性回归假设自变量和因变量之间存在着线性关系,通过拟合一条直线来描述这种关系。
线性回归模型可以用公式表示为:Y = β0 + β1X + ε,其中Y表示因变量,X表示自变量,β0和β1表示回归系数,ε表示误差。
利用线性回归模型,我们可以估计回归系数的值,并通过回归系数来解释自变量对因变量的影响程度。
回归系数β1表示自变量对因变量的平均改变量,β0表示当自变量为0时,因变量的平均值。
线性回归模型的拟合程度可以通过R方值来衡量,R方值越接近1,表明模型拟合程度越好。
线性回归的应用广泛,例如经济学中的GDP与人口增长率之间的关系,医学研究中的药物剂量与治疗效果之间的关系等等。
通过线性回归,我们可以从大量的数据中提取有用的信息,并利用这些信息做出合理的预测和决策。
二、相关系数分析相关系数是衡量两个变量之间相关关系强度的指标。
相关系数的取值范围为-1到1,-1表示完全负相关,1表示完全正相关,0表示无相关关系。
相关系数可以用来描述变量之间的线性关系,并判断这种关系的强度和方向。
常见的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
皮尔逊相关系数适用于连续变量且呈线性分布的情况,而斯皮尔曼相关系数适用于顺序变量或非线性关系的情况。
相关系数的计算方法涉及到协方差和标准差的概念,具体计算方法可以参考统计学教材或统计学软件。
相关系数的应用广泛,可以用来进行变量筛选、研究变量之间的关系、评估模型拟合程度等。
在金融领域,相关系数可以用来衡量股票之间的关联性,帮助投资者进行风险控制和资产配置。
统计学课后习题答案第七章 相关分析与回归分析
第七章相关分析与回归分析一、单项选择题1.相关分析是研究变量之间的A.数量关系B.变动关系C.因果关系D.相互关系的密切程度2.在相关分析中要求相关的两个变量A.都是随机变量B.自变量是随机变量C.都不是随机变量D.因变量是随机变量3.下列现象之间的关系哪一个属于相关关系?A.播种量与粮食收获量之间关系B.圆半径与圆周长之间关系C.圆半径与圆面积之间关系D.单位产品成本与总成本之间关系4.正相关的特点是A.两个变量之间的变化方向相反B.两个变量一增一减C.两个变量之间的变化方向一致D.两个变量一减一增5.相关关系的主要特点是两个变量之间A.存在着确定的依存关系B.存在着不完全确定的关系C.存在着严重的依存关系D.存在着严格的对应关系6.当自变量变化时, 因变量也相应地随之等量变化,则两个变量之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系7.当变量X值增加时,变量Y值都随之下降,则变量X和Y之间存在着A.正相关关系B.直线相关关系C.负相关关系D.曲线相关关系8.当变量X值增加时,变量Y值都随之增加,则变量X和Y之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系9.判定现象之间相关关系密切程度的最主要方法是A.对现象进行定性分析B.计算相关系数C.编制相关表D.绘制相关图10.相关分析对资料的要求是A.自变量不是随机的,因变量是随机的B.两个变量均不是随机的C.自变量是随机的,因变量不是随机的D.两个变量均为随机的11.相关系数A.既适用于直线相关,又适用于曲线相关B.只适用于直线相关C.既不适用于直线相关,又不适用于曲线相关D.只适用于曲线相关12.两个变量之间的相关关系称为A.单相关B.复相关C.不相关D.负相关13.相关系数的取值范围是A.-1≤r≤1B.-1≤r≤0C.0≤r≤1D. r=014.两变量之间相关程度越强,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于115.两变量之间相关程度越弱,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于116.相关系数越接近于-1,表明两变量间A.没有相关关系B.有曲线相关关系C.负相关关系越强D.负相关关系越弱17.当相关系数r=0时,A.现象之间完全无关B.相关程度较小B.现象之间完全相关 D.无直线相关关系18.假设产品产量与产品单位成本之间的相关系数为-0.89,则说明这两个变量之间存在A.高度相关B.中度相关C.低度相关D.显著相关19.从变量之间相关的方向看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关20.从变量之间相关的表现形式看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关21.物价上涨,销售量下降,则物价与销售量之间属于A.无相关B.负相关C.正相关D.无法判断22.配合回归直线最合理的方法是A.随手画线法B.半数平均法C.最小平方法D.指数平滑法23.在回归直线方程y=a+bx中b表示A.当x增加一个单位时,y增加a的数量B.当y增加一个单位时,x增加b的数量C.当x增加一个单位时,y的平均增加量D.当y增加一个单位时, x的平均增加量24.计算估计标准误差的依据是A.因变量的数列B.因变量的总变差C.因变量的回归变差D.因变量的剩余变差25.估计标准误差是反映A.平均数代表性的指标B.相关关系程度的指标C.回归直线的代表性指标D.序时平均数代表性指标26.在回归分析中,要求对应的两个变量A.都是随机变量B.不是对等关系C.是对等关系D.都不是随机变量27.年劳动生产率(千元)和工人工资(元)之间存在回归方程y=10+70x,这意味着年劳动生产率每提高一千元时,工人工资平均A.增加70元B.减少70元C.增加80元D.减少80元28.设某种产品产量为1000件时,其生产成本为30000元,其中固定成本6000元,则总生产成本对产量的一元线性回归方程为:A.y=6+0.24xB.y=6000+24xC.y=24000+6xD.y=24+6000x29.用来反映因变量估计值代表性高低的指标称作A.相关系数B.回归参数C.剩余变差D.估计标准误差二、多项选择题1.下列现象之间属于相关关系的有A.家庭收入与消费支出之间的关系B.农作物收获量与施肥量之间的关系C.圆的面积与圆的半径之间的关系D.身高与体重之间的关系E.年龄与血压之间的关系2.直线相关分析的特点是A.相关系数有正负号B.两个变量是对等关系C.只有一个相关系数D.因变量是随机变量E.两个变量均是随机变量3.从变量之间相互关系的表现形式看,相关关系可分为A.正相关B.负相关C.直线相关D.曲线相关E.单相关和复相关4.如果变量x与y之间没有线性相关关系,则A.相关系数r=0B.相关系数r=1C.估计标准误差等于0D.估计标准误差等于1E.回归系数b=05.设单位产品成本(元)对产量(件)的一元线性回归方程为y=85-5.6x,则A.单位成本与产量之间存在着负相关B.单位成本与产量之间存在着正相关C.产量每增加1千件,单位成本平均增加5.6元D.产量为1千件时,单位成本为79.4元E.产量每增加1千件,单位成本平均减少5.6元6.根据变量之间相关关系的密切程度划分,可分为A.不相关B.完全相关C.不完全相关D.线性相关E.非线性相关7.判断现象之间有无相关关系的方法有A.对现象作定性分析B.编制相关表C.绘制相关图D.计算相关系数E.计算估计标准误差8.当现象之间完全相关的,相关系数为A.0B.-1C.1D.0.5E.-0.59.相关系数r =0说明两个变量之间是A.可能完全不相关B.可能是曲线相关C.肯定不线性相关D.肯定不曲线相关E.高度曲线相关10.下列现象属于正相关的有A.家庭收入愈多,其消费支出也愈多B.流通费用率随商品销售额的增加而减少C.产量随生产用固定资产价值减少而减少D.生产单位产品耗用工时,随劳动生产率的提高而减少E.工人劳动生产率越高,则创造的产值就越多11.直线回归分析的特点有A.存在两个回归方程B.回归系数有正负值C.两个变量不对等关系D.自变量是给定的,因变量是随机的E.利用一个回归方程,两个变量可以相互计算12.直线回归方程中的两个变量A.都是随机变量B.都是给定的变量C.必须确定哪个是自变量,哪个是因变量D.一个是随机变量,另一个是给定变量E.一个是自变量,另一个是因变量13.从现象间相互关系的方向划分,相关关系可以分为A.直线相关B.曲线相关C.正相关D.负相关E.单相关14.估计标准误差是A.说明平均数代表性的指标B.说明回归直线代表性指标C.因变量估计值可靠程度指标D.指标值愈小,表明估计值愈可靠E.指标值愈大,表明估计值愈可靠15.下列公式哪些是计算相关系数的公式16.用最小平方法配合的回归直线,必须满足以下条件A.∑(y-y c )=最小值B.∑(y-y c )=0C.∑(y-y c )2=最小值D.∑(y-y c )2=0E.∑(y-y c )2=最大值17.方程y c =a+bx222222)()(.)()())((...))((.y y n x x n yx xy n r E y y x x y y x x r D L L L r C L L L r B n y y x x r A xxxy xyyy xx xyy x ∑-∑⋅∑-∑∑⋅∑-∑=-∑⋅-∑--∑===--∑=σσA.这是一个直线回归方程B.这是一个以X为自变量的回归方程C.其中a是估计的初始值D.其中b是回归系数E.y c是估计值18.直线回归方程y c=a+bx中的回归系数bA.能表明两变量间的变动程度B.不能表明两变量间的变动程度C.能说明两变量间的变动方向D.其数值大小不受计量单位的影响E. 其数值大小受计量单位的影响19.相关系数与回归系数存在以下关系A.回归系数大于零则相关系数大于零B.回归系数小于零则相关系数小于零C.回归系数等于零则相关系数等于零D.回归系数大于零则相关系数小于零E.回归系数小于零则相关系数大于零20.配合直线回归方程的目的是为了A.确定两个变量之间的变动关系B.用因变量推算自变量C.用自变量推算因变量D.两个变量相互推算E.确定两个变量之间的相关程度21.若两个变量x和y之间的相关系数r=1,则A.观察值和理论值的离差不存在B.y的所有理论值同它的平均值一致C.x和y是函数关系D.x与y不相关E.x与y是完全正相关22.直线相关分析与直线回归分析的区别在于A.相关分析中两个变量都是随机的;而回归分析中自变量是给定的数值,因变量是随机的B.回归分析中两个变量都是随机的;而相关分析中自变量是给定的数值,因变量是随机的C.相关系数有正负号;而回归系数只能取正值D.相关分析中的两个变量是对等关系;而回归分析中的两个变量不是对等关系E.相关分析中根据两个变量只能计算出一个相关系数;而回归分析中根据两个变量只能计算出一个回归系数三、填空题1.研究现象之间相关关系称作相关分析。
《统计学》(第8版)笔记和课后习题详解
《统计学》(第8版)笔记和课后习题详解统计学 (第8版) 笔记和课后题详解
1. 简介
本文档为《统计学》第8版的笔记和课后题详解。
主要内容包括统计学的基本概念、统计学的应用和解决问题的方法等。
2. 章节概述
第一章:统计学导论
该章节介绍了统计学的基本定义和应用领域,以及统计学在科学研究中的作用。
第二章:数据描述
该章节重点介绍了统计学中常用的数据描述方法,包括数据的图形展示、数据的中心趋势和数据的离散程度等。
第三章:概率与概率分布
该章节讲解了概率的概念和性质,以及常见的概率分布如二项分布、正态分布等。
第四章:统计推断的基本原理
该章节介绍了统计推断的基本原理,包括参数估计和假设检验等内容。
第五章:单因素方差分析
该章节讲解了单因素方差分析的原理和应用,以及一些统计学中常见的假设检验方法。
第六章:相关与回归分析
该章节重点介绍了相关与回归分析的原理和应用,包括线性回归和多元回归等内容。
3. 课后题详解
本文档还包含了每章的课后题详解,帮助读者巩固所学知识。
针对题中的难点和常见错误,给出了详细的解答和解题思路。
4. 结语
通过阅读本文档的《统计学》笔记和课后题详解,读者将更好地理解统计学的基本概念和方法,掌握统计分析的基本技能。
以上是《统计学》(第8版)笔记和课后习题详解的概述。
希望对您有所帮助!。
回归分析与相关性在统计学中的应用
回归分析与相关性在统计学中的应用回归分析和相关性是统计学中两个重要的数据分析方法,它们被广泛用于探索变量之间的关系和预测未来的趋势。
本文将介绍回归分析和相关性的基本原理,并且探讨它们在统计学中的应用。
一、相关性分析相关性分析是研究两个或多个变量之间关系的一种方法。
在相关性分析中,我们使用相关系数来衡量变量之间的相关程度。
常用的相关系数包括Pearson相关系数、Spearman相关系数和判定系数等。
以Pearson相关系数为例,它衡量的是两个变量之间的线性关系程度,取值范围为-1到1。
当相关系数接近1时,表示两个变量呈正相关;当相关系数接近-1时,表示两个变量呈负相关;当相关系数接近0时,表示两个变量之间没有线性相关关系。
相关性分析可帮助我们快速了解变量之间的关系,从而更好地理解和解释数据。
例如,在市场营销中,我们可以使用相关性分析来研究广告投入与销售额之间的关系,从而确定广告投入对销售额的影响程度。
二、回归分析回归分析是研究自变量与因变量之间关系的方法。
在回归分析中,我们建立一个数学模型,通过拟合数据来估计自变量与因变量之间的关系。
常用的回归分析方法包括线性回归、多项式回归、逻辑回归等。
线性回归是回归分析中最简单也是最常用的方法。
它假设自变量与因变量之间存在线性关系,并通过最小二乘法来拟合数据,得到回归方程。
回归方程可以用于预测因变量的取值,或者用于研究自变量对因变量的影响程度。
回归分析在实际中有广泛的应用。
例如,在经济学中,我们可以使用回归分析来研究GDP与就业率之间的关系,从而预测未来的经济发展趋势。
在医学研究中,回归分析可以帮助我们确定患者的生存率与各种因素之间的关系,以指导临床治疗方案的制定。
三、回归分析与相关性的关系回归分析与相关性分析是密切相关的方法。
事实上,在回归分析中,我们经常使用相关系数来衡量自变量与因变量之间的相关性。
例如,在线性回归中,我们可以使用Pearson相关系数来衡量自变量与因变量之间的线性相关程度。
统计学原理-第六章--相关与回归分析习题
A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )A线性相关还是非线性相关B正相关还是负相关C完全相关还是不完全相关D单相关还是复相关6.某校经济管理类的学生学习统计学的时间()与考试成绩(y)之x间建立线性回归方程y c=a+b。
经计算,方程为y c=200—0.8x,该方程参数x的计算( )A a值是明显不对的B b值是明显不对的C a值和b值都是不对的 C a值和6值都是正确的7.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为:( )A 8B 0.32C 2D 12.58.进行相关分析,要求相关的两个变量( )A都是随机的B都不是随机的C一个是随机的,一个不是随机的D随机或不随机都可以9.下列关系中,属于正相关关系的有( )A合理限度内,施肥量和平均单产量之间的关系B产品产量与单位产品成本之间的关系C商品的流通费用与销售利润之间的关系D流通费用率与商品销售量之间的关系10.相关分析是研究( )A变量之间的数量关系B变量之间的变动关系C变量之间的相互关系的密切程度D变量之间的因果关系11.在回归直线y c=a+bx,b<0,则x与y之间的相关系数( )A =0B =lC 0<<1D -1<<0r r r r12.在回归直线yc=a+bx中,b表示( )A当x增加一个单位,,y增加a的数量B当y增加一个单位时,x增加b的数量C当x增加一个单位时,y的均增加量D当y增加一个单位时,x的平均增加量13.当相关系数r=0时,表明( )A现象之间完全无关B相关程度较小C现象之间完全相关D无直线相关关系14.下列现象的相关密切程度最高的是( )A某商店的职工人数与商品销售额之间的相关系数0.87B流通费用水平与利润率之间的相关关系为-0.94C商品销售额与利润率之间的相关系数为0.51D商品销售额与流通费用水平的相关系数为-0.8115.估计标准误差是反映( )A平均数代表性的指标B相关关系的指标C回归直线的代表性指标D序时平均数代表性指标三、多项选择题1.下列哪些现象之间的关系为相关关系( )A家庭收入与消费支出关系B圆的面积与它的半径关系C广告支出与商品销售额关系D单位产品成本与利润关系E在价格固定情况下,销售量与商品销售额关系2.相关系数表明两个变量之间的( )A线性关系B因果关系C变异程度D相关方向E相关的密切程度3.对于一元线性回归分析来说( )A两变量之间必须明确哪个是自变量,哪个是因变量B回归方程是据以利用自变量的给定值来估计和预测因变量的平均可能值C可能存在着y依x和x依y的两个回归方程D回归系数只有正号E 确定回归方程时,尽管两个变量也都是随机的,但要求自变量是给定的。
统计学原理第八章相关分析与回归分析
21
例1:P354页,第1题
企业 产量 X 单位成 XY
X2
Y2
序号 (4件) 本(元)Y
1
2
52
104
4
2704
2
3
54
162
9
2916
3
4
52
208
16
2704
4
4
48
192
16
2304
5
5
48
240
25
2304
6
6
∑
24
46
276
36
2116
300
1182
106 15048
即:∑X=24,∑Y=300, ∑XY=1182,
• 2) X倚Y的直线方程的确定
• 根据最小平方法的原理:(x xc )2 最小值
• 将xc = c + dy代入上述公式中,分别对c和d 求一阶偏导数,并令偏导数等于0,就可以
得出两个正规方程:
x nc dy yx cy dy2
d
nyx y n y2 (
x
y )2
c x dy
举例:P355,第4题。
• 偏相关:在复相关中,当假定其他变量不 变时,其中两个变量间的相关关系称为偏 相关。例如,在假定人们收入水平不变的 条件下,某种商品的需求与其价格水平的 关系就是一种偏相关。
9
三、相关分析与回归分析
• (一)相关分析 • 是用一个指标(相关系数)来表明现象
之间相互依存的密切程度。 • (二)回归分析 • 是根据相关关系的具体形态,选择一个
• 曲线相关:如果现象之间的相关关系近似 地表现为某种曲线形式时,就称这种相关 关系为曲线相关。
统计学的相关与回归分析
统计学的相关与回归分析统计学是一门研究数据收集、分析和解释的学科。
相关与回归分析是统计学中常用的两种方法,用于探索和解释变量之间的关系。
本文将介绍相关与回归分析的基本概念、应用和意义。
一、相关分析相关分析用于确定两个或多个变量之间的关联程度。
相关系数是用来衡量变量之间线性相关关系强弱的统计指标。
相关系数的取值范围为-1到+1,其中-1表示完全负相关,+1表示完全正相关,0表示无相关关系。
相关分析的步骤如下:1. 收集数据:收集相关的数据,包括两个或多个变量的观测值。
2. 计算相关系数:使用合适的统计软件计算相关系数,如皮尔逊相关系数(Pearson)或斯皮尔曼等级相关系数(Spearman)。
3. 判断相关性:根据相关系数的取值范围,判断变量之间的关系。
相关系数接近于-1或+1时,表明变量之间线性相关性较强,接近于0时表示无相关性。
4. 解释结果:根据相关分析的结果,解释变量之间关联的程度和方向。
相关分析的应用:- 市场调研:通过相关分析可以了解产品的市场需求和用户行为之间是否存在相关关系,以指导市场决策。
- 医学研究:相关分析可以帮助医学研究人员确定疾病与危险因素之间的相关性,从而提供预防和治疗方案。
二、回归分析回归分析用于描述和预测因变量与自变量之间的关系。
通过回归分析可以建立一个数学模型,根据自变量的取值来预测因变量的值。
回归分析常用的方法包括线性回归、多项式回归和逻辑回归等。
回归分析的步骤如下:1. 收集数据:收集因变量和自变量之间的观测数据。
2. 建立模型:选择适当的回归模型,如线性回归模型、多项式回归模型或逻辑回归模型。
3. 拟合模型:使用统计软件对回归模型进行拟合,得到回归系数和拟合优度指标。
4. 检验模型:通过假设检验和拟合优度指标来评估回归模型的适应程度和预测能力。
5. 解释结果:根据回归系数和显著性水平,解释自变量对因变量的影响程度和方向。
回归分析的应用:- 经济预测:回归分析可以用于预测国民经济指标、股票价格和消费行为等。
统计学中的回归分析与相关性
统计学中的回归分析与相关性回归分析与相关性是统计学中重要的概念和方法,用于研究变量之间的关系和预测。
本文将介绍回归分析和相关性分析的基本原理、应用领域以及实际案例。
一、回归分析回归分析是研究两个或多个变量之间关系的一种统计方法。
它的基本思想是通过对一个或多个自变量与一个因变量之间的关系进行建模,来预测因变量的取值。
1.1 简单线性回归简单线性回归是回归分析中最基本的形式,用于研究一个自变量和一个因变量之间的关系。
其数学模型可以表示为:Y = β0 + β1X + ε,其中Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。
1.2 多元回归多元回归是回归分析的扩展形式,用于研究多个自变量对一个因变量的影响。
其数学模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε。
1.3 回归诊断回归分析需要对建立的模型进行诊断,以确保模型的有效性和合理性。
常见的回归诊断方法包括检验残差的正态性、检验变量之间的线性关系、检验残差的独立性和方差齐性等。
二、相关性分析相关性分析是统计学中用来研究两个变量之间线性关系强弱的方法。
通过计算两个变量的相关系数,可以判断它们之间的相关性。
2.1 皮尔逊相关系数皮尔逊相关系数是最常用的衡量两个连续变量之间线性相关强度的指标,取值范围在-1到1之间。
当相关系数接近1时,表示两个变量呈正相关;当相关系数接近-1时,表示两个变量呈负相关;当相关系数接近0时,表示两个变量之间没有线性关系。
2.2 斯皮尔曼相关系数斯皮尔曼相关系数是一种非参数统计量,用于衡量两个变量之间的等级相关性。
与皮尔逊相关系数不同,斯皮尔曼相关系数不要求变量呈线性关系。
三、回归分析与相关性的应用回归分析和相关性分析在各个领域都有广泛的应用。
下面以两个实际案例来说明其应用:3.1 股票市场分析在股票市场分析中,可以使用回归分析来研究某只股票的收益率与市场整体指数之间的关系。
统计学中的回归分析与相关系数
统计学中的回归分析与相关系数统计学中,回归分析和相关系数是两个重要的概念和方法,它们可以帮助我们理解数据之间的关系、预测未来趋势以及评估变量之间的相互作用。
本文将介绍回归分析的基本原理和应用,以及相关系数的定义和计算方法。
一、回归分析回归分析是一种统计方法,用于研究两个或多个变量之间的关系,并建立一个数学模型来描述这种关系。
在回归分析中,我们通常将一个变量称为因变量(dependent variable),将其他变量称为自变量(independent variable)。
回归分析的目标是找到一个关系模型,使得自变量能够解释因变量的变化。
在简单线性回归中,我们假设只有一个自变量和一个因变量之间存在线性关系。
回归模型可以表示为:Y = α + βX + ε其中,Y表示因变量,X表示自变量,α和β是待估计的参数,ε表示误差项。
通过最小二乘法估计参数α和β,我们可以得到最佳拟合直线,以描述自变量和因变量之间的关系。
除了简单线性回归,我们还可以进行多元线性回归,其中自变量可以是多个。
多元线性回归将回归模型拓展为:Y = α + β₁X₁ + β₂X₂ + ... + βₖXₖ + ε通过最小二乘法,我们可以估计所有的参数β₁,β₂,...,βₖ。
多元线性回归分析可以帮助我们更全面地理解多个自变量对因变量的影响。
回归分析不仅可以用于探索变量之间的关系,还可以用于预测未来的数值。
通过已知的自变量值,我们可以利用回归模型来预测因变量的值。
这使得回归分析在实际应用中非常有用,例如经济学、金融学、市场营销等领域。
二、相关系数相关系数是衡量两个变量之间线性关系强度的统计指标,常用于描述变量之间的相关程度。
最常用的相关系数是皮尔逊相关系数,表示为r。
皮尔逊相关系数的取值范围为-1到1之间,其中1表示完全正相关,-1表示完全负相关,0表示无线性关系。
皮尔逊相关系数可以通过以下公式计算:r = Σ((Xᵢ - X)(Yᵢ - Ȳ)) / √(Σ(Xᵢ - X)²Σ(Yᵢ - Ȳ)²)其中,Xᵢ和Yᵢ分别表示X和Y的观测值,X和Ȳ分别表示X和Y的平均值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x x
2
y y 2
Lxx Lyy
nx yxy
n x2 x 2 n y2 y 2
2021/3/14
15
2.2 相关系数的特征及判别标准
1 1 r 1— 取值范围 ;
2 r 0 — x、y 之间存在正相关关系;
r 0 — x、y 之间存在负相关关系; r 1— x、y 完全(正、负)相关; r 0 — x、y 间不存在线性相关关系。
2021/3/14
9
1.4 回归与回归分析 回归分析的分类: 按照变量多少 —简单回归和复回归。 按照相关形态 —线性回归和非线性回归。
2021/3/14
10
1.5 相关分析与回归分析的关系
相关分析与回归分析联系
相关关系
回归分析
判定相关关系及密切程 建立数学模型—平均变
联度
化关系
系 回归分析的前提和基础 相关分析的深入和继续
3 r — 只是对线性相关关系的度量 。
2021/3/14
16
2.2 相关系数的特征及判别标准
2. 相关关系密切程度的划分
1 r 0 . 3
— 无直线相关;
2 0 . 3 r 0 . 5 — 低度相关;
3 0 . 5 r 0 . 8 — 显著相关
4 r 0 . 8
— 高度相关
2021/3/14
0 628210 0
y
2
y
x xy y
0.01034289 0.00877969
-37.3299 -30.6399
计量。可以证明,样本相
样关本系数Xr的r 标是准总差n1体相x关 Yx系 的y标数准yρ差
相关的系一 数:致估计n1 量 。x x
2
1 n
y y
2
2021/3/14
14
2.1 相关系数的计算公式
r
1 n
xxyy1nx x
2
1 n
y y
2
x x y y
L xy
泛指变量间的一般数量关系,在相关 分析中,将反映现象间相关关系的直 线或者曲线称为回归直线或回归曲线, 将回归直线或回归曲线的方程称为回 归方程。
2021/3/14
8
1.4 回归与回归分析 回归分析—在相关分析的基础上,
根据变量间的相关关系的形态,寻求 一个数学模型(数学表达式),来近 似的表达变量间的平均变化关系。
5.813
x x
2
xx
y y
-367 134689 0.1017 -327 106929 0.00937
-257 66049 0.0827
-117 13689 0.0677
3
9 -0.0143
23
529 0.0207
143 20449 -0.0373
233 54289 -0.0913 363 69169 -0.0763 403 162409 -0.1453
区 变量间的关系是对等
自、因变量划分不同, 回归方程也不同
别 自、因变量—随机变量 因变量是随机变量
2021/3/14
11
1.5 相关分析与回归分析的关系
注意:
1. 进行相关和回归分析时要坚持定性分 析和定量分析相结合的原则,在定性 分析的基础上开展定量分析。
2. 只有当变量间存在高度相关时,才进 行回归分析寻求其相关的具体形式。
分类标志
类别
相关程度 完全相关 不完全相关 不相关
相关方向 正相关 负相关
相关形式 线性相关 非线性相关
变量多少 单相关 复相关 偏相关
2021/3/14
5
1.3 相关分析和回归分析 相关分析 —研究具有相关关系变量的变
动方向和密切程度的统计分析方法 。
相关系数 r
r
较大 — 现象间依存关系强
第六章 相关与回归分析
第一节 基 本 概 念
1.1 函数关系与相关关系 1.2 相关关系的种类内容 1.3 相关分析及其 1.4 回归与回归分析 1.5 相关分析与回归分析关系
1.1 函数关系与相关关系 函数关系:
每一 x Dx 法 则—f 唯一 y Y
相关关系:
确定 x
联系
y
一定范围
一定分布
5 650
0.567 10 1050
0.436
2021/3/14
18
2.2 相关系数x 的 64特7元征,及y 判0.5别813标 58准.13%
x
280 320 390 530 650 670 790 880 910 1050
6470
y
0.683 0.675 0.662 0.649 0.567 0.602 0.544 0.490 0.505 0.436
较小 — 现象间依存关系弱
2021/3/14
6
1.3 相关分析及其内容
相关分析 —研究具有相关关系变量的变动
方向和密切程度的统计分析方法 。
基本内容:
1. 直观判断变量间是否存在相关关系及其 形态—统计图(散点图)。
2. 定量确定变量—相关系数(线性)。
2021/3/14
7
1.4 回归与回归分析 回归—在数量分析方法中“回归”
155 165
分组12列 0 表14如 0 下15: 0 170 185
y i 100 110 120 130 140
2021/3/14
3
1.1 函数关系与相关关系
人均消费
200
180
160
140
120
100
80
人均
60
收入
300
400
500
600
700
800
900
2021/3/14
4
1.2 相关关系的种类
2021/3/14
2
1.1 函数关系与相关关系
收入
xi
消费 消400费与500收入60的0 关7系 00 800
80
85
95 100
95
现85收集90了有100关消110费 115
y和 i 收190入 50 的119资 05 料1112( 50 共113200计
125 140
35户1110家 55 庭1113) 55 并1132将 55 它115300们
2021/3/14
12
第六章 相关与回归分析
第二节 简单线性相关分析
2.1 相关系数的计算公式 2.2 相关系数的特征及判别标准 2.3 相关系数的检验
2.1 相关系数的计算公式
相关系r数与计ρ 算公式: X 、Y 的协方差
相总关样 系体数本:相关 系V数Caor是 vXX一,Va个 YrY统
17
2.2 相关系数的特征及判别标准
【例】根据下列数据,计算变量 x 、y 的
相关系数。
序 人均收入 恩格尔系数 序 人均收入 恩格尔系数
号
x
y
号
x
y
1 280
0.683
6
670
0.602
2 320
0.675
7
790
0.544
3 370
0.662
8
880
0.490
4 530
0.649
9
910
0.505