人教版五年级下册数学知识点整理78890
人教版小学五年级数学下册知识点总结和复习要点
人教版小学五年级数学下册知识点总结和复习要点一、数与代数分数的加法和减法概念:分数的加法和减法是指对两个或多个分数进行相加或相减的运算。
性质:同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,然后按照同分母分数相加减的法则进行计算。
特点:分数的加减运算需要注意分子、分母的变化。
举例:2/3 + 1/3 = 3/3 = 1;5/6 - 1/6 = 4/6 = 2/3。
分数的乘法和除法概念:分数的乘法和除法是指两个或多个分数进行相乘或相除的运算。
性质:分数乘整数,分母不变,分子乘整数;分数乘分数,用分子乘分子,用分母乘分母;分数除以一个数等于乘以这个数的倒数。
特点:分数的乘除法运算需要理解乘法与倒数的概念。
举例:2/3 × 4 = 8/3;3/4 ÷ 2 = 3/4 ×1/2 = 3/8。
因数与倍数概念:因数与倍数是整数之间的一种关系,一个整数能被另一个整数整除,则后者是前者的因数,前者是后者的倍数。
性质:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的。
特点:理解因数和倍数的概念对于解决与整除相关的问题至关重要。
举例:12的因数有1、2、3、4、6、12;12的倍数有12、24、36、48等。
二、空间与几何长方体和正方体的认识概念:长方体是由六个长方形围成的立体图形;正方体是六个面都是正方形的特殊长方体。
性质:长方体有6个面,12条棱,8个顶点;正方体有6个面,12条棱,8个顶点,且所有面都是正方形。
特点:长方体和正方体是常见的立体图形,具有特定的形状和性质。
举例:日常生活中的纸箱、书本等可以近似看作长方体;骰子是典型的正方体。
长方体和正方体的表面积概念:长方体和正方体的表面积是指它们所有面的面积之和。
性质:长方体的表面积= 2 ×(长×宽+ 长×高+ 宽×高);正方体的表面积= 6 ×边长^2。
人教版数学五年级下册知识点归纳总结
五年级数学下册知识点归纳第一部分图形与几何一、观察物体1、从不同的位置(或同一位置)观察物体,看到的形状可能相同也可能不同;从同一位置观察长方体或正方体时不能看到所有的面,最多只能看到三个面,最少看到一个面。
2、正面、侧面(左面,右面)、后面都是相对的,它是随着观察角度的变化而变化。
通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
3、观察物体,从实物观察到对立体图形的观察有一个体验、认识、提高的过程,多观察物体,多画观察到的图形,自己制作立体图形,有意识的训练想象能力,逐渐就会观察立体图形了。
4、观察物体,先要确定观察的位置(方向)(常选择上面、正面、左侧面、右侧面),再确定观察的形状,并把它画下来,在平面图形画上斜线。
5、根据各个位置看到的平面图形推算共有几个小正方体方法:从正面看数层数,从下往上数;从上面看数列数,从左往右数;从左面看数排数,前排在右后排在左,从右往左数。
6、至少用8 个正方体可拼成较大的正方体,27 个64 个125 个。
都可拼成较大正方体。
二、图形的运动1、旋转:物体或图形围绕一个定点沿着一个方向转动一定的角度的现象叫做旋转。
如风扇的叶片旋转。
定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。
(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转三要素:①旋转中心,固定不变;②旋转方向有顺时针、逆时针;③旋转角度有:常见的有30°、45°、60°90°、180°、270°。
(3)长方形绕中心点旋转180 度与原来重合,正方形绕中心点旋转90 度与原来重合。
等边三角形绕中点旋转120 度与原来重合。
(4)旋转的性质:①图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;②其中对应点到旋转中心的距离相等;旋转前后图形的大小和形状没有改变,位置和方向发生改变,旋转中心是唯一不动的点,③两组对应点分别与旋转中心的连线所成的角度相等,都等于旋转角;(5)怎样画图形旋转的形状:(1)先观察原图形的形状特征找准关键点,(2)找准旋转中心、旋转方向、旋转角度;(3)使用直角三角板的顶点与旋转中心重合,则该图形旋转后的形状就在三角板另一条边上;(4)确定各对应点的长度,用虚线标出来;(5)将每个对应点连接并标出名称。
五年级下册重点知识归纳
五年级下册重点知识归纳一、数学(人教版五年级下册)1. 因数与倍数。
- 因数和倍数的概念:如果a× b = c(a、b、c都是非0自然数),那么a和b 是c的因数,c是a和b的倍数。
例如3×4 = 12,3和4是12的因数,12是3和4的倍数。
- 一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
- 2、3、5的倍数特征:- 2的倍数特征:个位上是0、2、4、6、8的数是2的倍数。
- 3的倍数特征:一个数各位上的数字之和是3的倍数,这个数就是3的倍数。
- 5的倍数特征:个位上是0或5的数是5的倍数。
- 既是2又是5的倍数特征:个位上是0的数。
- 质数与合数:- 质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
例如2、3、5、7等。
- 合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
例如4、6、8、9等。
- 1既不是质数也不是合数。
2. 长方体和正方体。
- 长方体:- 长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形),相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点。
- 长方体的棱长总和=(长 + 宽+高)×4。
- 长方体的表面积=(长×宽+长×高+宽×高)×2。
- 长方体的体积 = 长×宽×高,用字母表示V = abh。
- 正方体:- 正方体是特殊的长方体,正方体的6个面都是正方形,6个面完全相同;12条棱长度都相等;8个顶点。
- 正方体的棱长总和=棱长×12。
- 正方体的表面积 = 棱长×棱长×6,用字母表示S = 6a^2。
- 正方体的体积=棱长×棱长×棱长,用字母表示V=a^3。
- 体积单位:- 常用的体积单位有立方厘米、立方分米、立方米。
(完整)人教版五年级下册数学必背知识
五下数学必背知识长方体总棱长=长×4+宽×4+高×4【c b a 444++】或=(长+宽+高)×4【)(4c b a ++】正方体总棱长=棱长×12【a 12】长方体表面积=长×宽×2+长×高×2+宽×高×2【bc ac ab S 222++=】 或=(长×宽+长×高+宽×高)×2【)(2bc ac ab S ++=】 正方体表面积=棱长×棱长×6【26a S =】长方体体积(容积)=长×宽×高【abh V =】或=底面积×高【Sh V =】或=横截面积×长【Sa V =】正方体体积(容积)=棱长×棱长×棱长【3a V =】排水法求物体体积:物体体积=总体积-水的体积【水总物V V V -=】物体体积=上升部分水的体积【上升的水物V V =】2的倍数特征:个位上是0,2,4,6,8的数都是2的倍数,2的倍数也叫偶数。
5的倍数特征:个位上是0或5的数都是5的倍数3的倍数特征:各位上的数相加的和是3的倍数。
1-20以内的质数:2,3,5,7,11,13,17,19。
分数与除法的关系:)0(≠=÷b ba b a 单位进率表千米(km ) 米(m ) 分米(dm ) 厘米(cm ) 毫米(mm )平方千米(2km ) 公顷(2hm ) 平方米(2m ) 平方分米(2dm ) 平方厘米(2cm )立方米(3m ) 立方分米(3dm ) 立方厘米(3cm )升(L ) 毫升(mL ) 1升=1立方分米 1毫升=1立方厘米时 分 秒吨(t ) 千克(kg ) 克(g )1000⨯ 10⨯ 10⨯ 10⨯ 100⨯ 10000⨯ 100⨯ 100⨯ 1000⨯ 1000⨯ 1000⨯ 1000⨯ 1000⨯ 60⨯ 60⨯。
人教版五年级下册数学重点知识(精华版)
人教版五年级下册数学重点知识第一单元观察物体1、长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到3个面。
第二单元:因数与倍数1、一个数因数的个数是有限的,一个数倍数的个数是无限的。
2、一个数的最小因数是1,最大因数是它本身。
一个数的最小倍数是它本身,没有最大倍数。
3、整数中,是2的倍数的数叫做偶数(0也是偶数)。
不是2的倍数的数叫做奇数。
4、2的倍数的特征:个位上是0、2、4、6、8的数。
5的倍数的特征:个位上是0或5的数。
3的倍数的特征:一个数各个数位上的数相加的和是3的倍数。
2和5的倍数的特征:个位上是0的数。
2、3、5的倍数的特征:个位是0并且各个数位上的数字之和能被3整除的数。
5、最小的偶数是0,最小的奇数是1;最小的质数是2,最小的合数是4。
6、奇数偶数的性质(1)奇数+奇数=偶数;偶数+偶数=偶数;偶数+奇数=奇数;(2)奇数-奇数=偶数;偶数-偶数=偶数;偶数-奇数=奇数;奇数-偶数=奇数;(3)奇数×奇数=奇数;偶数×偶数=偶数;奇数×偶数=偶数;质数×质数=合数(4)除2外所有的偶数均为合数;(5)相邻偶数最大公约数为2,最小公倍数为它们乘积的一半。
7、1既不是质数,也不是合数。
8、100以内质数表:第三单元:长方体和正方体1、长方体和正方体(立方体)的特征面棱顶点长方体①有6个面;②相对的两个面完全相同;③每个面是长方形(特殊情况下有两个相对的面是正方形)。
①有12条棱;②相对的4条棱长度相等(特殊情况下有8条棱长度相等)。
有8个顶点正方体①有6个面;②6个面完全相同;③每个面是正方形。
①有12条棱;②12条棱全部相等。
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 972、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、正方体是长、宽、高都相等的特殊长方体。
人教版五年级下册数学重点知识(精华版)--最新版
人教版五年级下册数学重点知识(精华版)--最新版人教版五年级数学下册精选重点知识点总结第一单元:观察物体1.从不同角度观察长方体(或正方体),最多能看到3个面。
2.给出一个(或两个)方向观察的图形无法确定立体图形的形状。
必须从三个方向观察到的图形才能确定立体图形的形状,并还原立体图形。
先由上面确定立体图形的形状,再由左(右)和前(后)确定立体图形有几层,每层有几行几列。
3.从一个方向看到的图形可以摆成多种不同的立体图形。
4.从多个角度观察立体图形:先根据平面图分析出要拼搭的立体图形有几层,然后确定要拼搭的立体图形有几排,最后根据平面图形确定每层和每排的小正方体的个数。
例如:画三视图和搭积木。
第二单元:因数与倍数1.在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括)。
2.在整数除法中,如果商是整数而没有余数,我们就说被除数是除数(或者商)的倍数,除数(或者商)是被除数的因数。
在整数乘法中,因数是积的因数,积是因数的倍数。
例如:12÷2=6→12是2(或者6)的倍数,2(或者6)是12的因数。
2×6=12→12是2(或者6)的倍数,2(或者6)是12的因数。
3.一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
例如:12的最小因数是1,最大的因数是12.一个数的最小因数是1,最大因数是它本身。
一个数的最小倍数是它本身,没有最大倍数。
例如:18的最小倍数是18.一个不为1的自然数,既是它本身的最小倍数,又是它本身的最大因数。
4.整数中,是2的倍数的数叫做偶数(也是双数)。
不是2的倍数的数叫做奇数(也是单数)。
5.特征:2的倍数的个位上是0、2、4、6、8的数;5的倍数的个位数是0或5的数;3的倍数的个各个数位上的数的和是3的倍数;2和5的倍数的个位上是0的数;3和5的倍数的个位是0或5的并且各个数位上的数字之和能被3整除的数。
游泳池、鱼缸等只有5个面,而水管、烟囱等只有4个面。
最全面人教版数学五年级下册知识点归纳总结
最全面人教版数学五年级下册知识点归纳总结五年级下册数学内容涵盖了面积、容积、数的认识和计算、时间、图形的认识和运用等多个方面的内容。
以下是对人教版数学五年级下册的知识点进行归纳总结:一、面积1. 长方形的面积计算公式:面积 = 长 ×宽2. 正方形的面积计算公式:面积 = 边长 ×边长3. 三角形的面积计算公式:面积 = 底边长 ×高 ÷ 24. 平行四边形的面积计算公式:面积 = 底边长 ×高5. 长方体的表面积计算公式:表面积 = 2 ×长 ×宽 + 2 ×长 ×高 + 2 ×宽 ×高二、容积1. 直接用长宽高相乘得到的数字,就是长方体的容积(即体积)。
2. 立方体的容积计算公式:容积 = 边长 ×边长 ×边长三、数的认识和计算1. 整数:包括正整数、负整数和零。
2. 加法和减法:掌握多位数的加减法计算方法,注意进位和借位。
3. 乘法:会进行大位数的乘法计算,理解乘法的意义。
4. 除法:会进行大位数的除法计算,理解除法的意义。
5. 分数:能够简单的进行分数的加减运算,理解分数的大小比较。
6. 小数:能够进行小数的四则运算。
7. 千分数:能够进行千分数的简单计算,理解千分数的大小比较。
8. 序数词:知道如何用序数词表示年份或名次。
四、时间1. 分钟和小时:能够用时钟读出准确的时间。
2. 日历:能够根据日历进行简单的日期计算。
3. 时间的计算:能够计算时间间隔,如计算一天之前或之后的日期。
五、图形的认识和运用1. 二维图形:熟悉正方形、长方形、三角形、平行四边形、菱形、圆形等基本的图形,并了解它们的性质。
2. 三维图形:熟悉长方体、正方体、圆柱体、圆锥体、球体等基本的立体图形,并了解它们的性质。
3. 坐标系:能够在二维坐标系中表示点的位置,并进行简单的坐标计算。
总结:人教版数学五年级下册的知识点非常广泛,涉及了面积、容积、数的认识和计算、时间、图形的认识和运用等多个方面。
人教版五年级数学下册全册知识点梳理
人教版五年级数学下册全册知识点梳理人教版五年级数学下册知识点梳理第一单元《观察物体三》1.观察物体时,不同角度看到的面都是相邻的两个或三个面。
2.长方体或正方体的相对面不可能同时被看到。
第二单元因数和倍数一、因数和倍数在整数除法中,如果被除数能整除除数,商就是被除数的倍数,除数是被除数的因数。
因数和倍数是相互依存的,不能单独存在。
一个数的因数个数有限,最小因数为1,最大因数为它本身。
求一个数的因数可以成对地按顺序找,或用除法找。
一个数的倍数个数无限,最小倍数为它本身。
求一个数的倍数可以依次乘自然数。
二、自然数按能否被2整除分为奇数和偶数。
奇数不是2的倍数,偶数是2的倍数。
最小的奇数是1,最小的偶数是2.2、3、5的倍数特征:个位上是2、4、6、8的数都是2的倍数。
个位上是0或5的数是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
如果一个数同时是2和5的倍数,那它的个位上的数字一定是0.同时是2、3、5的倍数,个位上是0并且各位上的数的和是3的倍数,这个数就同时是2、3、5的倍数。
最大的两位数是90,最小的两位数是30,最小的三位数是120.三、自然数按因数的个数来分为质数和合数。
1.质数是只有1和它本身两个因数的数,如2、3、5、7、11、13、17、19等。
2.合数是除了1和它本身还有别的因数的数,如4、6、8、9、10、12、14、15、16、18、20、22、26、49等。
合数至少有三个因数,即1、它本身和别的因数。
1不是质数也不是合数。
最小的质数是2,最小的合数是4.20以内的质数有8个,分别为2、3、5、7、11、13、17、19.不是所有奇数都是质数,例如9是奇数但不是质数而是合数。
不是所有偶数都是合数,例如2是偶数但是质数。
五年级数学下学期知识点归纳
五年级数学下学期知识点归纳人教版五年级数学下学期知识点归纳第一单元知识点:1.观察物体时,从不同的位置看到的形状一般是不同的。
2.从同一位置观察立体图形时,不能同时看到所有面,最多只能看到三个面。
3.从不同方向观察拼摆的立体图形时,所看到的平面图形的形状一般是不同的。
4.从同一位置观察不同形状的立体图形时,得到的平面图形可能是相同的,也可能是不同的。
第二单元知识点:1.因数和倍数1) 被除数是除数和商的倍数,除数和商是被除数的因数。
2) 找一个数的因数时,应从最小的因数找起,一直找到它本身。
也可以一对一对地找。
3) 找一个数的倍数时,可以用这个数分别去乘1、2、3、4……4) 一个数的最小因数是1,最大因数是它本身。
一个数的最小倍数是它本身,没有最大的倍数。
因数和倍数是互相依存的两类数。
2.2、3、5的倍数特征1) 个位上是2、4、6、8的数都是2的倍数。
偶数是2的倍数,其他不是2的倍数的数叫做奇数。
2) 个位上是0或5的数都是5的倍数。
3) 如果一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3.质数和合数1) 如果一个数只有1和它本身两个因数,这样的数叫做质数(或素数)。
如2、3、5、7都是质数。
2) 如果一个数除了1和它本身还有别的因数,这样的数叫做合数。
如4、6、9、15都是合数。
3) 1既不是质数,也不是合数。
4) 奇数+偶数=奇数,奇数+奇数=偶数,偶数+偶数=偶数。
第三单元知识点:1.长方体和正方体的认识1) 长方体有6个面,12条棱,8个顶点。
相对的面的面积相等,相对的棱的长度相等。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
2) 正方体有6个面,12条棱,8个顶点。
每个面都是正方形,面积都相等,每条棱的长度都相等。
3) 正方体是一种特殊的长方体,它们的关系可以用图表示。
2.长方体和正方体的表面积1) 长方体或正方体6个面的总面积,叫做它的表面积。
2) 长方体的表面积=(长×宽+长×高+宽×高)×2.正方体的表面积可以用公式棱长×XXX×6来计算。
人教版五年级下册数学知识点总结、梳理
人教版五年级下册数学知识点总结、梳理五年级下册数学知识点总结、梳理,让我们一起来看看吧!1. 加减法加减法是我们日常生活中最基本的数学运算。
我们要知道加法是把两个数相加得到一个和,而减法是把一个数从另一个数中减去得到一个差。
例如,如果我们有5个苹果,再吃掉2个,那么我们还剩下3个苹果。
这就是加减法的基本概念。
2. 乘除法乘除法也是我们生活中经常用到的数学运算。
乘法是把一个数重复相加若干次得到一个积,而除法则是把一个数分成若干份得到一个商。
例如,如果我们有6个苹果,每个苹果分给2个人,那么每个人可以得到3个苹果。
这就是乘除法的基本概念。
3. 分数和小数分数和小数都是用来表示部分数量的一种方式。
分数是由分子和分母组成的,分子表示部分的数量,而分母表示整体被分成了多少份。
例如,1/2表示将整体分成两份,其中一份就是1/2。
小数则是用十进制表示的分数。
例如,0.5表示将整体分成10份,其中5份就是0.5。
4. 几何图形几何图形是我们学习空间方向感的重要工具。
在五年级下册中,我们学习了各种不同的几何图形,如正方形、长方形、三角形、圆形等。
每种几何图形都有自己的特点和性质,我们需要通过观察和计算来理解它们之间的关系。
5. 数据统计数据统计是我们处理信息和解决问题的重要手段。
在五年级下册中,我们学习了如何收集、整理和分析数据。
例如,我们可以通过调查问卷或实验来收集数据,然后使用图表或表格来展示数据的结果。
通过数据分析,我们可以得出结论并做出决策。
希望这篇文章能够帮助你更好地理解五年级下册数学知识点总结、梳理的内容!如果你还有其他问题或需要更多帮助,请随时告诉我哦!。
人教版小学五年级下册数学知识点整理(全)
班别:
姓名:
学:
4. 【长方体和正方体的关系】 长方体和正方体都有 6 个面,8 个顶点,12 条棱,正方体是长、宽、高都相
等的长方体,即正方体是特殊的长方体。 5. 【棱长公式】
长方体: 长方体的棱总和=(长+宽+高)×4 长=棱长总和÷4-宽-高 宽=棱长总和÷4-长-高 高=棱长总和÷4-长-宽 正方体: 正方体的棱长总和=棱长×12 正方体棱长=棱长总和÷12 6. 【表面积】 长方体或正方体 6 个面的总面积,叫做它的表面积。 7. 【表面积计算】 长方体: 长方体的表面积=(长×宽+长×高+宽×高)×2
8
14. 【求两数的最小公倍数的方法】 (1)观察两数的关系,是否为特殊情况; ① 两数为倍数关系,较大的数为最小公倍数; ② 两数为互质关系,两数的乘积为最小公倍数; (2)不是特殊情况,可以用列举法,筛选法,分解质因数法,短除法求。
14. 【比较分数大小的方法】 (1)同分母分数相比,分子大的分数就大;(同母子大大) (2)同分子分数相比,分母小的分数反而大。(同子母小大)
有余数,这时,除数和商就是这个数的因数; 如:求 18 的因数: 18÷1=18,18÷2=9,18÷3=6,所以 1,18,2,9,3,6 是 18 的因数。
3. 【因数的特征】 一个数的因数的个数是有限的,其中最小的因数是 1,最大的因数是它本身。
4. 【找一个数倍数的方法】 列乘法算式求:用这个数×非 0 自然数,得到的积,就是这个数的倍数。 如:求 2 的倍数: 2×1=2,2×2=4,2×3=6,2×4=8,2×5=10,…。 所以,2 的倍数有:2,4,6,8,…。
5. 【倍数的特征】 一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大公倍数。
(完整版)人教版五年级数学下册知识点归纳总结
人教版五年级数学下册知识点归纳总结第一单元观察物体(三)1、不同角度观察一个物体,看到的面都是两个或三个相邻的面。
2、不可能一次看到长方体或正方体相对的面。
注意点1)这里所说的正面、左面和上面,都是相对于观察者而言的。
2)站在任意一个位置,最多只能看到长方体的3个面。
3)从不同的位置观察物体,看到的形状可能是不同的。
4)从一个或两个方向看到的图形是不能确定立体图形的形状的。
5)同一角度观察不同的立体图形,得到的平面图形可能是相同,也可能是不同的。
6)如果从物体的右面观察,看到的不一定和从左面看到的完全相同。
第二单元因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
(4)2、3、5的倍数特征1)个位上是0,2,4,6,8的数都是2的倍数。
2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3)个位上是0或5的数,是5的倍数。
4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。
同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。
5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
3、自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数。
叫奇数。
也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
最小的奇数是1,最小的偶数是0.关系:奇数+、- 偶数=奇数奇数+、- 奇数=偶数偶数+、-偶数=偶数。
(完整版)人教版五年级下册数学重点知识(精华版)
人教版五年级下册数学重点知识第一单元观察物体1、长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到 3 个面(或说成:最多同时能看到 3 个面)。
2、给出一个(或两个)方向观察的图形无法确定立体图形的形状。
由三个方向观察到的图形就可以确定立体图形的形状并还原立体图形。
(先由上面确定立体图形的形状,再由左(右)和前(后)确定立体图形有几层,每层有几行几列。
)3、从一个方向看到的图形摆立体图形,有多种摆法。
4、从多个角度观察立体图形: 先根据平面图分析出要拼搭的立体图形有几层;然后确定要拼搭的立体图形有几排;最后根据平面图形确定每层和每排的小正方体的个数。
例如:如右图是从上面看到的搭积木的形状,请你画一画。
2、会搭积木第二单元:因数与倍数【在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括0)】1、熟记概念:(1)在整数除法中,如果商是整数而没有余数,我们就说被除数是除数(或者商)的倍数,除数(或者商)是被除数的因数。
在整数乘法中,因数是积的因数,积是因数的倍数。
例如:12÷2=6 → 12 是2(或者6)的倍数,2(或者6)是12 的因数。
2×6=12→ 12是2(或者6)的倍数,2(或者6)是12的因数。
一个数因数的个数是有限的,一个数倍数的个数是无限的。
例如:12 的最小因数是( 1 ),最大的因数是(12 )。
一个数的最小因数是1,最大因数是它本身。
一个数的最小倍数是它本身,没有最大倍数。
例如:18 的最小倍数是(18 )。
一个不为0 的自然数,既是它本身的最小倍数,又是它本身的最大因数。
例:⑴一个数的最大因数等于它的最小倍数。
(× )⑵一个数(0 除外)的最大因数等于它的最小倍数。
(√ )⑶一个数的最大的因数和最小倍数都是18,这个数是(18 )。
2、整数中,是2 的倍数的数叫做偶数(0 也是偶数)。
偶数就是我们以前说的双数。
不是 2 的倍数的数叫做奇数,也就是以前我们说的单数。
人教版五年级下册数学必背知识点汇总
人教版五年级下册数学必背知识点一:观察物体1、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化叫作旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为另一点成为对应点。
(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转要明确中心点,角度和方向。
旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(4)两组对应点分别与旋转中心的连线所成的角相等,都等于旋转角;(5)旋转中心是唯一不动的点。
3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数二:因数与倍数1.因数与倍数在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
例如:12÷6=2,我们就说12是6的倍数,6是12的因数。
12÷2=6,所以12是2的倍数,2是12的因数。
一个数的因数的个数是有限的,其中最小的是1,最大的是它本身。
一个数的倍数的个数是无限的,其中最小的是它本身,没有最大的。
2.2、3、5的倍数特征个位上是0、2、4、6、8的数都是2的倍数。
2的倍数一定是偶数。
168 1+6+8=15 15能够被3整除所以168是3的倍数。
个位上是0或5的数都是5的倍数。
3.奇数和偶数整数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
☆奇数+偶数=奇数奇数+奇数=偶数偶数+偶数=偶数奇数×偶数=偶数奇数×奇数=奇数偶数×偶数=偶数4.质数和合数一个数,如果只有1和它本身两个因数。
那么这样的数叫做质数(或素数)。
如:2、3、5、7都是质数。
一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。
如2、4、6、15、49都是合数。
1既不是质数,也不是合数。
【其中:偶数一定是合数,但合数不一定是偶数。
小学数学】人教版五年级下册数学知识点归纳
小学数学】人教版五年级下册数学知识点归纳人教版五年级数学下册知识点归纳总结第一单元观察物体(三)1.观察小正方体的不同摆法,可以发现无法确定立体图形的形状。
2.当从三个方向观察小正方体时,只有一种摆法。
3.只要在原来物体的前面或后面添加一个正方体,从正面看到的形状就不会改变。
4.从正面、左面、上面三个不同的方向观察同一组物体,可以得到三视图。
5.通过综合三视图的形状,可以确定立体图形中小正方体的摆放位置,通常只有一种摆法。
6.拼摆正方体的方法是:俯视图打地基;主视图疯狂盖;左视图拆违章。
7.先摆出符合正面的立体图形,再摆出符合上面的立体图形,最后确定立体图形。
根据从正面、左面、上面观察到的平面图形还原立体图形只有唯一的一种情况。
8.如果无法想象,可以摆小正方体来帮助理解。
第二单元因数和倍数1.整除是指被除数、除数和商都是自然数,并且没有余数。
整数包括自然数,最小的自然数是1.2.在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
因数和倍数是相互依存的,不能单独存在。
一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的最大因数和最小倍数都是它本身。
3.2、3、5有以下特征:①在自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。
②最小的奇数是1,最小的偶数是0.③奇数和偶数的运算性质:奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数(大减小);奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。
④不同的数有不同的整除特征,如末尾是0、2、4、6、8的数可以被2整除,末尾是5的数可以被5整除,等等。
各数位上数的和是3或9的倍数,末尾是5或0,个位上的数是30的倍数的数(最大的两位数是90,最小的三位数是120),末两位数所组成的数是4或25的倍数,末三位数所组成的数是8或125的倍数,末三位与前几位数的差(大减小)是7或11或13的倍数。
人教版五年级数学下册全册知识要点(精校).doc
部编版五年级数学(下册)知识要点第一单元图形的变换图形变换的基本方式是平移、对称和旋转。
1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。
(2)圆有无数条对称轴。
(3)对称点到对称轴的距离相等。
(4)轴对称图形的特征和性质:①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同。
(5)对称图形包括轴对称图形和中心对称图形。
平行四边形(除棱形)属于中心对称图形。
2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。
(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转要明确绕点,角度和方向。
(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。
等边三角形绕中点旋转120度与原来重合。
旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;(5)旋转中心是唯一不动的点。
3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
人教版五年级数学下册知识点归纳整理
人教版五年级数学下册知识点归纳整理单元一:小数与运算
- 小数的认识和读写方法
- 小数的比较和排序
- 小数的加减运算方法
- 小数与分数的关系
单元二:大小和图形
- 数的大小比较
- 分数的大小比较
- 长度的测量和比较
- 线段之间的关系
- 不同角的分类和比较
- 直线、曲线、封闭图形的特点和区别
单元三:数据统计
- 绘制频率直方图和频率多边形
- 理解平均数的概念和计算方法
- 理解中位数的概念和计算方法
- 制作统计表格和图表
单元四:三角形和四边形
- 理解三角形和四边形的特点和性质
- 认识等边三角形、等腰三角形、直角三角形、长方形、正方形等特殊四边形
- 运用勾股定理进行三角形边长的计算
- 进行平行四边形和长方形面积的计算
单元五:策略与模式
- 理解数学问题的策略和模式
- 运用试验与反证法解决问题
- 运用数学公式和等式解决问题
- 运用逻辑推理解决问题
单元六:数独
- 理解数独的规则和解题方法
- 进行数独问题的分析和推理
- 进行数独问题的求解和填写
以上是人教版五年级数学下册的知识点归纳整理,希望对您有所帮助。
> 注:本文档整理自人教版五年级数学下册课本内容,仅供参考,具体内容以实际教材为准。
人教版五年级下册数学知识点归纳总结(最新版)
五年级(下)各单元重点知识归纳(1).分数加法的意义:和整数加法的意义相同,就是把两个数合并成一个数的运算。
(2).分数减法的意义:与整数减法的意义相同,已知两个数的和与其中的一个加数,求另一个加数的运算。
(3).分数加、减法的计算方法:分母不变,分子相加减。
(4).同分母分数连加的计算方法:从左到右依次计算,也可以直接把加数的分子连加起来,分母不变。
(5).同分母分数连减的计算方法:从左到右依次计算,也可以直接用被减数的分子连续减去两个减数的分子,分母不变。
异分母分数加、减法异分母分数加、减法的计算方法:一般先通分,化成同分母的分数,然后按照同分母分数加、减法的方法计算。
分数加减混合运算(1).分数加减混合运算的顺序:与整数加减混合运算的顺序相同。
没有括号的,按照从左到右的顺序进行计算;有括号的,先算括号里的,然后算括号外的(2).分数加法的简算:整数加法的运算定律在分数加法中同样适用。
第五单元:统计具体内容重点知识学生的实际学习困难统计(1).众数的意义:在一组数据中,出现次数最多的数,是这组数据的众数。
(2).众数的特征:能够反映一组数据的集中情况。
(3).复式折线统计图:在计量过程中存在两组数据,而又需要在一个统计图中表示这两组数据时,就要用两种不同形式的折线来表示不同数量变化情况的折线统计图。
(4). 复式折线统计图的特点:能表示两组数据数量的多少,数量的增减变化情况,还能比较两组数据的变化趋势。
(5).复式折线统计图的制作:A.根据两组数据量多少和图纸大小,画出两条相互垂直的射线;B.在水平射线上确定好各点的距离,分配各点的位置;C.在与水平射线垂直的射线上,根据数据大小的具体情况,确定单位长度表示的数量;D.用不同的图例表示两组不同的数据;E.按照数据大小描出各点,再用线段顺次连接;F.标出题目,注明单位、日期。
数学广角具体内容重点知识学生的实际学习困难数学广角找次品的最优方法:把待测物体分成3份,要分得尽量平均,不能够平均分的,也应该使多的一份与少的一份只相差1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一单元图形的变换一、平移物体或图形平移后本身的形状、大小和方向都不会改变。
二、轴对称1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、轴对称图形的特征和性质:①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同。
3、对称图形包括轴对称图形和中心对称图形。
平行四边形(除棱形)属于中心对称图形三、旋转1、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。
2、旋转只改变物体的位置(旋转中心位置不会变),不改变物体的形状、大小。
第二单元因数和倍数1、像0、1、2、3、4、5、6……这样的数是自然数。
2、像-3、-2、-1、0、1、2、3……这样的数是整数。
3、整数与自然数的关系:整数包括自然数。
一、因数和倍数所指的是整数,不包括0。
因为0和任何数相乘都等于0;0除以任何数都等于0。
1、如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。
2、因数和倍数是相互依存的,不能单独存在。
二、因数1、一个数的因数的个数是有限的。
一个数的最小因数是1,最大的因数是它本身。
2、一个数的因数的求法:成对地按顺序找。
三、倍数1、一个数的倍数的个数是无限的。
一个数的最小倍数是它本身,没有最大的倍数。
2、一个数的倍数的求法:依次乘以自然数。
四、2、5、3的倍数的特征1、2的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。
2、偶数与奇数:①自然数中,是2的倍数的数叫做偶数(0也是偶数);最小的偶数是0。
②不是2的倍数的数叫做奇数;最小的奇数是1。
3、5的倍数的特征:个位上是0或5的数,都是5的倍数。
4、3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
5、如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
五、质数和合数1、质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),最小的质数是2。
2、合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,最小的合数是4。
3、1既不是质数,也不是合数。
4、质数只有两个因数;而合数至少有三个因数。
六、1按是否是2的倍数来分:分为奇数和偶数两类;按因数的个数来分:分为质数、合数和1三类。
2、奇数+奇数=偶数 偶数+偶数=偶数 奇数+偶数=奇数奇数×奇数=奇数 质数×质数=合数3、100以内的质数表:(共 25 个)第三单元长方体和正方体一、长方体和正方体的认识1、长方体和正方体都是立体图形。
正方体也叫立方体。
2、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
(长、宽、高都各有4条,分别平行并且相等)3、长方体的特征:①面:有6个面,都是长方形(特殊情况下最多有两个相对的面是正方形)。
相对的面完全相同。
②棱:有12条棱。
相对的棱长度相等。
③顶点:有8个顶点。
4、正方体的特征:①面:有6个面都是正方形,6个面完全相同。
②棱:有12条棱。
12条棱的长度相等。
③顶点:有8个顶点。
5、正方体是特殊的长方体。
6、长方体的棱长总和=(长+宽+高)×47、正方体的棱长总和=棱长×128、少要8个小正方体才能拼成一个稍大的正方体。
二、长方体和正方体的表面积1、表面积:长方体或正方体6个面的总面积,叫做它的表面积2、长方体的表面积:①长方体有“上”、“下”、“前”、“后”、“左”、“右”6个面。
②长方体的表面积=(长×宽+长×高+宽×高)×2用字母表示:S=(ab+ah+bh)×2③特殊长方体的表面积(有两个面是正方形)正方形的两个面完全相同,其余四个面完全相同。
3、正方体的表面积正方体的表面积=棱长×棱长×6用字母表示:S= 6a24、表面积的常用单位有:平方米、平方分米、平方厘米相邻两个面积单位之间的进率是100 1m2 =100dm2 1 dm2 =100 cm25、生活实际油箱、罐头盒等都是6个面;游泳池、鱼缸等都只有5个面;水管、烟囱等都只有4个面。
6、长方体或正方体每截断一次会增加两个截面,所以这时的两个物体的表面积大于原来物体的表面积。
7、长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。
(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。
三、长方体和正方体的体积1、体积:物体所占空间的大小叫做物体的体积。
(就是看物体含有多少个体积单位)2、常用的体积单位有:立方米(m3)、立方分米(dm3)、立方厘米(cm3)①棱长是1 cm的正方体,体积是1 cm3②棱长是1 dm的正方体,体积是1 dm3③棱长是1 m的正方体,体积是1 m3相邻两个体积单位之间的进率是1000 1 m3 =1000 dm3 1 dm3=1000 cm33、长方体的体积长方体的体积=长×宽×高用字母表示:V=abh4、正方体的体积正方体的体积=棱长×棱长×棱长用字母表示:V= a3(读作:a的立方,表示3个a相乘)5、底面积:长方体或正方体底面的面积叫做底面积。
6、长方体和正方体的体积统一公式:长方体或正方体的体积= 底面积×高用字母表示: V=Sh7、容积:容器所能容纳物体的体积,叫做它的容积。
8、容积单位有:升(L)、毫升(ml) 1 L = 1000 ml9、容积单位和体积单位的关系: 1 L = 1 dm3 1 ml = 1 cm310、容积的计算:长方体和正方体容器容积的计算方法,跟体积的计算方法相同,但要从里面量长、宽、高。
(所以物体的体积大于它的容积)。
11、长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
12、排水法:(计算不规则物体的体积)13、把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
第四单元 分数的意义和性质一、分数的意义1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。
被除数÷除数 = 除数被除数 用字母表示:a÷b= ba (b≠0)。
4、分数未带单位表示两个量之间的倍数关系;分数带有单位表示一个具体的数量。
二、真分数和假分数1、真分数和假分数:① 分子比分母小的分数叫做真分数,真分数小于1。
② 分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。
③ 由整数部分和分数部分组成的分数叫做带分数。
2、假分数与带分数的互化:① 把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。
② 把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
三、分数的基本性质1、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
四、约分1、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。
2、两个数的公因数和它们最大公因数之间的关系:所有的公因数都是最大公因数的因数,最大公因数是它们的倍数。
3、互质数:公因数只有1的两个数叫做互质数。
4、两个数互质的特殊判断方法:①1和任何大于1的自然数互质。
②2和任何奇数都是互质数。
③相邻的两个自然数是互质数。
④相邻的两个奇数互质。
⑤不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
5、求最大公因数的方法:①倍数关系:最大公因数就是较小数。
②互质关系:最大公因数就是1③一般关系:从大到小看较小数的因数是否是较大数的因数。
6、最简分数:分子和分母只有公因数1的分数叫做最简分数。
7、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
(并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)五、通分1、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫最小公倍数。
2、两个数的公倍数和它们的最小公倍数之间的关系:几个数的公倍数是它们最小公倍数的倍数。
3、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(通分时,公分母一般为几个数的最小公倍数)。
4、求最小公倍数的方法:①倍数关系:最小公倍数就是较大数。
②互质关系:最小公倍数就是它们的乘积。
③一般关系:大数翻倍(从小到大看较大数的倍数是否是较小数的倍数)。
5、分数的大小比较:①同分母分数,分子大的分数就大,分子小的分数就小;②同分子分数,分母大的分数反而小,分母小的分数反而大。
③异分母分数,先化成同分母分数(分数单位相同),再进行比较。
6、约分和通分的依据都是分数的基本性质。
六、分数和小数的互化:1、小数化分数:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。
(一般保留两位小数。
)3、判断分数是否能化成有限小数的方法:① 判断分数是否是最简分数;如果不是最简分数,先把它化成最简分数;② 把分数的分母分解质因数:如果分母中除了2和5以外,不含有其他质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。
4、21= 0.5 5.2041= 5.7043= .2051= .4052=.6053= .8054=25.1081= 75.3083= 25.6085= 75.8087= 625.00161= 4.00251= 2.00501=第五单元 分数的加法和减法一、同分母分数加、减法1、同分母分数加、减法:同分母分数相加、减,分母不变,只把分子相加减。
2、计算的结果,能约分的要约成最简分数。
二、异分母分数加、减法1、分母不同,也就是分数单位不同,不能直接相加、减。
2、异分母分数的加减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。
三、分数加减混合运算1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。
在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。
2、整数加法的交换律、结合律对分数加法同样适用。
3、21-121= 31-2161= 41-31121= 51-41201=第六单元 统计1、 众数:一组数据中出现次数最多的数,就是这组数据的众数。