迈达斯变截面箱梁设计
迈达斯Midas_civil_梁格法建模实例
混凝土收缩变形率: 程序计算
荷载
静力荷载
>自重
由程序内部自动计算
>二期恒载
桥面铺装、护墙荷载、栏杆荷载、灯杆荷载等
具体考虑:
桥面铺装层:厚度80mm的钢筋混凝土和60mm的沥青混凝土,钢筋混凝土的重力密度为25kN/m3, 沥青混凝土的重力密度为23kN/m3。每片T梁宽2.5m,所以铺装层的单位长度质量为:
> 混凝土
采用JTG04(RC)规范的C50混凝土
>普通钢筋
普通钢筋采用HRB335(预应力混凝土结构用普通钢筋中箍筋、主筋和辅筋均采用带肋钢筋既HRB系列)
>预应力钢束
采用JTG04(S)规范,在数据库中选Strand1860
钢束(φ15.2 mm)(规格分别有6束、8束、9束和10束四类)
钢束类型为:后张拉
图7. 跨中等截面
模型/材料和截面特性/ 截面
数据库/用户> 截面号(3); 名称(端部变截面右)
截面类型>变截面>PSC-工形
尺寸
对称:(开)
拐点: JL1(开)
尺寸I
S1-自动(开),S2-自动(开),S3-自动(开),T-自动(开)
HL1:0.20;HL2:0.06 ;HL2-1: 0;HL3:1.28;HL4:0.17;HL5:0.29
(0.08×25+0.06×23)×2.5=8.45kN/m2.
护墙、栏杆和灯杆荷载:以3.55kN/m2计。
二期恒载=桥面铺装+护墙、栏杆和灯杆荷载=8.45+3.55=12kN/m2。
>预应力荷载
分成正弯矩钢束和负弯矩钢束
典型几束钢束的具体数据:
迈达斯桥梁建模
迈达斯桥梁建模01- 材料的定义通过演示介绍在程序中材料定义的三种方法。
1、通过调用数据库中已有材料数据定义——示范预应力钢筋材料定义。
、通过自定义方式来定义——示范混凝土材料定义。
23、通过导入其他模型已经定义好的材料——示范钢材定义。
无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义)?选择的规范?选择相应规范数据库中材料。
对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。
钢材规范混凝土规范图1 材料定义对话框02-时间依存材料特性定义我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。
定义混凝土时间依存材料特性分三步骤操作:1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2);2、将定义的时间依存特性函数与相应的材料连接(图3);3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4);图1 收缩徐变函数图2 强度发展函数4-2图3 时间依存材料特性连接 图4 时间依存材料特性值修改定义混凝土时间依存材料特性时注意事项:1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度;2)、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度;3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间);4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。
计算公式中的a代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数;5)、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性;6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算。
midas设计用数值截面-截面参数设置
midas Civil 技术资料----设计用数值截面-截面参数设置目录midas Civil 技术资料1 ----设计用数值截面-截面参数设置 1 1问题提出2 2设计截面定义及参数设置 2 2.1设计用数值截面定义 2 2.2设计用数值截面-参数设置 4 3箱形截面-受扭塑性抵抗矩W t 计算示例 7 参考文献8北京迈达斯技术有限公司 桥梁部2013/04/271问题提出设计用数值截面,矩形、T形、I形截面参数如何设置是非常重要的,关系到设计容许值的结果。
大家可结合如下所述,对照规范公式进行理解。
2设计截面定义及参数设置2.1设计用数值截面定义1.在CAD中绘制设计截面,如图2-1所示,并存为*.dxf文件,分别为矩形、箱形、T形、I形。
单位:m图2-1 截面参数设置-设计截面图2-2 创建截面2.Civil—工具—截面特性值计算器,计算各截面特性并存为midas section file文件,如图2-2、2-3、2-4所示。
图2-3 计算截面特性图2-4 导入sec类型文件在Civil中定义截面时,设计用数值截面可直接导入,具体操作略。
2.2设计用数值截面-参数设置1.矩形截面图2-5 矩形数值截面参数输入矩形可看做只有中腹板,无翼缘厚度的箱形截面来理解设计截面参数的输入。
(1)“设计参数”中:T1(上翼缘厚度),填入一个可忽略的较小值,;T2(下翼缘厚度),填写0;BT(箱形截面外腹板中心距离),填写0;矩形截面该值不起作用;HT(箱形截面上、下翼缘的中心距离),截面高度,对应D62-04式5.5.2-1中的h值。
(2)验算扭转用厚度(最小):实际截面宽度值,对应D62-04式5.5.2-1中的b值,用于计算Wt,可见,该值的准确输入直接关系到抗扭验算的结果。
剪切验算:验算截面对剪切较薄弱的部位的剪力。
(3)Z1, Z3:确定剪力计算位置,以截面底边为基准线沿截面Z轴方向的距离,注意,由材料力学切应力(τmax)计算公式可知,矩形截面,切应力最大值发生在截面形心处,故,一般情况下对于矩形截面Z1, Z3的位置可设置成与Z2重合。
变截面箱梁施工方案
变截面箱梁施工方案
变截面箱梁是一种常用的梁构造形式,可以在不同的桥梁和建筑结构中使用。
变截面箱梁施工方案主要包括以下几个步骤:
1. 梁型设计:根据桥梁或建筑的需求,确定变截面箱梁的几何形状和尺寸。
梁型设计应考虑荷载要求、施工条件和可行性等因素。
2. 模板制作:根据梁型设计,制作适当尺寸的木模板或钢模板。
模板应具备足够的强度和稳定性,能够承受混凝土的施工荷载。
3. 钢筋布置:按照设计要求,将钢筋按照指定形状和布置方式放置在模板内部。
钢筋应完全覆盖梁的各个部位,并保证相互之间的连接紧密。
4. 浇筑混凝土:在钢筋布置完成后,使用高强度混凝土浇筑到模板中。
为了确保混凝土能够充分填充模板的每个角落,施工人员需要使用振捣器进行震动,以消除气泡和减少混凝土的空隙。
5. 梁体养护:当混凝土刚刚浇筑完成后,需要对梁体进行养护,确保混凝土在硬化过程中能够达到设计强度。
养护措施包括覆盖梁体、保持湿润、避免突然温度变化等。
6. 拆模和修整:当混凝土达到一定的强度后,可以拆除模板,将梁体暴露出来。
同时也需要对梁体进行修整,包括修剪边缘、填补缺陷、涂抹保护剂等。
总之,变截面箱梁的施工方案需要综合考虑各种因素,包括结构设计、材料选择、工艺操作等。
通过科学合理的施工方案,可以保证梁体的质量和安全,同时提高施工效率。
迈达斯-预应力混凝土连续箱梁的分析与设计
桥梁概况及一般截面
分析模型为一个两跨连续梁,分为两个阶段来施工。
桥梁形式:两跨连续的预应力混凝土梁 桥梁长度:L = 60@2 = 120.0 m
材料: 混凝土 钢材
采用JTG04(RC)规范的C50混凝土 采用JTG04(S)规范,在数据库中选Strand1860
截面:
600 2.000 1.050 1.750
模型>单元> 扩展单元
全选
扩展类型>节点 Æ线单元
单元类型>梁单元 ; 材料>1:C50 ; 截面> 1: span
生成形式>复制和移动
复制和移动>等间距>dx,dy,dz>(2, 0, 0)
复制次数>(60) ↵
模型>单元>复制和移动
单选 (节点:31)
等间距>dx,dy,dz>(0,0,-7.13)
MIDAS Information Technology(Beijing) Co., Ltd
概要
本例题使用一个简单的预应力混凝土两跨连续梁箱模型(图1)来重点介 绍MIDAS/Civil 2006 软件的新增功能,PSC桥梁建模助手、横向分析、任意 截面显示等的输入方法。
图1. 分析模型
2
MIDAS Information Technology(Beijing) Co., Ltd
单选 (节点:1,61)
等间距>dx,dy,dz>(0,0,-2.7)
9
MIDAS Information Technology(Beijing) Co., Ltd
PSC桥梁
图7. 建立几何模型
图4. 定义材料对话框
迈达斯_MIDAS_算例02_毕业设计第二阶段-悬臂梁桥分析与设计
6
湖南大学土木工程学院 2008 届桥梁毕业设计
模型 /材料和截面特性 / 截面/添加 截面类型>设计截面> 单箱单室 截面号 ( 1 ) ; 名称 (跨中)
按照左图输入跨中位置处截面 的各控制尺寸,并且打开程序 自动定义剪切验算位置和自动 搜索腹板厚度功能 考虑剪切变形(开) 偏心>中-上部
图6. 定义跨中位置处截面
图2. 跨中箱梁截面
2
湖南大学土木工程学院 2008 届桥梁毕业设计
图3. 墩顶箱梁截面
梁桥分析与设计的一般步骤 1. 定义材料和截面 2. 建立结构模型 3. 输入非预应力钢筋 4. 输入荷载 ①. 恒荷载 ②. 钢束特性和形状 ③. 钢束预应力荷载 5. 定义施工阶段 6. 输入移动荷载数据 ①. 选择移动荷载规范 ②. 定义车道 ③. 定义车辆 ④. 移动荷载工况 7. 运行结构分析 8. 查看分析结果 9. PSC设计(预应力混凝土梁) PSC设计参数确定 运行设计 查看设计结果表格和图形 输出PSC设计计算书
图10 定义桥墩截面
10
湖南大学土木工程学院 2008 届桥梁毕业设计
挂梁截面与跨中截面形式一样,可由跨中截面复制生成。 在材料和截面列表中选择跨中截面,然后点击截面列表右侧的复制命令,生成新 的截面,然后再对新生成的截面修改截面名称即可。
注:对复制生成的截面修改 截面名称即可。
图11 复制生成挂梁截面
7
湖南大学土木工程学院 2008 届桥梁毕业设计
按照左图输入支座位置处截面 的各控制尺寸,并且打开程序 自动定义剪切验算位置和自动 搜索腹板厚度功能 考虑剪切变形(开) 偏心>中-上部
图7. 定义支座位置处截面
8
湖南大学土木工程学院 2008 届桥梁毕业设计
16-Midas Civil应用—变截面预应力连续箱梁
01Midas Civil应用—变截面预应力连续箱梁1、三跨预应力混凝土连续箱梁建模及分析(1)基本概况一座三跨预应力混凝土连续箱梁桥桥梁长度:L=30m+50m+30m=110m,为钢筋混凝土结构;预应力布置形式:T构部分配置顶板预应力,边跨配置底板预应力。
材料特性混凝土:主梁采用C50混凝土,桥墩C40混凝土;钢材:预应力采用“Strand1860”;荷载:自重,程序自动计算;恒荷载:自重;预应力:钢束(φs15.2mm×37);截面积:Au=5180mm2,孔道直径:80mm;预应力与管道摩擦系数:0.17;张拉控制应力:1395MPa;移动荷载:适用规范:公路工程技术标准(JTG B01-2003)荷载种类:公路I级,车道荷载,即CH-CD。
(2)Midas Civil 连续梁桥分析步骤三跨预应力混凝土连续箱梁分析步骤如下:①设置操作环境及项目信息②定义材料和截面③建立结构三维模型④输入静力荷载⑤输入移动荷载数据⑥输入荷载组合⑦运行结构分析⑧查看分析结果(3)设置操作环境及项目信息打开【工具】/【单位系】/将单位体系设为KN,mm。
该单位可以根据输入数据的种类任意转换。
打开【文件】 /【项目信息】/完善基本信息。
(4)定义材料和截面。
打开【特性】/【截面特性值】/【截面】/【添加】/【设计截面】/【截面类型:单箱单室】,截面号:1,名称:跨中;定义PSC截面钢筋。
打开【特性】/【截面特性值】/【截面管理器】/【钢筋】;添加纵向钢筋:1、类型直线,板顶,Z:0.06m,数量65根,间距0.14m,直径:φ16mm;2、类型直线,板底,Z:0.06m,数量33根,间距0.15m,直径:φ16mm;抗剪钢筋:两端i、j钢筋相同,弯起钢筋(间距1.5m,角度45°,Asb:0.0005㎡);抗扭钢筋(间距:0.2m,箍筋Asv1:0.0004㎡,纵筋Ast:0.002㎡);抗剪箍筋(间距:0.2,Asv:0.0008㎡),计算箍筋内表面包围的截面核芯面积(打开),保护层厚度:0.05m,包括翼缘和悬臂。
Midas应用及箱型截面在曲线梁桥
东沙互通:主线与F2匝道交接处:主桥板式墩向内侧偏移,匝道桥的过渡墩移动到兰线以内,开始时需设置牛腿!!一些异型块交接位置,桩号与跨径与桥表不一致,需调整分联位置,不再与主要桥的分孔位置保持一致,而是有一定角度,即异型块端部为两个断面,从而使分孔位置桩号及跨径与桥表一致。
箱型截面是曲线梁桥设计中常采用得截面形式。
这是因为箱形截面具有抗扭刚度大、稳定性好、材料利用充分而经济、结构合理、外形简洁和便于养护等优点。
Midas中汽车荷载:在荷载>移动荷载分析数据>车辆中选择公路工程技术标准(JTGB01-2003)的荷载步骤:选择车辆定义车道(板单元定义车道面),车道的横向布置由用户定义。
最好按偏载定义各车道位置,多车道的横向折减系数由程序自动计算。
定义移动荷载分析工况,在子荷载工况中选择车道数(最少设置为1,最多按设置的车道)注意:a 在定义车道中输入的跨度的用途有两个:一个时程序根据输入的值按JTGD60-2004的4.3.1条自动选择公路-I 级荷载Pk值、按4.3.5自动选择人群荷载标准值;二是用于计算冲击系数,当用户在分析>移动荷载分析控制中选择按输入的跨度计算冲击系数时,将按在定义车道时输入的跨度计算冲击。
b 在定义车道时,选择跨度实始点的用途:当用户在分析>移动荷载分析控制中选择按影响线加载长度计算冲击时,程序将根据跨度始点间的距离计算冲击。
c 程序不能自动考虑汽车荷载的纵向折减,当跨度大于150m时,用户应在定义移动荷载分析子荷载工况时,在系数中自行输入纵向折减系数。
g 车道荷载用于计算,车辆荷载用于验算,车道荷载的均布荷载qk不随跨度变化,集中荷载Pk随跨度变化。
车道荷载加载方式:qk加载到影响线最不利效应的同号影响线上,Pk加载到同号影响线随上最大峰值处。
人群荷载在荷载>移动荷载分析数据>车辆中选择公路工程技术标准(JTG B01-2003)的荷载注意:a 人群荷载也要单独定义一个车道b,当在当在移动荷载工况中分别将汽车荷载和人群荷载定义为子荷载工况,并在移动荷载工况中将其定义为组合时,人群荷载的加载车道也将被认为是一个车道参与横向车道折减,定义人群荷载子荷载工况时,系数取0.8(根据通用规范4.1.6条第1项)。
midas操作例题资料-钢箱梁
Civil&Civil Designer一、钢箱梁操作例题资料1概要钢桥是高强、轻型薄壁结构,截面和自重比混凝土桥小,跨越能力大,因而在实际工程中有广泛应用。
钢桥按形式可大致分为钢箱梁、钢板梁(工字钢)、钢桁梁、组合梁桥等类型。
钢桥在使用时不仅要求钢材具有较高的强度,而且还要求具有良好的塑性。
钢桥的刚度相对比较小,变形和振动比混凝土桥大。
为了保证车辆行驶安全和舒适性、避免过大的变形和振动对钢桥结构产生不利的影响,钢桥必须有足够的整体刚度[2] 。
钢桥缺点除容易腐蚀影响耐久性外,另一缺点是疲劳。
影响疲劳的因素很多,除钢材品质、连接的构造与方法等外,与荷载性质、疲劳细节关系也很大。
钢箱梁除钢材等力学特性外,还具有箱梁的受力特点,广泛应用于市政高架、匝道、大跨度斜拉桥、悬索桥、拱桥加劲梁、大跨连续钢箱梁及人行桥钢箱梁等方面。
本专题将通过介绍工程概况、结合规范构造检查、midas Civil详细建模过程以及midas Civil Designer设计平台及结果查看等操作流程,希望能为读者结合实际项目学习程序,通过程序了解钢箱梁提供帮助。
钢箱梁操作例题资料2 钢桥概况及构造检查2.1 钢桥概况主梁为20+30+40+30m单箱单室正交钢箱梁,钢材为Q345;桥面宽8m,梁高2.335m,翼缘板长1.8m;顶板、腹板、翼缘板均厚16mm,底板标准段厚16mm,支座两侧3~3.5m范围内加厚为24mm;顶板设置闭口U型加劲肋;翼缘板、腹板均设置板型加劲肋;底板标准段设置板型加劲肋,桥墩两侧5~7m范围内设置T型加劲肋;横隔板等设置距离详见图1~图3所示。
建模之前,应按照《公路钢结构桥梁设计规范》(JTG D64—2015)[1] (以下简称规范)对钢桥面板、加劲肋、翼缘板及腹板等尺寸进行构造检查。
2.2构造检查2.2.1钢桥面板近年来正交异性钢桥面板出现疲劳和桥面铺装损伤的现象较为普遍,为保证钢桥面板具有足够的刚度,需对最小厚度有要求;为减小应力集中和避免采用疲劳等级过低的构造细节,需对纵向闭口加劲肋尺寸进行规定[1]。
桥梁工程毕业设计变截面连续梁桥以及迈达斯用法和简支梁桥计算书
目录绪论 (1)1.1预应力混凝土连续梁桥概述 (1)1.2毕业设计的目的与意义.......................... 错误!未定义书签。
第一章设计原始资料……………………………………………………………………第二章方案比选.................................................................................. 第三章桥跨总体布置及结构尺寸拟定.. (4)2.1尺寸拟定 (8)2.1.1 桥孔分跨 (9)2.1.2 截面形式 (9)2.1.3 梁高 (10)2.1.4 细部尺寸 (11)2.2主梁分段与施工阶段的划分 (12)2.2.1 分段原则 (12)2.2.2 具体分段 (12)2.2.3 主梁施工方法及注意事项 (12)第四章荷载内力计算 (15)3.1恒载内力计算 .................................. 错误!未定义书签。
3.2活载内力计算 .................................. 错误!未定义书签。
3.2.1 横向分布系数的考虑 (37)3.2.2 活载因子的计算 (42)3.2.3 计算结果 .................................... 错误!未定义书签。
第五章预应力钢束的估算与布置. (45)4.1力筋估算 (45)4.1.1 计算原理 (45)4.1.2 预应力钢束的估算 (50)4.2预应力钢束的布置 (57)第六章预应力损失及有效应力的计算 (57)5.1预应力损失的计算 (59)5.1.1摩阻损失 (59)5.1.2. 锚具变形损失 (61)5.1.3. 混凝土的弹性压缩 (65)5.1.4.钢束松弛损失 (68)5.1.5.收缩徐变损失 (69)5.2有效预应力的计算 (73)第七章次内力的计算 (74)6.1徐变次内力的计算 (74)6.2预加力引起的二次力矩 (74)6.3温度次内力的计算 (75)6.4支座位移引起的次内力 (77)第八章内力组合 (79)7.1承载能力极限状态下的效应组合 (79)7.2正常使用极限状态下的效应组合 (81)第九章主梁截面验算 (83)8.1截面强度验算 (86)8.2截面应力验算 (88)8.2.1 正截面和斜截面抗裂验算 (88)8.2.2 法向拉应力 .................................. 错误!未定义书签。
迈达斯预应力混凝土T梁的分析与设计
迈达斯预应力混凝土T梁的分析与设计引言:T梁是一种常用的预应力混凝土构件,在桥梁结构中得到广泛应用。
本文将对迈达斯软件进行使用,以一个具体实例,来分析和设计迈达斯预应力混凝土T梁。
1.T梁的结构特点T梁是由梁身、侧翼和上承板组成的横截形状呈T形的梁体。
其结构特点是能够充分利用混凝土的抗压性能,通过预应力钢束的预应力作用将梁的应力状态转变为受拉偏心梁的应力状态,提高了T梁的承载能力和抗裂性能。
2.T梁的有限元建模为了对T梁进行分析与设计,需要先进行有限元建模。
使用迈达斯软件,可以通过输入梁的几何尺寸、材料参数和荷载情况等数据,来构建T梁的有限元模型。
3.荷载计算在设计T梁时,首先要进行荷载计算,包括自重荷载、活载、温度荷载等。
自重荷载是梁本身的重量,可以通过迈达斯软件自动计算得到。
活载是指桥梁上行驶的车辆和行人产生的荷载,需要按照规范要求进行计算。
温度荷载是由于温度变化引起的梁体的伸缩产生的,也需要按照规范要求进行计算。
4.预应力设计T梁采用预应力设计,通过预应力钢束施加预压力,使混凝土受到压应力,从而提高梁体的承载能力和抗裂性能。
预应力设计需要进行预应力计算,包括计算预应力的大小和施加预应力的位置。
5.抗剪设计T梁在使用过程中,由于荷载和温度的变化,会产生剪力效应。
为了提高梁体的抗剪性能,需要进行抗剪设计。
抗剪设计主要包括梁体截面尺寸的确定和钢筋配筋的设计。
6.设计结果分析通过迈达斯软件进行T梁的分析与设计,可以得到梁体的应力和变形等结果。
通过对结果的分析,可以评估设计的合理性,并进行必要的修改和优化。
7.结论通过对迈达斯预应力混凝土T梁的分析与设计,可以得到合理的梁体结构和钢筋配筋,满足桥梁工程的要求,提高其承载能力和抗裂性能。
同时,通过分析结果,可以对设计进行优化和修改,提高工程的经济性和可行性。
总结:本文主要介绍了迈达斯预应力混凝土T梁的分析与设计方法,以及使用迈达斯软件进行有限元建模、荷载计算、预应力设计和抗剪设计等步骤。
迈达斯PSC变截面箱梁施工阶段与PSC设计例题
PSC变截面箱梁施工阶段及PSC设计例题迈达斯技术2007年3月19日一、结构描述 (3)二、结构建模 (5)三、分步骤说明 (5)1、定义材料和截面特性 (5)2、建立上部梁单元并赋予单元截面属性 (8)3、定义结构组并赋予结构组单元信息 (12)4、定义边界组并定义边界条件 (13)5、定义荷载工况和荷载组 (14)6、定义施工阶段 (15)7、分阶段定义荷载信息 (15)8、分析及后处理查看 (21)9、按照JTG D62规的要求对结构进行PSC设计 (22)PSC变截面箱梁施工阶段及PSC设计例题对于常规的PSC连续梁桥我们通常可以参考建模助手建立的模型,对于特殊的桥型或有特殊要求的结构我们需要按照一般方法建立有限元模型,施加边界和荷载进行分析。
这个例题主要说如何使用一般方法建立PSC连续梁桥并定义施工阶段进行施工阶段分析和按照JTG D62规对结构进行设计验算。
一、结构描述这是一座50+62+50的三跨预应力混凝土连续箱梁桥,这里仅模拟其上部结构。
施工方法采用悬臂浇注,跨中截面和端部截面如图1所示。
图1-1 跨中截面示意图1-2 支座截面示意桥梁立面图如图2所示。
图2 连续梁立面图图3 钢束布置形状二、结构建模对于施工阶段分析模型,通常采用的建模方法是:1、定义材料和截面特性(包括混凝土收缩徐变函数定义);2、建立上部梁单元并赋予单元截面属性;3、定义结构组并赋予结构组信息;4、建立边界组并定义边界条件;5、定义荷载工况和荷载组;6、定义施工阶段;7、分阶段定义荷载信息(分施工阶段荷载和成桥荷载两部分);8、分析,分析完成后定义荷载组合进行后处理结果查看;9、定义设计验算参数按照JTG D62对结构进行长短期及承载能力验算。
下面就每个步骤分别详述如下——三、分步骤说明1、定义材料和截面特性本模型中涉及的材料包括混凝土主梁(C40)、预应力钢绞线(Strand1860)。
如下图4所示。
图4 材料列表通常对于预应力混凝土结构(PSC结构)按照现浇施工时,要考虑混凝土的收缩徐变效应,因此需要在建模前要定义混凝土的收缩徐变函数,按照如下图所示定义混凝土收缩徐变函数。
现浇箱梁midas结构计算书
从化至东莞高速公路第一合同段沙浦枢纽立交广惠高速跨线桥左幅第四联连续箱梁验算报告计算复核审核二〇一〇年六月目录1工程概况 (1)1.1概述 (1)1.2主要设计标准 (1)1.3主要材料 (2)1.4结构形式简述 (2)2计算模型及计算参数选取 (3)2.1计算模型建立 (3)2.2计算荷载 (5)2.3计算工况及验算内容 (7)3上部结构计算 (9)3.1计算模型 (9)3.2短暂状况构件应力验算 (10)3.3上部结构计算小结 (24)4 横梁计算 (25)广惠高速跨线桥左幅第四联连续箱梁验算报告1工程概况1.1概述本联为跨径组合为(3×25)m的连续箱梁,上部结构采用连续箱梁,梁高等高为1.6m,悬臂宽度2.3m,桥面横坡通过箱梁整体旋转形成,箱梁顶、底板始终保持平行,边腹板保持2.75:1的斜率不变。
箱梁顶宽16.25m,采用单箱双室。
本桥预应力砼连续箱梁按照部分预应力混凝土A类构件设计。
下部结构采用板式桥墩,支座采用盆式支座。
1.2主要设计标准(1)设计荷载:公路—I级;(2)桥面宽度:桥宽16.25米;(4)横坡:2%。
(5)地震加速度为0.05g,对应地震基本烈度Ⅵ度;广东省公路勘察规划设计院/北京交科公路勘察设计研究院1(6)环境类别:Ⅰ类环境(7)安全等级:一级1.3主要材料(1)混凝土现浇箱梁采用C50砼;护栏采用C30砼。
具体以细部图纸为准。
(2)钢筋钢筋应符合GB13013-1991和GB1499-1998的规定。
凡钢筋直径≥12mm者,均采用HRB335钢筋;凡钢筋直径<12mm者,均采用热轧R235钢筋。
(3)钢绞线钢绞线采用GB/T5224-2003标准生产的低松弛高强度钢绞线。
单根钢绞线直径15.20mm,公称面积140mm2,标准强度1860MPa,弹性模量1.95×105MPa。
1.4结构形式简述本联组合跨径为(3×25)m ,上部结构均采用预应力混凝土斜腹板连续箱梁。
30米预应力简支箱形梁桥结构设计(迈达斯计算)
本科毕业设计题目: 30m预应力简支箱形梁桥结构设计学院: 土木工程学院专业: 土木工程(交通土建工程)班级: 1111班学号: 1vnvn学生姓名:hgjfgfh指导教师: 李建vn 职称:讲师二○一四年四月三十日30m预应力混凝土简支箱梁计算书摘要预应力混凝土简支箱梁桥以结构受力性能好、变形小、行车平顺舒适、养护工程量小、抗震能力强等而成为最富有竞争力的主要桥型之一。
预应力混凝土简支梁桥是一种预先储存了足够预加应力的新型梁桥,预加应力可大幅度提高梁体的抗裂性,并增加了梁的耐久性,截面尺寸减小,高跨比减小,受力明确,理论计算较简单,设计和施工的方法日趋完善和成熟。
简支箱形截面梁具有优良的力学特性:较大的刚度和强大的抗扭性能、结构简单、受力明确、节省材料、架设安装方便,跨越能力较大、桥下视觉效果好,因而被广泛地应用于城市桥梁和高等级公路立交桥的上部结构中。
本次设计的主要内容是关于预应力简支箱形梁桥的结构设计。
设计跨度是30m,双向四车道,桥面宽度15m(0.5m防撞墙+4×3.5m行车道+0.5m防撞墙),采用单箱双室箱形截面,桥轴线为直线,荷载等级:公路I级汽车荷载,地震设防烈度:7级。
梁高采用变高度梁,因梁桥在支点处截面的剪力过大,故在梁桥支点处选择变截面过渡,按一次曲线变化。
设计主要进行了桥梁总体布置及结构尺寸拟定、桥梁荷载内力计算、桥梁预应力钢束的估算与布置、桥梁预应力损失及应力的验算、内力组合验算、主梁截面应力验算。
利用软件Midas Civil 进行结构分析,根据桥梁的尺寸拟定建立桥梁基本模型,然后进行内力分析,计算配筋结果,进行施工各阶段分析及截面验算。
关键词:预应力混凝土、简支、箱梁、结构分析、内力验算30m prestressed concrete box girder calculationsBecause of the long-span pre-stressed concrete continuous box Girder Bridge have many advantages such as its big span ability, flexible construction methods, adaptability, structural rigidity, anti-seismic capability, Structure stress performance good, small deformation, less expansion joints, driving smooth and comfortable, beautiful forms, small maintenance quantity and etc a,it become the most competitive one of the main bridge ,and it becomes more and more widely used in China.This graduate design is mainly about the design of the superstructure of the road pre-stressed concrete Charpy Bridge. The span of the bridge is 30m. This design is a continuous bridge which has four lanes. The bridge deck is made of C50 water-protected concrete. It consists of 3.5m (the width of road deck) ×4 + 0.5m (the width of the sidewalk) ×2=15m; The axis of this bridge is a straight line, The design load standard is the Road One-Level Load,Seismic fortification intensity 7. And the height of girder is changing in the form of conic.The design of pre-stressed concrete continuous girder bridge is mainly the upper structure design , in the design of the main bridge layout and structure size, load calculation, bridge pre-stressing tendons estimation and layout ,the loss of pre-stress and stress of the bridge, the resultant checked, internal combination calculation, section stress calculation girder. This design using the Midas software analysis the structure, according to the size of the bridge, the basic model establishment bridge worked, then force analysis, calculation results of reinforced, for each phase analysis and construction. At the same time, consider the concrete shrinkage, Creep force times and temperature resultant t ime’s factors.Key word: Pre-stressed Concrete; Simple Support; Box girder; Structural Analysis; Checking the internal forces目录第一章绪论 (1)1.1概述 (1)1.2预应力梁桥受力特点 (1)1.3预应力混凝土梁桥发展综述 (2)1.3.1国外预应力混凝土梁桥的发展 (2)1.3.2国内预应力混凝土梁桥的发展 (3)1.4我国高速公路桥梁的发展 (4)1.4.1公路桥梁发展现状 (5)1.4.2我国高速公路桥梁建设特点 (5)1.5桥梁设计的基本原则 (6)1.6预应力混凝土简支梁桥的特点 (7)1.7预应力混凝土梁桥施工技术 (8)1.8毕业设计主要内容 (8)1.9毕业设计的目的和意义 (9)第二章设计要点及构造、材料、尺寸的拟定 (10)2.1桥梁选取的基本原则 (10)2.2设计的基本资料 (10)2.3箱形截面桥梁的特点 (10)2.4主要技术标准 (11)2.5主要材料及材料性能 (11)2.6设计参数取值 (11)2.7结构概述 (13)2.7.1截面形式及截面尺寸拟定 (13)2.8计算原则及控制标准 (15)第三章结构有限元模型的建造过程 (16)3.1 Midas Civil软件介绍 (16)3.2模型建立过程 (17)3.2.1设定建模环境 (17)3.2.2设置结构类型 (18)3.2.3定义材料和截面特性值 (19)3.2.4建立结构有限元模型 (21)3.2.5定义边界条件 (23)3.2.6定义荷载 (23)3.2.7定义施工阶段 (29)3.2.8汽车荷载 (29)每四章主梁作用效应计算 (32)4.1作用分类 (32)4.2公路预应力钢筋混凝土(psc)桥梁设计设计验算内容 (34)4.2.1施工阶段法向压应力验算 (34)4.2.2受拉区钢筋的接应力验算 (41)4.2.3使用阶段正截面抗裂验算 (43)4.2.4使用阶段斜截面抗裂验算 (50)4.2.5使用阶段正截面压应力验算 (55)4.2.6使用阶段斜截面主压应力验算 (60)4.2.7使用阶段正截面抗弯验算 (65)4.2.8使用阶段斜截面抗剪验算 (71)4.2.9使用阶段抗扭验算 (78)结论 (89)致谢 (90)参考文献 (91)第一章绪论1.1概述我在进行毕业设计之前,先阅读了各种文献,对桥梁的历史和发展有一个初步的了解,同时也要对桥梁结构的各种形式有系统的了解,以便今后对毕业设计有更好的把握。
midas设计用数值截面-截面参数设置
midas Civil 技术资料----设计用数值截面-截面参数设置目录midas Civil 技术资料1 ----设计用数值截面-截面参数设置 1 1问题提出2 2设计截面定义及参数设置 2 2.1设计用数值截面定义 2 2.2设计用数值截面-参数设置 4 3箱形截面-受扭塑性抵抗矩W t 计算示例 7 参考文献8北京迈达斯技术有限公司 桥梁部2013/04/271问题提出设计用数值截面,矩形、T形、I形截面参数如何设置是非常重要的,关系到设计容许值的结果。
大家可结合如下所述,对照规范公式进行理解。
2设计截面定义及参数设置2.1设计用数值截面定义1.在CAD中绘制设计截面,如图2-1所示,并存为*.dxf文件,分别为矩形、箱形、T形、I形。
单位:m图2-1 截面参数设置-设计截面图2-2 创建截面2.Civil—工具—截面特性值计算器,计算各截面特性并存为midas section file文件,如图2-2、2-3、2-4所示。
图2-3 计算截面特性图2-4 导入sec类型文件在Civil中定义截面时,设计用数值截面可直接导入,具体操作略。
2.2设计用数值截面-参数设置1.矩形截面图2-5 矩形数值截面参数输入矩形可看做只有中腹板,无翼缘厚度的箱形截面来理解设计截面参数的输入。
(1)“设计参数”中:T1(上翼缘厚度),填入一个可忽略的较小值,;T2(下翼缘厚度),填写0;BT(箱形截面外腹板中心距离),填写0;矩形截面该值不起作用;HT(箱形截面上、下翼缘的中心距离),截面高度,对应D62-04式5.5.2-1中的h值。
(2)验算扭转用厚度(最小):实际截面宽度值,对应D62-04式5.5.2-1中的b值,用于计算Wt,可见,该值的准确输入直接关系到抗扭验算的结果。
剪切验算:验算截面对剪切较薄弱的部位的剪力。
(3)Z1, Z3:确定剪力计算位置,以截面底边为基准线沿截面Z轴方向的距离,注意,由材料力学切应力(τmax)计算公式可知,矩形截面,切应力最大值发生在截面形心处,故,一般情况下对于矩形截面Z1, Z3的位置可设置成与Z2重合。
迈达斯PSC变截面箱梁施工阶段及PSC设计例题
PSC变截面箱梁施工阶段及PSC设计例题北京迈达斯技术有限公司2007年3月19日一、结构描述 (3)二、结构建模 (5)三、分步骤说明 (5)1、定义材料和截面特性 (5)2、建立上部梁单元并赋予单元截面属性 (8)3、定义结构组并赋予结构组单元信息 (12)4、定义边界组并定义边界条件 (13)5、定义荷载工况和荷载组 (14)6、定义施工阶段 (15)7、分阶段定义荷载信息 (16)8、分析及后处理查看 (21)9、按照JTG D62规范的要求对结构进行PSC设计 (22)PSC变截面箱梁施工阶段及PSC设计例题对于常规的PSC连续梁桥我们通常可以参考建模助手建立的模型,对于特殊的桥型或有特殊要求的结构我们需要按照一般方法建立有限元模型,施加边界和荷载进行分析。
这个例题主要说如何使用一般方法建立PSC连续梁桥并定义施工阶段进行施工阶段分析和按照JTG D62规范对结构进行设计验算。
一、结构描述这是一座50+62+50的三跨预应力混凝土连续箱梁桥,这里仅模拟其上部结构。
施工方法采用悬臂浇注,跨中截面和端部截面如图1所示.图1-1 跨中截面示意图1-2 支座截面示意桥梁立面图如图2所示。
图2 连续梁立面图图3 钢束布置形状二、结构建模对于施工阶段分析模型,通常采用的建模方法是:1、定义材料和截面特性(包括混凝土收缩徐变函数定义);2、建立上部梁单元并赋予单元截面属性;3、定义结构组并赋予结构组信息;4、建立边界组并定义边界条件;5、定义荷载工况和荷载组;6、定义施工阶段;7、分阶段定义荷载信息(分施工阶段荷载和成桥荷载两部分);8、分析,分析完成后定义荷载组合进行后处理结果查看;9、定义设计验算参数按照JTG D62对结构进行长短期及承载能力验算。
下面就每个步骤分别详述如下--三、分步骤说明1、定义材料和截面特性本模型中涉及的材料包括混凝土主梁(C40)、预应力钢绞线(Strand1860)。
MIDAS钢箱梁计算书
稳定力矩 kn*m
2428.6 0.0
11724.4 0.0
91781.9 88288.4 38993.4 87400.2 320616.9
车道数
μ
qk
kn/m2
1
0.4
10.5
2
0.4
10.5
合计
Ω m2 33.23 183.33
pk
e
kn
m
360 1.458
360 4.558
超载系数
3 3
倾覆力矩 kn*m 3669.9
/
/
/
最大剪 应力
/ -50.21
容许值
210 210 120
由上图表可以看出,在施工阶段,主梁的正应力和剪应力均满足规范要
求。
(3)施工阶段变形
跨中竖向位移(单位:mm)
从上图可以看出成桥阶段跨中竖向位移为向下 96.8mm。 1.1.3.1.5纵向计算分析结果
采用容许应力法进行荷载组合,现场采用分节段拼装的施工方案,计算得
部位 钢箱梁
截面位置 上缘 下缘
腹板剪力
最大压应力 -12.98 -128.15 /
最大拉应力 124.3 12.98 /
最大剪应力 /
103.25
容许值 210 210 120
从上表可以看出正应力满足要求,腹板剪应力虽满足要求,但偏大,建议 对腹板至支座之间的横隔板进行局部加强。
1.1.5端横梁计算
稳定力矩如下:
倾覆力矩如下:
支座位置
0内 0外 1内 1外 2内 2外 3内 3外 合计
反力 kn 582.4 1215.6 2804.2 3109.7 2863.8 3070.9 544.6 1245