高考物理二轮专题复习电磁感应中单双棒问题归类例析修订版
(完整word)高考电磁感应中“单、双棒”问题归类经典例析
电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化? (2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导Bv 0L adb轨所在平面垂直,导轨的电阻很小,可忽略不计。
电磁感应中的单双棒问题(解析版)-2024年高考物理压轴题专项训练
压轴题 电磁感应中的单双棒问题1.电磁感应中的单双棒问题在高考物理中占据着举足轻重的地位,是考查学生对电磁感应现象和力学知识综合运用能力的关键考点。
2.在命题方式上,电磁感应中的单双棒问题通常会以综合性较强的题目形式出现,结合电磁感应定律、安培力、牛顿第二定律等知识点,考查学生对电磁感应现象中导体棒的运动状态、受力情况、能量转化等问题的理解和分析。
题目可能要求考生分析导体棒在磁场中的运动轨迹、速度变化、加速度大小等,也可能要求考生求解导体棒产生的感应电动势、感应电流等物理量。
3.备考时,考生应首先深入理解电磁感应的基本原理和单双棒问题的特点,掌握电磁感应定律、安培力、牛顿第二定律等相关知识点的应用。
同时,考生需要熟悉各种类型题目的解题方法和技巧,例如通过分析导体棒受力情况、运用动量定理和能量守恒定律等方法求解问题。
考向一:不含容单棒问题模型规律阻尼式(导轨光滑)1、力学关系:F A =BIl =B 2l 2v R +r ;a =F A m =B 2l 2vm (R +r )2、能量关系:12mv 20-0=Q3、动量电量关系:-BI l ⋅Δt =0-mv 0;q =n ΔϕR +r =Bl ⋅ΔsR +r电动式(导轨粗糙)1、力学关系:F A =B (E -E 反)R +r l =B (E -Blv )R +rl ;a =F B -μmg m =B (E -Blv )m (R +r )l -μg 2、动量关系:BLq -μmgt =mv m -03、能量关系:qE =Q +μmgS +12mv 2m4、稳定后的能量转化规律:I min E =I min E 反+I 2min (R +r )+μmgv m5、两个极值:(1)最大加速度:v =0时,E 反=0,电流、加速度最大。
I m =ER +r;F m =BI m l ;a m =F m -μmg m (2)最大速度:稳定时,速度最大,电流最小。
最新高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析word版本
高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化?(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cdBv 0L adb的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
电磁感应中的单杆和双杆问题(习题,问题详解)
电磁感应中“滑轨”问题归类例析一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m ,上、下两端各有一个电阻R 0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab 为金属杆,其长度为L =0.4 m ,质量m =0.8 kg ,电阻r =0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电阻R 0产生的热量Q 0=0.375J(已知sin37°=0.6,cos37°=0.8;g 取10m /s2)求: (1)杆ab 的最大速度;(2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程过ab 的电荷量.关键:在于能量观,通过做功求位移。
2、杆与电容器连接组成回路例3、如图所示, 竖直放置的光滑平行金属导轨, 相距L , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 从高h 处由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用.求金属棒下落的时间? 问金属棒的做什么运动?棒落地时的速度为多大?例4、光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如图所示。
(完整版)电磁感应中的单杆和双杆问题(习题,答案)
电磁感应中“滑轨”问题归类例析一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m ,上、下两端各有一个电阻R 0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab 为金属杆,其长度为L =0.4 m ,质量m =0.8 kg ,电阻r =0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电阻R 0产生的热量Q 0=0.375J(已知sin37°=0.6,cos37°=0.8;g 取10m /s2)求: (1)杆ab 的最大速度;(2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程中通过ab 的电荷量.关键:在于能量观,通过做功求位移。
2、杆与电容器连接组成回路例3、如图所示, 竖直放置的光滑平行金属导轨, 相距L , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 从高h 处由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用.求金属棒下落的时间? 问金属棒的做什么运动?棒落地时的速度为多大?例4、光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如图所示。
高考物理二轮复习专题过关检测专题:电磁感应(全部含详细答案解析)
高考物理二轮总复习专题过关检测电磁感应(附参考答案)(时间:90分钟满分:100分)一、选择题(本题共10小题,共40分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确.全部选对的得4分,选对但不全的得2分,有选错的得0分)1.如图12-1所示,金属杆ab、cd可以在光滑导轨PQ和R S上滑动,匀强磁场方向垂直纸面向里,当ab、cd分别以速度v1、v2滑动时,发现回路感生电流方向为逆时针方向,则v1和v2的大小、方向可能是()图12-1A.v1>v2,v1向右,v2向左B.v1>v2,v1和v2都向左C.v1=v2,v1和v2都向右D.v1=v2,v1和v2都向左解析:因回路abdc中产生逆时针方向的感生电流,由题意可知回路abdc的面积应增大,选项A、C、D错误,B正确.答案:B2.(2010河北唐山高三摸底,12)如图12-2所示,把一个闭合线圈放在蹄形磁铁两磁极之间(两磁极间磁场可视为匀强磁场),蹄形磁铁和闭合线圈都可以绕OO′轴转动.当蹄形磁铁匀速转动时,线圈也开始转动,当线圈的转动稳定后,有()图12-2A.线圈与蹄形磁铁的转动方向相同B.线圈与蹄形磁铁的转动方向相反C.线圈中产生交流电D.线圈中产生为大小改变、方向不变的电流解析:本题考查法拉第电磁感应定律、楞次定律等考点.根据楞次定律的推广含义可知A正确、B错误;最终达到稳定状态时磁铁比线圈的转速大,则磁铁相对线圈中心轴做匀速圆周运动,所以产生的电流为交流电.答案:AC3.如图12-3 所示,线圈M和线圈P绕在同一铁芯上.设两个线圈中的电流方向与图中所标的电流方向相同时为正.当M中通入下列哪种电流时,在线圈P中能产生正方向的恒定感应电流()图12-3图12-4解析:据楞次定律,P 中产生正方向的恒定感应电流说明M 中通入的电流是均匀变化的,且方向为正方向时应均匀减弱,故D 正确.答案:D4.如图12-5所示,边长为L 的正方形导线框质量为m ,由距磁场H 高处自由下落,其下边ab 进入匀强磁场后,线圈开始做减速运动,直到其上边cd 刚刚穿出磁场时,速度减为ab 边进入磁场时的一半,磁场的宽度也为L ,则线框穿越匀强磁场过程中产生的焦耳热为( )图12-5A.2mgLB.2mgL +mgHC.mgH mgL 432+D.mgH mgL 412+ 解析:设刚进入磁场时的速度为v 1,刚穿出磁场时的速度212v v =① 线框自开始进入磁场到完全穿出磁场共下落高度为2L .由题意得mgH mv =2121② Q mv L mg mv +=⋅+222121221③ 由①②③得mgH mgL Q 432+=.C 选项正确. 答案:C5.如图12-6(a)所示,圆形线圈P 静止在水平桌面上,其正上方悬挂一相同线圈Q ,P 和Q 共轴,Q 中通有变化电流,电流随时间变化的规律如图12-6(b)所示,P 所受的重力为G ,桌面对P 的支持力为F N ,则( )图12-6A.t1时刻F N>GB.t2时刻F N>GC.t3时刻F N<GD.t4时刻F N=G解析:t1时刻,Q中电流正在增大,穿过P的磁通量增大,P中产生与Q方向相反的感应电流,反向电流相互排斥,所以F N>G;t2时刻Q中电流稳定,P中磁通量不变,没有感应电流,F N=G;t3时刻Q 中电流为零,P中产生与Q在t3时刻前方向相同的感应电流,而Q中没有电流,所以无相互作用,F N=G;t4时刻,P中没有感应电流,F N=G.答案:AD6.用相同导线绕制的边长为L或2L的四个闭合导体线框,以相同的速度匀速进入右侧匀强磁场,如图12-7所示.在每个线框进入磁场的过程中,M、N两点间的电压分别为U a、U b、U c 和U d.下列判断正确的是()图12-7A.U a<U b<U c<U dB.U a<U b<U d<U cC.U a=U b<U d=U cD.U b<U a<U d<U c解析:线框进入磁场后切割磁感线,a、b产生的感应电动势是c、d电动势的一半.而不同的线框的电阻不同.设a线框电阻为4r,b、c、d线框的电阻分别为6r、8r、6r,则4343BLvrrBLvUa=⋅=,,6565BLvrrBLvUb=⋅=,23862BLvrrLvBUc=⋅=.34642BlvrrLvBUd=⋅=所以B正确.答案:B7.(2010安徽皖南八校高三二联,16)如图12-8所示,用一块金属板折成横截面为“”形的金属槽放置在磁感应强度为B的匀强磁场中,并以速度v1向右匀速运动,从槽口右侧射入的带电微粒的速度是v2,如果微粒进入槽后恰能做匀速圆周运动,则微粒做匀速圆周运动的轨道半径r和周期T分别为()图12-8A.gvgvv2212,πB.gvgvv1212,πC.gvgv112,πD.gvgv212,π解析:金属板折成“”形的金属槽放在磁感应强度为B的匀强磁场中,并以速度v1向右匀速运动时,左板将切割磁感线,上、下两板间产生电势差,由右手定则可知上板为正,下板为负,11BvlBlvdUE===,微粒做匀速圆周运动,则重力等于电场力,方向相反,故有,1gqBvgqEm==向心力由洛伦兹力提供,所以,222rvmBqv=得gvmqBmvr212==,周期gvvrT1222ππ==,故B项正确.答案:B8.超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具.其推进原理可以简化为如图12-9所示的模型:在水平面上相距L的两根平行直导轨间,有竖直方向等距离分布的匀强磁场B1和B2,且B1=B2=B,每个磁场的宽度都是l,相间排列,所有这些磁场都以相同的速度向右匀速运动,这时跨在两导轨间的长为L、宽为l的金属框abcd(悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R,运动中所受到的阻力恒为F f,金属框的最大速度为v m,则磁场向右匀速运动的速度v可表示为()图12-9A.v=(B2L2v m-F f R)/B2L2B.v=(4B2L2v m+F f R)/4B2L2C.v=(4B2L2v m-F f R)/4B2L2D.v=(2B2L2v m+F f R)/2B2L2解析:导体棒ad和bc各以相对磁场的速度(v-v m)切割磁感线运动,由右手定则可知回路中产生的电流方向为abcda,回路中产生的电动势为E=2BL(v-v m),回路中电流为I=2BL(v-v m)/R,由于左右两边ad和bc均受到安培力,则合安培力为F合=2×BL I=4B2L2(v-v m)/R,依题意金属框达到最大速度时受到的阻力与安培力平衡,则F f=F合,解得磁场向右匀速运动的速度v=(4B2L2v m+F f R)/4B2L2,B对.答案:B9.矩形导线框abcd放在匀强磁场中,磁感线方向与线圈平面垂直,磁感应强度B随时间变化的图象如图12-10甲所示,t=0时刻,磁感应强度的方向垂直纸面向里.在0~4 s时间内,线框中的感应电流(规定顺时针方向为正方向)、ab边所受安培力(规定向上为正方向)随时间变化的图象分别为图乙中的()甲乙图12-0解析:在0~1 s内,穿过线框中的磁通量为向里的减少,由楞次定律,感应电流的磁场垂直纸面向里,由安培定则,线框中感应电流的方向为顺时针方向.由法拉第电磁感应定律,t S B n E ∆⋅∆=,E 一定,由,RE I =故I 一定.由左手定则,ab 边受的安培力向上.由于磁场变弱,故安培力变小.同理可判出在1~2 s 内,线框中感应电流的方向为顺时针方向,ab 边受的安培力为向下的变强.2~3 s 内,线框中感应电流的方向为逆时针方向,ab 边受的安培力为向上的变弱,因此选项AD 对. 答案:AD10.如图12-11甲所示,用裸导体做成U 形框架abcd ,ad 与bc 相距L =0.2 m,其平面与水平面成θ=30°角.质量为m =1 kg 的导体棒PQ 与ad 、bc 接触良好,回路的总电阻为R =1 Ω.整个装置放在垂直于框架平面的变化磁场中,磁场的磁感应强度B 随时间t 的变化情况如图乙所示(设图甲中B 的方向为正方向).t =0时,B 0=10 T 、导体棒PQ 与cd 的距离x 0=0.5 m.若PQ 始终静止,关于PQ 与框架间的摩擦力大小在0~t 1=0.2 s 时间内的变化情况,下面判断正确的是( )图12-11 A.一直增大B.一直减小C.先减小后增大D.先增大后减小 解析:由图乙,T/s 5010==∆∆t B t B ,t =0时,回路所围面积S =Lx 0=0.1 m 2,产生的感应电动势V 5=∆⋅∆=t S B E ,A 5==RE I ,安培力F =B 0IL =10 N,方向沿斜面向上.而下滑力mg sin30°=5 N,小于安培力,故刚开始摩擦力沿斜面向下.随着安培力减小,沿斜面向下的摩擦力也减小,当安培力等于下滑力时,摩擦力为零.安培力再减小,摩擦力变为沿斜面向上且增大,故选项C 对. 答案:C二、填空题(共2小题,共12分)11.(6分)如图12-12所示,有一弯成θ角的光滑金属导轨POQ ,水平放置在磁感应强度为B 的匀强磁场中,磁场方向与导轨平面垂直.有一金属棒M N 与导轨的OQ 边垂直放置,金属棒从O 点开始以加速度a 向右运动,求t 秒末时,棒与导轨所构成的回路中的感应电动势是____________________.图12-12解析:该题求的是t 秒末感应电动势的瞬时值,可利用公式E =Blv 求解,而上面错误解法求的是平均值.开始运动t 秒末时,金属棒切割磁感线的有效长度为.tan 21tan 2θθat OD L == 根据运动学公式,这时金属棒切割磁感线的速度为v =at .由题知B 、L 、v 三者互相垂直,有θtan 2132t Ba Blv E ==,即金属棒运动t 秒末时,棒与导轨所构成的回路中的感应电动势是.tan 2132θt Ba E =答案:θtan 2132t Ba 12.(6分)如图12-13所示,有一闭合的矩形导体框,框上M 、N 两点间连有一电压表,整个装置处于磁感应强度为B 的匀强磁场中,且框面与磁场方向垂直.当整个装置以速度v 向右匀速平动时,M 、N 之间有无电势差?__________(填“有”或“无”),电压表的示数为__________.图12-13解析:当矩形导线框向右平动切割磁感线时,AB 、CD 、MN 均产生感应电动势,其大小均为BLv ,根据右手定则可知,方向均向上.由于三个边切割产生的感应电动势大小相等,方向相同,相当于三个相同的电源并联,回路中没有电流.而电压表是由电流表改装而成的,当电压表中有电流通过时,其指针才会偏转.既然电压表中没有电流通过,其示数应为零.也就是说,M 、N 之间虽有电势差BLv ,但电压表示数为零.答案:有 0三、计算、论述题(共4个题,共48分.解答应写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分.有数值计算的题答案中必须明确写出数值和单位)13.(10分)如图12-14所示是一种测量通电线圈中磁场的磁感应强度B 的装置,把一个很小的测量线圈A 放在待测处,线圈与测量电荷量的冲击电流计G 串联,当用双刀双掷开关S 使螺线管的电流反向时,测量线圈中就产生感应电动势,从而引起电荷的迁移,由表G 测出电荷量Q ,就可以算出线圈所在处的磁感应强度B.已知测量线圈的匝数为N,直径为d ,它和表G 串联电路的总电阻为R ,则被测出的磁感应强度B 为多大?图12-14解析:当双刀双掷开关S 使螺线管的电流反向时,测量线圈中就产生感应电动势,根据法拉第电磁感应定律可得:td B N t N E ∆=∆∆Φ=2)2(2π 由欧姆定律和电流的定义得:,t Q R E I ∆==即t RE Q ∆= 联立可解得:.22NdQR B π= 答案:22Nd QR π 14.(12分)如图12-15所示,线圈内有理想边界的磁场,开始时磁场的磁感应强度为B 0.当磁场均匀增加时,有一带电微粒静止于平行板(两板水平放置)电容器中间,若线圈的匝数为n ,平行板电容器的板间距离为d ,粒子的质量为m ,带电荷量为q .(设线圈的面积为S )求:图12-15(1)开始时穿过线圈平面的磁通量的大小.(2)处于平行板电容器间的粒子的带电性质.(3)磁感应强度的变化率.解析:(1)Φ=B 0S.(2)由楞次定律,可判出上板带正电,故推出粒子应带负电. (3),t n E ∆∆Φ=,ΔΦ=ΔB ·S, mg dE q =⋅,联立解得:.nqS mgd t B =∆∆ 答案:(1)B 0S (2)负电 (3)nqS mgd t B =∆∆ 15.(12分)两根光滑的长直金属导轨MN 、M ′N ′平行置于同一水平面内,导轨间距为l ,电阻不计,M 、M ′处接有如图12-16所示的电路,电路中各电阻的阻值均为R ,电容器的电容为C.长度也为l 、阻值同为R 的金属棒ab 垂直于导轨放置,导轨处于磁感应强度为B 、方向竖直向下的匀强磁场中.ab 在外力作用下向右匀速运动且与导轨保持良好接触,在ab 运动距离为s 的过程中,整个回路中产生的焦耳热为Q .求:图12-16(1)ab 运动速度v 的大小;(2)电容器所带的电荷量q .解析:本题是电磁感应中的电路问题,ab 切割磁感线产生感应电动势为电源.电动势可由E =Blv 计算.其中v 为所求,再结合闭合(或部分)电路欧姆定律、焦耳定律、电容器及运动学知识列方程可解得.(1)设ab 上产生的感应电动势为E ,回路中的电流为I ,ab 运动距离s 所用时间为t ,三个电阻R 与电源串联,总电阻为4R ,则E=Blv由闭合电路欧姆定律有RE I 4= vs t = 由焦耳定律有Q =I 2(4R )t 由上述方程得.422s l B QR v =(2)设电容器两极板间的电势差为U ,则有U=IR电容器所带电荷量q =CU 解得.Bls CQR q =答案:(1)s l B QR 224 (2)Bls CQR 16.(14分)如图12-17所示,水平地面上方的H 高区域内有匀强磁场,水平界面PP ′是磁场的上边界,磁感应强度为B ,方向是水平的,垂直于纸面向里.在磁场的正上方,有一个位于竖直平面内的闭合的矩形平面导线框abcd ,ab 长为l 1,bc 长为l 2,H >l 2,线框的质量为m ,电阻为R .使线框abcd 从高处自由落下,ab 边下落的过程中始终保持水平,已知线框进入磁场的过程中的运动情况是:cd 边进入磁场以后,线框先做加速运动,然后做匀速运动,直到ab 边到达边界PP ′为止.从线框开始下落到cd 边刚好到达水平地面的过程中,线框中产生的焦耳热为Q .求:图12-17(1)线框abcd 在进入磁场的过程中,通过导线的某一横截面的电荷量是多少?(2)线框是从cd 边距边界PP ′多高处开始下落的?(3)线框的cd 边到达地面时线框的速度大小是多少?解析:(1)设线框abcd 进入磁场的过程所用时间为t ,通过线框的平均电流为I ,平均感应电动势为ε,则RI t εε=∆∆Φ=,,ΔΦ=Bl 1l 2 通过导线的某一横截面的电荷量t I q ∆=解得.21Rl Bl q = (2)设线框从cd 边距边界PP ′上方h 高处开始下落,cd 边进入磁场后,切割磁感线,产生感应电流,在安培力作用下做加速度逐渐减小的加速运动,直到安培力等于重力后匀速下落,速度设为v ,匀速过程一直持续到ab 边进入磁场时结束,有ε=Bl 1v ,,R I ε=F A =BIl 1,F A =mg 解得212l B mgR v = 线框的ab 边进入磁场后,线框中没有感应电流.只有在线框进入磁场的过程中有焦耳热Q .线框从开始下落到ab 边刚进入磁场的过程中,线框的重力势能转化为线框的动能和电路中的焦耳热.则有Q mv l h mg +=+2221)(解得.222414414223l l mgB l QB R g m h -+= (3)线框的ab 边进入磁场后,只有重力作用下,加速下落,有)(21212222l H mg mv mv -=- cd 边到达地面时线框的速度.)(224142222l H g l B R g m v -+= 答案:(1)Rl Bl 21 (2)241441422322l l mgB l QB R g m -+ (3))(22414222l H g l B R g m -+。
2012高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析.
电磁感应中“单、双棒”问题归类例析 2015-3-15一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab垂直导轨放置(1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。
(2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ、MN光滑,相距l 0.5m,处在同一水平面中,磁感应强度B=0.8T的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S将电动势E =1.5V、内电阻r =0.2Ω的电池接在M、P两端,试计算分析:(1)在开关S刚闭合的初始时刻,导线ab的加速度多大?随后ab的加速度、速度如何变化?(2)在闭合开关S后,怎样才能使ab以恒定的速度υ =7.5m/s沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题: 1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。
导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示.两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd静止,棒ab有指向棒cd的初速度v0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析
高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用.多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化?(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
电磁感应现象中的单双棒问题(解析版)-2023年高考物理压轴题专项训练(全国通用)
压轴题08电磁感应现象中的单双棒问题考向一/选择题:电磁感应现象中的单棒问题考向二/选择题:电磁感应现象中的含容单棒问题考向三/选择题:电磁感应现象中的双棒棒问题考向一:电磁感应现象中的单棒问题模型规律阻尼式(导轨光滑)1、力学关系:22A B l vF BIl R r==+;22()A FB l va m m R r ==+2、能量关系:20102mv Q-=3、动量电量关系:00BIl t mv -⋅∆=-;Bl sq n R r R rφ∆⋅∆==++电动式(导轨粗糙)1、力学关系:((B A E E E lv F B l B lR r R r--=++反))=;(B ()B F mg E lv a B l g m m R r μμ--=-+)=2、动量关系:0m BLq mgt mv μ-=-3、能量关系:212m qE Q mgS mv μ=++4、稳定后的能量转化规律:min min ()2min mI E I E I R r mgv μ=+++反5、两个极值:(1)最大加速度:v=0时,E 反=0,电流、加速度最大。
m E I R r =+;m m F BI l =;mm F mg a mμ-=(2)最大速度:稳定时,速度最大,电流最小。
min ,m E Blv I R r -=+min min mE Blv mgF BI l B l R rμ-===+发电式(导轨粗糙)1、力学关系:22--==--+()B F F mg F B l va gm m m R r μμ2、动量关系:0m Ft BLq mgt mv μ--=-3、能量关系:212mFs Q mgS mv μ=++4、稳定后的能量转化规律:2()m m mBLv Fv mgv R rμ=++5、两个极值:(1)最大加速度:当v=0时,m F mg a mμ-=。
(2)最大速度:当a=0时,220--==--=+()m B B l v F F mg Fa g m m m R r μμ考向二:电磁感应现象中的含容单棒问题模型规律放电式(先接1,后接2。
电磁感应中“单、双棒”问题归类例析
电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动棒落地时的速度为多大3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 lm ,处在同一水平面中,磁感应强度B =的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =Ω,导轨电阻不计.导轨间通过开关S 将电动势E =、内电阻r =Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大随后ab 的加速度、速度如何变化(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
最新高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析
高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化?(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd Bv 0L adb的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
高考物理二轮专题复习 电磁感应中“单 双棒”问题归类例析
高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab垂直导轨放置(1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。
(2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab发生的位移x。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为的金属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动棒落地时的速度为多大3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ、MN光滑,相距5.0l m,处在同一水平面中,磁感应强度B=的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab的质量m =、电阻R=Ω,导轨电阻不计.导轨间通过开关S将电动势E =、内电阻r =Ω的电池接在M、P两端,试计算分析:(1)在开关S刚闭合的初始时刻,导线ab的加速度多大随后ab的加速度、速度如何变化(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =s 沿导轨向右运动试描述这时电路中的能量转化情况(通过具体的数据计算说明). 二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
专题13 电磁感应中的单杆、双杆和导体框问题(讲义)原卷版-【高频考点解密】2024年高考物理二轮
专题13电磁感应中的单杆、双杆、导线框问题01专题网络.思维脑图 (1)02考情分析.解密高考 (2)03高频考点.以考定法 (2) (2) (5) (7)考向1:导体棒平动切割磁感应线的综合问题 (7)考向2:导体棒旋转切割磁感应线的综合问题 (8)考向3:线框进出磁场类问题的综合应用 (9)考向4:双杆在导轨上运动的综合应用 (10)04核心素养.难点突破 (11)05创新好题.轻松练 (16)新情境1:航空航天类 (16)新情境2:航洋科技类 (18)新情境3:生产生活相关类 (19)一、电磁感应中的单杆模型1.单杆模型的常见情况质量为m、电阻不计的单杆ab以一定初速度v0在光滑水平轨道上滑动,两平行导轨间距为L 轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定F 做的功一部分转化2.在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量。
(1)求电荷量或速度:B I LΔt =mv 2-mv 1,q =I Δt 。
(2)求位移:-B 2L 2v ΔtR 总=0-mv 0,x =v̅Δt 。
(3)求时间:⇒-B I LΔt +F 其他·Δt =mv 2-mv 1,即-BLq +F 其他·Δt =mv 2-mv 1 已知电荷量q ,F 其他为恒力,可求出变加速运动的时间。
⇒-B 2L 2v ΔtR 总+F 其他·Δt =mv 2-mv 1,v̅Δt =x已知位移x ,F 其他为恒力,也可求出变加速运动的时间。
二、电磁感应中的双杆模型1.双杆模型的常见情况(1)初速度不为零,不受其他水平外力的作用质量m b=m a;电阻r b=r a;长度L b=L a质量m b=m a;电阻r b=r a;长度L b=2L a杆b受安培力做变减速运动,杆a受安培力能量质量m b=m a;电阻r b=r a;长度L b=L a摩擦力F fb=F fa;质量m b=m a;电阻r b=r a;长度L b=L a 开始时,两杆受安培力做变加速运动;开始时,若F<F≤2F,则a杆先变加速后匀速运动;b杆F做的功转化为两杆的动能和内能:F做的功转化为两杆的动能和内能(包括电热和摩擦热):进行解决。
高考的物理二轮专题复习:电磁感应中“单、双棒”问题归类例析
高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 度为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化?(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cdBv 0L adb的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
(完整版)电磁感应中的单杆和双杆问题(习题,答案)
电磁感应中“滑轨”问题归类例析一、“单杆”滑切割磁感线型1、杆与电阻连接组成回路例 1、如图所示, MN 、PQ 是间距为 L 的平行金属导轨,置于磁感强度为 B 、方向垂直导轨所在平面向里的匀强磁场中, M 、P间接有一阻值为 R 的电阻.一根与导轨接触良好、阻值为 R /2 的金属导线 ab 垂直导轨放置 ( 1)若在外力作用下以速度 v 向右匀速滑动,试求 ab 两点间的电势差。
( 2)若无外力作用,以初速度 v 向右滑动,试求运动过程中产生的热量、通过 a b 电量以 及 ab 发生的位移 x 。
例 4、光滑 U 型金属框架宽为 L ,足够长,其上放一质量为 m 的金属棒 ab ,左端连接有一电容为3、杆与电源连接组成回路例 5、如图所示,长平行导轨 PQ 、MN 光滑,相距 l 0.5 m ,处在同一水平面中,磁感应强度 B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线 ab 的质量 m = 0.1kg 、电阻 R =0.8Ω,导轨电阻不计.导轨间通过开关 S 将电动势 E =1.5V 、 内电阻 r =0.2Ω的电池接在 M 、 P 两端,试计算分析:度、速度如何变化?2)在闭合开关 S 后,怎样才能使 ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量例 2、如右图所示,一平面框架与水平面成 37°角,宽 L=0.4 m ,上、下两端各有一个电阻 R 0=1 Ω,框架的其他部分电阻不计,框架足够长 . 垂直于框平面的方向存在向上的匀 强磁场,磁感应强度 B =2T.ab 为金属杆,其长度为 L =0.4 m ,质量 m =0.8 kg ,电阻 r =0.5 Ω,棒与框架的动摩擦因数μ= 0.5. 由静止开始下滑,直到速度达到最大的过程中, 上端电阻 产生的热量 =已知(1) 杆 ab 的最大速度;(2) 从开始到速度最大的过程中 ab 杆沿斜面下滑的距离;在该过程中通过 ab的电荷量 . 关键:在于能量观,通过做功求位移。
2023年高三物理二轮高频考点冲刺突破21 电磁感应现象中有关单双棒的动力学和能量问题(解析版)
2023年高三物理二轮高频考点冲刺突破专题21电磁感应现象中有关单双棒的动力学和能量问题专练目标专练内容目标1高考真题(1T—4T)目标2有关单棒的动力学问题和能量问题(5T—8T)目标3有关含容单棒的动力学问题和能量问题(9T—12T)目标4有关双棒的动力学问题和能量问题(13T—16T)【典例专练】一、高考真题1.如图,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc边垂直。
ab、dc足够长,整个金属框电阻可忽略。
一根具有一定电阻的导体棒MN置于金属框上,用水平恒力F向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN与金属框保持良好接触,且与bc边保持平行。
经过一段时间后()A.金属框的速度大小趋于恒定值B.金属框的加速度大小趋于恒定值C.导体棒所受安培力的大小趋于恒定值D.导体棒到金属框bc边的距离趋于恒定值【答案】BC【详解】ABC .当金属框在恒力F 作用下向右加速时,bc 边产生从c 向b 的感应电流I ,线框的加速度为a 1,对线框,由牛顿第二定律得1F BIL Ma -=导体棒MN 中感应电流从M 向N ,在感应电流安培力作用下向右加速,加速度为a 2,对导体棒MN ,由牛顿第二定律得2BIL ma =当线框和导体棒MN 都运动后,线框速度为v 1,MN 速度为v 2,感应电流为12()E BL v v I R R -==感应电流从0开始增大,则a 2从零开始增加,a 1从F M开始减小,加速度差值为1211F a a BIL M M m ⎛⎫-=-- ⎪⎝⎭感应电流从零增加,则加速度差值减小,当差值为零时12a a a ==故有()F M m a =+解得()()12BL v v mFI M m BLR -==+此后金属框与MN 的速度差维持不变,感应电流不变,MN 受到的安培力不变,加速度不变,v -t 图象如图所示故A 错误,BC 正确;D .MN 与金属框的速度差不变,但MN 的速度小于金属框速,MN 到金属框bc 边的距离越来越大,故D 错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理二轮专题复习电磁感应中单双棒问题归类例析修订版IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab垂直导轨放置(1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。
(2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金属棒ab可紧贴导轨自由滑动. 现让ab由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ、MN光滑,相距5.0l m,处在同一水平面中,磁感应强度B=0.8T的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab的质量m =0.1kg、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S将电动势E =1.5V、内电阻r =0.2Ω的电池接在M、P两端,试计算分析:(1)在开关S刚闭合的初始时刻,导线ab的加速度多大?随后ab的加速度、速度如何变化?(2)在闭合开关S后,怎样才能使ab以恒定的速度υ=7.5m/s沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。
导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示.两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd静止,棒ab有指向棒cd的初速度v0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
导轨间的距离l=0.20m。
两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。
在t=0时刻,两杆都处于静止状态。
现有一与导轨平行、大小为0.20N的恒力F动。
经过t=5.0s,金属杆甲的加速度为a=1.37m/s22、双杆所在轨道宽度不同——常用动量定理找速度关系例6、如图所示,abcd和a/b/c/d/为水平放置的光滑平行导轨,区域内充满方向竖直向上的匀强磁场。
ab、a/b/间的宽度是cd、c/d/间宽度的2倍。
设导轨足够长,导体棒ef的质量是棒gh的质量的2倍。
现给导体棒ef一个初速度v0,沿导轨向左运动,当两棒的速度稳定时,两棒的速度分别是多少?3、磁场方向与导轨平面不垂直例7、如图所示,ab和cd是固定在同一水平面内的足够长平行金属导轨,ae和cf是平行的足够长倾斜导轨,整个装置放在竖直向上的匀强磁场中。
在水平导轨上有与导轨垂直的导体棒1,在倾斜导轨上有与导轨垂直且水平的导体棒2,两棒与导轨间接触良好,构成一个闭合回路。
已知磁场的磁感应强度为B,导轨间距为L,倾斜导轨与水平面夹角为θ,导体棒1和2质量均为m,电阻均为R。
不计导轨电阻和一切摩擦。
现用一水平恒力F作用在棒1上,从静止开始拉动棒1,同时由静止开始释放棒2,经过一段时间,两棒最终匀速运动。
忽略感应电流之间的作用,试求:(1)水平拉力F的大小;(2)棒1最终匀速运动的速度v1的大小。
三、轨道滑模型例8、如图所示,abcd为质量m的U形导轨,ab与cd平行,放在光滑绝缘的水平面上,另有一根质量为m的金属棒PQ平行bc放在水平导轨上,PQ棒右边靠着绝缘竖直光滑且固定在绝缘水平面上的立柱e、f,U形导轨处于匀强磁场中,磁场以通过e、f的O1O2为界,右侧磁场方向竖直向上,左侧磁场方向水平向左,磁感应强度大小都为B,导轨的bc 段长度为L,金属棒PQ的电阻R,其余电阻均可不计,金属棒PQ与导轨间的动摩擦因数为μ,在导轨上作用一个方向向右,大小F==mg的水平拉力,让U形导轨从静止开始运动.设导轨足够长.求:(1)导轨在运动过程中的最大速度υm的过程中,流过PQ棒的总电量为q,则系统 (2)若导轨从开始运动到达到最大速度υm增加的内能为多少?练习:1、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m,上、下=1 Ω,框架的其他部分电阻不计,框架足够长.两端各有一个电阻R垂直于框平面的方向存在向上的匀强磁场,磁感应强度B=2T.ab为金属杆,其长度为L=0.4 m,质量m=0.8 kg,电阻r=0.5Ω,棒与框产生架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电阻R的热量Q=0.375J(已知sin37°=0.6,cos37°=0.8;g取10m/s2)求:(1)杆ab的最大速度;(2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;在该过程中通过ab的电荷量.2、光滑U型金属框架宽为L,足够长,其上放一质量为m的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初速v,使棒始终垂直框架并沿框架运动,如图所示。
求导体棒的最终速度。
3、如图所示,两根间距为l的光滑金属导轨(不计电阻),由一段圆弧部分与一段无限长的水平段部分组成.其水平段加有竖直向下方向的匀强磁场,其磁感应强度为B,导轨水平段上静止放置一金属棒cd,质量为2m,电阻为2r.另一质量为m,电阻为r的金属棒ab,从圆弧段M处由静止释放下滑至N处进入水平段,圆弧段MN半径为R,所对圆心角为60°,求:(1)ab棒在N处进入磁场区速度多大?此时棒中电流是多少?(2) cd棒能达到的最大速度是多大?(3)ab棒由静止到达最大速度过程中,系统所能释放的热量是多少?4、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
导轨间的距离l=0.20m。
两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。
在t=0时刻,两杆都处于静止状态。
现有一与导轨平行、大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。
经过t=5.0s,金属杆甲的加速度为a=1.37m/s2,问此时两金属杆的速度各为多少?电磁感应中“单棒、双棒”问题归类例析答案一、单棒问题:1.单棒与电阻连接构成回路:例1.解析:(1)ab运动切割磁感线产生感应电动势E,所以ab相当于电源,与外电阻R构成回路。
∴Uab =BLVBLVRRR322=+(2)若无外力作用则ab在安培力作用下做减速运动,最终静止。
动能全部转化为电热。
221mv Q =。
由动量定理得:mv Ft =即mv BILt =,It q =∴BL mvq =。
BL mvR BLx R It q ==∆==2323ϕ,∴2223LB mvRx =。
2、杆与电容器连接组成回路例2 .解析:ab 在mg 作用下加速运动,经时间 t ,速度增为v ,a =v / t产生感应电动势 E=Bl v电容器带电量 Q=CE=CBl v ,感应电流I=Q/t=CBL v/ t=CBl a产生安培力F=BIl =CB2 l 2a ,由牛顿运动定律 mg-F=mama= mg - CB 2 l 2a ,a= mg / (m+C B 2 l 2)∴ab 做初速为零的匀加直线运动, 加速度 a= mg / (m+C B 2 l 2)落地速度为 3、杆与电源连接组成回路例3.解析(1)在S 刚闭合的瞬间,导线ab 速度为零,没有电磁感应现象,由a 到b 的电流A r R EI 5.10=+=,ab 受安培力水平向右,此时瞬时加速度2000/6s m m LBI m F a ===ab 运动起来且将发生电磁感应现象.ab 向右运动的速度为υ时,感应电动势Blv E =',根据右手定则,ab 上的感应电动势(a 端电势比b 端高)在闭合电路中与电池2222l CB m mghah v +==电动势相反.电路中的电流(顺时针方向,rR E E I +-=')将减小(小于I 0=1.5A ),ab 所受的向右的安培力随之减小,加速度也减小.尽管加速度减小,速度还是在增大,感应电动势E 随速度的增大而增大,电路中电流进一步减小,安培力、加速度也随之进一步减小,当感应电动势'E 与电池电动势E 相等时,电路中电流为零,ab 所受安培力、加速度也为零,这时ab 的速度达到最大值,随后则以最大速度继续向右做匀速运动.设最终达到的最大速度为υm ,根据上述分析可知:0m E Bl υ-= 所以 1.50.80.5m E Bl υ==⨯m/s=3.75m/s . (2)如果ab 以恒定速度7.5υ=m/s 向右沿导轨运动,则ab 中感应电动势5.75.08.0'⨯⨯==Blv E V=3V由于'E >E ,这时闭合电路中电流方向为逆时针方向,大小为:2.08.05.13''+-=+-=r R E E I A=1.5A 直导线ab 中的电流由b 到a ,根据左手定则,磁场对ab 有水平向左的安培力作用,大小为5.15.08.0''⨯⨯==BlI F N=0.6N所以要使ab 以恒定速度5.7=v m/s 向右运动,必须有水平向右的恒力6.0=F N 作用于ab .上述物理过程的能量转化情况,可以概括为下列三点:①作用于ab 的恒力(F )的功率:5.76.0⨯==Fv P W=4.5W②电阻(R +r )产生焦耳热的功率:)2.08.0(5.1)(22'+⨯=+=r R I P W=2.25W③逆时针方向的电流'I ,从电池的正极流入,负极流出,电池处于“充电”状态,吸收能量,以化学能的形式储存起来.电池吸收能量的功率:'' 1.5 1.5P I E ==⨯W=2.25W由上看出,'''P P P +=,符合能量转化和守恒定律(沿水平面匀速运动机械能不变).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4.解析:ab 棒向cd 棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流.ab 棒受到与运动方向相反的安培力作用作减速运动,cd 棒则在安培力作用下作加速运动.在ab 棒的速度大于cd 棒的速度时,回路总有感应电流,ab 棒继续减速,cd 棒继续加速.两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v 作匀速运动.(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有mv mv 20=根据能量守恒,整个过程中产生的总热量2022041)2(2121mv v m mv Q =-= (2)设ab 棒的速度变为初速度的3/4时,cd 棒的速度为v 1,则由动量守恒可知:10043mv v m mv +=。