变截面连续梁式桥设计入门

合集下载

三跨变截面-预应力混凝土连续梁桥

三跨变截面-预应力混凝土连续梁桥

炭厂沟预应力混凝土连续梁桥的设计设计说明一、设计依据1、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62- 2004)2、《公路桥涵设计通用规范》(JTG D60- 2004)3、《公路工程技术标准》(JTG B01-2003)二、技术标准和技术规范2.1技术标准1、荷载等级:公路—Ⅰ级;2、桥面宽度:0.25m(栏杆)+0.5m(防撞栏)+1.5m(人行道)+9m(行车道)+1.5m (人行道)+0.5m(防撞栏)+0.25m(栏杆)=13.5m。

3、桥面设有双向2%的横坡,通过桥面铺装完成;2.2采用规范1、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62- 2004)2、《公路桥涵设计通用规范》(JTG D60- 2004)3、《公路工程技术标准》(JTG B01-2003)4、《公路桥涵地基和基础设计规范》(JTJ024-85)5、《公路桥涵施工技术规范》(JTJ041-2000)三、基础资料该桥地质情况从上到下为黄土、古土壤、亚粘土和石灰岩。

前三种土质的侧阻力分别为65KPa、70 KPa、85 KPa。

由于本桩基础是支撑在基岩上的端承式。

基岩为石灰岩,其地基承载力特征值4000akf KPa。

四、结构设计4.1 孔跨布置根据路线设计线位,结合桥跨范围地形地质情况,对变截面连续梁桥孔跨布置设计,全桥孔跨组合为80m+125m+80m 。

图4-1 桥梁纵断面布置图4.2 箱梁结构箱梁采用的是单箱单室箱型截面。

桥面行车道的净宽为9m ,人行道净宽为2×1.5m ,因此在设计时设置2×0.5m 的防撞栏及2×0.25m 的人行栏杆。

故箱顶宽为13.5m ,底宽为7.5m ,箱梁顶为平行面。

箱梁跨中及边跨现浇段梁高为2.8m ,箱梁根部断面和墩顶0号梁段高为7.0m 。

从中跨跨中至箱梁根部,箱高、箱梁底板、箱梁腹板均是按照二次抛物线变化的。

梁式桥

梁式桥

企口混凝土铰连接 钢板连接
第三讲
梁 式 桥
简支梁桥的构造与设计
简支梁桥具有受力明确、构造简单、施工方便 等优点,是中、小跨径桥梁应用最广的桥型。 整体现浇 预制装配
第三讲
梁 式 桥
简支梁桥的构造与设计
★整体式简支梁桥
★ 整体式梁桥具有整体性好、刚度大、易于做成 复杂形状等优点。 ★ ★ T形截面:
第三讲
梁 式 桥
简支梁桥的构造与设计
★装配式简支T形梁桥
装配式T形梁桥是使用最为普遍的结构形式,其优 点是制造简单、整体性好、接头也方便。
截面形式
第三讲
梁 式 桥
简支梁桥的构造与设计
★装配式简支T形梁桥——横隔梁
横隔梁在装配式T梁中起着保证各根主梁相互连接 成整体的作用。T型梁桥的端横隔梁是必须设置的。 有利于制造、运输和安装阶段构件的稳定性,而 且能显著加强全桥的整体性。 当T型梁的跨径稍大时,一般在13m以上,在跨径 内除设端横隔梁外,再增设1-3道中横隔梁。
第三讲
梁 式 桥
第三讲
梁 式 桥
简支梁桥的构造与设计
★装配式简支T形梁桥——预应力简支梁桥
采用高强度钢筋,可节约钢材 20%—40%;
预加压应力可以大幅度提高梁体的抗裂性和耐久 性;
利用高标号混凝土,截面尺寸减小,梁体自重减 轻,可以增大跨越能力,也有利于运输和架设; 混凝土全截面受压,充分发挥了混凝土抗压性能 好的优势,也提高了梁的刚度。
第三讲
梁 式 桥
悬臂梁桥的构造与设计
★简支梁
★双悬臂梁★单悬臂梁Fra bibliotek第三讲
梁 式 桥
悬臂梁桥的构造与设计
★特点

变截面箱型连续梁桥桥梁工程毕业设计

变截面箱型连续梁桥桥梁工程毕业设计

目录第一章方案比选 (1)1.1方案选取 (1)1.11方案一:50+80+50M的变截面箱型连续梁桥 (1)1.12方案二:4×45M等截面预应力砼连续刚构梁 (2)1.13方案三:65+115M斜拉桥 (3)1.2各方案主要优缺点比较表 (4)1.3.结论 (4)第二章毛截面几何特性计算 (5)2.1基本资料 (5)2.1.1主要技术指标 (5)2.1.2材料规格 (5)2.2结构计算简图 (5)2.3毛截面几何特性计算 (6)第三章内力计算及组合 (9)3.1荷载 (10)3.1.1结构重力荷载 (10)3.1.2支座不均匀沉降 (11)3.1.3活载 (11)3.2结构重力作用以及影响线计算 (11)3.2.1输入数据 (11)3.3支座沉降(SQ2荷载)影响计算 (20)3.5荷载组合 (24)3.5.1按承载能力极限状态进行内力组合 (25)3.5.2按正常使用极限状态进行内力组合 (27)第四章配筋计算 (31)4.1计算原则 (31)4.2预应力钢筋估算 (31)4.2.1材料性能参数 (31)4.2.2预应力钢筋数量的确定及布置 (31)4.3预应力筋的布置原则 (37)第五章预应力钢束的估算及布置 (39)5.1按正常使用极限状态的应力要求估算 (39)5.1.1截面上、下缘均布置预应力筋 (39)5.1.2仅在截面下缘布置预应力筋 (40)5.1.3仅在截面上缘布置预应力筋 (41)5.2按承载能力极限状态的强度要求估算 (41)5.3预应力筋估算结果 (42)5.4预应力筋束的布置原则 (44)5.5预应力筋束的布置结果 (45)第六章净截面及换算截面几何特性计算 (45)6.1净截面几何特性计算(见表6-1) (46)6.2换算截面几何特性计算(见表6-2) (46)第七章预应力损失及有效预应力计算 (47)7.1控制应力及有关参数的确定 (48)7.1.1控制应力 (48)7.1.2其他参数 (48)σ的计算 (48)7.2摩阻损失1lσ的计算 (50)7.3混凝土的弹性压缩损失4lσ的计算 (52)7.4预应力筋束松弛损失5l的计算 (52)7.5混凝土收缩、徐变损失6l7.6预应力损失组合及有效预应力的计算 (53)第八章强度验算 (56)8.1基本理论 (56)8.2计算公式 (56)8.2.1矩形截面 (57)8.2.2工形截面 (57)8.3计算结果 (58)第九章应力验算 (61)9.1正常使用极限状态应力验算 (61)9.2短期效应组合 (62)9.3长期效应组合 (67)9.4基本组合 (73)9.5.承载能力极限状态正截面强度验算 (78)第十章变形验算 (83)10.1挠度验算 ........................................................................................ 错误!未定义书签。

桥梁工程第3章 梁式桥梁的构造与设计

桥梁工程第3章  梁式桥梁的构造与设计

图3.42 跨径50m后张结预应力混凝土T梁桥构造图
• 3.4 悬臂梁桥 • 3.4.1 悬臂梁桥的受力特点 • 3.4.2 悬臂梁桥的构造 • (1)钢筋混凝土悬臂梁桥 • (2)预应力混凝土悬臂梁桥 • (3)截面形式及配筋特点 • 3.4.3 牛腿构造
图3.43 恒载弯矩比较图
图3.44 钢筋混凝土悬臂梁桥的立面布置及主要尺寸
性能要求,多采用箱形截面。
• (2)预应力筋的布置
• 纵向预应力筋布置主要有明槽法和暗管法 两种。
图3.57 预应力混凝土T形刚构桥
图3.58 箱形梁横截面
图3.59 分离式箱形截面
图3.60 T构悬臂预应力筋布置示意图
• 3.6.3 构造示例
• 重庆长江大桥是一座带挂梁的预应力混凝土T形刚 构桥,最大跨径为174m。设计标准:桥宽21m, 其中行车道15m,两侧人行道各3m;设计荷载为 汽—20级,挂—100及载重1 471kN平板车验算, 人群荷载为3.43kN/m2。桥跨布置为86.5m+4×
图3.48 预应力混凝土连续梁桥
图3.49 三跨连续梁惯矩对内力的影响
图3.50 典型截面形式(尺寸单位:cm)
图3.51 南京大桥南路高架匝道桥横断面(尺寸单位:cm)
图3.52 箱形截面形式
• 3.5.3 纵向断面布置
• (1)钢筋混凝土连续梁桥
• 跨径20m以内的连续梁桥可采用等截面形式, 30m及以上的连续梁桥可采用变截面形式。 梁的根部高度约为最大跨径的1/15,梁的跨 中高度可按构造选用,一般为最大跨径的 1/15~1/25。
图3.28 鱼腹形梁的构造布置
图3.29 截面特性
图3.30 预应力混凝土简支梁的应力状态

变截面连续箱梁桥设计

变截面连续箱梁桥设计

本科毕业论文(设计)诚信声明本人郑重声明:所呈交的毕业论文(设计),题目《资江大桥设计(五)》是本人在指导教师的指导下,进行研究工作所取得的成果。

对本文的研究作出重要贡献的个人和集体,均已在文章以明确方式注明。

除此之外,本论文(设计)不包含任何其他个人或集体已经发表或撰写过的作品成果。

本人完全意识到本声明应承担的责任。

作者签名:日期:年月日摘要本设计题目为资江大桥(五)预应力混凝土连续梁桥,本项目位于益阳市资阳区和赫山区境内,线路全长2547.8m,其中大桥桥长550m,桥头接线长752.18m,另外在大桥资阳岸设匝道桥一座,长185.24m。

单向三车道,上部结构采用先简支后连续的预应力混凝土连续箱型梁桥。

简支转连续是桥梁施工中较为常见的一种方法,该施工方法的主要特点是施工方法简单可行,施工质量可靠,实现了桥梁施工的工厂化、标准化和装配化。

目前随着高等公路的发展,为改善桥梁行车的舒适性,简支转连续梁桥在中、小跨径的连续梁桥中得到了广泛地应用。

随着社会的发展,建立起更加发达、快捷、便利的交通网络成为了影响区域经济发展的重要因素。

上世纪60年代至今,由于科学技术的发展,现代工业制造水平的提高,对桥梁建造提出了越来越高的要求,通过一代又一代的土木人的辛勤奋斗,高速公路上循环交叉的立交桥,高架桥,长达几十公里的跨海大桥,新发展的城郊高速公路,铁路桥与轻轨运输高架桥等。

这些桥梁犹如一条横跨江海上的“彩带”,将我们的世界装扮的愈发多姿多彩。

纵观世界各国的大城市,常以工程雄伟的大桥作为城市的标志与骄傲。

桥梁建筑已不仅仅是一种交通出行的要求,而且作为一种结构艺术的形式,存在于我们的生活中。

梁桥体系桥梁是一种非常古老而实用的桥型。

梁作为承重结构,是以它的抗弯能力来承受荷载的,梁分简支梁、悬臂梁、固端梁和连续梁等,悬臂梁,固端梁和连续梁都是利用支座上的卸载弯矩去减少跨中弯矩使梁跨内的内力分配更合理,以同等抗弯能力的构件断面就可建成重大跨径的桥梁。

连续梁桥—内力计算

连续梁桥—内力计算
6.施工过程中,主梁最大自重弯矩发生 在鼻梁刚过前方支点。
7.主梁最小自重负弯矩发生在鼻梁刚过 前方支点或鼻梁刚接近前方支点时。
(六)悬臂施工
1.悬臂施工的连续梁桥最终结构自重内 力与合龙次序、预应力、砼收缩徐变有关。
2.例:一3跨预应力砼连续梁桥,上部结 构采用挂篮对称平衡悬臂法施工,分为 5个施 工阶段,合龙次序为先边跨后中跨。
(4)阶段4:中跨合龙 现浇合龙段自重与挂篮施工机具重力之 和R0施加单悬臂的悬臂端, R0产生的内力如e (5)阶段5:拆除合龙段挂篮 跨中合龙段砼凝固与两边单悬臂梁形成
(5)阶段5:拆除合龙段挂篮 跨中合龙段砼凝固与两边单悬臂梁形成 连续梁后,拆除施工机具,相当于对连续梁 施加一对反向力 R0,跨中合龙段自重则作用 与连续梁上,内力如f 以上为每个阶段的内力分析,某个阶段 的累计内力为该阶段内力与前几个阶段内力 叠加值。
5.根据规范构造、施工要求,将估算的预 应力筋进行横、立、平面布置;
6.根据钢筋布置结果,考虑钢筋对主梁截 面几何特性的影响,重新模拟施工过程,进行 主梁真实作用效应计算,再次进行相应作用效 应组合即第二次效应组合;
7.据第二次效应组合值,进行规定状况下 极限状态的截面强度、应力、裂缝、变形等验 算;
该施工法无体系转换一期期恒载都按一次落架方式作用在连续梁上叠加两个施工阶段的内力即为结构重力作用的内力
普通高等学校土木工程专业精编力计算
连续梁桥内力计算
本节内容
一、桥梁设计步骤 二、结构重力计算
3
一、桥梁设计步骤
桥梁设计一般分 总体设计(初步设计) 、 结构设计(施工图设计) 两步。前者工作: 选定桥位、桥型方案;确定桥长、跨径、桥 宽、主梁截面形式、梁高等关键要素。后者 工作:细化构造、明确作用(汽车荷载、人 群、温度、基础变位等)、确定材料、施工 方法、完成内力计算、配筋设计、验算,最 终形成施工图。

桥梁工程梁式桥和板式桥设计课件精品文档

桥梁工程梁式桥和板式桥设计课件精品文档

H=(1/14~1/22) l
h=(0.20~0.4) H 且h ≤1.0mLeabharlann 带挂梁T形刚构l≥100m
H=(1/17~1/21) l
h=(0.20~0.4) H 且h ≤1.5m
1 梁式桥的立面布置 Elevation arrangement for beam bridge
1.3 Continuous beam system 连续体系
Multi-span with double cantilevers and hang beams
多跨带挂梁双悬臂梁桥
l1=(0.75~0.8) l lg=(0.5~0.6) l
T section T形梁 h=(1/12~1/20) l H=(1.5~1.8) h
Box girder 箱形梁 h=(1/12~1/20) l H=(1.0~1.5) h
Standard dimension of simple-supported beam 标准图简支梁的构造尺寸
1 梁式桥的立面布置 Elevation arrangement for beam bridge
1.2 cantilever beam system 悬臂体系
1.2.1 RC cantilever beam bridge 钢筋混凝土悬臂梁桥
Single span with two
lx
l
lx
cantilevers 单孔双悬臂梁桥
h H
T section T形截面
lx=(0.3~0.4) l Box girder 箱形截面 lx=(0.4~0.6) l
1 梁式桥的立面布置 Elevation arrangement for beam bridge

变截面箱型连续梁桥桥梁工程毕业设计

变截面箱型连续梁桥桥梁工程毕业设计

目录第一章方案比选 (1)1.1方案选取 (1)1.11方案一:50+80+50M的变截面箱型连续梁桥 (1)1.12方案二:4×45M等截面预应力砼连续刚构梁 (2)1.13方案三:65+115M斜拉桥 (3)1.2各方案主要优缺点比较表 (4)1.3.结论 (4)第二章毛截面几何特性计算 (5)2.1基本资料 (5)2.1.1主要技术指标 (5)2.1.2材料规格 (5)2.2结构计算简图 (5)2.3毛截面几何特性计算 (6)第三章内力计算及组合 (9)3.1荷载 (10)3.1.1结构重力荷载 (10)3.1.2支座不均匀沉降 (11)3.1.3活载 (11)3.2结构重力作用以及影响线计算 (11)3.2.1输入数据 (11)3.3支座沉降(SQ2荷载)影响计算 (20)3.5荷载组合 (24)3.5.1按承载能力极限状态进行内力组合 (25)3.5.2按正常使用极限状态进行内力组合 (27)第四章配筋计算 (31)4.1计算原则 (31)4.2预应力钢筋估算 (31)4.2.1材料性能参数 (31)4.2.2预应力钢筋数量的确定及布置 (31)4.3预应力筋的布置原则 (37)第五章预应力钢束的估算及布置 (39)5.1按正常使用极限状态的应力要求估算 (39)5.1.1截面上、下缘均布置预应力筋 (39)5.1.2仅在截面下缘布置预应力筋 (40)5.1.3仅在截面上缘布置预应力筋 (41)5.2按承载能力极限状态的强度要求估算 (41)5.3预应力筋估算结果 (42)5.4预应力筋束的布置原则 (44)5.5预应力筋束的布置结果 (45)第六章净截面及换算截面几何特性计算 (45)6.1净截面几何特性计算(见表6-1) (46)6.2换算截面几何特性计算(见表6-2) (46)第七章预应力损失及有效预应力计算 (47)7.1控制应力及有关参数的确定 (48)7.1.1控制应力 (48)7.1.2其他参数 (48)σ的计算 (48)7.2摩阻损失1lσ的计算 (50)7.3混凝土的弹性压缩损失4lσ的计算 (52)7.4预应力筋束松弛损失5l的计算 (52)7.5混凝土收缩、徐变损失6l7.6预应力损失组合及有效预应力的计算 (53)第八章强度验算 (56)8.1基本理论 (56)8.2计算公式 (56)8.2.1矩形截面 (57)8.2.2工形截面 (58)8.3计算结果 (59)第九章应力验算 (61)9.1正常使用极限状态应力验算 (61)9.2短期效应组合 (62)9.3长期效应组合 (68)9.4基本组合 (73)9.5.承载能力极限状态正截面强度验算 (78)第十章变形验算 (83)10.1挠度验算 ...................................................................................... 错误!未定义书签。

变截面连续梁完整计算书

变截面连续梁完整计算书

变截⾯连续梁完整计算书⼀、⼯程概况上部结构采⽤预应⼒混凝⼟变截⾯连续箱梁,为双幅结构。

单幅箱梁采⽤单箱单室截⾯,箱梁顶板宽11.99m,底板宽为6.99⽶,箱梁顶板设置1.5%的横坡。

边跨端部及中跨跨中梁⾼均为2.0m(以梁体中⼼线为准),箱梁根部梁⾼为4.0⽶,梁⾼从2.0m到箱梁根部按1.5次抛物线规律变化;边跨端部及中跨跨中底板厚度为0.25⽶,箱梁悬臂根部底板厚度为0.6⽶,箱梁底板厚度从2.0m到悬臂根部按1.5次抛物线规律变化。

箱梁腹板在3.5m长度内由0.45⽶直线变化⾄0.6⽶。

桥台采⽤重⼒式U型桥台,桥台与道路中⼼线正交布置。

桥台扩⼤基础应嵌⼊中风化岩⾯不少于0.5m,同时应满⾜基底持⼒层抗压承载⼒要求,桩基础应嵌⼊中风化岩层长度不⼩与2.5倍桩径,桥台台⾝采⽤C25⽚⽯混凝⼟浇筑,台帽混凝⼟采⽤C30钢筋混凝⼟。

台后的填料采⽤压实度不⼩于96%的砂卵⽯,回填时应预设隔⽔层或排⽔盲沟。

桥墩均采⽤钢筋混凝⼟⼋棱形截⾯,基础采⽤桩基接承台。

桥墩墩⾝截⾯为3.5×2.0m,截⾯四⾓对应切除70×50cm倒⾓。

墩顶设盖梁,桥墩盖梁尺⼨为6.99m(长)×2.4m(宽)×2.6m(⾼),承台尺⼨为8.4m(长)×3.4m(宽)×2.5m。

每个承台接两根直径2.0m的桩基。

所有的桩基础均采⽤嵌岩桩,⽤⼈⼯挖孔成桩。

桩基础应嵌⼊完整的中风化岩⾯不少于3倍桩径,并要求嵌岩岩⽯襟边宽度⼤于3.0m,同时应满⾜基底持⼒层岩⽯抗压强度要求。

桥型布置见图1 桥型⽴⾯布置图。

图1 桥型⽴⾯布置图⼆、主要技术标准汽车荷载:公路-I级。

⼈群荷载:3.5 KN/m2。

2.4.桥梁宽度:2.5. 纵坡、横坡:三、设计规范3.1.《城市桥梁设计准则》(CJJ11—93)。

3.2.《公路桥涵设计通⽤规范》(JTG D60—2004)。

3.3.《公路钢筋混凝⼟及预应⼒混凝⼟桥涵设计规范》(JTG D62—2004)。

连续梁桥采用变截面的原因

连续梁桥采用变截面的原因

连续梁桥采用变截面的原因1.引言1.1 概述概述连续梁桥是一种常见的桥梁结构,其设计理念是将多个简支梁组合在一起形成一座连续的梁。

连续梁桥在桥梁工程中广泛应用,具有较高的承载能力和抗震能力。

为了更好地满足功能和安全性的需求,连续梁桥常常采用变截面设计。

变截面,顾名思义,即桥梁在不同位置具有不同截面形状和尺寸。

与传统的恒截面设计相比,变截面设计可以更加灵活地适应桥梁的受力情况和形变要求。

本文将探讨连续梁桥采用变截面的原因及其优点。

首先,我们将对变截面的定义和原理进行介绍,其次,我们将分析连续梁桥采用变截面的主要优势。

最后,我们将总结变截面在连续梁桥中的应用,并展望连续梁桥的未来发展。

通过本文的阐述,读者将能够深入了解连续梁桥采用变截面的设计理念和优点,为桥梁工程领域的专业人士提供更多设计思路和启示。

1.2文章结构1.2 文章结构本文将按照以下结构进行论述:1. 引言:首先概述连续梁桥以及变截面的背景和基本概念,并介绍文章的主要目的。

2. 正文:2.1 变截面的定义和原理:详细解释变截面的概念和原理,包括变截面的设计原则和工作原理等。

2.2 连续梁桥采用变截面的优点:探讨连续梁桥采用变截面的好处,包括结构优化、减小自重、提高抗震性能、节约材料和经济性等方面。

3. 结论:3.1 总结变截面在连续梁桥中的应用:总结连续梁桥采用变截面的实际应用情况,并归纳其优势和成果。

3.2 展望连续梁桥的未来发展:展望连续梁桥在变截面技术的推动下的未来发展趋势,并提出进一步研究和探索的方向。

通过以上结构安排,本文将详细介绍连续梁桥采用变截面的原因及其优势,并对其未来发展进行展望,旨在对工程领域的相关研究和实践提供一定的参考。

1.3 目的本文的目的是探讨为什么在设计和建造连续梁桥时会选择采用变截面的设计方案。

通过深入研究变截面的定义和原理,以及分析连续梁桥采用变截面的优点,我们将揭示变截面设计在连续梁桥中的重要作用。

首先,我们将介绍变截面的定义和原理,以便读者对其有一个清晰的认识。

变截面连续梁式桥设计入门

变截面连续梁式桥设计入门

变截⾯连续梁式桥设计⼊门变截⾯连续梁桥设计⼊门预应⼒混凝⼟连续梁桥在公路桥梁中的应⽤范围越来越⼴泛,跨径超过40m时多采⽤变截⾯箱梁,本⽂主要介绍变截⾯连续箱梁桥设计的⼊门知识和容易遗漏的⼀些技术处理措施。

⼀、变截⾯连续梁桥的适⽤范围变截⾯连续梁桥主跨经济跨径⼀般在40~250m之间,桥型优点在于施⼯技术成熟、造价低廉、⾏车舒适、养护简单;缺陷在于结构⾃重⼤、容易开裂、恒载在使⽤荷载中占据较⼤⽐例、建筑⾼度⾼。

⼆、箱梁构造设计1.箱梁箱室分配(1)鉴于多室箱梁弯曲内⼒分配难以把握,箱梁最好采⽤单箱单室;(2)箱梁分室受畸变和横框架抗弯控制,当箱梁最⼤宽⾼⽐超过3~3.5时应考虑分室;(3)当采⽤单箱多室结构时,各墩⽀撑最好⼀条腹板对应⼀排⽀座;(4)当腹板与⽀座不是⼀⼀对应或⽀座中⼼与腹板中⼼存在偏离时应进⾏⽀座处横隔板的横向抗弯计算。

2.箱梁梁⾼箱梁梁⾼的控制因素主要包括:(1)箱梁根部梁⾼⼀般取主跨跨径的1/16~1/20;跨中梁⾼⼀般取主跨跨径的1/40~1/60。

(2)跨中梁⾼最⼩箱内净⾼⼀般不宜⼩于1.5m,特⼩跨径桥梁例外。

(3)箱梁最矮梁段箱体宽⾼⽐不⼤于3.5。

3.梁⾼变化箱梁梁⾼⼀般采⽤抛物线变化,主跨跨径⼩于120m时采⽤2次抛物线,⼤于120m时采⽤1.8、1.6或1.5次抛物线。

4.底板厚度箱梁底板厚度变化规律⼀般采⽤2次抛物线,最薄处根据桥梁跨径、构造需要和横向抗弯计算确定⼀般为20cm~32cm;最厚处底板厚度⼀般取跨径的1/200~1/120,根据下缘压应⼒要求控制。

1.纵向预应⼒⼀般由内⼒设计控制:抵抗负弯矩设置顶板束;抵抗正弯矩设置底板束;抵抗主拉应⼒设置腹板束。

预应⼒混凝⼟箱梁普通钢筋主要⽤于抵抗局部受⼒,纵向钢筋主要⽤于满⾜构造需要;⽽横向竖向钢筋则更加重要,横向抗弯、腹板主拉应⼒等基本由横向和竖向钢筋承担。

1.上部结构纵向分析全桥总体计算,主要⽤于对主梁在施⼯过程及运营阶段的承载⼒、各部位主梁应⼒、变形、⽀座反⼒、桥墩内⼒、桥台内⼒等进⾏控制分析,是设计的主要依据之⼀。

变截面连续梁桥常用施工方法及经典图纸

变截面连续梁桥常用施工方法及经典图纸

变截面连续梁桥常用施工方法及经典图纸第一篇:变截面连续梁桥常用施工方法及经典图纸变截面连续梁桥常用施工方法1.支架现浇法支架现浇法适用于旱地且跨径不太大的桥梁,施工中支架的安全、变形等是必须引起重视的问题。

2.悬臂施工法悬臂施工法是大跨径连续梁桥常用的施工方法,属于一种自架设方式,分为悬臂拼装与悬臂浇筑两种。

悬臂拼装指在预制场预制梁节段、然后进行逐节对称拼装,拼装方法主要有扒杆吊装法、缆索吊装法、提升法等。

悬臂浇注法则是利用挂蓝在桥墩两侧对称浇注箱梁节段、待已浇节段混凝土强度达到要求的张拉强度后进行预应力张拉,然后移动挂蓝进行下一节段施工,直至合拢。

目前主要采用该法施工。

不论悬拼还是悬浇,都是属于自架设方式施工,且已成结构的状态(包括受力,变形)具有不可调整性,所以,施工成败的关键在于临时锚固的可靠性,施工过程中的应力监测、变形预测与标高调整以及体系转换的实施。

经典图纸:变截面预应力连续刚构箱梁桥施工图范例桥梁全长:695.4m 设计行车速度:80Km/h。

荷载等级:公路-Ⅰ级,无人群荷载。

桥宽:左右幅桥宽布置为0.5m 11m(行车道)0.5m(防撞护栏)。

高程:黄海高程系统。

坐标:北京坐标系。

地震烈度:设计基本地震动加速度峰值A=0.05g,抗震设防烈度为6度。

桥面横坡:主桥单向横坡2%,引桥处在横坡变化段上。

单箱单室截面箱梁顶宽:12米底宽6.5米顶板悬臂长度:2.75米顶板悬臂端部厚:20cm 根部厚70cm。

全桥分五联,其中第二联为主桥,采用(70 130 70)m跨的变截面预应力混凝土连续刚构箱梁;两岸引桥采用预应力混凝土T梁,第一、三联为先简支后刚构(采用部分连续墩),第四、五联为先简支后连续。

主桥数量表、引桥数量表、地质纵断面图、桥型布置图箱梁标准横断面图、箱梁施工程序示意图箱梁截面标高、箱梁一般构造图箱梁纵向预应力钢束布置图箱梁纵向钢束竖弯平弯要素表箱梁纵向预应力钢束材料数量及引伸量计算表纵向钢束布置断面图20张箱梁纵向预应力钢束定位钢筋示意图箱梁锚下加强钢筋布置图箱梁横、竖向预应力钢束(筋)布置图箱梁横、竖向预应力钢束(筋)锚固大样图箱梁横、竖向预应力钢束(筋)数量表箱梁横、竖向预应力钢束(筋)定位钢筋示意图箱梁0号节段一般构造图、箱梁0号节段钢筋布置图箱梁1-16、1-16号节段钢筋布置图箱梁17号节段钢筋布置图、箱梁17号节段一般构造图箱梁17号节段钢筋布置图箱梁边、中跨合拢段外刚性支撑构造图箱梁边跨18号节段一般构造图箱梁18号节段钢筋布置图箱梁18号节段端横隔板钢筋布置图-gg 箱梁18节段钢束加强、定位钢筋布置图箱梁齿板一般构造图、上齿板钢筋布置图箱梁下齿板钢筋布置图箱梁顶面现浇层钢筋布置图、箱梁施工预拱度图引桥30T梁平面布置图引桥30mT梁设伸缩缝端预留槽加厚部钢筋布置图(320)墩台基础控制点坐标表、4 5号主墩一般构造图 4 5号主墩墩身钢筋布置图 4 5号主墩墩身劲性骨架布置示意图 4 5号主墩承台钢筋布置图 4 5号主墩承台冷却管布置图 4 5号主墩基桩钢筋布置图过渡墩、引桥墩一般构造图(不含15、16号墩)测设线引桥桥墩一般构造图(15,16号墩)过渡墩帽梁钢筋布置图过渡墩墩身钢筋布置图过渡墩墩身劲性骨架布置图引桥桥墩帽梁钢筋布置图(实心墩)引桥桥墩帽梁钢筋布置图(双柱墩)引桥双柱墩墩柱基桩钢筋布置图引桥双柱墩基桩钢筋布置图引桥双柱墩墩柱系梁钢筋布置图引桥双柱墩基桩系梁钢筋布置图引桥实心墩墩身钢筋布置图引桥实心墩、空心墩承台钢筋布置图引桥实心墩、空心墩承台冷却管布置图引桥实心墩、墩心墩基桩钢筋布置图大桥支座垫石平面布置图D320型伸缩缝安装示意图、支座垫石钢筋布置图桩基础混凝土质量检测管构造图主桥盆式支座安装及构造示意图主桥箱梁检修楼梯布置图右幅桥0号桥台台帽、挡块钢筋布置图桥台台帽、背墙、挡块钢筋布置图桥台一般构造图、桥台耳墙钢筋布置图……第二篇:现浇等截面连续箱梁施工方案黄泽互通AK0+192.507跨线桥现浇箱梁施工方案1、设计简介本桥上部结构为4孔一联(4×25m)现浇预应力混凝土箱梁,梁高为1.40m,箱室高1.0m,桥梁全长100m,桥宽15.0m,分左右双幅,单幅宽7.5m,其中梁底宽3.75m。

梁式桥和板式桥设计

梁式桥和板式桥设计

Box girder 箱形梁 h=(1/12~1/20) l H=(1.0~1.5) h
lg
l1
l
l lg
H

h
PRODUCED BY:X J CHEN
SCHOOL OF TRANSPORTATION, WUT
1 Elevation arrangement for beam bridge 梁式桥的立面布置 1.2 Cantilever beam system 悬臂体系

SCHOOL OF TRANSPORTATION, WUT
PRODUCED BY:X J CHEN
Development on the structure 结构体系的演变
Simple supported beam
q l Span increasing 跨度增加 ql2/8
简支梁
Continuous beam


SCHOOL OF TRANSPORTATION, WUT
PRODUCED BY:X J CHEN
1 Elevation arrangement for beam bridge 梁式桥的立面布置
1.2 Cantilever beam system 悬臂体系
1.2.3 PC rigid-frame bridge 预应力混凝土T形刚构桥 Structural arrangement of rigid-frame刚构的布置形式:
3continuousbeamsystem连续体系111continuousbeambridge连续梁桥不等跨变截面连续梁布置以三跨为例?边跨0608l支架施工可取08l悬臂施工可取065l悬臂施工可取065l?折线形变截面支点截面高h116120l跨中截面高h122128l?曲线形变截面支点截面高h116120l跨中截面高h130150l1elevationarrangementforbeambridge梁式桥的立面布置等跨等截面连续梁布置?截面高h115130l常用h118120l?schooloftransportationwutproducedby
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变截面连续梁桥设计入门
预应力混凝土连续梁桥在公路桥梁中的应用范围越来越广泛,跨径超过40m时多采用变截面箱梁,本文主要介绍变截面连续箱梁桥设计的入门知识和容易遗漏的一些技术处理措施。

一、变截面连续梁桥的适用范围
变截面连续梁桥主跨经济跨径一般在40~250m之间,桥型优点在于施工技术成熟、造价低廉、行车舒适、养护简单;缺陷在于结构自重大、容易开裂、恒载在使用荷载中占据较大比例、建筑高度高。

二、箱梁构造设计
1.箱梁箱室分配
(1)鉴于多室箱梁弯曲内力分配难以把握,箱梁最好采用单箱单室;
(2)箱梁分室受畸变和横框架抗弯控制,当箱梁最大宽高比超过3~3.5时应考虑分室;
(3)当采用单箱多室结构时,各墩支撑最好一条腹板对应一排支座;
(4)当腹板与支座不是一一对应或支座中心与腹板中心存在偏离时应进行支座处横隔板的横向抗弯计算。

2.箱梁梁高
箱梁梁高的控制因素主要包括:
(1)箱梁根部梁高一般取主跨跨径的1/16~1/20;跨中梁高一般取主跨跨径的1/40~1/60。

(2)跨中梁高最小箱内净高一般不宜小于1.5m,特小跨径桥梁例外。

(3)箱梁最矮梁段箱体宽高比不大于3.5。

3.梁高变化
箱梁梁高一般采用抛物线变化,主跨跨径小于120m时采用2次抛物线,大于120m时采用1.8、1.6或1.5次抛物线。

4.底板厚度
箱梁底板厚度变化规律一般采用2次抛物线,最薄处根据桥梁跨径、构造需要和横向抗弯计算确定一般为20cm~32cm;最厚处底板厚度一般取跨径的1/200~1/120,根据下缘压应力要求控制。

1.纵向预应力
一般由内力设计控制:抵抗负弯矩设置顶板束;抵抗正弯矩设置底板束;抵抗主拉应力设置腹板束。

预应力混凝土箱梁普通钢筋主要用于抵抗局部受力,纵向钢筋主要用于满足构造需要;而横向竖向钢筋则更加重要,横向抗弯、腹板主拉应力等基本由横向和竖向钢筋承担。

1.上部结构纵向分析
全桥总体计算,主要用于对主梁在施工过程及运营阶段的承载力、各部位主梁应力、变形、支座反力、桥墩内力、桥台内力等进行控制分析,是设计的主要依据之一。

2.悬臂施工强度控制分析
变截面连续梁桥多采用对称悬臂施工,需进行悬臂施工的稳定分析,一般考虑主梁梁段自重的不对称性和某阶段施工时间的不对称性,此外对于特大桥还要考虑不对称风载。

3.箱梁横向分析
控制箱梁横向各部位抗弯强度的设计。

4.其它局部分析
齿板强度、支座处横隔板强度等。

5.下部结构计算
主要包括:桥墩墩身、承台、桩基的抗弯计算(用于配筋),桩基的垂直承
载力计算(用于控制桩长),桥台的抗弯计算(主要荷载包括上部结构荷载以及土体水平压力荷载等)。

图6 连续箱梁支点断面受力图式
六、其它设计要素
1.悬臂施工临时锚固构造
2.齿板
3.合拢段劲性骨架
4.伸缩缝预留槽口
5.端部预应力锚固区封锚
6.检修孔、排水孔、通风孔
7.支座设置:多支座设置应以平面位移静定为原则。

8.大体积混凝土冷却系统。

相关文档
最新文档