变截面预应力混凝土连续梁设计

合集下载

38+70+38斜交变截面预应力混凝土连续箱梁桥施工图说明书的模板

38+70+38斜交变截面预应力混凝土连续箱梁桥施工图说明书的模板
6.02
最小值
26.8
1.68
2.7
0.847
0.18
13.8
0.37
3.23
平均值u
43.2
1.77
2.71
1.197
0.65
18.3
0.5
4.84
13.5
32
均方差σ
8.17
0.06
0.01
0.186
0.34
1.98
0.16
1.1
变异系数δ
0.19
0.03
0
0.155
0.53
0.06
0.32
0.23
2.2地层的工程物理力学性能指标
土壤物理力学性质试验成果统计
试验指标
天然
密度
比重
孔隙
塑性
液性
压缩
压缩
内摩
凝聚
含水量

指数
指数
系数
模量
擦角

岩土名称值域
W0
ρ0
Gs
e
Il
Ip
a100--200
Es
ф
C
%
g/cm3
(MPa)-1
MPa

kPa
素填土②
最大值
53
1.86
2.73
1.459
1.28
22.7
0.76
3)荷载
汽车荷载等级:公路-Ⅰ级
人群荷载:3.5KN/m2
4)地震:基本烈度6度,地震基本加速度值为0.05g,特征周期为0.35s。
抗震设防类别为B类;抗震设防措施等级为7度。
4)通航要求:
航道等级:Ⅶ级;
通航净空:净宽30m、净高5m;

三跨变截面-预应力混凝土连续梁桥

三跨变截面-预应力混凝土连续梁桥

炭厂沟预应力混凝土连续梁桥的设计设计说明一、设计依据1、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62- 2004)2、《公路桥涵设计通用规范》(JTG D60- 2004)3、《公路工程技术标准》(JTG B01-2003)二、技术标准和技术规范2.1技术标准1、荷载等级:公路—Ⅰ级;2、桥面宽度:0.25m(栏杆)+0.5m(防撞栏)+1.5m(人行道)+9m(行车道)+1.5m (人行道)+0.5m(防撞栏)+0.25m(栏杆)=13.5m。

3、桥面设有双向2%的横坡,通过桥面铺装完成;2.2采用规范1、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62- 2004)2、《公路桥涵设计通用规范》(JTG D60- 2004)3、《公路工程技术标准》(JTG B01-2003)4、《公路桥涵地基和基础设计规范》(JTJ024-85)5、《公路桥涵施工技术规范》(JTJ041-2000)三、基础资料该桥地质情况从上到下为黄土、古土壤、亚粘土和石灰岩。

前三种土质的侧阻力分别为65KPa、70 KPa、85 KPa。

由于本桩基础是支撑在基岩上的端承式。

基岩为石灰岩,其地基承载力特征值4000akf KPa。

四、结构设计4.1 孔跨布置根据路线设计线位,结合桥跨范围地形地质情况,对变截面连续梁桥孔跨布置设计,全桥孔跨组合为80m+125m+80m 。

图4-1 桥梁纵断面布置图4.2 箱梁结构箱梁采用的是单箱单室箱型截面。

桥面行车道的净宽为9m ,人行道净宽为2×1.5m ,因此在设计时设置2×0.5m 的防撞栏及2×0.25m 的人行栏杆。

故箱顶宽为13.5m ,底宽为7.5m ,箱梁顶为平行面。

箱梁跨中及边跨现浇段梁高为2.8m ,箱梁根部断面和墩顶0号梁段高为7.0m 。

从中跨跨中至箱梁根部,箱高、箱梁底板、箱梁腹板均是按照二次抛物线变化的。

大跨径预应力混凝土变截面连续梁桥设计

大跨径预应力混凝土变截面连续梁桥设计

图 1 纵 向下 弯 束布 置
箱 梁 顶 板 厚 度 一 般 需 要 考 虑 两 个 因素 , 即满 足桥 面板 横
向弯矩 的要求 ( 恒载、活载 、梯度温 度等) ;满足布置纵 、横


箱 梁 构 造
拟 定 合 理 的 箱 梁 构 造 ,是 桥 梁 受 力 合 理 、 结 构 安 全 、 造 价 经 济 的基 本条 件 。
1 确 定 纵 截 面 类 型 .
种 为腹 板 内 布置 下弯 束 ( 图 1所示 ) 锚 固于 各 个节 段 腹 见 ,
根 据 已 建 成 桥 梁 资 料 分 析 ,变 截 面 形 式 的 大 跨 径 预 应 力 混 凝 土梁 桥 , 边 跨与 中跨 长 度 比控 制 在 为 0.5 0 6 其 5  ̄ .0范 围 内 为 宜 ,支 点 截 面 的梁 高 H 吉 为 ( / 5 1 1 ) L 约 1 1 - /8 ,跨 中 梁 高 H 约 为 ( / .— / . )H ,对 于 悬臂 施 工 的大 跨 1 15 1 2 5
桥 梁 ,施 工 时恒 载 内力 较 大 ,设 计 时 梁 高 宜 用 较 大 值 。连 续
板 内 ;另 一 种 为 顶板 内布 置 平 直 束 ( 图 2所示 ) 通 过 平弯 见 , 锚 固于 箱 梁 顶 板 腋 角 内 。下 弯 束 不仅 起 到 抗 弯 作 用 ,而 且 其
预应力竖 向分力可 以抵 消较 多的竖向剪力 ,同时,还可 消除
箱 梁 较 高 区段 腹 板 预 应 力盲 区 。 样 的 布束 方 式 既方 便 施 工 , 这
又 对 减 小 主 拉 应 力 效 果 明显 , 以有 效 防 止腹 板 出现 斜 裂 缝 。 可
梁 梁 底 曲 线 可 采 用 15 2次 抛 物 Nhomakorabea 。 .~

预应力混凝土连续梁桥设计 (毕业设计)

预应力混凝土连续梁桥设计 (毕业设计)

第一章绪论第一节桥梁设计的基本原则和要求一、使用上的要求桥梁必须适用。

要有足够的承载和泄洪能力,能保证车辆和行人的安全畅通;既满足当前的要求,又照顾今后的发展,既满足交通运输本身的需要,也要兼顾其它方面的要求;在通航河道上,应满足航运的要求;靠近城市、村镇、铁路及水利设施的桥梁还应结合有关方面的要求,考虑综合利用。

建成的桥梁要保证使用年限,并便于检查和维护。

二、经济上的要求桥梁设计应体现经济上的合理性。

一切设计必须经过详细周密的技术经济比较,使桥梁的总造价和材料等的消耗为最小,在使用期间养护维修费用最省,并且经久耐用;另外桥梁设计还应满足快速施工的要求,缩短工期不仅能降低施工费用,面且尽早通车在运输上将带来很大的经济效益。

三、设计上的要求桥梁设计必须积极采用新结构、新设备、新材料、新工艺利新的设计思想,认真研究国外的先进技术,充分利用国际最新科学技术成果,把国外的先进技术与我们自己的独创结合起来,保证整个桥梁结构及其各部分构件在制造、运输、安装和使用过程中具有足够的强度、刚度、稳定性和耐久性。

四、施工上的要求桥梁结构应便于制造和安装,尽量采用先进的工艺技术和施工机械,以利于加快施工速度,保证工程质量和施工安全。

五、美观上的要求在满足上述要求的前提下,尽可能使桥梁具行优美的建筑外型,并与周围的景物相协调,在城市和游览地区,应更多地考虑桥梁的建筑艺术,但不可把美观片面地理解为豪华的细部装饰。

第二节计算荷载的确定桥梁承受着整个结构物的自重及所传递来的各种荷载,作用在桥梁上的计算荷载有各种不同的特性,各种荷载出现的机率也不同,因此需将作用荷载进行分类,并将实际可能同时出现的荷载组合起来,确定设计时的计算荷载。

一、作用分类与计算为了便于设计时应用,将作用在桥梁及道路构造物上的各种荷载,根据其性质分为:永久作用、可变作用和偶然作用三类。

(一)永久作用指长期作用着荷载和作用力,包括结构重力(包括结构附加重力)、预加力、土重力及土的侧压力、混凝土收缩徐变作用、水的浮力和基础变位而产生的影响力。

预应力混凝土连续梁桥的设计尺寸拟定

预应力混凝土连续梁桥的设计尺寸拟定

预应力混凝土连续梁桥的设计1.1总体布置结构总体设计主要包括桥梁跨径分配、主梁截面形式的拟定以及梁高等方面的内容。

1.1.1跨径布置目前,设计工程师认为预应力混凝土连续梁桥的最大理论跨度为250~300m,经济跨度为100~240m。

–布置原则:减小弯矩、增加刚度、方便施工、美观要求–不等跨布置——大部分大跨度连续梁边中跨比为0.5~0.8,最好为0.65–等跨布置——中小跨度连续梁–短边跨布置——特殊使用要求1.1.2主梁截面–板式截面——实用于小跨径连续梁–肋梁式——适合于吊装–箱形截面——适合于节段施工–其它1.1.3箱梁梁高梁高——与跨径、施工方法有关等高度梁——实用于中、小跨径连续梁,一般跨径在50~60米以下变高度梁——实用于大跨径连续梁,100米以上,90%为变高度连续梁桥型公路桥铁路桥支点梁高(m)跨中梁高(m)支点梁高(m)跨中梁高(m)等高梁(1/15~1/25)l(1/16~1/18)l变高(折线)梁(1/16~1/20)l(1/22~1/28)l(1/12~1/16)l(1/22~1/28)l变高(曲线)梁(1/16~1/25)l(1/30~1/50)l(1/12~1/16)l(1/30~1/50)l对于变高梁,一般对于公路桥,支点梁高是跨中梁高的2~3倍;对于铁路桥,支点梁高是跨中梁高的1.5~2倍。

1.2细部设计主梁细部设计包括顶板、底板、腹板等部位尺寸的拟定,横隔板的设置,齿块和承托等构件的设计等。

1.2.1顶板、底板及腹板箱形截面的顶板和底板是结构承受正负弯矩的主要工作部位。

当悬臂施工时,箱梁底板特别是靠近桥墩附近的底板将承受很大的压应力。

在发生变号弯矩的截面中,顶板和底板也都应各自发挥承压的作用。

(1)顶板顶板厚度一般考虑两个因素:满足桥面板横向弯矩的要求;满足布置纵向预应力钢束和横向预应力钢束的构造要求。

另外传统的设计理念认为,顶板厚度与腹板间距相关。

桥面板的悬臂长度也是调节板内弯矩的重要参数,在布置横向预应力时可考虑桥面板的横向坡度和板截面的变高度,以发挥预应力束的偏心效应。

变截面箱型连续梁桥桥梁工程毕业设计

变截面箱型连续梁桥桥梁工程毕业设计

目录第一章方案比选 (1)1.1方案选取 (1)1.11方案一:50+80+50M的变截面箱型连续梁桥 (1)1.12方案二:4×45M等截面预应力砼连续刚构梁 (2)1.13方案三:65+115M斜拉桥 (3)1.2各方案主要优缺点比较表 (4)1.3.结论 (4)第二章毛截面几何特性计算 (5)2.1基本资料 (5)2.1.1主要技术指标 (5)2.1.2材料规格 (5)2.2结构计算简图 (5)2.3毛截面几何特性计算 (6)第三章内力计算及组合 (9)3.1荷载 (10)3.1.1结构重力荷载 (10)3.1.2支座不均匀沉降 (11)3.1.3活载 (11)3.2结构重力作用以及影响线计算 (11)3.2.1输入数据 (11)3.3支座沉降(SQ2荷载)影响计算 (20)3.5荷载组合 (24)3.5.1按承载能力极限状态进行内力组合 (25)3.5.2按正常使用极限状态进行内力组合 (27)第四章配筋计算 (31)4.1计算原则 (31)4.2预应力钢筋估算 (31)4.2.1材料性能参数 (31)4.2.2预应力钢筋数量的确定及布置 (31)4.3预应力筋的布置原则 (37)第五章预应力钢束的估算及布置 (39)5.1按正常使用极限状态的应力要求估算 (39)5.1.1截面上、下缘均布置预应力筋 (39)5.1.2仅在截面下缘布置预应力筋 (40)5.1.3仅在截面上缘布置预应力筋 (41)5.2按承载能力极限状态的强度要求估算 (41)5.3预应力筋估算结果 (42)5.4预应力筋束的布置原则 (44)5.5预应力筋束的布置结果 (45)第六章净截面及换算截面几何特性计算 (45)6.1净截面几何特性计算(见表6-1) (46)6.2换算截面几何特性计算(见表6-2) (46)第七章预应力损失及有效预应力计算 (47)7.1控制应力及有关参数的确定 (48)7.1.1控制应力 (48)7.1.2其他参数 (48)σ的计算 (48)7.2摩阻损失1lσ的计算 (50)7.3混凝土的弹性压缩损失4lσ的计算 (52)7.4预应力筋束松弛损失5l的计算 (52)7.5混凝土收缩、徐变损失6l7.6预应力损失组合及有效预应力的计算 (53)第八章强度验算 (56)8.1基本理论 (56)8.2计算公式 (56)8.2.1矩形截面 (57)8.2.2工形截面 (57)8.3计算结果 (58)第九章应力验算 (61)9.1正常使用极限状态应力验算 (61)9.2短期效应组合 (62)9.3长期效应组合 (67)9.4基本组合 (73)9.5.承载能力极限状态正截面强度验算 (78)第十章变形验算 (83)10.1挠度验算 ........................................................................................ 错误!未定义书签。

16-Midas Civil应用—变截面预应力连续箱梁

16-Midas Civil应用—变截面预应力连续箱梁

01Midas Civil应用—变截面预应力连续箱梁1、三跨预应力混凝土连续箱梁建模及分析(1)基本概况一座三跨预应力混凝土连续箱梁桥桥梁长度:L=30m+50m+30m=110m,为钢筋混凝土结构;预应力布置形式:T构部分配置顶板预应力,边跨配置底板预应力。

材料特性混凝土:主梁采用C50混凝土,桥墩C40混凝土;钢材:预应力采用“Strand1860”;荷载:自重,程序自动计算;恒荷载:自重;预应力:钢束(φs15.2mm×37);截面积:Au=5180mm2,孔道直径:80mm;预应力与管道摩擦系数:0.17;张拉控制应力:1395MPa;移动荷载:适用规范:公路工程技术标准(JTG B01-2003)荷载种类:公路I级,车道荷载,即CH-CD。

(2)Midas Civil 连续梁桥分析步骤三跨预应力混凝土连续箱梁分析步骤如下:①设置操作环境及项目信息②定义材料和截面③建立结构三维模型④输入静力荷载⑤输入移动荷载数据⑥输入荷载组合⑦运行结构分析⑧查看分析结果(3)设置操作环境及项目信息打开【工具】/【单位系】/将单位体系设为KN,mm。

该单位可以根据输入数据的种类任意转换。

打开【文件】 /【项目信息】/完善基本信息。

(4)定义材料和截面。

打开【特性】/【截面特性值】/【截面】/【添加】/【设计截面】/【截面类型:单箱单室】,截面号:1,名称:跨中;定义PSC截面钢筋。

打开【特性】/【截面特性值】/【截面管理器】/【钢筋】;添加纵向钢筋:1、类型直线,板顶,Z:0.06m,数量65根,间距0.14m,直径:φ16mm;2、类型直线,板底,Z:0.06m,数量33根,间距0.15m,直径:φ16mm;抗剪钢筋:两端i、j钢筋相同,弯起钢筋(间距1.5m,角度45°,Asb:0.0005㎡);抗扭钢筋(间距:0.2m,箍筋Asv1:0.0004㎡,纵筋Ast:0.002㎡);抗剪箍筋(间距:0.2,Asv:0.0008㎡),计算箍筋内表面包围的截面核芯面积(打开),保护层厚度:0.05m,包括翼缘和悬臂。

45+80+45三跨预应力混凝土变截面连续箱梁计算书

45+80+45三跨预应力混凝土变截面连续箱梁计算书

三跨预应力箱型连续梁桥分析与设计学院专业年级班别学号学生姓名指导教师2010 年6 月2 日目录1.概要 (2)1.1 桥梁基本数据以及一般截面 (2)2.设定建模环境 (3)3.桥梁分析 (4)3.1 定义材料和截面 (4)3.2 建立结构模型 (6)3.3 建立荷载组 (9)3.4 输入荷载 (10)3.5 定义并建立施工阶段 (11)3.6 分析 (14)3.7 分析运行结果 (14)三跨预应力箱型连续梁桥分析与设计1.概要本桥为45+80+45三跨预应力混凝土变截面连续箱梁,采用悬臂法施工。

在此利用MIDAS进行分析与设计,其分析模型如图1所示:图1 分析模型(竣工后)1.1 桥梁基本数据以及一般截面1.桥梁基本数据如下:桥梁类型: 三跨预应力箱型连续梁桥桥梁长度: L =45.0 + 80.0 + 45.0 = 170.0 m桥梁宽度: B = 35.0 m斜交角度: 105˚2. 桥梁一般截面桥梁纵向剖面图与标准截面图分别如图2、3所示:图2 纵向剖面图3 标准截面2.设定建模环境文件/新建项目文件/保存(连续梁桥)工具/单位体系长度>m;力>KN图4 设定单位体系3.桥梁分析3.1 定义材料和截面模型/材料与截面特性/材料(输入结果如图5所示)1.混凝土:主梁采用JTG04(RC)规范的C50混凝土,桥墩采用JTG04(RC)规范的C40混凝土。

2.钢材:采用JTG04(S)规范,在数据库中选Strand1860。

3.截面:箱梁截面尺寸为截面尺寸如图4所示,墩采用实腹轨道型截面,其尺寸为:H=12m、H=3.5m。

图5 定义材料及截面3.2 建立结构模型参照图6(a)建立预应力箱型梁模型。

将每个桥梁段看作一个梁单元,以零号块和桥墩的交点、桥墩和桥墩的中心距离为基准分割单元。

满堂支架法区段应考虑下部钢束的锚固位置分割单元。

1.建立结构单元模型/节点/建立(如图6(b))将每个桥梁段看作一个梁单元,以零号块和桥墩的交点、桥墩和桥墩的中心距离为基准分割单元。

变截面连续梁桥

变截面连续梁桥

结构设计及计算
考虑到常用的平面杆系程序计算与实际的结构受力在诸 多方面有偏差,同时在设计施工中还有很多因素是很难精准计 算的,在箱梁设计中要求截面计算留有一定的安全储备,对于 截面正应力,要求在使用荷载作用下箱梁截面的上、下缘保留 2.0-3.0Mpa的压应力,同时应满足强度要求。
施工阶段计算建议适当减小施工阶段控制压应力、拉应力值 (小于0.65Rba),减少施工阶段裂缝产生的可能,要避免“施工 阶段应力可以控制松”的想法。
箱梁顶板厚度由桥面板受力、穿越顶板的纵、横向预应力波 纹管道的孔径所决定,一般不小于25cm。底板厚度(有预应力 管道通过)一般不小于25cm。
箱梁断面尺寸不应片面追求“优化”,不宜过于轻薄,应 考虑到施工中一些不可预计因素导致结构断面尺寸程度不等的 折减,要保证结构尺寸既能满足结构受力和构造的要求,同时 在施工时又容易保证施工质量。
箱梁横向计算时应考虑到底板钢束的径向力的影响。其影响 有两个:一是增加了箱梁底板横向弯距,往往导致箱梁底板横向 普通钢筋配置不足,底板沿纵向局部开裂;二是导致箱梁底板混 凝土容易产生劈裂现象。为避免箱梁底板受弯开裂,可适当增加 底板横向普通钢筋配置密度(包括钢筋整体密度加大和局部密度 加大),同时如有必要可增设底板横向预应力。为防止底板劈裂, 可采取以下方法:加大混凝土保护层厚度,增加承力面积;设置 足够的平衡钢筋(国内规范未见规定,美国94公路桥梁规范中有 明确规定),并要求与底板上、下层钢筋网及定位钢筋形成一个 受力整体,以便把径向力传递到上层钢筋网及整个底板断面;纵 向底板钢束波纹管道保持适当的净距,保证管道之间的混凝土浇 筑质量。同时建议减少单个波纹管道内的钢束的数量,适当分散 布置,即对大吨位的钢束慎重使用。跨中位置箱梁节段梁高最矮、 刚度最小、通过的底板钢束最多,故底板钢束的径向力效应影响 最大,可适当增加箍筋配置密度或加大箍筋的直径。

用新规范计算预应力混凝土连续梁

用新规范计算预应力混凝土连续梁

用新规范计算预应力混凝土连续梁预应力混凝土连续梁是一种常用的结构形式,它可以有效地分担荷载,并具有较好的变形性能和挠度控制能力。

本文将以新规范为依据,介绍预应力混凝土连续梁的计算方法。

一、材料强度的计算首先,根据新规范的要求,需要计算混凝土的强度。

混凝土的强度主要包括抗压强度和抗拉强度。

按照规范中的公式,可以得到混凝土的抗压强度和抗拉强度的数值。

对于预应力混凝土连续梁中的预应力钢筋,需要计算其抗拉强度。

根据规范,预应力钢筋的抗拉强度可以根据材料的特性进行计算。

二、截面性能的计算预应力混凝土连续梁的截面性能是指梁的承载能力和变形性能。

承载能力包括极限弯矩和抗剪承载力,变形性能主要包括挠度和裂缝的控制。

1.极限弯矩的计算极限弯矩是指在梁截面的一侧产生最大应力时,梁截面的承载能力。

根据新规范,可以采用一系列公式和计算方法来计算极限弯矩。

2.抗剪承载力的计算抗剪承载力是指连续梁在承受剪力荷载时的承载能力。

根据规范中的要求,可以采用不同的计算方法来计算抗剪承载力。

3.挠度和裂缝的控制挠度和裂缝的控制是预应力混凝土连续梁设计中的重要问题。

通常,可以采用一系列方法来控制梁的挠度和裂缝,如增加截面高度、增加预应力等。

三、校核计算和验算在进行预应力混凝土连续梁的计算时,需要进行校核和验算,以保证梁的安全性和可靠性。

校核计算主要是检查计算结果的合理性和一致性,验算是指将计算结果与规范中要求的标准进行比较,以确定梁是否满足规范的要求。

总结起来,预应力混凝土连续梁的计算要考虑材料强度、截面性能、挠度和裂缝的控制等因素,需要根据新规范进行计算和校核验算。

通过合理的计算和设计,可以确保梁具有较好的承载能力和变形性能,从而满足工程的要求。

预应力混凝土连续梁(刚构)桥

预应力混凝土连续梁(刚构)桥

2.立面布置
等高连续梁
梁高选择:与跨度有关。 • 公路桥的高跨比h/L在1/25~1/15之间。当采用顶推法施
工时,考虑顶推法施工时对结构的附加受力要求,高跨 比选1/15~1/12为宜
• 干线铁路桥, 高跨比为1/8~1/16
Kochertal Bridge
德国 | 科查塔桥
Kochertal Bridge
连续钢构体系
2.立面布置
带V形墩或V形支撑的连续梁体系
优点: • 适当增加连续梁的跨越能力、节省材料 • 削减墩顶的负弯矩 • 外观上显得轻巧别致
桥无止,路无尽
2.立面布置
连续钢构体系
特点: ③在构造方面,主梁常采用变截面箱形梁,桥墩多采用矩形和 箱形截面的柱式墩或双薄壁墩;在连续刚构两端设置的伸缩装 置应能适应结构纵向位移的需要,同时,端部需设置控制水平 位移的挡块,以保证结构的水平稳定性。
2.立面布置
连续钢构体系
受力特点: ①随着墩高的增加,连续刚构的墩顶以及跨中梁部弯矩趋近连 续梁者 ②墩的轴向力和墩底弯矩随墩高的增加急剧减少 ③两墩之间的梁部所受到的轴向力随墩高的增加而急剧减少。 因此,连续刚构梁的高跨比等设计参数可参照连续梁桥取值 (适当偏小),对带双薄壁墩的连续刚构体系,其梁部弯矩与 双薄壁的截面尺寸和间距有较大关系
可取1/25~1/16,支点截面与跨中截面高度之比在2.0 ~ 3.0; • 铁路:支点截面可取1/16 ~ 1/12,支点截面与跨中截面 高度之比在1.5 ~ 2.0.边跨与中跨的跨度比在0.5 ~ 0.8 内变化,采用悬臂法施工时宜取较小值。比值过大,会导 致边跨正弯矩分布不合理;而比值过小,梁端支点可能发 生负反力,需要设置构造复杂的拉力支座。

预应力混凝土连续梁桥的上部结构设计,

预应力混凝土连续梁桥的上部结构设计,

摘要在本设计中,根据地形图和任务书要求,依据现行公路桥梁设计规范提出了预应力混凝土连续梁桥、预应力混凝土连续刚构、下承式拱桥三种桥型方案。

按照“有用、经济、安全、美观”的桥梁设计原则,经过对各种桥型的比选最终选择54m+84m+54m的预应力混凝土连续梁桥为本次的推举设计桥型。

本设计利用MadisCivil软件进行结构分析,根据桥梁的尺寸拟定建立桥梁基本模型,然后进行内力分析,计算配筋结果,进行施工各阶段分析及截面验算。

同时,一定要考虑混凝土收缩、徐变次内力和温度次内力等因素的影响。

本设计主要是预应力混凝土连续梁桥的上部结构设计,设计中主要进行了桥梁总体布置及结构尺寸拟定、桥梁荷载内力计算、桥梁预应力钢束的估算与布置、桥梁预应力损失及应力的验算、次内力的验算、内力组合验算、主梁截面应力验算、桥梁施工组织设计等主要内容。

最终,经过分析验算表明该设计计算方法正确,内力分布合理,符合设计任务的要求。

关键字:比选方案;连续梁桥;Midas;结构分析;验算ABSTRACTIn this design, accordiOK to the topography, and project requirements,accordiOK to the current highway bridge design specification of prestressed concrete continuous girder bridge forward,Prestressed concrete continuous rigid-frame structure,XiaCheOKShi arch bridge three schemes.AccordiOK to the "practical, beautiful, safe, economic and convenient for construction of bridge design principles, structure after the bridge of various final choice of 54m + 84m + 54m prestressed concrete continuous girder bridge design for this recommendation.This design usiOK the Madis Civil software analysis the structure,accordiOK to the size of the bridge, the basic model establishment bridge worked,then force analysis,calculation results of reinforced,for each phase analysis and construction.At the same time, must consider the concrete shrinkage, Creep force times and temperature resultant times factors.The design of prestressed concrete continuous girder bridge is mainly the upper structure design,in the design of the main bridge layout and structure size,load calculation,bridge prestressiOK tendons estimation and layout,the loss of prestress and stress of the bridge,the resultant checked,internal combination calculation,section stress calculation girder.Finally, after analysis shows that the design calculation method of calculatiOK the internal force distribution, reasonable, comply with the design requirements of the task.KEY WORDS:Selection scheme;Continuous girder bridge;Continuous rigid-frame structure;Arch bridge;Structure analysis;checkiOK computation第一章概述1.1预应力混凝土连续梁桥概述预应力混凝土连续梁桥以结构受力性能好、变形小、伸缩缝少、行车平顺舒适、造型简洁美观、养护工程量小、抗震能力强等而成为最富有竞争力的主要桥型之一。

第三章预应力混凝土连续梁桥

第三章预应力混凝土连续梁桥


缺点是:
( 1 ) 需 要 一 整 套 设第备24及页/配共7件5页, 耗 用 钢 材 多 , 一 次 性 投
(一)移动悬吊模架

移动悬吊模架的基本结构包括三部分:承重梁、从承重梁
伸出的肋骨状的横梁以及支承主梁的移动支承。

承重梁也称支承梁,通常采用钢梁,采用单梁或双梁依桥
宽而定。承重梁是承受施工设备自重、模板和悬吊脚手架系统
等截面连续梁一般适应于中等跨径桥梁,以40~60m为 宜, 也适应于有支架施工、逐孔架设施工、移动模架施工及顶推 法施工的桥梁,立面布置以等跨径为宜(见图3-1)。
第2页/共75页
(一)等截面连续梁
图3-1 等截面连续梁的立面布置图 第3页/共75页
(二)变截面连续梁
图3-2 变截面梁的立面布置图
问题。
移动支架逐孔现浇施工的主要特点:

所用支架数量较整体支架现浇施工要少,周转次数多,利
用效率高,施工速度也比整体支架现浇施工快得多,但由于后
支点位于悬臂端会产生较大的施工弯矩,因此该方法适用于中
等跨径及结构较简单的桥梁。
第19页/共75页
一、支架现浇施工法
移动支架常用的形式 : 1 . 落 地 式 : 落 地 式 支 架 适 合 于 在 陆 地 上 或 桥 墩 较 低 、 水 不 深
箱形截面梁的抗弯及抗扭刚度大,除在支点处设置横隔 梁以满足支座布置及承受支座反力需要外,可设置少量中横隔 梁。对于单箱室截面,目前的趋势为不设中横隔梁。对于多箱 截面,为加强桥面板和各箱间的联系,可在箱间设置数道横隔 梁。
第9页/共75页
四、预应力筋布置
连续梁主梁的内力主要有三个:即纵向受弯、受剪以及横 向受弯。预应力混凝土连续梁中预应力筋布置分为纵向、横向 及竖向布置。纵向预应力抵抗纵向受弯和部分受剪,竖向预应 力抵抗剪力,横向预应力则抵抗横向受弯。同时布置有三种力 筋的称为三向预应力体系;同时布置有纵向与竖向或纵向与横 向的称为双向预应力体系。

预应力混凝土连续箱梁桥设计

预应力混凝土连续箱梁桥设计

预应力混凝土连续箱梁桥设计一、预应力混凝土连续箱梁的特点1.结构简单,施工方便:预应力混凝土连续箱梁是由多节箱体组成的连续结构,箱体之间通过预应力钢筋连接,构造简单明了。

2.承载能力大:预应力混凝土连续箱梁采用预应力钢筋,使梁的承载能力得到有效提高,可以满足大跨度、大荷载的要求。

3.抗震性能好:预应力混凝土连续箱梁由于预应力钢筋的作用,具有良好的抗震性能,能够有效地减小地震力对桥梁的影响。

4.经济性好:预应力混凝土连续箱梁由于结构简洁,施工方便,能够降低工程成本。

二、预应力混凝土连续箱梁的设计要点1.跨度选择:预应力混凝土连续箱梁的跨度要根据桥梁的实际情况进行合理选择,考虑到交通流量、路线的复杂程度、设计速度等因素。

一般情况下,跨度较小的桥梁可以选择简支梁或连续梁结构,跨度较大的桥梁则需要选用连续箱梁结构。

2.箱梁几何尺寸设计:箱梁几何尺寸的设计包括箱梁的高度、宽度和翼缘板的厚度等。

根据桥梁的跨度和超载情况,结合梁段的布置要求,确定合理的几何尺寸。

3.梁段划分:预应力混凝土连续箱梁由于有多个梁段组成,因此需要对梁段进行合理划分。

划分梁段的原则是各个梁段中应力相对均匀,使得整个桥梁结构具有良好的力学性能。

4.预应力计算:预应力混凝土连续箱梁的预应力计算是桥梁设计过程中的关键环节。

需要根据桥梁的跨度、超载情况和设计要求,确定预应力的大小和布置方式。

5.砼块计算:预应力混凝土连续箱梁的砼块计算是为了确定梁的自重和大车荷载作用下的受力状态。

需要考虑到砼块在施工过程中的配重状态和工作状态。

三、预应力混凝土连续箱梁的施工过程1.模板安装:首先需要安装好箱梁的模板,确保模板的精度和稳定性。

2.钢筋预埋:在模板安装完成后,根据预应力设计要求,在箱梁的相应位置预埋好预应力钢筋。

3.砂浆浇注:钢筋预埋完成后,将砂浆浇注到模板内,形成箱梁的外形。

需要确保砂浆的流动性和充实性,以避免空洞和缺陷。

4.预应力成型:砂浆浇注完成后,根据预应力设计要求,通过拉力机对预应力钢筋进行拉拔,形成预应力。

预应力混凝土连续梁结构优化设计

预应力混凝土连续梁结构优化设计

预应力混凝土连续梁结构优化设计摘要:我国的工程数量随着社会经济水平的不断提高而越来越多,与此同时,国家也更加的重视工程方面的建设工作。

在此背景下,该文章主要针对预应力混凝土连续梁结构的设计工作进行了探讨,并且提出了相应的优化措施,希望能给有关部门带来参考和帮助。

关键词:工程建设;预应力混凝土;连续梁;结构优化引言该文章主要针对预应力混凝土连续梁结构的设计优化工作进行了分析,并且建立了相应的优化模式,在此过程中需要对梁截面的高度以及后期预加力目标等变量进行优化设计,并且需要控制好界面的允许应力条件。

在进行结构分析时使用的是有限分析法,并且要考虑到结构体系的转换问题。

1预应力混凝土结构优化设计的分析预应力混凝土结构在我国不断的进行优化,相关人员也开展了深入的研究,其中主要针对简支构件开展了相应的分析,并且取得了相应的成果。

在对预应力混凝土超静定结构进行优化设计时,要注重优化小尺寸连续构件,主要优化的指标包含预加力以及等截面。

预应力混凝土大跨度连续梁结构在具体应用过程中具有比较复杂的体系,并且会对整个施工过程造成影响,所以在进行结构设计时要考虑到这些问题。

设计工作在开展过程中要考虑到预应力混凝土连续梁跨度增大的情况,然后应用分段悬拼以及悬灌技术。

这些施工技术的应用能够提升施工效率,并且能够降低工程的成本,并且混凝土的结构会产生相应的体系转变,而引起结构次内力。

2预应力桥梁结构特点2.1结构类型悬臂梁桥属于连续梁,具有比较大的跨径,能够在简支梁体的支点上进行连接,可以实现多跨一联。

在此过程中,结构会受到每联跨数以及联长等因素的影响,而出现纵向位移,如果跨长比较短,那么可能会出现伸缩缝增加的情况。

连续桥梁结构的类型是非常多的,可以根据跨的类型以及截面的类型等进行分类。

2.2力学特点预应力混凝土连续桥梁的结构是比较轻的,并且具有比较大的跨越能力,这主要是因为其是由高强度材料组成的混凝土的抗裂性能够得到相应的提升,除此之外,弯矩分布更加具有合理性,这主要是受到了活载作用的影响。

连续梁施工技术方案

连续梁施工技术方案

挂篮悬浇连续箱梁施工方案1.概述桥型设计为(56+90+56)m=202m变截面预应力混凝土连续箱梁。

箱梁横断面为直腹板单箱单室整体断面,墩顶梁高5。

06m,跨中梁高2.46m,梁底呈二次抛物线变化,箱梁顶板宽13m,底板宽6。

5m,两侧悬臂长3.45m(3.05m),底板腹板变化厚度,顶板等厚.连续箱梁采用三向预应力,纵向、横向预应力均为¢j15。

24高强低松驰钢绞线,Rby=1860Mpa,OVM锚具,全桥竖向预应力为φ25高强精轧螺纹钢筋。

主墩和过渡墩均为钢筋砼薄壁墩,壁厚2。

5m,墩宽7。

5m,承台厚为2。

5m,主墩每墩24¢1.2m钻孔灌注桩,过渡墩每墩12根¢1。

2m钻孔灌注桩,钻孔桩按摩擦桩设计。

桥面铺装采用6cm沥青砼+4cm沥青砼防滑损耗面层,桥面横坡2%;钻孔灌注桩均在岸上埋设钢护筒钻孔,灌注水下砼成桩.上部结构采用挂篮悬臂浇筑的施工方式,整个施工过程不影响运河通航.本桥共有钻孔灌注桩72根,计3960m,桩长为55m,其中过渡墩¢1200mm钻孔灌注桩24根,主墩¢1200mm钻孔灌注桩48根。

本桥共有承台4座,薄壁墩8根.1.1设计标准及设计荷载:1。

1.1桥梁宽度:0.5m(防撞栏)+0.5m(路缘带)+11。

75m(行车道)+0.5m (分隔带)+11.75m(行车道)+0.5m(路缘带)+0。

5m(防撞栏)。

1.1.2设计洪水频率1/100。

1.1.3设计通航洪水频率1/20,设计通航水位2。

206m。

1.1。

4通航等级:Ⅲ级。

1。

1。

5设计荷载:汽车—-超20,挂车—-120。

1.2上部结构:本方案为(56+90+56)m三孔预应力砼连续梁。

1.3下部结构:1.3.1主墩为钢筋混凝土薄壁墩,基础为¢1200mm钻孔灌注桩。

1.3.2过渡墩为钢筋混凝土薄壁墩,基础为¢1200mm钻孔灌注桩。

2。

施工流程2。

1第一阶段在承台上架设钢管作为临时支撑,并采用HR型可调重型门式脚手搭设0#块浇筑支架,安装永久支座和临时支座,临时支座顶须高出永久支座10mm,并将临时支座锚固.0#块支架预压,并调整其标高,在0#块的支架上浇筑0#块件,张拉0#块件XD、XF束。

变截面连续梁完整计算书

变截面连续梁完整计算书

变截⾯连续梁完整计算书⼀、⼯程概况上部结构采⽤预应⼒混凝⼟变截⾯连续箱梁,为双幅结构。

单幅箱梁采⽤单箱单室截⾯,箱梁顶板宽11.99m,底板宽为6.99⽶,箱梁顶板设置1.5%的横坡。

边跨端部及中跨跨中梁⾼均为2.0m(以梁体中⼼线为准),箱梁根部梁⾼为4.0⽶,梁⾼从2.0m到箱梁根部按1.5次抛物线规律变化;边跨端部及中跨跨中底板厚度为0.25⽶,箱梁悬臂根部底板厚度为0.6⽶,箱梁底板厚度从2.0m到悬臂根部按1.5次抛物线规律变化。

箱梁腹板在3.5m长度内由0.45⽶直线变化⾄0.6⽶。

桥台采⽤重⼒式U型桥台,桥台与道路中⼼线正交布置。

桥台扩⼤基础应嵌⼊中风化岩⾯不少于0.5m,同时应满⾜基底持⼒层抗压承载⼒要求,桩基础应嵌⼊中风化岩层长度不⼩与2.5倍桩径,桥台台⾝采⽤C25⽚⽯混凝⼟浇筑,台帽混凝⼟采⽤C30钢筋混凝⼟。

台后的填料采⽤压实度不⼩于96%的砂卵⽯,回填时应预设隔⽔层或排⽔盲沟。

桥墩均采⽤钢筋混凝⼟⼋棱形截⾯,基础采⽤桩基接承台。

桥墩墩⾝截⾯为3.5×2.0m,截⾯四⾓对应切除70×50cm倒⾓。

墩顶设盖梁,桥墩盖梁尺⼨为6.99m(长)×2.4m(宽)×2.6m(⾼),承台尺⼨为8.4m(长)×3.4m(宽)×2.5m。

每个承台接两根直径2.0m的桩基。

所有的桩基础均采⽤嵌岩桩,⽤⼈⼯挖孔成桩。

桩基础应嵌⼊完整的中风化岩⾯不少于3倍桩径,并要求嵌岩岩⽯襟边宽度⼤于3.0m,同时应满⾜基底持⼒层岩⽯抗压强度要求。

桥型布置见图1 桥型⽴⾯布置图。

图1 桥型⽴⾯布置图⼆、主要技术标准汽车荷载:公路-I级。

⼈群荷载:3.5 KN/m2。

2.4.桥梁宽度:2.5. 纵坡、横坡:三、设计规范3.1.《城市桥梁设计准则》(CJJ11—93)。

3.2.《公路桥涵设计通⽤规范》(JTG D60—2004)。

3.3.《公路钢筋混凝⼟及预应⼒混凝⼟桥涵设计规范》(JTG D62—2004)。

midas--预应力混凝土连续梁桥设计1+RC设计验算说明

midas--预应力混凝土连续梁桥设计1+RC设计验算说明

MIDAS Information Technology(Beijing) Co., Ltd
概要
本例题使用一个简单的预应力混凝土两跨连续梁箱模型(图1)来重点介 绍MIDAS/Civil 2006 软件的新增功能,PSC桥梁建模助手、横向分析、任意 截面显示等的输入方法。
图1. 分析模型
2
MIDAS Information Technology(Beijing) Co., Ltd
模型>单元> 扩展单元
全选
扩展类型>节点 Æ线单元
单元类型>梁单元 ; 材料>1:C50 ; 截面> 1: span
生成形式>复制和移动
复制和移动>等间距>dx,dy,dz>(2, 0, 0)
复制次数>(60) ↵
模型>单元>复制和移动
单选 (节点:31)
等间距>dx,dy,dz>(0,0,-7.13)
3.500 450 1.750
12.700 500
1.350 1.350
3.500 1.750
2.000 600 450 1.750 1.050
CL OF BOX
275 250
325 250
275 250 260 1.840 350 80 2.700 250
250350 802源自05.680850
450 1.250
同时定义多种材料
特性时,使用 键可以连续输入。
下面定义PSC Beam所使用的混凝土和钢束的材料特性。
模型 / 材料和截面特性 / 材料 类型>混凝土 ; 规范> JTG04(RC) 数据库> C50 ↵

变截面连续梁桥设计构造设计图文详解

变截面连续梁桥设计构造设计图文详解

变截⾯连续梁桥设计构造设计图⽂详解变截⾯连续梁桥主跨经济跨径⼀般在40~250m之间,桥型优点在于施⼯技术成熟、造价低廉、⾏车舒适、养护简单;缺陷在于结构⾃重⼤、容易开裂、恒载在使⽤荷载中占据较⼤⽐例、建筑⾼度⾼。

1.箱梁箱室分配(1)鉴于多室箱梁弯曲内⼒分配难以把握,箱梁最好采⽤单箱单室;(2)箱梁分室受畸变和横框架抗弯控制,当箱梁最⼤宽⾼⽐超过3~3.5时应考虑分室;(3)当采⽤单箱多室结构时,各墩⽀撑最好⼀条腹板对应⼀排⽀座;(4)当腹板与⽀座不是⼀⼀对应或⽀座中⼼与腹板中⼼存在偏离时应进⾏⽀座处横隔板的横向抗弯计算。

2.箱梁梁⾼箱梁梁⾼的控制因素主要包括:(1)箱梁根部梁⾼⼀般取主跨跨径的1/16~1/20;跨中梁⾼⼀般取主跨跨径的1/40~1/60。

(2)跨中梁⾼最⼩箱内净⾼⼀般不宜⼩于1.5m,特⼩跨径桥梁例外。

(3)箱梁最矮梁段箱体宽⾼⽐不⼤于3.5。

3.梁⾼变化箱梁梁⾼⼀般采⽤抛物线变化,主跨跨径⼩于120m时采⽤2次抛物线,⼤于120m时采⽤1.8、1.6或1.5次抛物线。

4.底板厚度箱梁底板厚度变化规律⼀般采⽤2次抛物线,最薄处根据桥梁跨径、构造需要和横向抗弯计算确定⼀般为20cm~32cm;最厚处底板厚度⼀般取跨径的1/200~1/120,根据下缘压应⼒要求控制。

5.腹板厚度箱梁腹板厚度由腹板抗剪和构造控制,多在30~80cm之间,当设有腹板束时⼀般不宜⼩于45cm。

6.顶板厚度箱梁顶板厚度由顶板横向抗弯要求和纵向预应⼒布置空间需要来控制。

7.不良构造1.纵向预应⼒⼀般由内⼒设计控制:抵抗负弯矩设置顶板束;抵抗正弯矩设置底板束;抵抗主拉应⼒设置腹板束。

2.横、竖向预应⼒图4 横竖向预应⼒布置预应⼒混凝⼟箱梁普通钢筋主要⽤于抵抗局部受⼒,纵向钢筋主要⽤于满⾜构造需要;⽽横向竖向钢筋则更加重要,横向抗弯、腹板主拉应⼒等基本由横向和竖向钢筋承担。

1.上部结构纵向分析全桥总体计算,主要⽤于对主梁在施⼯过程及运营阶段的承载⼒、各部位主梁应⼒、变形、⽀座反⼒、桥墩内⼒、桥台内⼒等进⾏控制分析,是设计的主要依据之⼀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档